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Abstract
The high rewards people desire are often unlikely. Here, we investigated whether 
decision-makers exploit such ecological correlations between risks and rewards 
to simplify their information processing. In a learning phase, participants were 
exposed to options in which risks and rewards were negatively correlated, positively 
correlated, or uncorrelated. In a subsequent risky choice task, where the emphasis 
was on making either a ‘fast’ or the ‘best’ possible choice, participants’ eye move-
ments were tracked. The changes in the number, distribution, and direction of eye 
fixations in ‘fast’ trials did not differ between the risk–reward conditions. In ‘best’ 
trials, however, participants in the negatively correlated condition lowered their evi-
dence threshold, responded faster, and deviated from expected value maximization 
more than in the other risk–reward conditions. The results underscore how conclu-
sions about people’s cognitive processing in risky choice can depend on risk–reward 
structures, an often neglected environmental property.

Keywords Risk–reward · Decisions under risk · Ecological rationality · Eye 
tracking · Drift-diffusion model

JEL Classification D91 · D81

Monetary lotteries have been playing a lead role in studies of how people should and 
do make decisions under risk (e.g., Arrow 1951; Allais 1953; Bernoulli 1738/1954; 
Edwards 1954; Ellsberg 1961; Kahneman and Tversky 1979; Savage 1954; von 
Neumann and Morgenstern 1947). Typically, people are asked to choose among two 
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or more options with explicitly stated risks and rewards (e.g., “Do you prefer $30 for 
sure or $40 with a probability of .8?”). A decision under risk is thought to be rational 
if the decision-maker weighs each option’s outcomes, that is, their subjective values 
(utilities) by their probabilities, and chooses the option with the higher expected util-
ity. Although expected utility theory does not specify how rational decision-makers 
are to achieve this goal, it is typically understood to imply that decision-makers need 
to process all the available information.

Complete search, however, may be unrealistic for actual decision-makers facing 
constraints on time and cognitive resources (Gigerenzer 2001; Hertwig et al. 2019; 
Simon 1955). A boundedly rational decision-maker still seeking to make the best 
possible decision must look for shortcuts and often—as when people use size, shape, 
or other visual cues to infer the distance of an object (e.g., Kleffner and Ramachan-
dran 1992)—these shortcuts make use of environmental regularities. In risky choice, 
one potential regularity on display is the inverse relationship between probabilities 
and payoffs, or risks and rewards, which are often present in natural environments. 
Whether the gamble is a lottery ticket, a bet at the horse track, or a high-impact pub-
lication, the high rewards people desire are typically unlikely (Pleskac and Hertwig 
2014). Note that when referring to the risk–reward relationship, we use the term 
’risk’ in terms of the reward probability (more precisely, its inverse probability) and 
not in terms of variance among the outcomes within an option.

In the aforementioned domains, the probability of winning is usually such that 
the gamble is sufficiently attractive to both buyers and sellers—that is, such that the 
cost of buying the gamble should be offset by the expected gain. To illustrate, for a 
cost of $2 , a casino may offer gambles of the sort $5 with p = .4 , $10 with p = .2 , 
or $20 with p = .1 (typically with a slightly lower probability, creating a “house 
advantage”). Such a set of gambles in which the probabilities decrease as payoffs 
increase constitutes a negative risk–reward structure. Conversely, a high reward tied 
to a relatively high probability (e.g., $20 with p = .4 ) and vice versa (e.g., $5 with 
p = .1 ) would be consistent with a (probably rare) positive risk–reward structure. In 
an uncorrelated environment, any payoff can be teamed up with any probability.

Past research has demonstrated that in decisions under uncertainty people exploit 
their knowledge about such risk–reward structures. Specifically, they enlist the 
risk–reward heuristic to infer unknown probabilities from the magnitude of the pay-
offs (Leuker et al. 2018; Pleskac and Hertwig 2014), and, vice versa, also to infer 
payoffs from probabilities (Skylark and Prabhu-Naik 2018). Moreover, in decisions 
from experience people have been shown to sample less information about possible 
outcome distributions in decisions from experience (Hertwig 2015) when a choice 
environment displays the typically negative relationship between risks and rewards 
compared to when risks and rewards are positively related, or uncorrelated (Hoffart 
et al. 2018).

