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We consider the dynamic process of an elastic body in unilateral frictional contact with a rigid

foundation. Friction is modelled with the Coulomb law with a coefficient that depends on

the slip velocity. To allow for velocity discontinuities we use the elastodynamic (hyperbolic)

framework. Nevertheless, this does not lead to a well-posed problem. To remedy this, we

perturb the solution of the elastodynamic problem in a thin layer next to the contact

boundary. This is a generalisation of an approach previously studied in a one-dimensional

case. We establish existence and uniqueness results for the perturbed and regularised problem

and provide an interpretation of this perturbation.

1 Introduction

The dynamic friction of linearly elastic structures is an active subject of research from

the theoretical point of view, as well as for the qualitative analysis of the behaviour

of solutions. Mathematical study presents severe difficulties due principally to the weak

regularity of the solutions, and the strong nonlinearity of the contact and Coulomb friction

laws. Existing studies involve a certain number of regularisations, of which the more

classical ones are: a penalisation of the unilateral contact condition, such as compliance

law introduced by Oden & Martins [20]; a regularisation of the contact pressure by the

mean of a convolution introduced by Duvaut [6], and a continuous regularisation of

the friction condition (see Oden & Pires [19] and Renard [25], for example). A general

discussion can be found in Kikuchi & Oden [12].

Those regularisations allow several authors [8, 11, 15, 16] to give existence and unique-

ness results in the viscoelastic framework. A linear viscoelastic constitutive law ‘parabolises’

the problem and gives better regularity. Some precise results exist also for the quasistatic

approximation (see Andersson [2] and Rocca & Cocu [27]), without any regularisations,

but with the restriction of a sufficiently small coefficient of friction.

In this paper, we present an approach to the elastodynamic problem that is not in the

viscoelastic or quasistatic framework, but which considers a regularisation in a layer of

small thickness localised next to the contact zone. This perturbation, which we call a

surface perturbation, keeps the local characteristic of the friction law and allows us to

have a well-posed problem without the introduction of a linear viscous term. To start
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with, a simple geometry is considered along with regularised friction and unilateral contact

conditions.

The main motivation is to try to generalise theoretical and qualitative results established

in Ionescu & Paumier [10] and Renard [26] for the one-dimensional problem to the multi-

dimensional case. In the one-dimensional case, the analysis of the problem shows that

the use of a non-monotone slip-dependent friction coefficient in the purely elastodynamic

problem introduces a multiplicity of solutions and shocks in the velocity. This non-

uniqueness is still present if the friction and unilateral contact conditions are regularised.

The one-dimensional case shows precisely the regularity which can be expected. In this

case, it has been proved that the surface perturbation allows us to recover the uniqueness of

the solution. Moreover, when the perturbation parameter goes to zero, the solution tends

to a particular solution to the non-perturbed problem which is related to the ‘maximum

delay’ criterion introduced for this problem in Ionescu & Paumier [10], and also discussed

in Ionescu [9]. Unfortunately, this criterion has no clear extension to the multi-dimensional

case, and the discussion is still open as to whether or not non-uniqueness can be observed

with a non-decreasing friction coefficient (this is not the case in the one-dimensional

case). Also, it is not clear how stick-slip motions can be observed with a constant friction

coefficient (elements are presented in Renard [25], Simões & Martins [28] and Martin

et al. [17]).

We present here a first result, where a classical regularisation of the contact and friction

conditions is introduced. As a second step, we intend to generalise the result without

this classical regularisation. Again, the surface perturbation allows to regain the existence

and uniqueness of the solution. The proof is principally based on a fixed point method

very similar to the classical one for Cauchy–Lipschitz Theorem for ordinary differential

equations. An important point is that no assumption is made on the bound of the friction

coefficient.

2 The surface perturbation model

The idea of the perturbation takes its origin in our contribution on dynamic sliding

with friction in Campillo et al. [4]. There, we compared two approaches in the simplest

geometrical cases: a single block and an infinite elastic slab sliding on a frictional surface.

The aim was to understand the importance of the friction law for the one-dimensional

problem and to identify the theoretical problems associated with nonlinearity.

Let u
N

be the normal displacement on the contact boundary of a solid in frictional

contact with a rigid foundation. Let also u
T

be the tangential displacement, u̇
T

the

tangential velocity, n the unit outward normal to the domain, F = F
N
n + F

T
the reaction

of the rigid foundation, and µ the friction coefficient. Assuming that there is no initial

gap between the solid and the foundation and that this foundation is at rest, the contact

and friction conditions for small displacements read:

u
N

� 0, F
N

� 0, u
N
F

N
= 0, (2.1)

|F
T

| � µ|F
N

|,
(
|F

T
| − µ|F

N
|
)
u̇
T

= 0, (2.2)

there exists γ � 0 such that u̇
T

= −γF
T
. (2.3)
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Figure 1. The two different models.

In this paragraph, our models are two-dimensional with persistent contact, so that F
T
,

u
T

are scalar and u
N

= 0.

