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Abstract

We derive an analytical approximation for the price of a credit default swap (CDS)

contract under a regime-switching Black–Scholes model. To achieve this, we first derive

a general formula for the CDS price, and establish the relationship between the unknown

no-default probability and the price of a down-and-out binary option written on the same

reference asset. Then we present a two-step procedure: the first step assumes that all the

future information of the Markov chain is known at the current time and presents an

approximation for the conditional price under a time-dependent Black–Scholes model,

based on which the second step derives the target option pricing formula written in a

Fourier cosine series. The efficiency and accuracy of the newly derived formula are

demonstrated through numerical experiments.

2020 Mathematics subject classification: 91G20.

Keywords and phrases: analytical approximation, credit default swap, regime switch-

ing, Fourier cosine series.

1. Introduction

Credit default swaps (CDSs) are becoming increasingly popular ever since they were

first used in the 1990s, and they are one of the most widely traded credit derivatives for

hedging credit risk. A CDS is a financial contract that essentially transfers the credit

risk of a certain reference asset belonging to a third party from buyer to seller. When a

CDS contract is entered, the buyer needs to make periodic payments to the seller until

the expiry of the contract or a credit event occurs, while the seller has to compensate

1School of Economics, Zhejiang University of Technology, Hangzhou, China;

e-mail: xinjiang@zjut.edu.cn.
2School of Finance, Zhejiang Gongshang University, Hangzhou, China;

e-mail: linsha@mail.zjgsu.edu.cn.

© Australian Mathematical Society 2021

143

https://doi.org/10.1017/S1446181121000274 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446181121000274
https://orcid.org/0000-0003-1429-5463
https://orcid.org/0000-0003-1692-8711
mailto:xinjiang@zjut.edu.cn.
mailto:linsha@mail.zjgsu.edu.cn.
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181121000274&domain=pdf
https://doi.org/10.1017/S1446181121000274


144 X.-J. He and S. Lin [2]

the loss of the buyer when the reference asset defaults, with the amount of payment

being equal to the CDS notional face value less the recovery value.

Because of the high liquidity of CDS contracts in real markets, the accurate pricing

of these contracts is very demanding. In the determination of CDS prices, the first step

is usually to figure out how to appropriately model the default, and the corresponding

approaches in the literature can mainly be classified into two categories: reduced-form

models and structure models. The former category was established by a number of

authors [1, 2, 16] and then extensively studied by many other authors, including Lando

[17] and Madan and Unal [22], since this approach makes it possible to directly extract

the default probability from market prices. However, this approach fails to capture the

wide range of default correlations, making the latter category much more favoured, as

structure models, which determine the default time with the evolution of the reference

asset, are able to capture such correlation. The first structure model was proposed by

Merton [23], who assumed that the default can only be triggered at expiry. However,

this is obviously not realistic, and has prompted the development of one currently

widely adopted model, the so-called first-passage model [5, 6], in which the default

takes place as soon as the reference asset price touches or drops below the default

barrier for the first time.

Another important factor that affects the accuracy in the valuation of CDSs is

the model used to describe the reference asset price. At a very early stage, the

log-price of the reference asset was assumed to follow a normal distribution, the same

as the assumption made in the Black–Scholes (BS) model. However, this particular

assumption was rejected by the empirical results, showing that the default probability

obtained in this setting was significantly less than the empirical default rate [25],

and it was possibly caused by the fact that the BS model is too simple to capture

the main characteristics exhibited by the reference asset prices in real markets [24].

To overcome the drawbacks of the BS model, more sophisticated models have been

proposed and introduced for evaluating CDS contracts. For example, the geometric

Brownian motion in the BS model was completely replaced by a Poisson process in

[7], while Longstaff and Schwartz [21] incorporated the stochastic interest rate, which

Zhou [26] further extended by adding a jump component. Moreover, a generalized

mixed fractional Brownian motion was adopted by He and Chen [13] to capture the

long-range dependence observed in financial markets.

