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Abstract

Region-based memory management (RBMM) is a form of compile time memory management,

well-known from the world of functional programming. In this paper we describe our work

on implementing RBMM for the logic programming language Mercury. One interesting point

about Mercury is that it is designed with strong type, mode, and determinism systems. These

systems not only provide Mercury programmers with several direct software engineering

benefits, such as self-documenting code and clear program logic, but also give language

implementors a large amount of information that is useful for program analyses. In this work,

we make use of this information to develop program analyses that determine the distribution

of data into regions and transform Mercury programs by inserting into them the necessary

region operations. We prove the correctness of our program analyses and transformation. To

execute annotated programs, we have implemented runtime support that tackles the two main

challenges posed by backtracking. First, backtracking can require regions removed during

forward execution to be “resurrected”; and second, any memory allocated during computation

that has been backtracked over must be recovered promptly without waiting for the regions

involved to come to the end of their life. We describe in detail our solution of both these

problems. We study in detail how our RBMM system performs on a selection of benchmark

programs, including some well-known difficult cases for RBMM. Even with these difficult

cases, our RBMM-enabled Mercury system obtains clearly faster runtimes for 15 out of 18

benchmarks compared to the base Mercury system with its Boehm runtime garbage collector,

with an average runtime speedup of 24%, and an average reduction in memory requirements

of 95%. In fact, our system achieves optimal memory consumption in some programs.

KEYWORDS: region-based memory management, region analysis, runtime support, back-

tracking, logic programming, Mercury

1 Introduction

Memory management is an integral part of all practical programming language

systems. Traditionally, memory has been left to the programmer to manage using

constructs such as C’s malloc and free, but experience has shown that such manual
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systems require a large amount of tedious work from programmers, and are very hard

to use correctly. More recent programming languages therefore automate memory

management. The standard way to implement automatic memory management is

runtime garbage collection. This provides memory safety, good memory reuse, and

reasonable performance, but it does have a significant downside, which is that

decisions about which parts of memory can be reused are made completely at

runtime, which can incur significant overheads.

Region-based memory management or RBMM (Tofte and Talpin 1997) is a recent

technique for avoiding these overheads by moving decisions from runtime to compile

time, thus shifting most of the responsibility to the compiler. RBMM is based on

the idea of putting each group of heap objects that have the same lifetime into

their own regions, the motive being that reclaiming entire regions at the end of

their lifetime makes collection very fast. A typical scenario is a function storing its

intermediate results in a region that is freed once the final result of the function

has been computed. All the decisions about which objects are allocated into which

regions and when each region should be created and removed are made at compile

time.

Since the fundamental work on RBMM for functional programming (Tofte

and Talpin 1997), there have been several improvements and new developments

in that context (Aiken et al. 1995; Birkedal et al. 1996; Henglein et al. 2001).

RBMM has also been adapted to other programming paradigms, such as imper-

ative programming (Gay and Aiken 1998; Grossman et al. 2002), object-oriented

programming (Cherem and Rugina 2004; Chin et al. 2004), and logic program-

ming (Makholm 2000a; Makholm 2000b; Makholm and Sagonas 2002).

The initial work on RBMM for logic programming languages applied RBMM

to Prolog. However, the first attempt (Makholm 2000a; 2000b) was developed

for a non-standard implementation of Prolog, which would require substantial

changes before it could be applied in any standard implementation. Makholm

and Sagonas (2002) fixed this problem by implementing RBMM in the context of

the standard technology for implementing Prolog, the Warren Abstract Machine

(WAM). Nevertheless, this work mainly concentrated on the runtime extensions

needed to run Prolog programs with RBMM. As its analysis algorithm, it used

an adapted version of a type-based region analysis originally developed for the

strongly typed functional language SML (Henglein et al. 2001). Since Prolog has no

static type system and more importantly no static mode system, the region inference

has to get the information it needs from type and mode inferences, which often

yield imprecise results. Moreover, a Prolog implementation’s lack of knowledge

about the determinism of a program’s predicates generally requires them to be

treated as nondeterministic. These limitations prevent the application of most of the

optimizations that would improve the performance of RBMM, making it hard for it

to become a practical alternative to native runtime collectors in Prolog systems. The

logic programming language, Mercury has none of these limitations; the Mercury

compiler knows the type of every variable and the mode and determinism of every

goal in the program. This fact, the pure nature of Mercury (the absence of side

effects), and the limited research on RBMM in logic programming motivated us
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to investigate whether region-based memory management could be developed and

implemented efficiently for Mercury.

In this paper we describe the first automated RBMM system for Mercury. Given

a Mercury program,

• our system determines the set of regions the program should use;

• it decides, for each allocation site in the program, in which region the allocation

should happen;

• it inserts instructions into the program to create each region just before it is

first needed; and

• it inserts instructions into the program to remove each region as soon as it is

safe to do so.

The main contributions of our work are as follows:

(1) We develop the static program analyses needed for generating region-annotated

programs. These include a region points-to analysis to divide Mercury terms

into regions, a liveness analysis that assigns lifetimes to the regions, and a

program transformation to annotate the original programs with the derived

region information.

(2) We prove several safety properties for memory accesses and region operations

in the resulting annotated programs.

(3) Our runtime support system handles the interaction of RBMM with backtrack-

ing correctly without incurring excessive overheads.

(4) Our RBMM-enabled system achieves faster execution times and much lower

memory requirements for most of our benchmark programs than the stan-

dard Mercury system, which uses the Boehm–Demers–Weiser garbage collec-

tor (Boehm and Weiser 1988) for memory management. The region system

actually achieves optimal memory consumption on some benchmarks.

(5) We make a detailed analysis of RBMM behavior for the selection of programs,

including some well-known difficult cases. This study reveals the impact of

sharing on memory reuse in RBMM systems.

A previous version of our region analysis and transformation was published in

Phan and Janssens (2007). In Phan et al. (2008) we described the runtime support

for RBMM. They all have been reformulated, extended, and/or refined in this paper.

The structure of the paper is as follows. In Section 2 we introduce Mercury and

the compiler’s internal representation of Mercury programs. Section 3 describes

intuitively how RBMM can be realized for Mercury, and explains our decisions on

how to support backtracking. Section 4 explains how we decide which terms should

be stored in which regions, taking into account sharing among terms. On the basis

of this region model, we develop the static analyses of our system: Sections 5, 6 and

7 contain, respectively, our region points-to analysis, our region liveness analysis,

and our program transformation, together with theorems about their correctness.

Section 8 shows the basic extensions to the Mercury runtime system needed to

support RBMM in deterministic code, while Section 9 describes the extensions

needed to support backtracking (nondeterminism). Section 10 presents a detailed
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evaluation of our RBMM system, as well as a discussion of the relation between

sharing and memory reuse in region-based systems. We discuss related research

in Section 11, present our ideas for future work in Section 12, and conclude in

Section 13.

2 Background

2.1 Mercury

Mercury is a pure logic programming language intended for the creation of large,

fast, and reliable programs (Somogyi et al. 1996). While the syntax of Mercury is

based on the syntax of Prolog, semantically the two languages are very different

due to Mercury’s purity, its type, mode, determinism and module systems, and its

support for evaluable functions. (Mercury treats functions as predicates with the

return value as an extra argument, so in the rest of the paper we will talk only

about predicates.)

Mercury has a strong Hindley–Milner-type system very similar to that of Haskell.

Some types are built into a language (e.g. int), but users can also introduce new

types using type definitions such as the one in Example 1.

Example 1

The declaration of the type list int.

:- type list int ---> []; [int | list int].

This defines the type of lists of integers. �

Mercury programs are statically typed; the compiler knows the type of every

argument of every predicate (from declarations or inference) and every local variable

(from inference).

The mode system classifies each argument of each predicate as either input or

output; there are exceptions, but they are not relevant to this paper. If input, the

argument passed by the caller must be a ground term. If output, the argument

passed by the caller must be a distinct free variable, which the callee will instantiate

to a ground term. It is possible for a predicate to have more than one mode; the

usual example is append, which has two principal modes: append(in,in,out) and

append(out,out,in). We call each mode of a predicate a procedure. The Mercury

compiler generates separate code for each procedure.

Each procedure has a determinism, which puts limits on the number of its

possible solutions. Procedures with determinism det succeed exactly once; semidet

procedures succeed at most once; multi procedures succeed at least once; while

nondet procedures may succeed any number of times.

Example 2

Figure 1 shows the quicksort program written in Mercury, including declarations

of the types, modes, and determinisms for its two essential predicates, qsort and

split. We include the code of main for completeness, but it is of no relevance to

the topic of the paper. The notation !IO represents two variables, which in this case

stand for the initial and final states of the world, i.e. the state before the program
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main(!IO) :- :- pred split(int, list_int, list_int,
.)tni_tsil,)S,][,]1,3,2[(trosq

.tedsi)tuo,tuo,ni,ni(tilpsedom-:.)OI!,S(etirw.oi
split(_, [], [], []).

:- pred qsort(list_int, list_int, list_int). split(X, [Le | Ls], L1, L2) :-
:- mode qsort(in, in, out) is det. ( if X >= Le then
qsort([], A, A). split(X, Ls, L11, L2),

]11L|eL[=1L-:)S,A,]sL|eL[(trosq
esle,)2L,1L,sL,eL(tilps

qsort(L2, A, S2), split(X, Ls, L1, L21),
]12L|eL[=2L.)S,]2S|eL[,1L(trosq

).

Fig. 1. The quicksort program in Mercury.

writes out its result with io.write, and the state after. (The io.write predicate is

defined in the io module of the Mercury standard library.) �

We support a very large subset of Mercury: unifications, first-order calls, conjunc-

tions, disjunctions, switches, if-then-elses, negations, and quantification. The only

parts we do not support are higher order calls (including typeclass method calls),

calls to foreign language code, and multi-module programs. A complete description

of Mercury can be found in Mercury Team (2009).

2.2 Mercury code inside the compiler

The compiler converts all predicate definitions into an internal form. For our subset

of Mercury, this internal form is given by the following abstract syntax:

predicate P : p(x1, . . . , xn) ← G

goal G : x = y | x = f(y1, . . . , yn) | p(x1, . . . , xn) |
(G1, . . . , Gn) | (G1; . . . ;Gn) | not G |
(if Gc then Gt else Ge) | some [x1, . . . , xn] G

We call the first three kinds of goals (unifications and calls) atomic goals or just

atoms. The rest are called compound goals, in which a sequence of goals separated

by commas is a conjunction, while a sequence of goals separated by semicolons is a

disjunction.

As this implies, the Mercury compiler internally converts any predicate definition

with two or more clauses into a single clause with an explicit disjunction. The

clauses themselves are transformed into superhomogeneous form, in which each atom

(including clause heads) must be of one of the forms p(X1,...,Xn), Y = X, or Y =

f(X1,...,Xn), where all of the Xi are distinct.