In decision-making under risk—that is, when both the payoffs (or outcomes) of 
an action and their probabilities are known (Luce and Raiffa 1957)—the risk–reward 
relationship may serve different functions. When evaluating options one-by-one, 
it allows people to detect highly desirable opportunities, that is, high-reward/high-
probability options in an environment where high rewards are typically unlikely 
and, therefore, unexpected (Leuker et al. 2019). Our focus here is to examine how 
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risk–reward structures may affect the processing of decisions under risk especially 
under circumstances that prompt a person to curtail search of available informa-
tion. If a decision-maker’s time is limited, they may need to simplify their process-
ing. Recurrent statistical regularities in the environment such as the risk–reward 
relationship may empower the reliance on less information: if risks and rewards 
are inversely related, then payoff and probability information can operate as proba-
bilistic cues that can inform or substitute each other. Brunswik (1952) referred to 
this as the mutual substitutability or vicarious functioning of cues and applied it to 
contexts where cues are missing. Here, we extend this notion to a context in which 
time pressure leaves a person little choice but to process fewer pieces of information 
and substitutability permits an informed guess about information that can remain 
unattended.

1  Overview of the experiment and key hypotheses

During the study, people learned about negatively correlated, positively corre-
lated and uncorrelated risk–reward environments in a between-participants design. 
Subsequently, they completed a risky choice task in which they were instructed to 
make either the ‘best possible’ or a ‘fast’ choice within 1.5 s (manipulated within 
participants) while their eye movements were tracked. The choice task consisted 
of two classes of gambles. Test gambles (60% of all stimuli), on which we based 
our analyses and computational model, were the same across the three risk–reward 
conditions. They included problems with EV differences of various sizes and dif-
ferent types of payoff–probability combinations. The structure of these gambles 
necessarily deviated from the risk–reward conditions people experienced in the 
learning phase. Environment gambles (40% of the stimuli) were constructed to be 
consistent (in terms of their risk–reward structure) with the gambles from the learn-
ing phase. They were intermixed with the test gambles to reinforce the condition-
dependent risk–reward structure. Using this experimental design, we examined 
whether and how people adjust their information processing in different risk–reward 
environments.1

1.1  Simplification hypothesis (H1): participants in correlated risk–reward 
environments simplify their information processing relative to participants 
in an uncorrelated environment

In environments in which probabilities and payoff are independent, both attrib-
utes are important for gauging the attractiveness of an option. Therefore, one may 
expect that people attend to all attributes in such environments (which has been sup-
ported in empirical studies; Fiedler and Gloeckner 2012; Manohar and Husain 2013; 

1 The processing hypotheses within this project were preregistered as Hypotheses 3a–3c on the Open 
Science Framework.
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Pachur et al. 2013, 2018; Stewart et al. 2006). In environments in which probability 
and payoff information are correlated, however, people may exploit this relationship 
to simplify processing and ease computational demands. In the extreme, this could 
mean that one of the attributes (e.g., probabilities) will be completely ignored; after 
all, it can be inferred from the other (e.g., payoffs).

In environments in which risks and rewards are correlated, it is impossible to 
know, based on the observed choice alone, whether an attribute is inferred versus 
attended. Eye-tracking data, however, can help to discern between these two mecha-
nisms. In a choice between two gambles of the form “p chance of winning x, other-
wise nothing”, participants can inspect up to four areas of interest (AOIs)—two pay-
offs and two probabilities—to make their choice. Simplified processing—a possible 
result of vicarious functioning according to which one attribute is inferred from 
the other—would be indicated by a lower number of AOIs inspected per trial. Fur-
thermore, eye-tracking data can be used to compute the average number of within-
gamble transitions (between payoffs and probabilities) per condition. This type of 
transitions should be less frequent if people simplified their processing in correlated 
conditions. Last, eye-tracking data can be used to investigate the extent to which 
gaze is biased to either payoffs or probabilities.

1.2  Processing constraint hypothesis (H2): environment‑dependent 
simplification is more pronounced under strong processing constraints

We hypothesized that simplified processing in correlated risk–reward environ-
ments may only, or at least more strongly, emerge when participants need to make 
a fast choice. Here, participants in a negative or positive risk–reward environment 
may ignore probability information altogether; participants in an uncorrelated 
risk–reward environment may handle the need to respond quickly differently—
for example, by attempting to process information faster (Payne et  al. 1993; Zur 
and Breznitz 1981). We used the same dependent variables as for the Simplifica-
tion Hypothesis (H1). More expansive information processing—as expected in the 
uncorrelated condition—should lead to higher rates of EV maximization. Consist-
ent with the bulk of past psychological research investigating how the structure of 
the environment affects processing and subsequent choice under different processing 
constraints, we rely on choice of the option with the higher EV as an indicator of 
success or accuracy in the long run (Payne et al. 1993; Pachur et al. 2017).