Recently, Markov-modulated models are receiving much attention from researchers

as well as market practitioners [15, 18, 19], as a lot of empirical evidence has

demonstrated the existence of regime switching in real markets [10, 12]. In particular,

He and Chen [14] developed a semi-Monte Carlo approach for the pricing of

CDSs under the regime-switching BS model. This approach, though mathematically

appealing, is somewhat time-consuming as it involves simulation of the Markov chain,

which requires a large number of sample paths to be generated, posing an obstacle

for practical applications. To increase the computational efficiency when pricing

CDSs under the regime-switching BS model, this paper presents an analytical pricing

formula written in a Fourier cosine series that does not require any simulation.

https://doi.org/10.1017/S1446181121000274 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000274


[3] Approximation of CDS prices with regime switching 145

The rest of the paper is organized as follows. In Section 2 we derive a general pricing

formula for CDSs, containing the no-default probability as the only unknown term,

which can be expressed with the price of the down-and-out binary option. In Section 3,

after the brief introduction of the regime-switching BS model, the target option price

is written in a Fourier cosine series, with which the CDS pricing formula is completely

analytical. In Section 4 numerical examples and discussions are presented. Section 5

concludes.

2. A general pricing formula for CDSs

One of the most important factors affecting the accuracy in the determination of

the CDS price is the assumption on the default model. As illustrated before, Merton’s

assumption [23] that the default would only occur at expiry is certainly not appropriate,

and a more realistic assumption is adopted hereafter that the default can take place

at any time during the lifespan of the CDS contract. With the default mechanics

being determined, we can now proceed to the pricing of CDSs. Unlike most financial

derivatives, whose price is defined as the value of the corresponding contract, the price

of a CDS refers to the spread, that is, the regular fee that the buyer pays to the seller,

and is quoted as the ratio of the face value of the reference asset. This implies that we

need to analyse the cash flows between buyer and seller.

On the one hand, the CDS buyer needs to regularly pay a protection fee to the

seller before the default occurs or expiry. Specifically, if we denote by c and M the

target CDS spread per unit time that needs to be determined and the face value of

the reference asset respectively, the buyer needs to pay cMdt to the seller if there is no

default before time t. According to the risk-neutral pricing rule, the current value of the

cash flow made by the buyer (denoted by V1) is the expectation of all the discounted

future payments, which can be expressed as

V1 =

∑

t

[e−rtcMp(t) dt] = cM

∫ T

0

e−rtp(t) dt,

where the current time is 0, T is the expiry, r is the risk-free interest rate, and p(t)

represents the probability of no default before time t. On the other hand, if a default

does occur, the seller has to pay (1 − R)M, with R being the recovery rate specified in

the contract, to compensate the loss of the buyer, implying that the current value of

the cash flow made by the seller (denoted by V2) depends on the probability that the

default takes place. In particular, the probability of the default taking place between

time t and t + dt can be directly computed as

[1 − p(t + dt)] − [1 − p(t)] = p(t) − p(t + dt) = −dp(t),

with which the risk-neutral pricing rule yields

V2 =

∑

t

{e−rt(1 − R)M[−dp(t)]} = (1 − R)M

∫ T

0

−e−rtdp(t).
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Thus, to be fair to both parties, the current value of the cash flow from the buyer should

be equal to that from the seller, leading to

cM

∫ T

0

e−rtp(t) dt = (1 − R)M

∫ T

0

−e−rtdp(t),

which can be simplified as

c =
(1 − R)

∫ T

0
−e−rtdp(t)

∫ T

0
e−rtp(t) dt

=

(1 − R)[−e−rtp(t)

∣

∣

∣

∣

∣

T

0

− r
∫ T

0
e−rtp(t) dt]

∫ T

0
e−rtp(t) dt

=
(1 − R)[1 − e−rTp(T)]

∫ T

0
e−rtp(t) dt

− r(1 − R). (2.1)

The general pricing formula presented in (2.1) only contains one unknown term, the

no-default probability p(t), solving which would yield a completely analytical solution.