Inside the compiler, every goal (compound as well as atomic) is annotated with

mode and determinism information. For unifications, we show the mode information

by writing <= for construction unifications, => for deconstruction unifications, == for

equality tests, and := for assignments. The compiler reorders conjunctions as needed

to ensure that goals that consume the value of a variable always come after the

goal that produces its value. We show the quicksort program in this abstract syntax

in Figure 2. For readability, we have chosen meaningful names for some additional

variables that are added automatically by the Mercury compiler. We also replace
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-:)2L,1L,L,X(tilps-:)OI!(niam
(,]3,1,2[=<L)1(

,][>=L)1(,][=<A)2(
,][=<1L)2(,)S,A,L(trosq)3(

(4) io.write(S, !IO), (3) L2 <= []
;

,]sL|eL[>=L)4(-:)S,A,L(trosq
( (5) ( if X >= Le then

,)2L,11L,sL,X(tilps)6(,][>=L)1(
]11L|eL[=<1L)7(A=:S)2(

; else
,)12L,1L,sL,X(tilps)8(,]sL|eL[>=L)3(

(4) split(Le, Ls, L1, L2), (9) L2 <= [Le | L21]
),)2S,A,2L(trosq)5(

(6) A1 <= [Le | S2], ).
(7) qsort(L1, A1, S)
).

Fig. 2. The quicksort program in superhomogeneous form.

the sequence of unifications needed to construct a single ground term with a single

goal. For example, the list construction at (1) in main in Figure 2 actually stands for

V_0 <= [],

V_1 <= 3, V_2 <= [V_1 | V_0],

V_3 <= 1, V_4 <= [V_3 | V_2],

V_5 <= 2, L <= [V_5 | V_4]

These extra details are of no interest in this paper.

In the rest of the paper, we will ignore negation, since not G can be implemented

as if G then fail else true, where fail and true are two built-in goals, with

fail always failing and true always succeeding. Note that in Mercury (unlike in

Prolog), the condition of an if-then-else is allowed to succeed several times. Whether

the condition of a particular if-then-else can do so will be recorded in its determinism

annotation, and many parts of the compiler, including the RBMM implementation,

handle conditions of different determinisms differently.

Another situation in which determinism information is important is existential

quantification. (Mercury also supports universal quantification, but the compiler

internally converts all [x1, . . . , xn] G to not some [x1, . . . , xn] not G, so we do not

have to deal with it.) If some [. . .] G quantifies away all the output variables of G,

then different solutions of G would be indistinguishable, so even if G can have more

than one solution, some [. . .] G will not. We call such a quantification a commit, and

we handle commits differently from other quantifications.

3 Overview of region-based memory management for Mercury

We divide the task of realizing RBMM for Mercury into two parts: (a) two static

analyses and a program transformation, which work entirely at compile time, and

(b) dynamic runtime support, which executes at runtime code added to the program

by the compiler at compile time.

The goal of static analyses and transformation is to annotate Mercury programs

with information about regions. An annotated program contains information about
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the regions in which terms are constructed and when regions are created and freed.

To obtain this information, we first use a region points-to analysis to detect the

regions used by a program, and then we compute the lifetimes of these regions using

a region liveness analysis. The program transformation then uses these pieces of

information to convert the program into a region-annotated program.

The runtime support for RBMM has two main tasks. First, it has to implement

the necessary operations on regions: the creation of regions, allocation into regions,

and the removal of regions (Section 8). Second, it has to provide support for the

interaction of backtracking with RBMM. There are two main forms of interaction:

instant reclaiming and backward liveness (Section 9).

The memory allocated by computations that have been backtracked over will

never be accessed again, since backtracking effectively “erases” such computations.

To prevent memory leaks, this memory should be recovered immediately when

forward execution resumes again; we call this instant reclaiming. This obviously has

to be done at runtime, so in our system the compiler inserts the code required to do

this into the program at both resume points (points in the program where forward

execution can resume after backtracking, such as the starts of second and later

disjuncts in a disjunction) and program points that establish resume points (such as

just before entry into a disjunction).

In logic programming languages, the presence of backtracking requires the notion

of liveness to be divided into two parts. A variable, memory location or region is

forward live at a program point if it can be accessed during forward execution from

that program point, and it is backward live at a program point if it can be accessed

during backward execution (i.e. after backtracking to a choice point established

before that program point). The two notions of liveness are independent: all four

combinations of forward and backward liveness and deadness are possible. Regions

can be reclaimed only when they are both forward dead and backward dead.

Our region liveness analysis takes into account only forward liveness, and we

ensure safety with respect to backward liveness through runtime support. Our

reasons for why we handle backward liveness this way are that

• handling it purely at compile time is not possible, since runtime support will

still be needed in some cases, as we will point out in Section 12, and a

purely runtime solution is simpler than a solution that mixes compile time

and runtime aspects; and

• we can implement a large part of this runtime support using the machinery

we need anyway for instant reclaiming.

However, handling backward liveness at least partially at compile time may turn

out to be more efficient, which is why we intend to explore it in future work.

3.1 Region variables

We use region variables to refer to regions, just as we use program variables to refer

to values. To allocate a new region, we use the instruction create(R), which creates

a region and binds the region variable R to it. To free a region we use the instruction
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-:)4R@2L,3R@1L,1R@L,X(tilps-:)OI!(niam
create(R20), create(R21), (

(1) L <= [2, 1, 3] in R20, (1) L => [],
,)1R(evomer,)22R(etaerc
,)3R(etaerc,22Rni][=<A)2(

(3) qsort(L@R20, A@R22, S@R22), (2) L1 <= [] in R3,
,)4R(etaerc,)OI!,S(etirw.oi)4(

remove(R21), remove(R22). (3) L2 <= [] in R4
;

qsort(L@R6, A@R8, S@R8) :- (4) L => [Le | Ls],
( (5) ( if X >= Le then

,)4R@2L,3R@11L,1R@sL,X(tilps)6(,][>=L)1(
3Rni]11L|eL[=<1L)7(,)6R(evomer

(2) S := A else
; (8) split(X, Ls@R1, L1@R3, L21@R4),

4Rni]12L|eL[=<2L)9(,]sL|eL[>=L)3(
(4) split(Le, Ls@R6, L1@R9, L2@R10), )
(5) qsort(L2@R10, A@R8, S2@R8), ).
(6) A1 <= [Le | S2] in R8,
(7) qsort(L1@R9, A1@R8, S@R8)
).

Fig. 3. The region-annotated quicksort program.

remove(R), which frees the memory of the region to which R is currently bound.

Our regions can and actually do live across procedure boundaries, and thus we pass

region variables as extra arguments to procedure calls. Figure 3 shows the region-

annotated quicksort program after our region transformation. Our source-to-source

transform represents these instructions, and the instructions we introduce later, as

calls to built-in predicates. We describe the implementation of these predicates in

Section 8.

In the region-annotated code, we use the postfix @Ri to annotate both actual and

formal arguments with their region variables. We also annotate each unification that

constructs a new memory cell with the region in which the cell will be allocated. For

example, in main, the skeleton of the list L is in the region (bound to) R20, while

that of the accumulator A is in R22. The elements of the lists are in R21 (but see

below). In the call to qsort, R20 and R22 are passed as actual region arguments,

corresponding to the formal arguments R6 and R8 in the definition of qsort. We do

not need to pass the region of the elements because qsort and split just read from

it. The region R20 is passed to qsort from main and is removed in the base case

branch of split in the call to split at (4) in qsort. The two new lists L1 and L2

are allocated in two separate regions referred to by R9 and R10. These regions are

created by the base case branch of split, and removed (indirectly) by the recursive

calls to qsort at (5) and (7). If L1 and L2 are empty lists, the removals will happen in

the base case branch of qsort; otherwise, they will happen in the base case branch

of split. The region R22 of the resulting list is the region of the accumulator, which

is created in main.

4 Region modelling

4.1 Storing terms in regions based on their types

As we want to distribute terms over different regions, we first discuss the represen-

tation of terms when the heap memory is divided into regions.
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[|]

21
[]

L [|]

][]|[

1

[|]

[|]

g h

2

f

Fig. 4. Term representation of L=[f, g(1), h([1, 2], 2)].

We assume that a term that does not fit into one word will be represented by

a pointer to a memory cell on the heap. We also assume that a term that can be

represented by a single memory word does not need storage on the heap in its own

right. When such terms are on their own, they will be stored in registers or in stack

slots. When they are arguments of a larger term, they will be stored in a word on

the heap, but this word will be counted as belonging to the memory cell representing

the larger term.

Our assumptions are compatible with the implementation of Mercury in the

Melbourne Mercury Compiler (MMC). The MMC knows the types of all variables,

and these types give us information about the storage size of terms. Terms of

primitive types such as int and char are stored in one word, and the same is true of

enumeration types (types in which all functors have arity zero). The principal functor

of a term that needs heap space is represented by a possibly tagged pointer to a block

of memory words on the heap. The compiler knows all the functors in the type of

the term. It also knows that all words in the Mercury heap are aligned, so pointers to

them have two free bits on 32-bit machines, and three free bits on 64-bit machines.

Therefore, if a type has at most four function symbols (eight on 64-bit machines),

the principal functor can be represented by what Mercury calls a “primary tag”

on the lowest bits of the pointer. When a type has only one functor, even this is

not needed. When a type has more than four or eight functors (on 32- and 64-bit

machines, respectively), the compiler will use one primary tag value to represent

several function symbols, and will use the first word of the pointed-to memory

block as a secondary tag to distinguish between them. (The usual implementations

of Prolog have a similar word in every heap cell other than those storing lists,

increasing their memory footprint.)

Example 3

Consider the following types.

:- type elem ---> f; g(int); h(list int, int).

:- type list elem ---> []; [elem | list elem].

Figure 4 shows MMC’s representation of the term [f, g(1), h([1, 2], 2)]

bound to the variable L, which is of type list elem. Boxes with slim border are

locations on the stack or in registers, while boxes with bold borders are locations on

the heap. Note the representation of the term h([1, 2], 2) in the last element of
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the list: we need a two-word block for h’s arguments, but the functor itself is stored

implicitly in the tagged pointer. �

We now consider the storage of terms when the heap is split into regions. The idea

is to use different regions to store different parts of a term so that we can reclaim

the memory of a part by destroying its region as soon as that part becomes dead.

Many programs (including quicksort) create temporary lists in which the elements

have much longer lifetimes. Therefore, storing the elements and the list skeletons in

different regions will allow us to recover the memory of list skeletons much earlier.

Generalizing from this, we divide each term into regions based on the type of each

of its subterms. We will develop this idea in next section.

In Figure 4, the regions used to store our example term are shown by the dashed

lines. We put two-word memory blocks making up the skeleton of list L into one

region because they have the type list elem. We also put all elements, which have

the type elem, into another region. Finally, the first subterm of the third element,

which is of type list int rather than list elem, is stored in yet another region.

The representation of the list of integers here seems inconsistent with what we

said in Section 3, where we have an extra, separate region for the integers. The

reason for this is that in this section we want to give a region model as close as

possible to the implementation of Mercury in the MMC, in which integers do not

need their own memory cells on the heap. Here we have two different viewpoints: a

theoretical one that wants to treat all types the same way, and a practical one that

wants to accurately reflect how the implementation handles values of each type. For

convenience, we take the liberty of switching between the two viewpoints at will.