1.3  Exploring environment‑dependent responses to processing constraints 
with a drift‑diffusion model

Attention not only enables the decision-maker to integrate information to thus pre-
pare a decision (Orquin and Mueller Loose 2013), it has also been found to be linked 
with preference for an option, with the option that is eventually chosen receiving 
more attention (Busemeyer and Townsend 1993; Cavanagh et  al. 2014; Stewart 
et al. 2016; Wulff et al. 2018). Recent models assume that attention plays an active 
role in preference construction, such that decision-makers accumulate evidence for 
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an option when fixating it (Krajbich et al. 2010, 2012; Krajbich and Rangel 2011). 
In addition to permitting to take such attentional processes into account, the drift-
diffusion model (DDM) is particularly useful in our experimental setup. The impo-
sition of time pressure typically results in lower decision thresholds as measured 
with the DDM (Ratcliff and McKoon 2008). We preregistered the use of a DDM in 
our analyses but did not specify how parameters might differ between risk–reward 
environments (see section “follow-up analyses” in preregistration). Consistent with 
the behavioral analyses, we focused on a DDM that rests on EV maximization as 
an indicator for long-term success. However, we also report a DDM analysis using 
EU maximization, thus accounting for individual risk preferences, in Supplementary 
Material S4.4.

In addition to these hypotheses, we preregistered a number of other hypothe-
ses that go beyond the scope of this article. Some of them represent manipulation 
checks (e.g., lower proportion of EV choices under time pressure); others pertain 
to a comparison of the results to those in a different learning task (explicit learn-
ing).2 A systematic test of all preregistered hypotheses is posted on the Open Sci-
ence Framework.

2  Methods

2.1  Participants

A total of 92 participants (54 female, mean age = 24.73, SD = 4.25) completed the 
experiment ( Nnegative = 31; Npositive = 30; Nuncorrelated = 31). Being unsure of effect 
sizes (but expecting them to be small), we set our sample size to be larger than those 
of previous and comparable eye-tracking studies (Glöckner and Herbold 2011; Stew-
art et al. 2016). We excluded one participant due to poor eye tracking. Participants 
were paid a fixed rate of €12 plus a bonus based on their performance in the learning 
phase and the choice task (€1.13–€10.04). The experiment was approved by the eth-
ics board of the Max Planck Institute for Human Development.

2.2  Procedure

2.2.1  Learning phase

Participants were presented with 100 gambles. For each gamble, they were asked to 
indicate the minimum price at which they would sell the right to play it (willing-
ness to sell; Fig. 1b). The gambles were constructed such that across gambles, pay-
offs and probabilities were either correlated (negatively or positively) or uncorrelated 

2 In brief, behavior in the explicit learning was not comparable to behavior in the incidental learning 
phase discussed here—participants experienced fewer trials in the correlated conditions; participants in 
the uncorrelated condition became frustrated because there was no systematic structure to learn about the 
environment (even after 100 trials).
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(between participants; Fig. 1a). To motivate participants to report their true valuations 
of the gambles, we implemented a Becker–DeGroot–Marschak procedure (Becker 
et al. 1964). Specifically, ten gambles were selected at the end of the experiment and 
participants either played out the gamble or received their stated selling price. Par-
ticipants were never explicitly asked to pay attention to the underlying risk–reward 
structure and learning the structure was not the central task; we, therefore, refer to 
this mode of learning as incidental learning (Leuker et al. 2018). Across all gambles, 
we used the same range for payoffs and probabilities (1–100), and defined an experi-
mental currency, the E$(conversion rate 100E $ = €1, disclosed in the instructions). 
The instructions are reported in Supplementary Material S1.

2.2.2  Choice task

In each trial of the choice task, participants chose between two nondominated mon-
etary gambles of the form “p chance of winning x, otherwise nothing.” There were 
two different types of rounds: Rounds in which participants had to decide within 
1.5 s (‘fast’) and rounds in which they were asked to make the best possible decision 
(‘best’), presented in interleaved blocks (16 choices per block). Participants received 
information about the upcoming block before it started (“time limit: make a fast 
decision” or “no time limit: make a good decision”). Participants who took longer 
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Fig. 1  Experimental setup. a Learning phase gambles were drawn from one of three risk–reward envi-
ronments. Each dot represents one learning phase gamble. b Participants learned about one of these risk–
reward environments incidentally, from pricing gambles. c Participants completed a choice phase where 
they chose among two nondominated gambles while their eye movements were tracked. The choice 
phase consisted of test gambles (60%) that were identical across risk–reward conditions and were used to 
model the data and environment gambles (40%) that were used to reinforce the previously learned risk–
reward structure. Eye-tracking analyses are based on the first screen in the choice phase, before partici-
pants indicated their choice. ‘Best’ (no time pressure) and ‘fast’ choices were made in interleaved blocks 
with 16 choices each
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than 1.5 s in a fast trial would loose the chance to win a bonus if that particular trial 
was to be played out at the end. Participants completed five practice trials both for 
the best and the fast trials. Across participants, we randomized the positions of the 
gambles on the screen and counterbalanced the location of payoffs and probabilities 
(top/bottom) and the order of blocks (best/fast first).