In the first system we consider a rigid block called the slider which is in contact with

friction on a rigid foundation and which is submitted to a traction force by means of a

spring pulled at velocity V (see Figure 1). The equations of motion for this slider are

m ü(t) − G (D0 + tV − u(t)) = −µS
u̇(t)

|u̇(t)| if u̇(t)� 0, (2.4)

|m ü(t) − G(D0 + tV − u(t))| � µS if u̇(t) = 0, (2.5)

u̇(0) = 0 and u(0) = u0, (2.6)

where m is the mass of the slider, −S < 0 is a prescribed normal force applied on the top

of the slider, u0 is the initial position and G (D0 + tV − u(t)) is the tension of the spring

whose elastic modulus is G.

In the second system we consider the one-dimensional shearing of an infinite linear

elastic slab, with elastic Lamé coefficients λ and G, bounded by the planes x = 0 and

x = h (as in Figure 1). On the plane x = 0, the slab is in frictional contact with a

rigid foundation. At x = h the slab is pulled with a tangential velocity V from an initial

position D0 and it is compressed with an uniform normal stress −S . We assume that the

displacement field has the value −Sx
λ+ 2G

in the x-direction. We denote by u the horizontal

displacement in the y-direction, and we suppose that it depends on t and x. In this way, we

get the normal and tangential stresses σσ
N

= −S , σσ
T

= −G ∂u
∂x

(0, t) on the friction boundary

x = 0. From (2.1)–(2.3) and the equations of elastodynamics, we get the following initial

and boundary value problem:

� ü(x, t) = G
∂2u

∂x2
(x, t), (2.7)

−G
∂u

∂x
(0, t) = −µS

u̇(0, t)

|u̇(0, t)| if u̇(0, t)� 0, (2.8)

G

∣∣∣∣ ∂u

∂x
(0, t)

∣∣∣∣ � µS if u̇(0, t) = 0, (2.9)

u(h, t) = D0 + tV , (2.10)

u̇(x, 0) = V
x

h
and u(x, 0) = u0 + (D0 − u0)

x

h
, (2.11)
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Figure 2. Example of variable friction coefficient.

where � is the density and u0 is the initial displacement (slip) at x = 0. For each of these

two systems we consider the slip weakening case: the coefficient µ = µ(|v|) depends upon

the slip velocity v. That means µ = µ
(
|u̇(t)|

)
for the slider and µ = µ

(
|u̇(0, t)|) for the slab.

For example, we shall consider,

µ(|v|) = µd + (µs − µd) e
−|v|/Vcr , (2.12)

with µs > µd > 0, where µs and µs hold, respectively, for static and dynamic coefficients,

and with Vcr > 0, which represents a critical velocity (see Figure 2).

For the first system (slider) there are no special mathematical difficulties for the analysis

of (2.4)–(2.6), which can be viewed as an ordinary differential inclusion (see Deimling [5]

for instance). This problem is well-posed.

For the second system (slab) the partial differential equation (2.7) is hyperbolic. The

system (2.7)–(2.11) can be reduced using the method of characteristics. Indeed, for 0 �
t < h

c
, it is easily seen from (2.7) that the quantity A(x, t) = u̇(x, t) + c ∂u

∂x
(x, t) is constant

along the characteristic line {x + ct = ξ} where c =
√
G/ρ. So A(ξ − ct, t) is a quantity

a(ξ) independent of t. With t = 0 we get a(ξ) = u̇(ξ, 0) + c ∂u
∂x

(ξ, 0). Using (2.11) we get

a(ξ) = 1
h
(Vξ + c(D0 − u0)). Therefore at x = 0 from the expression A(0, t) = a(ct) we can

deduce ∂u
∂x

(0, t) = 1
c
(a(ct) − u̇(0, t)).

From (2.8) and (2.9), we get the following equation on the friction boundary, where the

unknown is the slip rate u̇(0, t):

β (u̇(0, t)) = α(t) if u̇(0, t)� 0, (2.13)

|α(t)| � µ(0) S if u̇(0, t) = 0, (2.14)

where

α(t) =
G

h
(tV + D0 − u0) for 0 � t <

h

c
,

β(v) =
√
ρG v + µ(v)S

v

|v| for v � 0.

From the point of view of the slip rate v = u̇(0, t), this is not a differential equation but an

algebraic equation which may possibly have several distinct solutions v1(t), v2(t), . . . . This
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Figure 3. The function β which has to be inverted to solve the 1D problem.

depends on the monotonicity of the mapping v �→ β(v), that is to say of the weakening of

the friction coefficient v �→ µ(v), (see Ionescu & Paumier [10] for a complete discussion).

This is the reason why the problem (2.7)–(2.11) is generally ill-posed. This non-uniqueness

is still present if a simple regularisation of the contact and friction conditions is made, as

in § 3.3.