When talking about theoretical topics, such as static analyses and transformation,

for convenience we generally assume that all types (including int) require heap

storage; when talking about the actual implementation, we will assume that the

implementation does not create regions without having anything to put into them.

We will be more specific only if the context is not clear.

4.2 Modelling regions of a type

Our system needs a storage scheme that specifies how the terms of a type are stored.

Consider a type t declared as follows.

:- type t ---> ...; f(t1,..., ti,..., tn); ...

We associate a region variable Rt with the type. The block of memory words

corresponding to a principal functor, such as f, of a term of type t is stored in the

region bound to Rt. In the rest of the paper we abbreviate this by simply saying that

a principal functor is stored in Rt. The principal functor of an argument of f that

has type ti is stored in the region bound to Rti, which is associated to ti. If a type

t is recursive or mutually recursive, we still use only one region variable Rt. This

implies that any term of a recursive type is modelled by a finite number of regions.

We model the storage scheme using a type-based region graph, TG(N,E) with

N being a set of nodes and E being a set of directed edges. A node stands for

a region variable. A directed edge from one node to another represents the fact
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Fig. 5. The type-based region graph of the type list elem.
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Fig. 6. The type-based region graph of mutually recursive types.

that the region bound to the region variable represented by the source node of the

edge contains references into (points-to) the region bound to the region variable

represented by the target node of the edge. The reference relation represented by

the edges is actually defined by the type.

Consider the type-based region graph of the type t, TG t, with the region variables

Rt, Rt1, Rt2, and so on. If Rt is represented by the node n, then for each node m

representing Rti, we have exactly one edge (n, (f, i), m) with the label (f, i). We refer

to n as the principal node of TG t.

Example 4

The type-based region graph for the type list elem in Example 3 is shown in

Figure 5. The [|] principal functor is stored in Rlist elem . It has two arguments, the

first having the type elem and the second having the same type list elem. Thus,

we have two edges from Rlist elem , the first pointing to Relem , where the principal

functors of elem (g/1 and h/2) are stored, and the second being a self-edge. The

edge labelled (h,1) is due to the first argument of the functor h/2. The reader

may want to compare this type-based region graph with Figure 4, which shows the

memory representation of a term of this type. �

Example 5

Consider the following types t1 and t2, which are mutually recursive.

:- type t1 ---> f(int, t2).

:- type t2 ---> g(t1, int) ; h.

The type-based region graph for these types is shown in Figure 6.

4.3 Region points-to graph

Now that we have the region model for types, our next goal is to model the

memory used by a Mercury program in terms of regions. A program consists of a

set of procedures, each having its own set of program variables that, at runtime,

are instantiated with relevant terms. Therefore, we define the notion of a region

points-to graph that models the memory used by a set of variables. The memory

used by a procedure is modelled by a region points-to graph for its variables. Finally,

the memory model for the whole program is expressed through the region points-to

graphs of its procedures.
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In Mercury, variables are instantiated by unifications. A construction unification

X <= f(..., Y, ...) allocates new memory for storing the functor f (actually the

block of memory words storing f’s arguments, and if the tag on the pointer to the

block is not enough for this, then f’s identity), and creates sharing between X and

each Y. In a deconstruction unification X => f(..., Y, ...) or an assignment

unification Y := X, Y is instantiated and shares a subterm or the whole term with X,

respectively. Hence, the region points-to graphs should capture the memory locations

of the variables and the sharing among them.

A region points-to graph , G(N,E), for a set of variables V , consists of a set of

nodes N, representing region variables and a set of directed edges, E, representing

references between the regions bound to these region variables. The edges here serve

exactly the same purpose as those in a TG graph. However, each node n in the

region points-to graph has an associated set of program variables, vars(n), whose

principal functors are stored in the region that is bound to the region variable that

is represented by n. The vars sets of various nodes must represent a partition of the

set of variables of interest (e.g. the set of variables in a procedure): each variable

in the set must appear in the vars set of exactly one node. (Note that the vars

set of a node may be empty; this can happen when a variable’s value has some

subterms that the code in question does not access.) We have V =
⋃

n∈N
vars(n). The

notation nX denotes the node where X ∈ vars(nX) and we refer to nX as the location

of X, since this node represents the region where the principal functor of the term

that X is bound to is stored. The function node(nX, (f, i)) returns the node m if

(nX, (f, i), m) ∈ E, otherwise its result is undefined.

Sharing is represented in a region points-to graph in two ways. First, directed

edges represent the sharing of subterms, and second, a node whose vars set contains

more than one variable represents the fact that these variables may be bound to

the same term. An example of the latter is given by the variables of an assignment

unification: they are bound to the same term and therefore they should be in the

vars set of the same node. A region points-to graph represents sharing at the level

of the regions.

Definition 1 (Region-sharing in a region points-to graph)

Two variables X and Y region-share in a region points-to graph if there exists a

node that can be reached from both nX and nY .

For convenience, we also say a node represents a region, by which we mean the

region to which the region variable represented by the node is bound at runtime.

Then we can say a functor is stored in a node meaning that the functor (i.e. the

memory block corresponding to it) is stored in the region represented by the node.

For a procedure p, we denote its region points-to graph by Gp(Np, Ep). Gp should

represent the locations and sharing among all the variables in p. It is possible to form

a region points-to graph for a procedure exactly from the type-based region graphs

of all of its variables (whose types are known to the compiler). Although this region

points-to graph adequately models the locations of the procedure’s relevant terms, it

does not represent the sharing among them. Actually, as we will see in Section 5, we

use that region points-to graph as the starting point in our region points-to analysis
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(k,1)

([|],2)

Fig. 7. Modelling of sharing information.

of a procedure, with the ultimate aim of producing a region points-to graph that

also represents all the possible sharing among the procedure’s variables.

Example 6

Consider the following sequence of code to construct the term that L in Example 3

is bound to. The type of K is of no importance.

...,

X <= [1, 2],

Y := X,

Z <= h(Y, 2),

L <= [f, g(1), Z],

K <= k(Z),

...

The region points-to graph that represents the memory manipulated by this sequence

is shown in Figure 7. X and Y are in the vars set of the same node because the

assignment makes Y point to the term to which X is bound. The direct sharing

between Z and Y, and between L and Z, is represented by the edges between their

corresponding nodes. The indirect sharing between L and Y is modelled by the fact

that nY is reachable from nL through the directed edges. The sharing between L and

K is represented by the fact that nZ is reachable from both nL and nK . �

5 Region points-to analysis

The region points-to analysis aims at computing for each procedure in a Mercury

program a region points-to graph that represents the locations of its variables and

the sharing among them.

The region points-to analysis is unification-based and flow-insensitive, i.e. the

execution order of the atomic goals in a procedure does not matter, and consists

of intraprocedural and interprocedural analyses. Both analyses make use of the

unify operation shown in Algorithm 1, whose task is to capture sharing between

two nodes in a region points-to graph. This algorithm should be invoked when the

analyses learn that two variables whose nodes are n and m, respectively, can refer

to the same storage; it will update the points-to graph by unifying the two nodes,

i.e. merging them into one. To ensure that there is only one out-edge with a specific

label from any given node, unifying two nodes will cause their corresponding child

nodes to be unified as well, unless they are the same node already.
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Algorithm 1 unify(n, m)

Require: G(N,E), n, m ∈ N.

Ensure: G(N,E) with n representing the unified node.

N = N \ {m}
vars(n) = vars(n) ∪ vars(m)

for all (m, (f, i), k) ∈ E do

E = E \ {(m, (f, i), k)}
if (n, (f, i), k) �∈ E then

E = E ∪ {(n, (f, i), k)}
end if

end for

for all (k, (f, i), m) ∈ E do

E = E \ {(k, (f, i), m)}
if (k, (f, i), n) �∈ E then

E = E ∪ {(k, (f, i), n)}
end if

end for

for all l, l′ ∈ N do

if (n, (g, j), l) ∈ E ∧ (n, (g, j), l′) ∈ E ∧ l �= l′ then

unify(l, l′)

end if

end for

We will describe the analyses in turn with the assumption that we are analyzing

a procedure p.

Recall that, when describing the static region analysis and transformation, for

convenience, we make the assumption that all terms are stored on the heap and

therefore we need regions for them. In a concrete implementation, such as ours

inside the MMC (Sections 8 and 9), if certain terms do not need heap storage, their

corresponding regions can just be ignored.

5.1 Intraprocedural analysis of a procedure

The intraprocedural analysis initializes Gp and then captures the sharing created

by explicit unifications. Its definition is in Algorithm 2. (See Section 2.2 for the

definition of a superhomogeneous form.)

As we know the type of each variable in p, we initialize Gp by using the TG

graphs of the variables. In Algorithm 2, we use a function init rptg(X) that

• generates a region points-to graph for X from the type-based region graph of

the type of X, TGtype(X),

• sets the vars set of the node corresponding to the principal node in TGtype(X)

to {X} and the vars set of all other nodes to the empty set, and

• generates a fresh region variable for each node in the region points-to graph.

The intraprocedural analysis then adds to Gp all the sharing created by the

unifications in the procedure. For assignment, construction, and deconstruction

unifications we unify the nodes corresponding with the sharing created by them. We

ignore test unifications because they do not create any sharing.

https://doi.org/10.1017/S1471068412000075 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000075


Region-based memory management for Mercury programs 973

Algorithm 2 intraproc(p): intraprocedural analysis of a procedure p

Require: p is in superhomogeneous form.

Ensure: The sharing created by explicit unifications is represented in Gp.

Gp = (∅, ∅)
for all X ∈ p do

Gp = Gp 
 init rptg(X)

end for

for all unif ∈ p do

if unif ≡ (X := Y) then

unify(nX, nY )

else if unif ≡ (X => f(Y1, . . . , Yn) or X <= f(Y1, . . . , Yn)) then

for i = 1 to n do

unify(node(nX, (f, i)), nYi )

end for

end if

end for

5.2 Interprocedural analysis

The interprocedural analysis, Algorithm 3, updates Gp by integrating into it the

relevant region-sharing information from the region points-to graphs of the called

procedures.

Algorithm 3 interproc(p): interprocedural analysis of a procedure p

Require: p is in superhomogeneous form.

Ensure: The sharing created by procedure calls is represented in Gp(Np, Ep).

repeat

for all call sites in p do

Assume that the call is q(Y1, . . . , Yn), with X1, . . . , Xn being the corresponding

formal arguments, and that Gq is available.

% Build an α relation.

for k = 1 to n do

α(nXk
) = nYk

end for

% Ensure α is a function.

for all Xi, Xj do

if α(nXi
) = nYi ∧ α(nXj

) = nYj ∧ nXi
= nXj

∧ nYi �= nYj then

unify(nYi , nYj )

end if

end for

% Integrate sharing in Gq into Gp.