The choice task consisted of pairs of test gambles (which made up 60% of the 
stimuli) on the basis of which we examined our hypotheses and research questions. 
To ensure comparability, these gambles were identical across risk–reward condi-
tions. In these gambles, payoffs and probabilities were uncorrelated. That is, for the 
two correlated conditions, the structure of the test gambles deviated from the previ-
ously learned risk–reward structures (e.g., the gamble pairs E$90 with p = .91 vs. 
E$99 with p = .82 ; or E$2 with p = .90 vs. E$12 with p = .88 appeared in each 
condition). The EV differences for the test gambles were approximately 7E (absolute 
difference: Md = 7.02, IQR = 0.85–8.7, ratio larger EV gamble/smaller EV gam-
ble: Md = 2.01, IQR = 1.26–2.69). The other gambles were environment gambles 
(which made up 40% of the stimuli), constructed in accordance with the risk–reward 
environments in Fig. 1a). These gambles served to strengthen the previously learned 
risk–reward structure. The same set of gambles appeared twice for each participant, 
once in the ‘best trials’ and once in the ‘fast trials’.

2.2.3  Estimating probabilities from payoffs

To assess how well people had grasped the risk–reward structures, we asked them to 
infer probabilities from payoffs following the pricing and choice tasks (see Supple-
mentary Material S1.2 for details).

2.2.4  Eye tracking

During the choice task, we collected binocular eye position data with an EyeTribe 
tracker, sampled at 60 Hz. The experiment was implemented in PsychoPy 1.83.01 
and the eye-tracking interface PyTribe (Dalmaijer et  al. 2013). Each participant’s 
eye movements were calibrated using the Eyetribe UI with a nine-point grid before 
each task ( < 0.7 ° of visual angle). Participants were seated approximately 60cm 
from the screen using a chin rest affixed to the table, in a room with negligible ambi-
ent light. We preprocessed raw samples by parsing eye-tracking data into fixations 
and saccades (von der Malsburg 2015). Four areas of interest (AOIs) were defined 
as non-overlapping rectangles from the center of the screen (700 × 500 px each). 
For each individual, we plotted all fixations over time to ensure that they fell into 
these four AOIs (corresponding to the two payoffs and two probabilities in Fig. 1b). 
Analyses are based on fixation data.
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3  Results

We applied Bayesian generalized linear mixed models using Stan in R for regres-
sion analyses (Stan Development Team 2016). We entered “participant” as a random 
effect to account for individual variation beyond condition-dependent effects. We 
report the mean of the posterior distribution of the parameter or statistic of interest 
and two-sided, symmetric 95% credible intervals (CI) around each value.

3.1  Learning phase

The prices participants set for the gambles followed the EVs relatively closely and no 
reliable differences between risk–reward environments emerged. On average, prices 
exceeded the corresponding EV of the gamble by around 7E $ ( Mdeviation = 7.12E $, 
bneg. = 9.6E $, CI = [6.7;12.5E$] ; bpos. > neg. = −4.0E $, CI = [−8.1, 1.0E$] ; 
bunc. > neg. = −3.5E $, CI = [−7.6, 4.8E$]).3 In the payoff–probability estimation 
task at the end of the experiment, the estimates differed credibly across risk–reward 
environments, suggesting that participants learned the risk–reward structures. In 
general, however, all estimates were biased toward a negative risk–reward relation-
ship (Supplementary Material S3.3).

3.2  Choice task

Across both the best and fast conditions, choices varied by the risk–reward envi-
ronment that participants had been exposed to in the learning phase: participants 
in the negative environment were less likely to pick the higher EV option than par-
ticipants in the uncorrelated environment ( bbest,negative = − 0.35 , CI = [−0.60,−0.11] , 
bfast,negative = −0.23 , CI = [−0.42,−0.03] ). A similar pattern emerged for the posi-
tive and uncorrelated environments (regression 1 in Table  1; Fig.  2a). Figure  2b 
depicts the average response times in the three risk–reward environments. In 
best trials (left panel), participants in the negative environment responded cred-
ibly faster ( Mneg. = 2.78s ) than participants in the uncorrelated environment 
( bbest,negative = −1.10 , CI = [−1.86,−0.34] , regression 2 in Table 1). Although we did 
not formalize predictions for response-time differences, they are consistent with the 
observation that the higher EV option was also chosen less often in these conditions.