For µ(|v|) given by (2.12), the mapping v �→ β(v) is represented in Figure 3. We can

actually have three solutions v1(t), v2(t), v3(t) if Sµ1 < α(t) < Sµs. In this case if the

process is quasistatic, a ‘maximum delay’ solution vmd(t) can be chosen (see Ionescu &

Paumier [10]). Indeed:

• on the one hand, given growing data t �→ α(t) from t1 to t2 with α(t1) < Sµ1 and

α(t2) > Sµs, we will take vmd(t) = 0 for α(t) < Sµ1 to α(t) = Sµs and the unique

vmd(t) > v0 such that β (vmd(t)) = α(t) for α(t) > Sµs (therefore we have on AB a positive

velocity jump v1 at α(t) = Sµs);

• on the other hand, given decreasing data t �→ α(t) (obtained from an adapted initial

condition) from t1 to t2 with α(t1) > Sµd to α(t2) < Sµ1, we will take the unique

vmd(t) > v0 such that β (vmd(t)) = α(t) for all α(t) > Sµ1 and vmd(t) = 0 for all α(t) < Sµ1

to α(t) = Sµs (therefore we have on CD a negative velocity jump −v0 at α(t) = Sµ1).

However, following the analysis performed in Renard [26], this ill-posed problem may

benefit from the well-posed property of the slider. To that end a thin rigid ‘sole’ is

positioned on the friction surface {x = 0} of the slab (see Figure 4). We introduce the

small parameter m > 0 which represents the product of the thickness ε of the thin sole by

its density ρ. From a balance of linear momentum, we get:

� ü(x, t) = G
∂2u

∂x2
(x, t), (2.15)

m ü(0, t) − G
∂u

∂x
(0, t) = −µ(u̇(0, t)) S

u̇(0, t)

|u̇(0, t)| if u̇(0, t)� 0, (2.16)∣∣∣∣ m ü(0, t) − G
∂u

∂x
(0, t)

∣∣∣∣ � µ(0) S if u̇(0, t) = 0, (2.17)
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Figure 4. Perturbation of the 1D problem with a thin rigid sole on the contact surface.

u(h, t) = D0 + tV , (2.18)

u̇(x, 0) = V
x

h
and u(x, 0) = u0 + (D0 − u0)

x

h
, (2.19)

As above, this system can be reduced by using the method of characteristics. In this

way, we get the system

ερ ü(0, t) + β (u̇(0, t)) = α(t) if u̇(0, t)� 0, (2.20)

|ερ ü(0, t) − α(t)| � µ(0) S if u̇(0, t) = 0, (2.21)

u̇(0, 0) = 0 and u(0, 0) = u0. (2.22)

This system is completely different from the system (2.13)–(2.14) because the term ü(0, t)

transforms it into an initial-value differential system (in fact this system is a singular

perturbation of the scalar equation (2.13)–(2.14)). Consequently this problem is well-

posed, and we denote its unique solution by vε(t) = uε(0, t).

A mathematical analysis of the convergence as ε vanishes can be found in Renard [25,

26]. It is shown that the unique solution vε(t) to this Cauchy problem is close to the

so-called ‘maximum delay’ solution vmd(t) of the scalar equation (2.13)–(2.14). Moreover,

when ε → 0 the solution vε(t) converges to vmd(t) (see Figure 5 for a graphic representation

in the (α, β) plane obtained numerically). We see in dashed line the non-monotone function

β in the case (2.12). The perturbed solution, which is printed with a continuous line, is

very close to the ‘maximum delay’ solution for ε = 0.01.

3 Generalisation of the perturbation to two and three dimension

3.1 Principle of the perturbation

Our goal is to adapt the perturbation introduced in the one-dimensional case to higher

dimensional linear elastodynamic problems.

For the sake of simplicity, and as a first step to avoid difficulties coming from the

geometry, it is assumed that the domain Ω, which represents the reference configuration
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ε = 1.0

ε = 0.1

ε = 0.01

Figure 5. Graph (α(t), v(t)) for three perturbed solutions. As ε goes to zero the solution tends to

the solution selected by the maximum delay criterion.

of the elastic solid, is a cylinder (see Figure 6 ), i.e. Ω = ω × ]0, D[ where ω is a domain

of R
n−1

and D > 0 is the height. We assume that Γ
D

= ω × {D} represents that part of

the boundary where the displacements are prescribed, Γ
N

= ∂ω × ]0, D[ that part of the

boundary where the tractions are prescribed, and Γ
C

= ω × {0} is the contact boundary.

We write x = (x′, xn) where x′ ∈ ω and xn ∈ ]0, D[.

Of course, a completely rigid layer cannot be added between the elastic body and the

rigid foundation without changing drastically the behaviour of the structure because of

the constancy of tangential displacements. A first approach would be to allow this layer to

have free tangential displacement. This is simple to express, and mathematically, it has the

same effect as the addition of a small mass to each point of the contact zone Γ
C
, but it does
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Figure 6. Simplified geometry.

Figure 7. Insertion of a semi-rigid layer.

not offer many advantages for the mathematical analysis. The approach we develop here,

is to insert a layer with the same elastic characteristics as the elastic body but with rigid

displacements only in the normal direction (see Figure 7). We will call it a ‘semi-rigid layer’.