In the graph Gq , do a depth-first traversal starting from each nXi
, visiting each

node only once and applying the rules P1 and P2 in Figure 8 when applicable.

end for

until There is no change in either Gp or in any of the α functions.

Consider a call q(Y1, . . . , Yn) in the body of p, with the head of the called procedure

being q(X1, . . . , Xn). Any region-sharing among the Xi in Gq may not currently be
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(nq , (f , i),mq) ∈ Eq

α(nq) = np

(np , (f , i),mp) ∈ Ep

α(mq) = mp = mp

unify(mp ,mp)
(P1)

(nq , (f , i),mq) ∈ Eq

α(nq) = np

(np , (f , i),mp) ∈ Ep

α(mq)undefined

α(mq) = mp

(P2)

Fig. 8. Interprocedural analysis rules.

present in Gp as region-sharing among the Yi. The interprocedural analysis makes

sure that any such sharing in Gq will be copied to Gp. First, it builds the function

α : Nq → Np that maps the nodes of formal arguments (Xis) to the nodes of

the corresponding actual arguments (Yis). Then these nodes are the starting points

for the integration of the remaining region-sharing. This is done by following the

relevant edges in Gq to extend the α function to all the relevant nodes in Gq (rule

P2) and to unify the relevant nodes in Gp (rule P1).

For a whole program, we start by performing the intraprocedural analysis for

every procedure. Since our interprocedural analysis propagates information only

upwards, from the graphs of callees to those of callers, we compute the strongly

connected components of the call-dependency graph and analyze the components

in bottom-up order. Algorithm 4 illustrates this approach.

Algorithm 4 Region points-to analysis of a program

Require: A Mercury program P with its procedures in superhomogeneous form.

Ensure: Region points-to graphs for all procedures.

for all procedure p in P do

intraproc(p)

end for

Compute the strongly connected components (SCCs) of P ’s call-dependency graph.

for all SCCs in bottom-up order do

repeat

for all p in SCC do

interproc(p)

end for

until we have reached a fixpoint

end for

The points-to graphs of the split and qsort procedures in the quicksort program

in Example 2 are shown in Figure 9. For split, the region points-to analysis detects

that the two sublists L1 and L2 can be in separate regions that are different from

the region of the input list L. For qsort, the input list, the two temporary lists, and

the resulting list are all in different regions. That the resulting list S is in the same

region as the accumulator and the temporary lists S2 and A1 is reasonable because

the result list is gradually built up from them.
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Fig. 9. The region points-to graphs of split and qsort.

5.3 Correctness of the region points-to graphs

In this section we have a number of theorems about the correctness of our

algorithms. The proofs of these theorems can be found in the corresponding section

in a longer version of this paper that is available in the CoRR repository as

http://arxiv.org/abs/1203.1392.

Theorem 1

The region points-to analysis of a program terminates.

Theorem 2

The graphs that result from the region points-to analysis of a program represent all

the locations of the terms that can possibly be constructed during the execution of

the program, and the possible sharing among the terms.

In the rest of the paper when we mention region points-to graphs, we mean the

ones obtained by the region points-to analysis of the program.

5.4 Regions that a procedure allocates into

During the region points-to analysis of a procedure, we can track the regions that are

possibly allocated to the procedure. A construction unification is the only construct

in Mercury that allocates memory. When processing a construction unification X <=

f(...) we mark the node nX as allocated. When two nodes are unified, if one node is

marked as allocated, then the unified node is also marked as allocated. At a call site,

if a node n reachable from a formal parameter in the callee is marked as allocated,

and α(n) = m, then we mark m in the caller as allocated as well. We call the set of

nodes in procedure p marked in this way as allocation(p). In the quicksort example of

Figures 2 and 9, allocation(split) = {R3, R4}, and allocation(qsort) = {R8, R9, R10},

6 Region liveness analysis

After the region points-to analysis, we know the region variables of each procedure

and how the program variables are distributed over the regions to which these region

variables are bound.

In this section, we construct a region liveness analysis that approximates the

lifetimes of the region variables, i.e. their liveness, to decide when a region needs
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Table 1. Input and output arguments of unifications

in args out args

construction X <= f(X1, . . . , Xn) {X1, . . . , Xn} {X}
deconstruction X => f(X1, . . . , Xn) {X} {X1, . . . , Xn}
test X == Y {X,Y } ∅
assign X := Y {Y } {X}

to be created and when it can safely be reclaimed. We make a distinction between

local liveness and global liveness. Local liveness concerns the lifetime of the region

variable inside the procedure itself, namely when we consider the procedure alone.

Global liveness concerns liveness with respect to the whole program, namely when

we take into account the call sites that call the procedure. We show how we compute

local liveness in Section 6.2, while Section 6.3 shows how we compute global liveness.

6.1 Technical background

A region variable being live means that (a) it should be bound to a region, and (b)

that region may possibly be used in future (forward) execution. During its lifetime,

the region bound to a region variable may be allocated into by procedures other

than the one that created the region, so we often need to pass region variables as

arguments of procedures.

Consider a procedure p. We associate a program point with every atomic goal in

the body of p. An execution path in p is a sequence of program points such that

at runtime the atomic goals associated with these program points are executed in

sequence. We denote an execution path by 〈atom1, . . . , atomn〉, in which the atomis

are the atomic goals involved, and the indexes are a dense sequence giving the order

among the atomic goals in this execution path. The function pp(atom) returns the

program point associated with atom. We use the notions before and after a program

point. Before a program point means right before the associated atomic goal is going

to be executed; while after a program point means its atomic goal has just been

completed. The set of live region variables at a program point is computed via the set

of live variables at the program point. We also use two functions in args(atom) and

out args(atom) that, respectively, return the sets of input and output arguments of

atom . For specialized unifications they are defined in Table 1. If atom is a procedure’s

head, they return formal parameters, whereas if atom is a call, they return actual

parameters. Those sets can be computed from the mode information of Mercury

procedures.

6.2 Live region variables at a program point

In this section we specify the analysis that computes the local liveness of region

variables in a procedure. We express local liveness by a sets of region variables that
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are live before and after every program point in a procedure. The liveness of a

region variable at a program point is determined by the liveness of variables that

are stored in the corresponding region.

Live variables. A variable is live before a program point if it has been instantiated

before the point and may be used in the goal associated with the program point or

after it. A variable is live after a program point if it has been instantiated before or

at the point and may be used after the point.

Algorithm 5 lva(p): live variable analysis of a procedure p.

Require: p in superhomogeneous form.

Ensure: The sets of live variables before (LV before) and after (LV after ) all program points in

p.

for all program points i in p do

LV before(i) = LV after (i) = ∅
end for

for all ep ≡ 〈atom1, . . . , atomn〉 in p do

for j = n downto 1 do

i = pp(atomj)

if j = n then

LV after (i) = out args(p)

else

LV after (i) = LV after (i) ∪ LV before(pp(atomj+1))

end if

if j = 1 then

LV before(i) = in args(p)

else

LV before(i) = (LV after (i) \ out args(atomj)) ∪ in args(atomj)

end if

end for

end for

The live variable analysis for a procedure p is defined in Algorithm 5. It traverses

each execution path (ep) backwards, starting with the last program point, computing

sets of live variables along the way. At each program point, we update its LV after and

LV before sets. The LV after of the last program point(s) is defined to be out args(p),

while the LV before of the first program point(s) will be in args(p). This assumes that

every procedure uses all its arguments, but since we run this analysis after a Mercury

compiler pass that removes unused arguments, this is a justified assumption.

Live region variables. A region variable is live before (after) a program point if its

node is reachable from a variable that is live before (after) the program point.

The set of nodes that are reachable from a variable X is defined as follows:

Reach(X) = {nX} ∪ {m | ∃(nX, label 0, n1), . . . , (ni−1, label i−1, ni) ∈ E ∧ m = ni}.

The live region variable analysis of a procedure is specified in Algorithm 6. This

algorithm computes the sets of live region variables before (LRbefore) and after

(LRafter) each program point as the unions of the Reach sets of all variables in the

LV before and in LV after sets of the program point, respectively.
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Algorithm 6 lra(p): live region variable analysis of a procedure p

Require: LV before and LV after of all program points in p.

Ensure: The sets of live region variables before (LRbefore) and after (LRafter) all program

points in p.

for all program points i in p do

LRbefore(i) = LRafter(i) = ∅
for all X ∈ LV before(i) do

LRbefore(i) = LRbefore(i) ∪ Reach(X)

end for

for all X ∈ LV after (i) do

LRafter(i) = LRafter(i) ∪ Reach(X)

end for

end for

6.3 Lifetime of regions across procedure boundary

Sometimes we have to pass region variables between procedures. For a procedure,

the region variables reachable from its arguments are all candidates to be region

arguments. But as we will see later, not all of them may actually need to be

arguments. This section introduces an analysis that, by looking at the calling contexts

of a procedure in the whole program, decides the region variables that become live

or dead inside the procedure. With this global liveness information, we can give

regions shorter lifetimes, achieving better memory reuse.

Consider a procedure q that is called by some procedure p. We define

• bornR(q) is the set of region variables of q that are mapped (by the α function

at the call site) to region variables of p that definitely become live inside q, i.e.

in the code of q or in one of the procedures q calls.

• deadR(q) is the set of region variables of q that are mapped to region variables

of p that definitely cease to be live (i.e. they become dead) inside q.

• outlivedR(q) is the set of region variables of q that are mapped to region

variables of p that outlive the call to q. They are live before the call and are

still live after the call.

The idea is that in the transformed program the region variables in bornR(q) will

get bound to a region inside q, and q will return the bound region variable to p,

while the region variables corresponding to deadR(q) are passed by p to q and have

their regions safely removed during the call to q. The alternative would be that p

creates the regions corresponding to bornR(q) just before the call to q, and removes

the regions corresponding to deadR(q) right after the call. With that approach, many

regions would have a longer lifetime, which is why we prefer to create regions as

late as possible and remove them as soon as possible.

For a procedure q, we initially set bornR(q) = outputR(q) \ inputR(q) and

deadR(q) = inputR(q) \ outputR(q), where inputR(q) and outputR(q) are the sets

of region variables reachable from the variables in in args(q) and out args(q),

respectively. This is an overestimate in which all the region variables that contain

input terms but are not involved with output terms are assumed to become dead

in q, while all the region variables where output terms are stored but are not yet
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r ∈ LRbefore(pp(atom))
r ∈ LRafter (pp(atom))

r = α(r ) r ∈ deadR(q)

deadR(q) = deadR(q) \ {r }
outlivedR(q) = outlivedR(q) ∪ {r }

(L1)

α(r ) = r α(r ) = r
r = r r ∈ deadR(q)

deadR(q) = deadR(q) \ {r }
outlivedR(q) = outlivedR(q) ∪ {r }

(L2)

r ∈ LRbefore(pp(atom))

r = α(r ) r ∈ bornR(q)

bornR(q) = bornR(q) \ {r }
outlivedR(q) = outlivedR(q) ∪ {r }

(L3)

α(r ) = r α(r ) = r

r = r r ∈ bornR(q)

bornR(q) = bornR(q) \ {r }
outlivedR(q) = outlivedR(q) ∪ {r }

(L4)

Fig. 10. The atomic goal atom is a call to q(. . .) at a program point.