If St denotes the reference asset price at time t, and D represents the default level, p(t)

is clearly the probability of the minimal value of the reference asset within the time

period [0, t] being higher than D, or, more specifically,

p(t) = P
(

min
0≤u≤t

Su > D
)

, (2.2)

with p(0) = 0 as the CDS contract would never be entered if the default occurs at the

current time. If we rewrite (2.2) as

p(t) = E[I{min
0≤u≤t

Su>D}],

with I being the indicator function, it is not difficult to find that e−rtp(t) is in fact the

price of a down-and-out binary option having time to expiry t, which can be formulated

as

e−rtp(t) ≡ P(S, t) = e−rtE[Π(S, t)],

where the payoff function is

Π(S, t) =















1 min
0≤u≤t

Su > D,

0 otherwise.

In this case, the pricing formula (2.1) can be rearranged as

c =
(1 − R)[1 − P(S, T)]

∫ T

0
P(S, t) dt

− r(1 − R). (2.3)
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It is now clear that once the price of the down-and-out binary option written on

the reference asset, P(S, t), has been derived, we are able to determine the CDS price

through (2.3). Thus, a necessary step is to first specify the dynamic of the reference

asset, and then we are able to consider this particular option pricing problem. These

details will be presented in the next section.

3. Analytical approximation of a down-and-out binary option

In this section the reference asset is assumed to follow a regime-switching model,

and the down-and-out binary option price is then determined with a two-step process;

the first step deals with the option pricing problem conditional upon all the future

information of the Markov chain, based on which the target option price is written in

a Fourier cosine series in the second step.

3.1. The regime-switching model As mentioned earlier, there is a lot of empirical

evidence suggesting the existence of regime switching in real markets. Therefore,

we would like to incorporate the effect of regime switching in the pricing of CDS

contracts. It should be pointed out that the extra uncertainty introduced by regime

switching makes our market incomplete. This issue has been discussed in [11], where

a risk premium is introduced related to the cost of switching. We shall not repeat

this argument, but directly assume that we are already working under a risk-neutral

measure Q with zero risk premium associated with regime switching, like many other

authors in the literature [4, 27], as our focus here is on how we can efficiently determine

the price of a CDS contract under the regime-switching model without losing too much

accuracy.

In particular, the reference asset of the CDS contract, denoted by S, is assumed to

follow a regime-switching model under a risk-neutral measure Q as

dSu

Su

= r dt + σXu
dWu, (3.1)

where r is the risk-free interest rate, Wu is a standard Brownian motion and Xu is

a two-state Markov chain, independent of the Brownian motion with its state space

being {e1, e2}, where the jth component of the column vector ei is the Kronecker delta

δij for all i, j = 1, 2. It should be pointed out here that the Markov chain is assumed

to contain two states for illustration purposes, but the extension to arbitrary but finite

states is very straightforward. It should also be remarked that the dynamics of the

Markov chain is actually generated by a transition rate matrix A = (aij)i,j=1,2 [8], where

aij is the transition rate of Xt from state i to j satisfying aij ≥ 0, i , j and
∑2

j=1 aij = 0.

In this case, if we assume that a12 = λ12 and a21 = λ21, then the transition rate matrix

A here is defined as

A =

(

−λ12 λ12

λ21 −λ21

)

.
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In this case, σXu
would have two different values, denoted by σ1 and σ2, according to

the current state of the reference asset, and it can be represented as

σXu
= 〈σ̄, Xu〉,

if 〈·, ·〉 is the inner product of two vectors, and σ̄ = (σ1,σ2)T .

3.2. The Fourier cosine series solution This subsection is devoted to deriving

the analytical approximation of the down-and-out binary option under the regime-

switching model P(S, t, X0), which is dependent on X0 as we are working under the

regime-switching model, where the Markov chain is also a random process. The main

result is provided in the following theorem, followed by its detailed proof.