With u the kinematically admissible displacement field (u prescribed on Γ
D
), the ‘virtual

work’ formulation of the linear elastic problem can be written as∫
Ω

ρü.vdx +

∫
Ω

Ae(u) : e(v)dx =

∫
Ω

f.vdx +

∫
Γ
N

g.vdΓ +

∫
Γ
C

F.vdΓ
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for all kinematically admissible velocity field v that vanish on Γ
D
, where e(u) is the small

strain tensor, σσ(u) = Ae(u) is the stress tensor, A is the elastic tensor having the usual

symmetry and coercivity properties, f are the body forces, g the prescribed tractions

on Γ
N

and F represents the friction and contact forces on Γ
C
. The addition of a layer

Σε = ω × ] −ε, 0[ between the elastic solid and the rigid foundation requires us to add

extra terms in this formulation:∫
Ω

ρü.vdx +

∫
Σε

ρü.vdx +

∫
Ω

Ae(u) : e(v)dx +

∫
Σε

Ae(u) : e(v)dx

=

∫
Ω

f.vdx +

∫
Γ
N

g.vdΓ +

∫
Γ
C

F.vdΓ ,

where Γ
C

is now the boundary Γ
C

= ω × {−ε}, and u and v are continuous through

the interface between Ω and Σε (the semi-rigid layer is stuck to the elastic body), and

are independent of the vertical coordinate in Σε. The latter condition express the rigidity

introduced in the layer Σε. In Paumier & Renard [22, 23], we studied the possibility for

higher degree approximations. However, even if a gain in realism can be expected, the

interpretation of the additional terms is more difficult and brings nothing supplementary

for the mathematical analysis. On Σε, values of A and ρ should a priori be chosen in

accordance with their values on Ω. The additional terms are∫
Σε

ρü.vdx +

∫
Σε

Ae(u) : e(v)dx,

which can be written

ε

{∫
ω

ρü.vdx +

∫
ω

Āē(u) : ē(v)dx

}
,

where ē(u) and Ā have only tangential derivatives. These terms can be interpreted has

a surface perturbation with ε as perturbation parameter. This corresponds to a kind of

tangential elastodynamic equation.

3.2 Advantages of the perturbation

One of the main difficulties concerning the mathematical analysis of friction problems of

elastic bodies is the weak regularity of the solutions and, for instance, the appearance of

shocks in velocity. This weak regularity prevents us giving a clear sense to the velocity

and to the stress on the contact boundary.

Here, supplementary regularity is obtained from the fact that the perturbed problem

can be viewed as a Galerkin approximation of a problem on

Ωε = ω × ] −ε, D[.

Indeed, assuming that u = 0 on Γ
D

(which is always possible using a extension operator),

with the spaces

H̄ε = {v ∈ L2(Ωε;R
n
)},

V̄ε = {v ∈ H1(Ωε;R
n
); v = 0 on Γ

D
},
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(where L2(Ωε;R
n
) and H1(Ωε;R

n
) stand for the usual Sobolev spaces with vectorial

values) and considering the elastodynamic problem of finding u : ]0, T ] −→ V̄ε satisfying

∫
Ωε

ρü.vdx +

∫
Ωε

Ae(u) : e(v)dx =

∫
Ω

f.vdx +

∫
Γ
N

g.vdΓ +

∫
Γ
C

F.vdΓ

for all v ∈ V̄ε, then the perturbed problem is nothing but a Galerkin approximation of

this problem in the spaces

Hε =

{
v ∈ H̄ε;

∂v

∂xn|Σε

= 0

}
,

Vε =

{
v ∈ V̄ε;

∂v

∂xn|Σε

= 0

}
,

where ∂v
∂xn|Σε

is to be understood in the sense of distributions.

In these spaces, one has u(x, xn) = u(x, 0) for (x, xn) ∈ Σε and thus the regularity of u

on Γ
C

is

u(t) ∈ H1(Γ
C
,R

n
),

instead of the usual regularity u ∈ H1/2(Γ
C
,R

n
) (see Adams [1], for instance). The velocity

u̇(t) will be defined in Hε, and thus the velocity on the contact boundary will have the

regularity

u̇(t) ∈ L2(Γ
C
,R

n
).

Moreover, it is elementary to see that the spaces Hε and Vε are closed subspaces of

respectively H̄ε and V̄ε, that Vε is densely included in Hε and that the following trace maps

γ1
ε : Vε −→ H1(Γ

C
;R

n
)

v �−→ v|Γ
C

,
and

γ2
ε : Hε −→ L2(Γ

C
;R

n
)

v �−→ v|Γ
C

,
(3.1)

are linear and continuous with a norm equal to 1√
ε
.