Region liveness analysis rules.

bound at the entry of q are assumed to become live in q. We use localR(q) to

denote the set of region variables that are local to q (not reachable from input

or output variables); it is computed by Nq \ (inputR(q) ∪ outputR(q)). Initially,

outlivedR(q) = inputR(q)∩ outputR(q). It is clear that localR(q), bornR(q), deadR(q),

and outlivedR(q) form a partition of Nq .

The calling contexts of a procedure influence what it can do to its non-local

region variables. Therefore, when analyzing a procedure p, the analysis applies the

rules in Figure 10 to any atom in p that is a call to q. These rules update the deadR

and bornR sets of q according to the calling context. Rule L1 requires a region

variable to be moved from deadR(q) to outlivedR(q) if its region needs to be live in

p after the call to q. Rule L2 is there to avoid the problems that would arise if we

let a region that is referred to by more than one region variable in q be removed

when one of those region variables becomes dead. Either that region can still be

referred to through the other region variables, in which case we would have removed

it too early, or the other region variables are also in deadR(q), in which case the

region would be removed again. Repeated application of L2 will ensure that our

system never removes aliased regions during the call to q through any of the region

variables referring to them. Rule L3 is analogous to L1; it moves a region variable

from bornR(q) to outlivedR(q) if it is already live before the call to q. Rule L4 is

analogous to L2 in the same way; just as we do not want to remove a region twice,

we do not want to create it twice. Rules L2 and L4 together ensure that region

variables that are involved in a region alias never belong to either bornR or deadR

sets.

When there is a change to any of the sets of q, q must be analyzed to propagate

the change to the procedures it calls. Therefore, this analysis requires a fixpoint

computation. After a fixpoint is reached, each procedure has exactly one bornR set

and one deadR set, and these will be suited for its most restrictive calling context. For

calls in a less restrictive context, some regions will be created or removed outside

the call, which will mean that some regions will be created earlier than needed

and/or some other regions will be removed later than needed. For call sites that are

sufficiently heavily used, we could avoid the inefficiency inherent in that by creating

a specialized copy of the callee that exactly matches the caller’s context, but this

could be fairly expensive, since it may (and generally will) require specialized copies

of many of the specialized callee’s descendants as well.
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Table 2. Live variable and live region variable sets in the quicksort program

(a) split

pp LV LR

(1b) {X, L} {R5, R1, R2}
(1a, 2b) {} {}
(2a, 3b) {L1} {R3, R2}
(3a) {L1, L2} {R3, R2, R4}
(4b) {X, L} {R5, R1, R2}

(4a, 5b) {X, Le, Ls} {R5, R2, R1}
(5a, 6b) {X, Le, Ls} {R5, R2, R1}
(6a, 7b) {L2, Le, L11} {R4, R2, R3}
(7a) {L1, L2} {R3, R2, R4}

(4a, 8b) {X, Le, Ls} {R5, R2, R1}
(8a, 9b) {L1, Le, L21} {R3, R2, R4}
(9a) {L1, L2} {R3, R2, R4}

(b) qsort

pp LV LR

(1b) {L, A} {R6, R7, R8}
(1a, 2b) {A} {R8, R7}
(2a) {S} {R8, R7}
(3b) {L, A} {R6, R7, R8}

(3a, 4b) {A, Le, Ls} {R8, R7, R6}
(4a, 5b) {A, Le, L1, L2} {R8, R7, R9, R10}
(5a, 6b) {Le, L1, S2} {R9, R7, R8}
(6a, 7b) {L1, A1} {R9, R7, R8}
(7a) {S} {R8, R7}

Table 3. Partition of the set of region variables

localR bornR deadR outlivedR

split ∅ {R3, R4} {R1} {R2, R5}
qsort {R9, R10} ∅ {R6} {R7, R8}

In the quicksort program from Figure 1, split has three execution paths:

〈(1), (2), (3)〉, 〈(4), (5), (6), (7)〉, and 〈(4), (8), (9)〉, while qsort has two paths: 〈(1), (2)〉
and 〈(3), (4), (5), (6), (7)〉.1 Note that the third execution path of split does not

contain the test at (5) because of the semantics of if-then-else. The LV and LR

sets of split are in Table 2(a), while the sets of qsort are in Table 2(b) (see also

Figures 2 and 9).

In this example, the sets after one program point are always equal to the

corresponding sets before the next point in the execution path. However, this is

not true in all cases. Consider the last program point before a disjunction. The set

of live variables after this point contains the region variables that are live in any

of the disjuncts; in general, some of these variables will be live in only some of the

disjuncts, not all.

When computing the deadR and bornR sets of these procedures, the initial

partition is changed only once, when R5 is removed from deadR(split) by an

application of rule L1 to the call to split inside qsort. The final result is as in

Table 3.

1 For convenience, we use program points to describe execution paths.
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6.4 Correctness

Algorithm 6, the algorithm that detects live region variables locally at each program

point, is an extension of live variable analysis, which is a standard, well-known

program analysis (Nielson et al. 1999). Theorem 2 guarantees that the locations of

variables and their possible sharing are represented in the region points-to graphs.

Therefore, Algorithm 6 computes all the live region variables by starting from the

live variables and collecting all the reachable region variables using the region

points-to graphs.

The analysis in Section 6.3 aims to compute the shortest possible lifetime for a

region. Its termination follows from the facts that each procedure uses a finite set of

region variables (which guarantees that the initial bornR and deadR sets are finite),

and that the analysis only ever reduces the sizes of these sets. The rules in Figure 10

enforce all the cases where a caller of a procedure needs to restrict what the callee

can do to its region variables. The eager application of the rules therefore ensures

that after a fixpoint has been reached, the bornR and deadR sets obtained for a

procedure will, respectively, contain exactly the region variables that the procedure

will safely create and remove.

7 Program transformation

The purpose of the program transformation is to annotate all procedures in the

program with the information that the code generator needs about regions. For each

procedure, the tasks of the transformation are to

• extend the procedure definition with the formal region arguments;

• extend its procedure calls with the corresponding actual region arguments;

• annotate each construction unification with the region variable representing

the region into which the new memory cell should be put;

• insert instructions to create and remove regions at suitable points.

The third task is straightforward because the new cell is always put into the region

associated with the variable on the left-hand side of the construction unification,

and the map from variables to region variables representing their regions is available

after the region points-to analysis.

We elaborate the three other tasks in the next three sections.

7.1 Region arguments

The region variables in bornR and deadR must be arguments because their regions

will be created and removed inside the procedure. Besides these region variables,

we also need to pass as arguments the region variables that are reachable from

the input and output variables and are allocated into in the procedure. This set

of arguments, which we call allocR, is therefore computed by allocR = (inputR ∪
outputR) ∩ allocation (Section 5.4). Note that allocR is not necessarily disjoint with

any of bornR, deadR, and outlivedR.
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atom ≡ q(. . .)
r ∈ LRafter (pp(atom)) \ LRbefore(pp(atom))

r ∈ localR(p) ∪ bornR(p) ∪ deadR(p)

r = α(r ) → r bornR(q)

add “create(r)” before atom
(T1)

atom ≡ X <= f (. . .)
r ∈ LRafter (pp(atom)) \ LRbefore(pp(atom))

r ∈ localR(p) ∪ bornR(p) ∪ deadR(p)

add “create(r)” before atom
(T2)

atom ≡ q(. . .)
r ∈ LRbefore(pp(atom)) \ LRafter(pp(atom))

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
r = α(r ) → r deadR(q)

add “remove(r)” after atom
(T3)

atom ≡ unif
r ∈ LRbefore(pp(atom)) \ LRafter(pp(atom))

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” after atom
(T4)

atom is next to atom in an execution path
r ∈ LRafter(pp(atom)) \ LRbefore(pp(atom ))

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” before atom
(T5)

r ∈ V R(pp(atom)) \ LRafter(pp(atom))
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” after atom
(T6)

Fig. 11. Transformation rules.

So all in all, the set of formal region arguments of a procedure is deadR∪bornR∪
allocR. In the quicksort program, allocR(split) = {R1, R2, R3, R4} ∩ {R3, R4} =

{R3, R4}, allocR(qsort) = {R6, R8} ∩ {R8} = {R8}, and the region arguments are

{R1}∪ {R3, R4}∪ {R3, R4} = {R1, R3, R4} for split and {R6}∪ ∅∪ {R8} = {R6, R8} for

qsort.

The actual region arguments of a procedure call are computed simply by looking

up the formal region arguments of the called procedure and applying the α function

of the call site.

7.2 Insertion of create and remove instructions

Regions are created and removed only by the create and remove instructions,

respectively. When a region is created, the region variable in the create instruction

is bound to it. Removing a region consists of calling remove on the region variable

bound to the region. We implement create and remove as built-in Mercury

procedures. Calls to other procedures may also create and remove regions, but

only if those procedures directly or indirectly invoke create or remove. Unifications

can never either create or remove regions.

7.2.1 Transformation rules

The transformation rules in Figure 11 make use of the local and global liveness of

region variables to introduce create and remove instructions when necessary.

Creation rules T1 and T2. A region variable will never become locally live between

atomic goals; a region cannot be not live after a program point but live before

the immediately next program point in some execution path. A region variable can

become locally live only within atomic goals. Let this be the atomic goal atom at

program point i in procedure p. T1’s first condition says that this rule covers the

case where atom is a call, for example to q. The second condition is true for a region

r that is not live before atom but is live after atom. The third condition checks

whether p itself is allowed to create the region. It is intuitively clear that p needs to

create regions bound to region variables in bornR(p) and localR(p). The reason why
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we also allow p to create regions in deadR(p) is that it is OK for p to remove the

region bound to r at some point before atom, if that is safe, and then recreate r right

before atom. The new region will be removed later because r is in deadR(p). Such

deletion-followed-by-recreation is not allowed for regions in outlivedR(p) because

the caller needs their contents. The fourth condition checks whether the call will

create the region; if it will, then p itself need not do so. Overall, if the third condition

is false, then p’s caller will have created the region; if the third condition is true,

but the fourth condition is false, then q will create the region; if both the third and

fourth conditions are true, then the instruction that T1 inserts before the call will

create the region.

Rule T2 covers the case where a region becomes live in a unification. The first

condition looks only for construction unifications because for all other kinds of

unifications, the second condition always fails. T2 is analogous to T1, the main

difference being that unifications can never create regions.

Removal Rules T3, T4, and T5. Removal rule T3 is analogous to creation rule T1.

If a region variable locally ceases to be live during a call, the situation described

by first and second conditions, what happens is governed by the third and fourth

conditions. If the third condition is false, then p’s caller or one of its ancestors will

(eventually) remove the region; if the third condition is true, but the fourth condition

is false, then q will remove the region; if both the third and fourth conditions are

true, then the instruction that T3 inserts after the call will remove the region. Note

that it is OK for p to remove a region in bornR(p), a region it must have previously

created; since the region will be live at the end of p, p will later create it again, and

that is all that p’s caller expects.