THEOREM 3.1. If the underlying price S follows the dynamic specified in (3.1), the

price of a down-and-out binary option P(S, t, X0) can be approximated by a Fourier

cosine series as

P(S, t, X0) =
1

2
A0(X0)V0 +

+∞
∑

k=1

Ak(X0)Vk, (3.2)

where

Ak(X0) =
2

b − a
Real

[

g

(

kπ

b − a

)

e−jkaπ/(b−a)
]

, k = 0, 1, 2, . . . ,

Vk =

∫ b

a

W(h) cos

(

kπ
h − a

b − a

)

dh, k = 0, 1, 2, . . . ,

g(φ) = 〈eAT ·t+BX0, I〉, I = (1, 1)T ,

W(h) = e−rtN

[

ln(S/D) + rt − h/2
√

h

]

− e−rt+(h−2rt)/h ln(S/D)N

[

− ln(S/D) − rt + h/2
√

h

]

,

A =

(

−λ12 λ12

λ21 −λ21

)

, B =

(

jφσ2
1
t 0

0 jφσ2
2
t

)

.

Here, a = min(σ2
1
,σ2

2
)t, b = max(σ2

1
,σ2

2
)t, the current time is 0, t is the expiry, AT

denotes the transpose of the matrix A, D is the knock-out barrier, and N(·) is the

standard normal distribution function.

PROOF. The existence of regime switching in the dynamics of the reference asset poses

an obstacle in analytically evaluating the target option. To overcome this difficulty,

a two-step solution procedure is applied. As a prior step, we firstly assume that all

the future information of the Markov chain up to the expiry time t is known at the

current time so that the regime-switching volatility becomes only a time-dependent

parameter. It should be pointed out that due to this particular assumption made in the

first step here, the target option price should follow a time-dependent Black–Scholes

model without the effect of the Markov chain since all its future information is given.

Its impact will be recovered in the second step when this assumption is relaxed. In this

case, if the current time u is assumed to be within [0, t], the price of the down-and-out
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binary option conditional upon all the information of the Markov chain, U(y, τ|Xt) with

y = ln(S/D) and τ = t − u, should satisfy the following partial differential equation

(PDE) system:






























∂U

∂τ
=

1

2
σ2
τ

∂2U

∂y2
+

(

r − 1

2
σ2
τ

)

∂U

∂y
− rU, y > 0,

U(y, 0|Xt) = I{y>0},

U(0, τ|Xt) = 0.

(3.3)

Here, στ = 〈σ̄, Xτ〉 is a known value for all τ ∈ [0, t]. Following Lo et al. [20] and He

and Chen [14], we make the transformation z = y − y∗(τ), where

y∗(τ) = −c1(τ) − βc2(τ)

with

c1(τ) = rτ − 1

2

∫ τ

0

σ2
s ds, c2(τ) =

1

2

∫ τ

0

σ2
s ds,

and β being an adjusted parameter to be determined later. If we further denote

Ũ(z, τ|Xt) = erτU(y, τ|Xt) and Ū(z, ξ|Xt) = e−βz/2+β
2ξ/4Ũ(z, τ|Xt) with ξ = c2(τ), the

PDE system in (3.3) can be transformed into






























∂Ū

∂ξ
=
∂2Ū

∂z2
, z > −y∗(τ),

Ū(z, 0|Xt) = U(z, 0|Xt)e
−βz/2,

Ū(−y∗(τ), ξ|Xt) = 0.

(3.4)

Note that solving system (3.4) is still not straightforward, though its PDE is a

standard heat equation, since the fixed absorbing boundary is now a moving absorbing

boundary. Since such a difficulty arises from the moving absorbing boundary, one

possible approach is to find an appropriate value for β, such that the moving boundary

is a good simulation of a certain fixed boundary. Considering the definition of y∗(τ),

what we adopt here is

β = −c1(t)

c2(t)
, (3.5)

with which we use the fixed boundary 0 to approximate y∗(τ) for all τ ∈ [0, t]. In this

case, the solution to (3.4) can be approximated by the solution to the following PDE

system:






























∂Ū

∂ξ
=
∂2Ū

∂z2
, z > 0

Ū(z, 0|Xt) = U(z, 0|Xt)e
−βz/2,

Ū(0, ξ|Xt) = 0.