According to the simplification hypothesis (H1), participants in correlated 
environments simplify their processing relative to participants in an uncorrelated 
risk–reward environment. To test this hypothesis, we first examined the number 
of unique AOIs participants inspected in each trial (minimum 1, maximum 4). 
Although participants in the negative environment indeed inspected fewer attrib-
utes than participants in the uncorrelated environment, these differences were 

3 As the responses in the learning phase were obtained using different gambles in each of the three risk–
reward conditions, they were not considered in further analyses.
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not credible ( bbest,negative = −0.20 , CI = [−0.53, 0.13] , bfast,negative = −0.03 , CI = 
[−0.42, 0.36] , regression 3 in Table 1).

As a second indicator for simplified processing, we determined the number of 
within-gamble transitions: if participants in the correlated environment inspected 
fewer attributes because they inferred one attribute from the other and thus ignore 
one of them, there should be fewer within-gamble transitions in these relative to 
the uncorrelated environment. This was indeed the case for the negative condition, 
but again the differences were not credible ( bbest,negative = − 0.30 , CI = [−0.79, 0.26] , 
bfast,negative = −0.05 , CI = [−0.21, 0.10] , regression 4 in Table 1).4 We did find a reli-
able difference in how participants in the three risk–reward conditions distributed 
their gaze across the options: whereas in the uncorrelated environment, participants 
distributed their gaze quite evenly across payoffs and probabilities (i.e., proportion 
of gaze on payoffs = .5), gaze was reliably biased towards payoffs in both correlated 
environments. This was the case in both best and fast trials (regression 5 in Table 1).
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4 We departed from the preregistration in that we did not assign participants or trials to strictly compen-
satory (four AOIs inspected) or noncompensatory processing strategies (fewer than four) because there 
was no bimodal distribution of strategies, rendering such an analysis arbitrary.
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In sum, the most extreme manifestation of the simplification hypothesis (H1)—
namely that participants in correlated environments ignore one attribute (either 
payoff or probability information) because it can be inferred from the other attrib-
ute—can clearly be rejected. We obtained some indications for processing differ-
ences, but they were rather small and not all of them were credible.

Table 1  Overview of regression models for processing and choice. Reference group set for environment: 
“uncorrelated”. Models included a random effect for “participant.” Coefficients are the mean and the 95% 
credible intervals of the posterior distributions. Credible differences in bold

Regression Condition (Within-participant)

Best Fast

Choice: Higher EV (1)
 (Intercept) 0.61 [0.43, 0.79] 0.14 [− 0.01, 0.29]
 EV difference 0.13 [0.12, 0.14] 0.06 [0.05, 0.07]
 Environment (Negative) − 0.35 [− 0.60, − 0.11] − 0.23 [− 0.42, − 0.03]
 Environment (Positive) − 0.30 [− 0.54, − 0.05] − 0.18 [− 0.38, 0.01]

Processing: RTs (2)
 (Intercept) 4.03 [3.50, 4.57] 1.01 [0.95, 1.06]
 EV difference − 0.02 [− 0.03, − 0.14] 0.00 [0.00, 0.00]
 Environment (Negative) − 1.10 [− 1.86, − 0.34] − 0.04 [− 0.11, 0.03]
 Environment (Positive) − 0.63 [− 1.38, 0.13] − 0.02 [− 0.10, 0.05]

Processing: AOIs (3)
 (Intercept) 3.18 [2.94, 3.41] 2.09 [1.82, 2.36]
 EV difference 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]
 Environment (Negative) − 0.20 [− 0.53, 0.13] − 0.03 [− 0.42, 0.36]
 Environment (Positive) 0.07 [− 0.26, 0.39] 0.21 [− 0.18, 0.59]

Processing: Within-gamble transitions (4)
 (Intercept) 1.74 [1.38, 2.10] 0.41 [0.31, 0.53]
 EV difference − 0.01 [− 0.02, − 0.01] 0.00 [0.00, 0.00]
 Environment (Negative) − 0.30 [− 0.79, 0.26] − 0.05 [− 0.21, 0.10]
 Environment (Positive) − 0.09 [− 0.59, 0.41] 0.05 [− 0.11, 0.20]

Processing: Gaze to payoff (5)
 (Intercept) 0.51 [0.47, 0.56] 0.57 [0.50, 0.63]
 EV difference 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]
 Environment (Negative) 0.09 [0.02, 0.16] 0.10 [0.01, 0.19]
 Environment (Positive) 0.09 [0.02, 0.15] 0.11 [0.02, 0.21]