Removal rule T4 is likewise analogous to creation rule T2, but a region can

become dead in any kind of unification, not just constructions.

While a region cannot be not live after one program point and then magically

becomes live before an immediately following program point, it is possible for

a region to be live after one program point (atom in T5) and dead before an

immediately following program point (atom′). This can happen, for instance, when

the following program point is the first goal of a disjunct in a disjunction or switch,

and the region is live in other disjuncts of a disjunction or switch. In that case,

the region is live after atom because it is live in some execution paths that do not

include atom′. In such cases, rule T5 removes the region before atom′, provided as

usual that p is allowed to do so.

Handling instantly-dead variables: rule T6. In some cases, a variable may be

instantiated at some point but never used after that. We call them instantly

dead variables. In logic programming in general, and in Mercury in particular,

they can be void or singleton variables. A void variable’s name starts with an

underscore (see e.g. the first clause of split in Figure 1) to explicitly tell the

compiler that we do not care about its value. A singleton variable is a variable

that occurs exactly once in a clause whose name does not start with an underscore.

Singleton variables often represent mistakes, so the Mercury compiler issues a

warning for them; programmers who believe the code to be correct can avoid
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% p(in, out). % q(in, out).
p(A, B) :- q(X, Y) :- length(L) = N :-
(1) C <= [1], (1) Z := length(X), (

,][==Lfi(fi(
(2) A == 1 (2) Z == 1 N := 0

;nehtneht
(3) B := C (3) V := X L => [_ | T],

1+)T(htgnel=:Nesleesle
(4) B <= [2] (4) V <= [1] ).

,).)
(5) Y := Z + length(V).

Fig. 12. Effect of recreation of regions.

the warning by adding a leading underscore, turning the singleton into a void

variable.

Since it is useless to do a construction unification that binds the new term to an

instantly dead variable, we assume that such unifications are eliminated before our

region analysis and transformation; the Mercury compiler has an optimization that

does this. However, this is not a full solution. A procedure can return several output

arguments, and it may be that the caller ignores some and pays attention to others.

The ignored arguments pose a problem for our analysis. Being instantiated means

that we need regions to store their terms, and, of course, we want those regions

to be removed eventually. However, the fact that the ignored arguments are not

used in the future makes them never live according to our concept of live variables

(Section 6). Therefore, we may not rely on the change of their liveness from live to

dead (the basis of rules T3–T5) to remove the regions storing their terms. That is

why we have rule T6, which tries to remove regions reachable from void variables

right after the point where the void variables get instantiated. We assume that at

each program point i, we have available the set of such instantly dead variables,

VV (i) (i is the point at which they get instantiated). We then compute VR(i), a

set of region variables that are reachable from the variables, by
⋃

V∈VV (i)
Reach(V ).

The basic idea of T6 is to remove the region of a region variable reachable from

an instantly dead variable right after the point where the variable gets instantiated,

provided of course that the region variable is not reachable from any of the live

variables after the point.

Example of re-creation and re-removal. We illustrate (a) creating, removing, and

recreating a region on the one hand, and (b) removing, creating, re-removing a

region on the other using the two procedures in Figure 12 and their region-annotated

counterparts in Figure 13. For completeness, we include the definition of the function

length, which returns a number of elements of the input list, although its code is

not important in this case. We also assume that there is no region for integers.

Therefore, the focus is only on variables B and C in procedure p, and V and X in

q, which are of the type list int (see Example 1). Each pair of these is assigned

to the same region variables, R1 in p and R2 in q because of the assignments at

the program points (3) in both procedures. p and q are unrelated; we use them to

demonstrate different situations.
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-:)Y,2R@X(q-:)1R@B,A(p
,)X(htgnel=:Z)1(,)1R(etaerc

fi(,1Rni]1[=<C)1(
1==Z)2(fi(

neht1==A)2(
X=:V)3(neht

esleC=:B)3(
else remove(R2),

,)2R(etaerc,)1R(evomer
create(R1), (4) V <= [1] in R2

(4) B <= [2] in R1 ),
,)V(htgnel+Z=:Y)5(.)

remove(R2).

Fig. 13. Effect of recreation of regions: region-annotated version.

Assume that p can create R1, i.e. no calling context forces it otherwise. So R1

is in bornR(p). In Figure 13, the create instructions added for it before (1) and

(4) are due to rule T2. The remove instruction added before (4) is due to rule T5.

If execution reaches the else branch, the R1 that was live after (1) is no longer

live before (4), and we can reclaim the memory occupied by [1] by removing this

incarnation of R1 before creating a new incarnation of it and putting [2] into it.

For q, assume that R2 is in deadR(q). R2 is not live before the program point (4),

and the remove instruction there is added by rule T5. As R2 is live after (4), T2 adds

the create instruction there as well. The remove instruction after (5) is added by

rule T4. If execution reaches the else branch, we reclaim the memory of the input

list X by removing R2 before recreating it to construct V.

In both cases, we need to make sure that the two operations before program point

(4) are done in right order. This is ensured by the following algorithm.

7.3 Insertion algorithm

The insertion of the instructions is specified by Algorithm 7, which says how the

transformation rules in Figure 11 should be applied to the atomic goal at each

program point.

Each program point is associated with three sets of region instructions: a set of

remove instructions added before it, a set of create instructions added before it,

and a set of remove instructions added after it. The instructions in the first set will

be executed before the instructions in the second set.

The first loop in Algorithm 7 applies all the transformation rules except T5 to the

atomic goals at all the program points in a procedure. We use the function atom at(i)

to refer to the atomic goal at program point i. While rule T6 can be applied to

any atomic goal, T4 needs to be tried only when the atom at a program point is

a unification, T2 only when the atom is a construction unification, and T1 and T3

only when the atom is a procedure call. The second loop follows every execution

path to try rule T5, which needs to consult information at two consecutive program

points at the same time.

The result of the program transformation of the quicksort program in Example 2

was shown in Figure 3. The additions of the remove instructions after the first
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Algorithm 7 Insertion of region instructions in a procedure p.

Require: p in superhomogeneous form; all points-to graphs and region liveness sets are

available.

for all program points i in p do

atom = atom at(i)

apply rule T6 to atom

if atom ≡ unif then

apply rule T4 to atom

if atom ≡ X <= f(. . .) then

apply rule T2 to atom

end if

else

apply rules T1 and T3 to atom

end if

end for

for all ep ≡ 〈atom1, . . . , atomn〉 in p do

for j = 1 to n− 1 do

apply rule T5 to atomj , with atom′ ≡ atomj+1

end for

end for

program points in both qsort and split result from the applications of T4. The

two create instructions in split were added by T2.

7.4 Correctness of region-annotated programs

Region-annotating a program does not change its computational behavior; it

changes only the locations of terms in memory. In this section we have a number of

theorems on this. The proofs of these theorems can be found in the corresponding

section in a longer version of this paper that is available in the CoRR repository as

http://arxiv.org/abs/1203.1392.

Theorem 3

Consider a procedure p in a program P . We call P ′ the region-annotated program

that is produced by applying the analyses and transformations in Sections 5, 6, and

7 to P , in which p′ is the region-annotated version of p. If a region variable is live

before (after) a program point i in p′, then in p′ it is bound to a region before (after)

i.

Theorem 4

In region-annotated programs, allocations of memory and the associated memory

write accesses are safe.

Theorem 5

When a variable appears as an input argument to an atomic goal at a program

point, we say that the variable is read at that point. In region-annotated programs,

when a variable is read at a program point, the term it is bound to is available.
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R

free words

next_avail_word

region size record

newest_region_page

region header

null
next_region_page

data area

(stored in the data area
of the first region page)

Fig. 14. The data structure of region R.

8 Runtime support for regions during forward execution

We now describe the runtime support needed to execute region-annotated programs.

In this section, we cover the support needed for forward execution, while in the next

section we will look at the support needed for backward execution, i.e. backtracking.

The latter is much more extensive, partly because our analyses in Section 6 determine

liveness only with respect to forward execution.

Let us look at the lifespan of a region during forward execution. A region comes

into existence with the execution of a create(R) instruction that assigns memory

to the region and binds the region variable R to a so-called region handle, which

refers to the assigned memory. From then on, terms are allocated into the region

by construction unifications annotated with R. When the memory referred to by the

region handle bound to R is no longer needed, the program will end the lifetime of

R by executing remove(R), which reclaims that memory.

This aspect of our implementation is generally similar to the “standard” RBMM

implementations for SML and Prolog, which are described in detail in Makholm

(2000a, 2000b). In our system, a region is a singly linked list of fixed-size region

pages. Each region page has a data area, an array of words that can be used to

store program data, and a pointer to the next region page to form the singly linked

list. The handle of the region, which is how the rest of the system refers to it, is the

address of the region header. Besides some other fields that we will introduce later,

the header structure includes a region size record : a pointer to the newest region

page, and a pointer to the next available word in the newest region page. Since

region pages have a fixed size, these two values implicitly also specify the amount

of free space in the newest region page. As is usual in RBMM systems, we store

each region header at the start of the data area of its region’s first region page.2

Figure 14 shows a region with two region pages; the shaded areas represent memory

allocated to user data.

There is no bound on the sizes of regions. When a region is created it will contain

only one region page, but it can be extended by adding more region pages when

necessary. The program maintains a global list of free region pages. If the free list

runs out, the program requests a big chunk of memory from the operating system,

2 Storing headers separately from region pages would require the system that now keeps track of
region pages that are free to also keep a separate free list for header-sized blocks. This would cause
fragmentation that would not occur with the standard header-in-first-region-page design.
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divides it into region pages, and adds them to the free list. When a region needs to

be extended, we take a region page from the free list and add it to the region as

its new last region page, and then update the region’s size record. When a region is

reclaimed, we return all its region pages to the free list. An allocation into a region

always happens in its newest region page simply by incrementing the pointer to the

next available word. When the amount of free memory in this region page is not

enough for allocation, we extend the region before allocating.

The advantage of this implementation is that the basic region management actions

are bounded in time; even freeing all region pages in a region can be done in constant

time (we can destructively append the region’s list of pages to the free list in constant

time because we maintain pointers to the tails and heads of the lists). Disadvantages

are that there is no natural size for region pages (Tofte et al. 2004), and if the

remaining space of a region page is not enough for allocation, that space will be

wasted when a new region page is added.

Like most RBMM systems, we do not do garbage collection inside regions.

9 Runtime support for backtracking

Backtracking introduces two issues that need to be handled: reclaiming the memory

allocated by the backtracked-over computations, and ensuring that regions are

reclaimed only when they are dead with respect to both forward and backward

executions. The first issue obviously has to be handled at runtime. For our initial

implementation, we have chosen to deal with the second issue, backward liveness, in

the runtime system too. We expect this to give us insights that we will need later to

redesign the program analysis in Section 6 to handle backward liveness both safely

and precisely. Moreover, our current system can serve as a reference for that work.