(3.6)

Clearly, the closer y∗(τ), τ ∈ [0, t] is to 0, the more accurate such an approximation

will be. If the volatility becomes a constant, such an approximation will degenerate to
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the exact down-and-out binary option price under the BS model since in this case

y∗(τ) = 0 for all τ ∈ [0, t]. Thus, it is of interest to calculate the magnitude of the

distance between y∗(τ) and 0, which is

|y∗(τ) − 0| = rτ
|τ−1

∫ τ

0
σ2

s ds − τ−1
∫ t

0
σ2

s ds|

τ−1
∫ t

0
σ2

s ds

≤ rτ

(

max0≤s≤τ σ
2
s

min0≤s≤τ σ2
s

− 1

)

.

This is an upper bound, which indicates that the accuracy of the approximation actually

depends on the extent of fluctuation of the underlying volatility. If the difference

between the maximum and minimum values of the volatility during the lifetime of

the contract is small, one could expect this approximation to be very accurate. Of

course, it is also interesting to see whether the approximation would still provide

reasonably accurate results when the difference is enlarged, which will be tested in

the next section.

With the method of images, it is not difficult to derive the solution to (3.6) as

Ū(z, ξ|Xt) =

∫

+∞

0

1
√

4πξ
e−(z−v)2/4ξŪ(v, 0) dv −

∫ 0

−∞

1
√

4πξ
e−(z−v)2/4ξŪ(−v, 0) dv,

based on which we can obtain

U(y, τ|Xt) = e−rτN

[

y + c1(τ)
√

2c2(τ)

]

− e−rτ+β[y+c1(τ)+βc2(τ)]N

[

− y + c1(τ) + 2βc2(τ)
√

2c2(τ)

]

.

Setting u = 0 finally yields P(S, t|Xt) = U(y, t|Xt), and thus we have

P(S, t|Xt) = e−rtN

[

ln(S/D) + c1(t)
√

2c2(t)

]

− e−rt+β ln(S/D)N

[

− ln(S/D) − c1(t)
√

2c2(t)

]

, (3.7)

the simplification of which relies on the use of c1(t) + βc2(t) = 0.

Hitherto, the conditional option price has been presented in (3.7) with all the

information of the Markov chain. However, one would never be able to predict the

future information of the Markov chain at the current time, which forces us to conduct

an extra step to work out the expectation of P(S, t|Xt) with respect to the Markov chain,

that is,

P(S, t; X0) = EXt
[P(S, t|Xt)|X0].

Note that analytically evaluating the expectation in the above formula is usually

not possible, given the convoluted expression for P(S, t|Xt). Although He and Chen

[14] developed a semi-Monte Carlo approach to obtain the value of the expectation,
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derivative pricing involving generating sample paths is often time-intensive, and

analytical solution, if exists, is much more favoured in practice. To achieve this, the

β presented in (3.5) has been chosen to be different from the one used in [14, 20],

and this is actually essential, paving the way for the analytical derivation of the target

expectation.

If we denote ht =

∫ t

0
〈σ̄2, Xs〉ds, then we have c1(t) = rt − ht/2, c2(t) = ht/2,

β = (ht − 2rt)/ht, and thus (3.7) can be rewritten as

W(ht) , P(S, t|Xt)

= e−rtN

[

ln(S/D) + rt − ht/2√
ht

]

− e−rt+ln(S/D)(ht−2rt)/ht N

[

− ln(S/D) − rt + ht/2√
ht

]

.

By noticing that ht is the only random variable contained in P(S, t|Xt), the price of the

down-and-out option can be formulated as

P(S, t; X0) = E[V(ht)|X0] =

∫ b

a

W(h)f (h|X0) dh, (3.8)

where f (h|X0) is the probability density function of ht defined on [a, b], conditional

upon the current state of the Markov chain. It should be pointed out here that if

f (h|X0) were available in closed form, we would already obtain an analytical pricing

formula for the target option. Unfortunately, this is not the case here and we have to

find an alternative way to derive P(S, t; X0). In particular, f (h|X0) can be alternatively

expressed as

f (h|X0) =
1

2
A0(X0) +

+∞
∑

k=1

Ak(X0) cos

(

kπ
h − a

b − a

)