This gain in regularity is very important because it will allow us to write the contact

and friction conditions in a ‘strong’ sense, i.e. in the sense of (2.1)–(2.3). Those conditions

can be expressed also using

J
N
(ξ) =




{0} if ξ < 0,

[0,+∞[, if ξ = 0,

∅, if ξ > 0,

and Dir
T
(v) =

{
{ v

T

|v
T

| }, ∀ v ∈ R
n
, with v

T
�0,

{w ∈ R
n
; |w| � 1, w

N
= 0}, if v

T
= 0.

The unilateral contact and friction conditions can be rewritten as

F
N

∈ −J
N
(u

N
)

F
T

∈ F
N
µ(|u̇

T
|)Dir

T
(u̇

T
)

almost everywhere on Γ
C
.

The maps J
N

and Dir
T

are maximal monotone and represent the sub-gradients of re-

spectively the indicator function of interval ] −∞, 0] and the function v �−→ |v
T

|. See, for

example, Moreau [18], Panagiotopoulos [21] and Klarbring et al. [13] for more details on

the expression of contact and friction laws in term of generalised gradients.
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−1

1

Figure 8. Multivalued maps J
N

and Dir
T

for a one-dimensional boundary.

1

−1

Figure 9. Regularisations of multivalued maps J
N

and Dir
T
.

3.3 An existence and uniqueness result

The existence and uniqueness result we present is established for regularised contact and

friction conditions. We introduce the following regularisations of J
N

and Dir
T

which

correspond to classical regularisations of unilateral contact and friction conditions:

Jη
N
(ξ) =

{
0 if ξ < 0,
ξ
η

if ξ � 0.
and Dirη

T
(v) =

{ v
T

|v
T

| , ∀ v ∈ R
n
, |v

T
| � η,

v
T

η
, ∀ v ∈ R

n
, |v

T
| < η.

This corresponds to a Yosida regularisation of the two monotone maps J
N

and Dir
T

(see Brézis [3] and Figures 8 and 9). The functional Jη
N

is also the normal compliance

functional (see Oden & Martin [20]).

Writing, for brevity

µη(v) = µ(|v|)Dirη
T
(v),

we introduce the regularised unilateral contact and friction conditions as:

F
N

= −Jη
N
(u

N
),

F
T

= −Ĵη
N
(u

N
)µη(u̇T ),
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where Ĵη
N

is equal to Jη
N

in the two-dimensional (n = 2) case, and is equal to

Ĵη
N
(ξ) = min

(
Jη
N
(ξ),

1

η

)
,

in the three-dimensional case. This avoids technical difficulties in the existence and

uniqueness proof. As a remark, some experimental foundations for such a limitation of

the dependence between the friction force and the contact force can be found in Strömberg

et al. [29].

The whole problem can be written setting

l(u) =

∫
Ω

f.vdx +

∫
Γ
N

g.vdΓ ,

aε(u, v) =

∫
Ωε

Ae(u) : e(v)dx,

which leads to




Find u : ]0, T ] −→ Vε such that∫
Ωε

ρü.vdx + aε(u, v) = l(v) +

∫
Γ
C

F.vdΓ , ∀v ∈ Vε,

F
N

= −Jη
N
(u

N
),

F
T

= −Ĵη
N
(u

N
)µη(u̇T ),

u(0) = u̇(0) = 0,

(3.2)

assuming vanishing initial conditions.

For simplicity, we split the solution into two parts

u = uε + wε,

with uε depending only on the data f and g, and wε depending only on the contact and

friction forces. This means that uε is the solution to




Find uε : ]0, T ] −→ Vε such that∫
Ωε

ρüε.vdx + aε(u
ε, v) = l(v), ∀v ∈ Vε,

uε(0) = u̇ε(0) = 0,

(3.3)

and wε the solution to




Find wε : ]0, T ] −→ Vε such that∫
Ωε

ρẅε.vdx + aε(w
ε, v) =

∫
Γ
C

F.vdΓ , ∀v ∈ Vε

wε(0) = ẇε(0) = 0.

(3.4)
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Following the proof of Duvaut & Lions [7] adapted for the spaces Hε and Vε,

Problem 3.3 has a unique solution uε which satisfies uε ∈ L∞(0, T ;Vε), u̇ε ∈ L∞(0, T ;Hε)

and üε ∈ L∞(0, T ;V ′
ε ).

We will denote by wε = Eε(F) the application which maps F to the solution to

Problem 3.4; then we have the following result.

Lemma 1 Assume F ∈ L2(0, T ;L2(Γ
C
;R

n
) ), then Problem (3.4) has a unique solution wε ∈

L∞(0, T ;Vε) satisfying ẇε ∈ L∞(0, T ;Hε) and ẅε ∈ L∞(0, T ;V ′
ε ). Moreover the mapping

Eε :F �→wε is linear continuous from L2(0, T ;L2(Γ
C
;R

n
)) in L∞(0, T ;Vε) ∩W 1,∞(0, T ;Hε)

and the following estimate holds:

‖wε(t)‖2
Vε

+ ‖ẇε(t)‖2
Hε

� C
eαt

ε

∫ t

0

‖F(s)‖2

L2(ΓC ;R
n)
ds, for almost all t ∈ [0, T ], (3.5)

where C > 0 and α > 0 do not depend on ε and T .