Choice: Higher EV pred. from process data (6)
 (Intercept) 0.41 [0.11, 0.72] − 0.51 [− 0.78, − 0.24]
 EV difference 0.13 [0.12, 0.15] 0.06 [0.05, 0.07]
 Response time − 0.03 [− 0.06, 0.00] 0.47 [0.25, 0.69]
 AOIs inspected 0.13 [0.06, 0.21] 0.08 [0.00, 0.16]
 Transitions (within) 0.01 [− 0.05, 0.06] 0.08 [− 0.04, 0.21]
 Environment (Negative) − 0.35 [− 0.60, − 0.11] − 0.20 [− 0.36, − 0.03]
 Environment (Positive) − 0.30 [− 0.55, − 0.05] − 0.14 [− 0.31, 0.03]
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The processing constraints hypothesis (H2) predicted that indications for simpli-
fication in processing in the correlated conditions would be more pronounced in the 
fast relative to the best condition. As panels C–D in Fig.  2 indicate, this hypoth-
esis can be rejected: processing constraints had a similar effect on processing in all 
three risk–reward conditions. Last, linking process data to choice data, consistent 
with prior research (Payne et al. 1988), the higher EV option was chosen more fre-
quently the more attributes were inspected, but only in best trials ( bAOI,best = 0.13 , 
CI = [0.06, 0.21], regression 6 in Table 1).

4  A computational model of attention, response times, and choice

Although the eye-tracking data showed hardly any support for the simplification hypoth-
esis and processing constraint hypothesis, there were some indications for environment-
dependent process simplification. Specifically, in the negatively correlated environment 
participants made faster choices and decreased EV maximization compared to the other 
conditions. Using a drift-diffusion model (DDM) analysis, we explored the mecha-
nisms that might give rise to this pattern. As preregistered in our follow-up analyses, 
we tested how choice mechanisms may differ across different risk–reward conditions 
and processing constraints by fitting an extended DDM to the data (Fig. 3). According 
to DDMs (Busemeyer and Townsend 1993; Krajbich et al. 2010; Pleskac et al. 2015, 
2019b), preference accumulates over time: as people consider which gamble to choose, 
they accumulate evidence for or against each option. Once preference for an option 
reaches a threshold, people choose accordingly. How far apart people set these thresh-
olds determines how quickly they reach a decision: the closer they set the thresholds, 

Fig. 3  Depiction of the DDM and conditions for which parameters were estimated. We set the bias param-
eter z to .5 because participants cannot be biased to either the higher or lower EV option before inspecting 
it. In the best-fitting DDM (see Table 2), the drift rate was a function of individual differences in ability/
effort to detect the higher EV option (intercept), an EV coefficient �EV measuring how much the use of EV 
differences contributed to the drift rate, and a gaze coefficient �gaze measuring how much gaze differences 
or biases contribute to choice. In this model, the interaction between value and gaze, �EV × gaze , was 0
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the less time they will take to reach a decision, but the more error prone their choices 
will be (e.g., fail to choose the gamble with the higher value).

4.1  DDM parameters

Our extended DDM has several free parameters. The nondecision time parameter � 
models the part of the response time that is unrelated to the processing of the option 
itself, such as motor time. The threshold separation parameter � denotes response cau-
tion. The parameter � should be relatively high when the goal was to make the best 
choice and relatively low when the goal was to make a fast choice. Finally, the drift 
rate � is a measure of the change in accumulated evidence at each unit in time, with 
−∞ < 𝛿 < ∞ . The sign of the drift rate indicates the average direction of the incoming 
incremental change in preference, with positive values indicating preference in favor 
of the higher EV option. Prior research has identified two critical factors that deter-
mine how people accumulate information when making preferential choices: the value 
of the options and gaze or differences in gaze to the alternatives (Cavanagh et al. 2014; 
Krajbich et al. 2012; Stewart et al. 2016). To accommodate these findings, we parame-
terized the drift rate to be a function of these two variables, summarized in the param-
eters �EV and �gaze . Positive values indicate that EV differences or gaze differences, 
respectively, reliably impact the drift rate. In one model, we allowed for an interaction 
effect between gaze and EV differences as a part of the drift rate ( �gaze × EV ). Positive 
values indicate a reliable interaction between gaze and value. For each � coefficient, 
higher values indicate stronger impact. We used a model comparison, described next, 
to identify the best formulation of these two variables to account for the data.