, (3.9)

with

Ak(X0) =
2

b − a

∫ b

a

f (h|X0) cos

(

kπ
h − a

b − a

)

dh. (3.10)

Such an expansion is always possible since any real function has a Fourier cosine

expansion when it is finitely supported [3], implying that its theoretical convergence is

guaranteed. Thus, substituting (3.9) into (3.8) yields

P(S, t; X0) =

∫ b

a

W(h)

[

1

2
A0(X0) +

+∞
∑

k=1

Ak(X0) cos

(

kπ
h − a

b − a

)]

dh.

After interchanging the summation and the integration, the option price can finally be

derived as

P(S, t, X0) =
1

2
A0(X0)V0 +

+∞
∑

k=1

Ak(X0)Vk, (3.11)
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where

Vk =

∫ b

a

W(h) cos

(

kπ
h − a

b − a

)

dh, k = 0, 1, 2, . . . . (3.12)

Equation (3.11) is almost analytical and explicit, except that Ak(X0) defined in (3.10)

still remains unknown as it involves the density function f (h|X0). However, we have

managed to derive Ak(X0), by making use of the relationship between the characteristic

function and the density function. If g(φ) is the characteristic function of ht, it actually

has a closed-form expression [9] given by

g(φ) =

∫ b

a

f (h|X0)ejφhdh = 〈eAT ·t+BX0, I〉, (3.13)

from which one can easily represent Ak(X0) as

Ak(X0) =
2

b − a
Real

[

g

(

kπ

b − a

)

e−jkaπ/(b−a)
]

, k = 0, 1, 2, . . . . (3.14)

This completes the proof. �

Clearly, the CDS pricing formula (2.3) is now completely analytical, after the

substitution of the down-and-out binary option price presented in (3.2). It should

particularly be emphasized that computing the option price through equation (3.2)

or the CDS price with equation (2.3) does not involve the density function f (h|X0).

Instead, all we need is to calculate Vk and Ak(X0) through equations (3.12) and (3.14)

respectively, which are only dependent on the characteristic function g(φ) in equation

(3.13).

Of course, there are still several issues that need to be addressed. First of all,

as the solution is written in a series form, its speed of convergence needs to be

checked as this is an important factor in practice, especially in the recent trend

of algorithmic trading. The accuracy of the formula should also be considered to

ensure that the approximation used is appropriate and there are no algebraic errors

in the derivation process. Of course, it is also of interest to demonstrate whether

the introduction of regime switching into the dynamic of the reference asset would

have a significant impact on the CDS price. These issues will be discussed in the next

section.

4. Numerical examples and discussion

In this section numerical experiments are carried out to show the efficiency and

accuracy of the approximation, after which the effect of regime switching on the CDS

price is demonstrated. It should be pointed out that although any mathematical model

needs to go through a calibration process before it can be applied in practice, the

main purpose of this paper is to derive an efficient pricing formula for CDS contracts

with a high degree of accuracy under the well-known regime-switching model that
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can facilitate the calibration process. Therefore, rather than calibrating the underlying

model with real market data, it suffices for us to test the efficiency and accuracy of our

approximation formula with artificial data.

As it was shown in the previous section that the accuracy of our approximation

depends on the difference between σ1 and σ2, we consider two cases when conducting

numerical experiments: case 1 sets σ1 and σ2 as 0.1 and 0.2 respectively, while case 2

uses 0.1 and 0.4 for σ1 and σ2 respectively. Other parameters include λ12 = λ21 = 20,

T = 1, D = 12, S = 15 and r = 0.1. The current state is assumed to be 1.