In Mercury, disjunctions are the main source of backtracking because they provide

alternatives. However, backtracking is also possible in if-then-elses, since these are

just a special kind of disjunction: (if C then T else E) is semantically equivalent to

(C,T ; not some [· · ·] C,E). Operationally, Mercury will try C . If C succeeds, Mercury

executes T ; if C fails, it executes E as if C had never been tried. The handling of

commit (Section 2.2) is related to the handling of backtracking because committing

to a solution may prune some alternatives of relevant disjunctions. Therefore, we

need to provide runtime support for backtracking in the context of these three

language constructs.

The region-annotated program in Figure 15 illustrates our two tasks.

We constructed this program, which unfortunately has no intuitive meaning, to

illustrate the interaction between regions and backtracking; we will use it as our

running example when describing the runtime support. (We could find no equally

useful real code of manageable size. Also, we include the definitions of member and

length only for completeness; their behavior is of no importance in this example.)

Regarding the lifetime of the regions, main creates R1 and R2 before the constructions

of lists X and A. main creates R3 before the call to p at (3), and p will use this region

to store the skeleton of Y. All the remove instructions for regions are added after

the last forward uses of the terms stored in them. member and length only read
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_tsil,tni_tsil,tni_tsil,tni_tsil(pderp-:-:)OI!(niam int).
.tedimessi)tuo,tuo,ni,ni(pedom-:,)1R(etaerc

(1) X <= [1, 3, -1, 3] in R1, p(X@R4, U@R5, V@R5, Y@R6) :-
,]T|H[>=X)1(,)2R(etaerc

fi(,2Rni]2-[=<A)2(
( if remove(R4),

0<H)2(,)3R(etaerc
(3) p(X@R1, A@R2, B@R2, Y@R3) then

,6Rni]H[=<Y)3(neht
(4) io.write(B, !IO), (4) ( if member(H, U)

U=:Vneht)5(,)2R(evomer
(5) io.write(Y, !IO), (6) else V <= [H | U] in R5

))3R(evomer
else else

(6) io.write(X, !IO), (7) p(T@R4, U@R5, V@R5, Y1@R6),
)1Y(htgnel>)V(htgnelfi()8(,)1R(evomer

(7) io.write(A, !IO), (9) then fail
6Rni]1Y|H[=<Yesle)01()2R(evomer

). )
).

% mode(in, in), semidet % mode(in) = out, det.
-:N=)L(htgnel-:)L,X(rebmem

(,]T|H[>=L
( L == [], N := 0

;X==H
; L => [_ | T],

1+)T(htgnel=:N)T,X(rebmem
). ).

Fig. 15. Illustrating the interaction of regions and backtracking.

their input variables, so they need no region arguments. For p, deadR(p) = {R4},
bornR(p) = ∅, outlivedR(p) = {R5, R6}, and allocation(p) = {R5, R6}.

Task 1. Preventing the reclamation of backward live regions. The condition of

the if-then-else in main is the call to the semidet procedure p. The RBMM

transformation marks the region R1 for removal in the call because it is forward

dead (it is not used in the “then” part) although it is backward live (it is used

in the “else” part). We must make sure that R1 is not actually removed while it

is backward live. In this case it means we need to delay the reclamation of R1

until we reach the “then” part, since it is not safe to destroy R1 if the condition

fails. We therefore distinguish reclaiming a region, which makes the memory of

the region available for other uses and thus potentially destroys its contents, from

the operation of removing a region, which causes the region to be reclaimed only

when it is safe to do so. Basically, a region is removed when it is forward dead,

and it is reclaimed when it is both forward and backward dead.

Task 2. Reclaiming the memory used by backtracked-over computations. The call

to p has two output arguments, B and Y. main tells p to put any cells for B in R2,

and creates R3 so that p can put Y into it. If the condition succeeds, we must leave

both regions alone. If the condition fails, we should restore R2 to its size before

the condition, and we should reclaim R3 in its entirety.

We now define several runtime concepts that we will use in the rest of the paper.

Old versus new regions. A region is old with respect to a point during the execution

of a program if it was created before that point, otherwise it is new with respect

to that point. We also refer to old regions as the existing regions. To allow efficient
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checks whether a region is old or new, we maintain a global region sequence number

counter (starting at one) and include a sequence number field in region headers.

When we create a region, we timestamp it by setting its sequence number from the

global counter, and increment the counter. When execution reaches a point in the

program that sets up late backtracking, such as the entry point of a disjunction, we

save the current sequence number. Then all the regions that are created before that

point, i.e. the old regions with respect to the point, will have their sequence numbers

smaller than the saved value; the regions that are created after that point, i.e. the

new regions with respect to the point, will have their sequence numbers greater than

or equal to the saved value. When the program backtracks to that point, we can use

the saved value to check whether a region has been created before or after the point.

In the context of RBMM, the memory that we want to reclaim at a resumption

point will be new allocations into existing regions, and new regions in their entirety

(since they have been created by the computation we have just backtracked over).

Region list. To do instant reclaiming of new regions, knowing the sequence numbers

of new regions is not enough; we also need to reach them. We therefore link all

the live regions into a doubly linked region list (using two additional pointers in

the region header). We maintain a global pointer to the head of the list, which will

be the newest live region. When a region is created, we add it to the head of the

region list; when a region is reclaimed, we remove it from the list. We maintain the

invariant that the region list is ordered by regions’ creation time, newest first. To

reclaim new regions, we can traverse the region list from its head and reclaim each

region until we meet an old one.

Region size snapshots. To do instant reclaiming of new allocations into an existing

region, we need the old size of the region. When we need to remember the size of a

region at a point, we can save its region size record at that point.

Protection. We will prevent the destruction of backward live regions by protecting

them so that when a removal happens to the region during forward execution, the

removal will be ignored.

Changes to live regions by a goal. When providing support for backtracking,

sometimes we want to know about the changes that may be caused by a goal

to the set of regions the goal may refer to. This means we need to know about any

new regions the goal creates, any live regions the goal removes, and any live regions

in which the goal performs allocations; we refer to these sets of regions as the goal’s

created, removed, and allocated sets, respectively. We have computed several sets of

region variables for procedures, such as inputR, bornR, deadR, and allocation . The

created, removed, and allocated sets of goals can be computed from these in a fairly

straightforward manner as shown by the following paragraphs.

Changes to live regions by a goal: creation. Only create instructions and procedure

calls may create regions. A create instruction always creates the region in its

argument. A procedure call will create the regions that are the actual region

arguments corresponding to the formal arguments in the bornR set of the called

procedure. For a compound goal, its created set is the set of all regions created inside
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it, either directly or through a procedure call, even if the region is also removed

later, because at compile time we cannot know whether a removed region is actually

reclaimed.

Changes to live regions by a goal: removal. We can similarly use remove instructions

and the deadR sets of procedures to compute the removed set of each goal. Some

of these regions may be removed, created, and removed again. Since we only care

about the old regions that are removed inside a goal, we exclude regions created

inside the goal (i.e. the goal’s created set) from its removed set.

Changes to live regions by a goal: allocation. A region is allocated into by construction

unifications and by procedure calls. A construction unification will allocate into the

region with which it is annotated. A procedure call possibly allocates into the

regions of region variables that are mapped to by those in the procedure’s allocation

set. Since we are only interested in allocations in old regions (allocations into new

regions being reclaimed by reclaiming the whole region), we restrict the allocated

set to the regions in inputR ∩ allocation .

Changes to live regions by a goal: an example. Take the condition of the if-then-else

in procedure p in Figure 15 as an example goal. We say that region R4 is removed

in the condition because R4 is live before the condition and remove(R4) has been

added to the condition. Or take the condition of the if-then-else in main. We say

region R3 is created in the condition because create(R3) has been inserted into

the condition, while region R1 is removed in the condition because it is live before

the condition and is removed in the call to p. We have allocation(p) = {R5, R6}, but

while R5 is an input argument of p, R6 is not, so the only old region p allocates into

is R5. So the allocation set of the condition in main is R2, since R2 = α(R5).

We provide the runtime support for backtracking for a program by generating

extra supporting code at the right places to achieve our goals. In the next three

sections we will describe in detail the support for disjunctions, if-then-elses, and

commits.

9.1 Support for disjunctions

The Mercury compiler supports only one search strategy: depth-first search with

chronological backtracking, so that the disjuncts of each disjunction are tried in

order. Given a disjunction (g1; ...; gi; ...; gn), we refer to g1 as the first

disjunct, to the gis for all 1 < i < n as middle disjuncts, and to gn as the last

disjunct of the disjunction. We will also use “later disjunct” to refer to any gi for

i > 1.

A disjunction can have any determinism. The most general determinism is of

course nondet, but if one of the disjuncts always has at least one solution, then

the disjunction as a whole does too, so a disjunction can also be multi. And if

the disjunction has no outputs (which happens frequently for disjunctions in the

conditions of if-then-elses), then the disjunction as a whole cannot have more than

one solution, which means that it will be either det or semidet, depending on

whether it has an always-succeeding disjunct. (Typical programs do not contain det

disjunctions, since they are equivalent to true.)
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...,
( (d1): start of the disjunction and also of the first disjunct

(a) push a disj frame
(b) save the global region sequence number
(c) save region size records and their number

g1
; ...
; (d2): start of a middle disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions

gi
; ...
; (d3): start of the last disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions
(c) pop the disj frame

gn
), ...

Fig. 16. RBMM runtime support for nondet disjunctions.

For our purposes, the important distinction is between nondet and multi

disjunctions on the one hand, in which backtracking may reach a later disjunct

from code executed outside the disjunction, after the success of a previous disjunct,

and semidet and det disjunctions on the other hand, in which backtracking to a

later disjunct is possible only from code within an earlier disjunct.3 Since we do

not care about the minimum number of solutions of each disjunction, our support

treats multi disjunctions the same as nondet ones and det disjunctions the same as

semidet ones. In the following, we will therefore talk only about nondet and semidet

disjunctions. We consider nondet disjunctions first, since they are more general.

Figure 16 shows in pseudo-code form the supporting code we add to a nondet

disjunction. We insert code at the following points: (d1), which is the start of the

first disjunct, (d2), which represents the start of every middle disjunct, and (d3),

which is the start of the last disjunct. These code fragments communicate using

shared data in what we call a disj frame. Each entry to a disjunction creates a new

disj frame. Since multiple nested disjunctions can be active at the same time, we link

these frames together to form the disj stack (this is possible due to chronological

backtracking). The disj stack is not a separate stack; we reserve space for its frames

in the usual stacks used by the Mercury language implementation. We maintain a

global pointer to the top disj frame on the disj stack.

A disj frame has a fixed part and a non-fixed part. In Figure 17, the fixed part is

the four-slot box separated by a thick line from the non-fixed part. The four slots

in the fixed part are as follows:

• The prev disj frame slot holds the pointer to the previous disj frame, or null

if there is none.

• The saved seq num slot holds the value of the global region sequence number

at the time when the disjunction was entered.