4.2  Model comparison and model estimation

To identify how these factors determine the drift rate, we conducted a model com-
parison among four models. The drift rate in all four models was parameterized 
using the following equation:

In DDM 1, the drift rate was solely a function of the EV differences and thus ignored 
gaze differences ( �gaze = �EV × gaze = 0) . DDM 2 only accounted for gaze differ-
ences on the drift rate and thus ignored EV differences ( �EV = �EV × gaze = 0) . 
DDM 3 accounted for both gaze and EV differences in an additive man-
ner ( �EV × gaze = 0) . DDM 4, the full model accounted for both gaze and EV 

� = �0 + �EV (EVhigher − EVlower)

+ �gaze (gazehigher − gazelower)

+ �EV×gaze ((gazehigher × EVhigher) − (gazelower × EVlower)).
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differences in an additive manner and, in addition, permitted for an interaction 
between gaze and value.5

We estimated all four models using the observed distributions of choices and 
response times using a Bayesian hierarchical implementation (Vandekerckhove et al. 
2011; Wabersich and Vandekerckhove 2014). Table 2 compares the deviance infor-
mation criteria (DIC; Spiegelhalter et al. 2002) for these four models, indicating that 
DDM 3 (Fig. 3) provided the best fit.

Further details including posterior predictive checks can be found in Supplemen-
tary Material 4.3. The models reported here focus on EV maximization as a com-
mon indicator for the success—or accuracy—of the decisions in the long run (also 
see Payne et al. 1988, 1993). However, we also investigated the extent to which our 
conclusions are robust after accounting for individual differences in risk preferences. 
We did so by first fitting a utility model—with a risk aversion parameter per person 
and separately for conditions with and without time pressure (see Saqib and Chan 
2015; Pahlke et al. 2011)—to the data to determine which gamble offered the higher 
subjective utility for a person on a given trial (e.g., a risk averse person may pre-
fer a gamble offering 30E with p = 1.0 to a gamble offering 40E with p = .8 even 
though the latter gamble offers a higher expected value). Consistent with the EV-
based analysis reported here, DDM 3, in which the drift rate was an additive func-
tion of the value differences and the gaze differences, provided the best fit to the data 
(see Supplementary Material 4.5).

4.3  Parameter estimates

Figure  4 displays the group-level estimates for the nondecision time � , threshold 
separation � , and the two coefficients that determined the drift rate—the EV coef-
ficient �EV and the gaze coefficient �gaze for DDM 3 (Fig. 3).

Table 2  Deviance information criteria (DIC) for four different formalizations of the drift-diffusion model 
using the gamble with the higher expected value at the threshold. Lower DIC indicates better fit. Best-
fitting model (DDM 3) in bold

Model DIC

DDM 1: drift: EV diff. 36406.23
DDM 2: drift: gaze diff. 36632.80
DDM 3: drift: EV diff. + gaze diff. 36064.39
DDM 4: drift: EV diff. + gaze diff. + EV × gaze 36179.30

5 Note that DDM 4 is not a direct test of the predictions of the aDDM, which makes predictions about 
both the fixated and the nonfixated option as people transition back and forth between them (Krajbich 
et al. 2010, 2012; Krajbich and Rangel 2011) (see also equations 6 and 7 in Cavanagh et al. 2014).
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4.3.1  Nondecision time ( �)

As Fig.  4b shows, nondecision times were higher in best than in fast trials 
( Mbest.>fast. = 0.19 [0.07,  0.31]), and there were no reliable differences between 
risk–reward environments.

4.3.2  Threshold ( ̨ )

Consistent with response times, the threshold separation was credibly higher 
in the best ( Mbest = 1.44 [1.27,  1.60]) compared to the fast trials ( Mfast = 1.80 
[1.20, 2.30]). In fast choices, boundaries are often hit by mistake and this leads to 
lower proportions of EV-maximizing choices. Moreover, when best choices were 
emphasized, consistent with the behavioral data, participants in the negative envi-
ronment set a lower threshold than participants in the uncorrelated environment 
( Mneg.>unc. = −0.56 [−.86,−.24] ). This was not the case in the fast condition, nor 
was it the case in both positive and uncorrelated environments (Fig. 4a).