The speed of convergence for a series solution is always an important factor to

demonstrate its computational efficiency. To check the efficiency, it suffices to use

only the down-and-out binary options since the series solution is only introduced

when deriving the option pricing formula. Thus, with N being the number of terms

used in the formula, the absolute difference between the down-and-out binary option

prices calculated with (N + 1) terms and those produced with N terms is shown in

Figures 1(a) and 2(a) corresponding to case 1 and case 2, respectively. It is clear that

option prices in both figures converge very fast for different reference asset prices

as the absolute difference decreases sharply when we increase the number of terms,

and they are almost zero even when fewer than 10 terms are used. A clearer pattern

for the two cases is respectively shown in Figures 1(b) and 2(b), where option prices

produced by 15 and 16 terms are plotted against different time to expiry. Option prices

in both figures are pointwise close to each other, with the maximum absolute difference

being of the order of 1 × 10−7 for Figure 1(b) and 2 × 10−5 for Figure 2(b). For the

convenience of the reader in repeating the experiments, numerical values in producing

Figures 1 and 2 are provided in Tables 1 and 2.

Having demonstrated the rapid speed of convergence for equation (3.2), the

accuracy of our approach is another aspect that needs to be checked as approximation

is involved in the derivation process. Thus, CDS prices calculated with our approach

(our prices), are compared with those obtained using the approach in [14] (He–Chen

prices) and those from Monte Carlo simulation (Monte Carlo prices) in Figures 3

and 4 corresponding to case 1 and case 2, respectively. It can be easily observed

from Figures 3(a) and 4(a) that our approximation is almost the same as the He–Chen

approximation, both of which are very close to the Monte Carlo price. Figures 3(b)

and 4(b) exhibit the relative errors between the two approximation prices and Monte

Carlo prices, and the error of our price is slightly lower than that of the He–Chen

price. Furthermore, our maximum relative error being less than 0.91% for both

cases is certainly evidence demonstrating the accuracy of our approach. One should

also note that although enlarging the difference between σ1 and σ2 increases the

relative error between our price and the Monte Carlo price, which confirms what

we have shown in the previous section, our approximation is still quite accurate even

when

max0≤s≤τ σ
2
s

min0≤s≤τ σ2
s

= 16.
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FIGURE 1. Speed of convergence for equation (3.2) with σ1 = 0.1, σ2 = 0.2.
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TABLE 1. Numerical values for Figures 1(a) and 2(a).

N 1 11 21 31 41 51

Case 1: σ1 = 0.1, σ2 = 0.2

S = 13 5.3e-3 6.3e-8 9.5e-13 1.7e-13 1.3e-13 9.0e-14

S = 14 4.1e-3 2.9e-8 4.3e-13 7.8e-14 1.6e-15 1.1e-15

S = 15 2.3e-3 1.4e-8 2.1e-13 3.9e-14 3.3e-14 2.3e-14

Case 2: σ1 = 0.1, σ2 = 0.4

S = 13 6.4e-3 2.5e-7 4.0e-12 1.0e-12 8.8e-13 5.1e-13

S = 14 8.0e-3 1.1e-7 1.4e-12 2.4e-13 2.1e-13 1.6e-13

S = 15 7.8e-3 3.3e-8 4.0e-13 7.3e-14 1.7e-14 1.1e-14

TABLE 2. Numerical values for Figures 1(b) and 2(b).

τ 0.1000 0.2929 0.4857 0.6786 0.8714

Case 1: σ1 = 0.1, σ2 = 0.2

15 terms 0.9900 0.9668 0.9351 0.9008 0.8677

16 terms 0.9900 0.9668 0.9351 0.9008 0.8677

Case 2: σ1 = 0.1, σ2 = 0.4

15 terms 0.9762 0.8559 0.7484 0.6682 0.6072

16 terms 0.9762 0.8559 0.7484 0.6682 0.6072

Again, for the convenience of the reader in repeating the numerical experiments, Table

3 presents the numerical values in producing Figures 3 and 4.

As our approach provides similar accuracy to the He–Chen approach, it is of interest

to compare the computational efficiency of the two approaches, and the CPU time

cost to compute one CDS price is listed in Table 4. It is expected that Monte Carlo

simulation, as the benchmark, is the most time-intensive approach of the three, as it

needs to simulate both the Brownian motion and the Markov chain. The He–Chen

approach has an advantage over Monte Carlo simulation, since it avoids generating

sample paths for the Brownian motion. Our approach, on the other hand, involving

no simulations, is the most efficient one, and it only requires around 0.13 seconds to

derive one price, almost 100 times less than the time cost by the He–Chen approach,

even when 100 terms are used for the series solution.