Compared to the result of Duvaut & Lions [7], this result is slightly stronger because

no regularity for the derivatives of F is assumed. The price for this is the constant 1
ε

in

the estimation.

It is now possible to transform the initial problem into a fixed point problem. For fixed

ε > 0 and η > 0, defining the mapping Hη as

Hη : W 1,∞(0, T ;Hε) ∩ L∞(0, T ;Vε) −→ L∞(0, T ;L2(Γ
C
;R

n
))

wε �−→ (Fεη
T
, Fεη

N
),

with

Fεη
N

= −Jη
N
(wε

N
+ uε

N
),

Fεη
T

= −Ĵη
N
(wε

N
+ uε

N
) µη(ẇε

T
+ u̇ε

T
),

which is continuous following Krasnoselski [14], the perturbed friction problem 3.2 is

equivalent to the fixed point problem for the mapping Gεη defined by

Gεη = Eε ◦ Hη.

That is,

find wεη ∈ W 1,∞(0, T ;Hε) ∩ L∞(0, T ;Vε)

such that wεη = Gεη(w
εη).

We denote

Eε = {w ∈ W 1,∞(0, T ; Hε) ∩ L∞(0, T ; Vε) ; w(0) = 0 in Hε}

a Banach space for the norm:

‖w‖
Eε

= ess sup0<t�T

√
‖w(t)‖2

Vε
+ ‖ẇ(t)‖2

Hε
.

In this context, it is possible to establish the following existence and uniqueness result.
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Theorem 1 Whenever v �−→ µ(|v|) is bounded and Lispschitz continuous, for all ε > 0 and

η > 0, the perturbed friction problem (3.2) has a unique solution in Eε.

Detailed proofs can be found in the appendices.

4 Conclusion and perspectives

The advantage of the proposed perturbation is that it ensures mathematical well-posedness

in any case (in particular, for an arbitrary large coefficient of friction). A natural idea is to

look at what happens when the regularisation parameters vanishes. In fact, it is possible

to obtain an a priori estimate which is independent of these parameters (see Paumier &

Renard [24]). But a certain number of questions are still open, in particular, the problem

of giving a clear mathematical meaning to the friction force in the non-perturbed problem.

Also, in the case of a sequence of solutions to the perturbed problem which tends to

a solution to the non-perturbed problem, the possibility of characterising this particular

solution with the same kind of idea as in the one-dimensional case (i.e. an analogue of

the maximum delay criterion) is still open.

Appendix I: Proof of Lemma 1

The proof of this lemma follows Duvaut & Lions [7]. We consider a family (Vεk)k∈N

of finite dimensional subspaces of Vε such that ∪k∈NVεk is densely included in Vε and a

sequence of corresponding approximated problems:


Find wεk : ]0, T ] −→ Vεk such that

(ẅεk(t), v) + a(wεk(t), v) =

∫
Γ
C

F(t).vdσ, ∀v ∈ Vεk,

wεk(0) = ẇεk(0) = 0.

(4.1)

Obviously, for each k ∈ N, solution to this problem exists and is unique in H2(0, T ; Vεk).

Choosing v = ẇεk(t) in the second equation of (4.1) and integrating in time, one has:

(ẇεk(t), ẇεk(t)) + a(wεk(t), wεk(t)) = 2

∫ t

0

∫
Γ
C

F(s) .ẇεk(s) dσ ds.

The left-hand side is classically minorised by

β
(

‖ẇεk(t)‖2
Hε

+ ‖wεk(t)‖2
Vε

)
,

where β > 0 and the right-hand side is majorised by

2

ε

∫ t

0

‖F(s)‖2

L2(ΓC ;R
n)

ds + 2ε

∫ t

0

‖ẇεk(s)‖2

L2(ΓC ;R
n)

ds.

Using the continuity of traces as in (3.1) one gets:

‖wεk(t)‖2
Vε

+ ‖ẇεk(t)‖2
Hε

�
2

εβ

∫ t

0

‖F(s)‖2

L2(ΓC ;R
n)
ds +

2

β

∫ t

0

‖ẇεk(s)‖2
Hε

ds.
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With the Gronwall lemma, and appropriate C > 0 and α > 0 one gets:

‖wεk(t)‖2
Vε

+ ‖ẇεk(t)‖2
Hε

� C
eαt

ε

∫ t

0

‖F(s)‖2

L2(ΓC ;R
n)
ds. (4.2)

The proof in Duvat & Lions [7] can be continued in the same way. It shows that, for

the weak-star topology, the existence of a weak limit wε for the sequence (wεk)k∈N which

is the unique solution in the space L∞(0, T ; Vε) of the problem. This solution satisfies

ẇε ∈ L∞(0, T ;Hε) and ẅε ∈ L∞(0, T ;Vε).

Finally, estimate (3.5) is obtained by passing to the limit inf. in (4.2) and thanks to the

weak-star convergence in L∞(0, T ;Vε) ∩ W 1,∞(0, T ;Hε).