4.3.3  EV coefficient ( ̌ EV)

Figure 4c shows that the EV coefficient exceeded 0 in all conditions, indicating that 
EV differences between the gambles in a choice problem impacted the drift rate. 
Moreover, the figure shows that this impact was similar in best and fast trials. If any-
thing, the influence of EV differences was slightly more important in the fast com-
pared to the best trials—but also note the larger highest density interval, suggesting 
that the EV coefficient was more variable between individuals in the fast conditions. 
There were no differences in the EV coefficient across risk–reward environments.
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4.3.4  Gaze coefficient ( ̌ gaze)

As shown in Fig. 4d, the gaze coefficient was somewhat higher in the fast than in 
best trials, indicating a stronger impact of differences in gaze between the options 
in a choice problem on the drift rate. This difference, however, was not credible. 
Gaze contributed weakly, and not credibly, to the drift rate in the uncorrelated envi-
ronment ( Munc. = 0.05 [−0.02, 0.14] ). In both the negative and the positive environ-
ments, by contrast, the gaze coefficient exceeded 0, as well as the gaze coefficient 
estimated for the uncorrelated environment (best: Mneg.>unc. = 0.20 [0.05,  0.37], 
fast: Mneg.>unc. = 0.27 [0.10,  0.45]; best: Mpos.>unc. = 0.24 [0.04,  0.45], fast: 
Mpos.>unc. = 0.28 [0.02, 0.51], Fig. 4d). This suggests that gaze played a role in pref-
erence formation in the correlated, but not in the uncorrelated environment; this ech-
oes the differences between the correlated and uncorrelated environments in partici-
pants’ distribution of attention across the options (also see Fig. 2e).

5  Discussion and conclusion

We investigated how risk–reward structures impact attentional processes in deci-
sions under risk under different processing constraints. We found no evidence for 
the simplification hypothesis, according to which people may, in the most extreme 
case, completely ignore one of the attributes (e.g., probabilities) because it can be 
inferred from the other (e.g., payoffs). If anything, participants who learned the 
risk–reward relationship to be negative simplified their processing gradually: when 
participants were instructed to make the best possible choice, the experience of a 
negative relationship appeared to trigger faster responses. Moreover, participants 
in correlated risk–reward environments shifted their attention to payoffs rather than 
probabilities. Participants in the uncorrelated environment took more time and dis-
tributed their attention relatively evenly across attributes. In contrast to the process-
ing constraint hypothesis, there was no evidence that people exploited risk–reward 
structures to simplify their processing when processing constraints were high. We 
also explored possible environment-dependent responses to processing constraints 
using an extended drift-diffusion model. Results showed that all participants set 
similarly low decision thresholds in the fast conditions. In the best conditions, par-
ticipants in the negative risk–reward environment set lower decision thresholds 
than participants in an uncorrelated or positive risk–reward environment, at the 
cost of choosing the higher EV option less often. The gaze coefficient derived from 
the diffusion model also suggests a higher impact of differences in gaze between 
the options on evidence accumulation in the correlated compared to the uncorre-
lated environments.

Since choices were between two nondominated options, participants who used 
simpler processing strategies still paid a “simplification premium”—that is, they 
chose the higher value option less frequently. This cost occurs because people can 
only maximize EV choices and simultaneously rely on noncompensatory processing 
strategies in environments with dominated options (Payne et al. 1988). People in the 
negative risk–reward environment may have been well aware that searching less may 
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compromise the chances to find and select the objectively better option; but when 
attention and time are scarce resources, people may still simplify their processing 
when they believe that environments allow them to do so and the marginal benefits 
of searching more are subjectively low.

To control for EV differences, the majority of gambles in the choice phase was 
identical across risk–reward environments, and necessarily mismatched the previ-
ously learned risk–reward environment (e.g., the common gambles included gamble 
pairs with high payoffs/high probabilities—these are unexpected in an environment 
in which risks and rewards are otherwise inversely related). Thus, the differences 
we found between the conditions in people’s choices are due to their priors about a 
risk–reward environment—the risk–reward environment they assume or have been 
exposed to previously.

More generally, consistent with earlier research (Krajbich et  al. 2010, 2012; 
Krajbich and Rangel 2011; Zeigenfuse et al. 2014), we found evidence that gaze 
plays a role in preference formation. Specifically, using a drift-diffusion model 
in which the drift rate was determined by both value differences and gaze differ-
ences outperformed both a model that only relied on value differences and a model 
that only relied on gaze differences. As mentioned before, parameter estimates of 
the best-performing model also revealed that gaze played a greater role in pref-
erence formation in the correlated environments compared to the uncorrelated 
environment.

In sum, many insights about decision-making under risk have been derived 
from laboratory studies with uncorrelated risks and rewards—while the world is 
full of negatively correlated risks and rewards (Pleskac et  al. (2019a), in press). 
Our work shows that different environmental structures can impact processes in 
decision-making under uncertainty (Leuker et al. 2018), but also to some extent in 
decision-making under risk. In this case, if risks and rewards in a choice environ-
ment are assumed to be uncorrelated, people may exert more effort and make more 
EV-maximizing choices than when they are assumed to be unrelated. Thus, the 
decision processes commonly triggered in the laboratory may be different from 
those people use in real-world domains, where negative risk–reward relationships 
dominate.
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