Having established the advantages of our approach, we are now ready to study how

regime switching would affect the CDS prices. Depicted in Figure 5 is the change in

CDS prices under the regime-switching model with different transition rates, with the

prices under the BS model as a benchmark. Firstly, our price of state 1 (2) is exactly the

same as the BS price, with its volatility being equal to σ1 (σ2) when the transition rates

are 0 for both cases, which is expected as there is no actual regime switching and the

volatility value will remain as its initial value. With the increase in the transition rates,
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FIGURE 3. Accuracy with σ1 = 0.1, σ2 = 0.2.
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FIGURE 4. Accuracy with σ1 = 0.1, σ2 = 0.4.
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TABLE 3. Numerical values for Figures 3 and 4.

τ 0.2 0.4 0.6 0.8 1.0

Case 1: σ1 = 0.1, σ2 = 0.2

Our price 0.0025 0.0140 0.0237 0.0294 0.0324

He–Chen price 0.0026 0.0141 0.0238 0.0296 0.0325

Monte Carlo price 0.0025 0.0139 0.0237 0.0294 0.0322

Our error (%) 0.69 0.74 0.41 0.24 0.41

He–Chen error (%) 1.22 1.28 0.77 0.70 0.78

Case 2: σ1 = 0.1, σ2 = 0.4

Our price 0.1653 0.2346 0.2442 0.2382 0.2283

He–Chen price 0.1656 0.2354 0.2350 0.2390 0.2292

Monte Carlo price 0.1641 0.2325 0.2430 0.2367 0.2270

Our error (%) 0.72 0.91 0.52 0.63 0.58

He–Chen error (%) 0.87 1.23 0.84 0.97 0.97

TABLE 4. Comparison of CPU times (seconds).

Ours (N = 20) Ours (N = 50) Ours (N = 100) He–Chen Monte Carlo

Time 0.0399 0.0781 0.1327 11.7192 15.9004

TABLE 5. Numerical values for Figure 5.

Transition rates 0 5.2631 10.5263 15.7895 20

Case 1: σ1 = 0.1, σ2 = 0.2

Our price(state 1) 0.0011 0.0302 0.0317 0.0322 0.0324

Our price(state 2) 0.0863 0.0392 0.0363 0.0353 0.0348

BS price (σ = σ1) 0.0011 0.0011 0.0011 0.0011 0.0011

BS price (σ = σ2) 0.0863 0.0863 0.0863 0.0863 0.0863

Case 2: σ1 = 0.1, σ2 = 0.4

Our price(state 1) 0.0011 0.1983 0.2179 0.2252 0.2283

Our price(state 2) 0.4443 0.2545 0.2471 0.2449 0.2440

BS price (σ = σ1) 0.0011 0.0011 0.0011 0.0011 0.0011

BS price (σ = σ2) 0.4443 0.4443 0.4443 0.4443 0.4443

the transition of the volatility between the two states would become more frequent,

increasing (decreasing) the average of the volatility of the reference asset starting in

state 1 (2), and this leads to a higher (lower) risk, as a result of which both prices of the

two states are moving away from the corresponding BS prices while at the same time
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getting closer to each other. The corresponding numerical values to produce Figure 5

are shown in Table 5.

5. Conclusion

In this paper the pricing of CDSs is investigated under a regime-switching BS

model. By first establishing the relationship between the unknown no-default prob-

ability and the price of a down-and-out binary option written on the same reference

asset, the CDS pricing problem reduces to the valuation of this particular option. After

assuming that all the future information of the Markov chain is given, we obtain

an approximation formula for the conditional option price, taking the expectation

of which yields the target unconditional price. The solution is written in a Fourier

cosine series, and its computational efficiency and accuracy are demonstrated through

numerical experiments.
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