Appendix 2: Proof of Theorem 1

The principle of the proof of existence and uniqueness of this fixed point comes from

the classical existence and uniqueness result for initial value problem of differential

equations (Cauchy-Lipschitz theorem). We show, for an integer p large enough, that the

composition p−iterated operator: Gp
εη = Gεη ◦ · · · ◦ Gεη , is a contraction in a certain closed

ball Bεη ⊂ Eε. This operator Gp
εη has a unique fixed point wεη

p belonging to the ball Bεη .

Then, if Gεη(w
εη
p ) ∈ Bεη we conclude that wεη

p is also a fixed point of Gεη because we have

Gp
εη(Gεη(w

εη
p )) = Gεη(Gp

εη(w
εη
p )) = Gεη(w

εη
p ) and consequently, by uniqueness in the ball Bεη ,

we get Gεη(w
εη
p ) = wεη

p . Uniqueness of this fixed point comes from the fact that all fixed

point of the mapping Gεη belongs to the ball Bεη and thus is the unique fixed point of Gp
εη .

The essential steps of the proof consist in the two following lemmas in which we define

the closed ball (Rεη is fixed in the first lemma):

Bεη = {w ∈ Eε ; ‖w‖
Eε

� R}.

Lemma 2 Whenever v �−→ µ(|v|) is bounded and Lispschitz continuous, there exists pεη ∈ N

an iterated composition index and a radius Rεη > 0 for the ball Bεη such that:

• Gp
εη(Bεη) ⊂ Bεη , for all p � pεη;

• all fixed point wεη ∈ Eε of the operator Gεη belongs to Bεη and satisfies the a priori

estimate for almost all t ∈ [0, T ]:

‖wεη(t)‖2
Vε

+ ‖ẇεη(t)‖2
Hε

�
C

εη2
e
T

(
α+ C

ε2η2
eαT

) ∫ t

0

‖(uε
N
(s))+‖2

L2(ΓC ;R
n)

ds,

where C > 0 and α > 0 are constants independent on (ε, t, T , uε), and (.)+ is the positive

part.

Proof Let C be a generic constant which does not depend upon wεη , ε and T , and

Fεη = Hη(w
εη). Using Lemma 1, one has for almost all t ∈ [0, T ]:

‖wεη(t)‖2
Vε

+ ‖ẇεη(t)‖2
Hε

� C
eαt

ε

∫ t

0

‖Fεη(s)‖2

L2(ΓC ;R
n)
ds. (4.3)

Moreover, taking into account that µ is a bounded function, a simple computation show

(in the Euclidean norm of R
n
) the inequality |Fεη(s, x)|2 � C η−2 |(w

N
(s, x) + uε

N
(s, x))+|2.
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Thus, integrating on ]0, t[×Γ
C
, one gets:∫ t

0

‖Fεη(s)‖2

L2(ΓC ;R
n)
ds �

C

η2

∫ t

0

‖(w
N
(s) + uε

N
(s))+‖2

L2(ΓC ;R
n)

ds.

And using the continuity of traces (3.1)∫ t

0

‖Fεη(s)‖2

L2(ΓC ;R
n)
ds �

C

η2

∫ t

0

(
1

ε
‖wεη(s)‖2

Vε
+ ‖(uε

N
(s))+‖2

L2(ΓC ;R
n)

)
ds.

Integrating this on (4.3), by setting ϕ(t) = ‖wεη(t)‖2
Vε

+ ‖ẇεη(t)‖2
Hε

one has:

ϕ(t) � C
eαT

ε2η2

∫ t

0

ϕ(s)ds + C
eαT

εη2

∫ t

0

‖(uε
N
(s))+‖2

L2(ΓC ;R
n)

ds.

Using a Gronwall lemma, the announced a priori estimate is obtained.

For the first part of the lemma, setting v = Eε(F
εη), we obtain as previously:

‖v(t)‖2
Vε

+ ‖v̇(t)‖2
Hε

� C
eαT

ε2η2

(∫ t

0

{
‖wεη(s)‖2

Vε
+ ‖ẇεη(s)‖2

Hε

}
ds + εaT

)
, (4.4)

where aT =

∫ T

0

‖(u
N
(s))+‖2

L2(ΓC ;R
n)
ds.

With ν0 = sup
0<s�T

(‖wεη(s)‖2
Vε

+ ‖ẇεη(s)‖2
Hε

) one has:

‖v(t)‖2
Vε

+ ‖v̇(t)‖2
Hε

� C
eαT

ε2η2
(tν0 + εaT ).

Setting vp = Gεη
p(wεη) and νp = sup

0<s�T

(‖vp(s)‖2
Vε

+ ‖v̇p(s)‖2
Hε

), and using the fact that

‖v1(t)‖2
Vε

+ ‖v̇1(t)‖2
Hε

� C eαT ε−2η−2 (tν0 + εaT ) and (4.4) with wεη = v1 and v = v2 one has:

‖v2(t)‖2
Vε

+ ‖v̇2(t)‖2
Hε

�
(Ctε−2η−2eαT )2

2 !
ν0 + aT C

eαT

εη2

(
Ctε−2η−2eαT + 1

)
.

Thus ν2 � (CTε−2η−2eαT )2

2 !
ν0 + aT C eαT

εη2

(
CTε−2η−2eαT + 1

)
. Now, by recursion on p one has:

νp �
(CTε−2η−2eαT )p

p !
ν0 + aT C

eαT

εη2

p−1∑
j=0

(CTε−2η−2eαT )j

j !
,

and then νp � Xpν0 + aT
C

εη2
eT (α+CeαT ε−2η−2),

where Xp = (CTε−2η−2eαT )p

p !
. Because the sequence (Xp) converges toward zero, it is possible

to find pεη ∈ N such that for all p � pεη one has Xp <
1
2
. Then defining Rεη as

Rεη =

√
2 aT

C

εη2
eT (α+CeαT /ε−2η−2),

for p � pεη one has νp � ν0

2
+

R2
εη

2
. Thus if ν0 � R2

εη then νp � R2
εη for all p � pεη . �
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Lemma 3 Under the same assumptions as Lemma 2, there exists an integer p � pεη and a

constant Λ ∈ ]0, 1[ such that for all w1, w2 ∈ Bεη

‖Gp
εη(w1) − Gp

εη(w2)‖Eε
� Λ ‖w1 − w2‖

Eε
.

Proof Let w1, w2 be in Bεη . Thus, for almost all t ∈ ]0, T ], one has w1(t)|Γ
C
, w2(t)|Γ

C
∈H1(ω).

In the case n = 2 the inclusion H1(ω) ⊂ L∞(ω) holds. Thus w1(t)|Γ
C
, w2(t)|Γ

C
are

bounded. In the case n = 3, this result does not hold, but the function Ĵη
N

is itself bounded

by 1/η.

Setting Fi = Hη(wi) and vi = Eε(Fi) = Gεη(wi) for i = 1, 2, and using Lemma 1 one

has:

‖v1(t) − v2(t)‖2
Vε

+ ‖v̇1(t) − v̇2(t)‖2
Hε

� C
eαt

ε

∫ t

0

‖F1(s) − F2(s)‖2

L2(ΓC ;R
n)
ds. (4.5)

In the following, K denotes a generic constant independent of t, w1 and w2 but dependent

on ε, T et uε
N
. Taking into account that µ is a Lipschitz function, a simple computation

shows that:

|F1(s, x) − F2(s, x)|2 � K (|w1(s, x) − w2(s, x)|2 + |ẇ1(s, x) − ẇ2(s, x)|2),

where K depends upon ε, η and T because it depends upon Rεη . Integrating on ]0, t[×Γ
C

one has: ∫ t

0

‖F1(s) − F2(s)‖2

L2(ΓC ;R
n)
ds

� K

∫ t

0

(
‖w1(s) − w2(s)‖2

L2(ΓC ;R
n)

+ ‖ẇ1(s) − ẇ2(s)‖2

L2(ΓC ;R
n)

)
ds.

Using the continuity of traces (3.1),∫ t

0

‖F1(s) − F2(s)‖2

L2(ΓC ;R
n)
ds � K

∫ t

0

(
‖w1(s) − w2(s)‖2

Vε
+ ‖ẇ1(s) − ẇ2(s)‖2

Hε

)
ds.

Putting this expression into (4.5) one obtains:

‖v1(t) − v2(t)‖2
Vε

+ ‖v̇1(t) − v̇2(t)‖2
Hε

�K

∫ t

0

(
‖w1(s) −w2(s)‖2

Vε
+ ‖ẇ1(s) − ẇ2(s)‖2

Hε

)
ds. (4.6)

Thus

‖v1(t) − v2(t)‖2
Vε

+ ‖v̇1(t) − v̇2(t)‖2
Hε

� K t ‖w1 − w2‖2
Eε
. (4.7)

Now v
p
i = Gp

ε (wi) for i = 1, 2 and p � 2. Using (4.7) and (4.6) one obtains:

‖v2
1(t) − v2

2(t)‖2
Vε

+ ‖v̇2
1(t) − v̇2

2(t)‖2
Hε

�
K2t2

2
‖w1 − w2‖2

Eε
.

Then, with the same recursion on p, we obtain for all p ∈ N:

‖vp1(t) − v
p
2(t)‖2

Vε
+ ‖v̇p1(t) − v̇

p
2(t)‖2

Hε
�

Kptp

p !
‖w1 − w2‖2

Eε
.
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and thus, with Zp =
(KT )p

p !
one has ‖Gp

εη(w1) − Gp
εη(w2)‖Eε

�
√
Zp ‖w1 − w2‖

Eε
.

Because the sequence (Zp) converges toward zero, the result of the lemma is obtained

with Λ =
√
Zp for p � pεη , a sufficiently large integer such that Zp < 1. �

Finally, from the two previous lemmas, Theorem 1 holds.
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