3 Semidet code in Mercury never does deep backtracking; it only ever does local, shallow backtracking.
Semidet procedures return a success/failure indication, which is then tested by the caller. An arm of
a semidet disjunction can call nondet code, but only if that nondet code is wrapped in a commit (see
later); the commit will convert any deep backtracks done by the code inside it to shallow backtracking
for the code outside it.

https://doi.org/10.1017/S1471068412000075 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000075


Region-based memory management for Mercury programs 993

prev-disj-frame
saved-seq-num
num-prot-region
num-size-rec
prot-region-id
...
snapshot-region-id
snapshot-size-record
...

(previous disj frame)
(saved sequence number)
(number of protected regions)
(number of saved region snapshots)
(handle of a protected region)

(handle of a region in a snapshot)
(snapshot size record of that region)

Fig. 17. Structure of a disj frame.

• The num prot region field gives a number of regions that are protected by

a semidet disjunction (which we will discuss later). For a nondet disjunction,

this slot will contain zero.

• The num size rec field gives a number of region size records saved in the

non-fixed part.

Disj-protecting backward live regions. Consider a region created before the execution

of a disjunction. Assume that this region is removed during forward execution, either

by the code of a disjunct, or after the success of that disjunct by code following and

outside the disjunction, but that this region is backward live with respect to a later

disjunct of the disjunction. In this case, we need to make sure that if the region is

removed during forward execution, it will not be actually reclaimed. Of course, the

instruction that removes the region may not be reached because forward execution

may fail before it gets there. But in general, we have to assume that the remove

instruction will be executed, and if the region may be needed after backtracking, we

will need to prevent it from being reclaimed during forward execution. We achieve

this by disj-protecting such regions as follows. At the start of the disjunction, at (d1),

we push a disj frame on the disj stack and save the current global sequence number

into the saved seq num slot of the disj frame. A region is disj-protected by a disj

frame if its sequence number is smaller than the sequence number saved in that

disj frame. The remove instruction will only reclaim a region if the region is not

disj-protected. Because of chronological backtracking, the order of the frames on the

disj stack always corresponds to the order of the creation of those frames. Together

with the fact that the global region sequence number is monotonically increasing,

this implies that if a region is protected by a disj frame, it is also protected by all the

later frames on the disj stack. This invariant means that to check whether a region

is disj-protected or not, we only need to check whether it is protected by the top disj

frame.

The program will no longer backtrack into a disjunction after starting the

execution of its last disjunct. This means that no regions need to be protected

any more by this disjunction. Therefore, at the start of the last disjunct, at (d3), we

disj-unprotect them by popping the disj frame. The regions that had been previously

protected only by this disj frame will be reclaimed when execution reaches their

remove instructions.

Instant reclaiming of new regions. When the program backtracks to a later disjunct,

we want to reclaim all the regions that have been created during the computation
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that has just been backtracked over, i.e. all the regions that were created after entry

to the disjunction. At (d1), we saved the global sequence number in the disj frame.

Therefore, at the start of a later disjunct of the disjunction, at (d2) and (d3), we just

need to traverse the region list, and reclaim all the regions we see until we encounter

a region whose sequence number indicates that it was created before the disj frame.

Instant reclaiming of new allocations in old regions. When arriving at a later disjunct,

we want to restore all the regions that existed before the disjunction to the sizes they

had when entering the disjunction, recovering any memory that has been allocated

in them. For each old region, we need to save the region’s size record in the non-fixed

part of the disjunction’s disj frame at (d1) so that we can restore the region’s size

at (d2) and (d3). We need three slots for each region: one for the region handle so

that we know the region to which the saved record belongs, and the other two for

the record itself (see Figure 17). To be able to loop through the saved records and

restore the regions at (d2) and (d3), we store the number of saved records in the

fixed num size rec slot. The first saved record can be located by taking the address

of the frame, and adding both the size of the fixed part and the number of slots for

protected regions (which is zero for nondet disjunctions).

The set of regions that existed before the disjunction and that may be allocated

into by code following the disjunction is not available to the compiler. In theory, we

could implement global analysis to make it available, but such an analysis would

be very complicated, especially for multi-module programs. Even if such an analysis

existed, we would still have a big problem, as the number of regions in this set

is not bounded, and in many cases the set would contain tens, hundreds, or even

thousands of regions. Saving and then restoring the sizes of that many regions can

take a significant amount of both memory and time. We do not want this overhead

to outweigh the benefits of instant reclaiming.

In our implementation, we have chosen to save and restore the sizes of only

the regions that are locally forward live at the start of the disjunction; this means

the regions that are forward live before the disjunction and whose region variables

are visible at that point. (This information is readily available inside the Mercury

compiler.) This means that we do not recover memory in regions that are forward live

before the disjunction but whose identity was not passed to the current procedure,

and are visible only in its ancestors. Since nondet disjunctions are quite rare in most

Mercury programs (most programs that do serious searching tend to program their

own searches instead of relying on chronological backtracking), we do not expect

this to be too much of a problem. We will see below that we do not miss memory

recovery opportunities for semidet disjunctions.

We save and restore the sizes of all regions that are locally forward live at the

start of the disjunction (the number of these regions governs how much space we

reserve for the non-fixed part of the disj frame). We save and restore the sizes of even

those regions that are never allocated into before backtracking, since (in the absence

of the analysis mentioned above) we do not know which those ones are. This may

lead to some unnecessary saving and restoring, but in typical programs, the number

of regions whose size we save and restore at a disjunction is usually relatively small,
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...,
( (d1): start of the disjunction and of the first disjunct

(a) push a disj frame
(b) save the global region sequence number
(c) save region size records and their number
(d) save protected regions and their number

g1
(e1): end of the first disjunct

(a) reclaim protected regions
(b) pop the disj frame

; ...
; (d2): start of a middle disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions

gi
(e2): end of a middle disjunct

(a) reclaim protected regions
(b) pop the disj frame

; ...
; (d3): start of the last disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions
(c) pop the disj frame

gn
), ...

Fig. 18. RBMM runtime support for semidet disjunction.

and in that case the memory or runtime cost of these unnecessary saves and restores

is negligible. In some cases, however, the cost can be significant, and an optimization

that eliminates saves/restores with a poor cost/benefit ratio would be useful. Such

an optimization would probably need access to profiling information about region

reclamation. We do not yet generate such information.

Specialized treatment of semidet disjunctions. Since at most one disjunct of a semidet

disjunction may succeed, when one of its disjuncts is reached, it means that all the

previous disjuncts have failed and therefore (more importantly for us) execution

has not passed outside the disjunction’s scope. Therefore, we only need to provide

runtime support for a semidet disjunction if in its scope there is some change with

respect to the set of existing regions. This basically means that the runtime support

for nondet disjunctions described above will only be applied to semidet disjunctions

whose created, removed, and allocated sets are not all empty. In our practical

experience with Mercury, most semidet disjunctions contain only tests, and rarely

make changes to the heap. Therefore, the support we describe below is needed only

by a relatively small fraction of semidet disjunctions.

For a semidet disjunction, the Mercury compiler generates code such that when

one of its non-last disjuncts succeeds, the execution will commit to it and not go

back to try any later disjuncts. This means the code that we add at (d3) may not be

reached after the success of a non-last disjunct, causing two problems. First, the disj

frame will not be popped. Second, the regions that are removed by this disjunction

but are protected against reclamation while later disjuncts exist will not be first

unprotected at the start of the execution of the last disjunct and then reclaimed in

the body of the last disjunct as in the case of nondet disjunctions. Our solution is

to do these two tasks at the end of any non-last disjuncts, i.e. after their success at

(e1) and (e2) as in Figure 18.
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To solve the first problem, we pop the frame at (e1.b) and (e2.b). To solve the

second problem, at (d1) we loop through the regions in the disjunction’s removed set.

If a region is already protected, we do not want it to be reclaimed in the disjunction

and its remove instructions inside the disjunction will be ineffective anyway, so we

do not need to do anything. If a region is not already protected, we save its handle

in the non-fixed part of the disj frame. At the end, we store the number of region

handles that we saved in the frame’s num prot region slot. The code at (e1.a) and

(e2.a) will loop through the saved handles, and reclaim all the saved regions (they

were logically removed during the disjunct, but the protection of this disjunction

prevented their remove instructions from actually reclaiming them.)

At (d1.c), we save the sizes of only the regions in the disjunction’s allocated set.

Since execution cannot leave a semidet disjunction, we do not miss any memory

recovery opportunities by restricting ourselves to these regions.

9.1.1 Disjunctions: summary

To summarize Section 9.1, we review how we handle Tasks 1 and 2 for disjunctions;

first nondet disjunctions, and then semidet disjunctions.

We prevent the reclamation of backward live regions (Task 1) by disj-protecting all

regions whose sequence number indicates they were created before the disjunction

was entered. The protection of such regions starts at the beginning of the first

disjunct (d1.a and d1.b), and ends at the beginning of the last disjunct (d3.c). Such

regions are no longer protected by this disjunction during the execution of the last

disjunct so that if they are removed, they can be reclaimed.

Task 2, the reclaiming of memory, consists of two parts. Instant reclaiming of

new regions happens at the beginning of every nonfirst disjunct (at d2.a and d3.a);

the new regions are identified as such by their sequence numbers. Instant reclaiming

of new allocations in old regions also happens at the beginning of every nonfirst

disjunct (at d2.b and d3.b). To allow us to restore each old region to its state before

the disjunction, each disj frame contains a list of old regions that are allocated into

during the disjunction, together with the sizes of these regions at the start of the

disjunction (d1.c).

Task 1 needs extra support in the case of semidet disjunctions. The disj frames

of such disjunctions have a list of disj-protected regions, namely the regions in the

removed list of the disjunction that are disj-protected only by this disj frame (set at

d1.d). We use this list to explicitly reclaim these regions if a nonlast disjunct succeeds

(e1 and e2).

9.2 Support for if-then-elses

The condition of an if-then-else (ite) can be either semidet or nondet. In most

Mercury programs, the overwhelming majority are semidet, and this is the case we

will look at first. Such if-then-elses share some properties with semidet disjunctions.

If the condition succeeds, the execution will never enter the else part, and if the

condition fails, the failure must have occurred in the scope of the condition.
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( if
(i1): start of the condition

(a) push an ite frame
(b) save the protected regions and their number
(c) save size records and their number

...
then

(i2): start of the then part
(a) reclaim the ite-protected regions
(b) pop the ite frame

...
else

(i3): start of the else part
(a) unprotect the ite-protected regions
(b) do instant reclaiming of new regions
(c) do instant reclaiming of allocations in old regions
(d) pop the ite frame

...
)

Fig. 19. RBMM runtime support for if-then-else with semidet condition.

Like disjunctions, if-then-elses need to protect regions from being reclaimed while

backward live. But in the case of if-then-elses, we can restrict our attention to regions

removed in the condition (i.e. in the condition’s removed set), since this is the only

part of the code in which the if-then-else itself can make a region backward live.

When execution reaches the start of the then part, backtracking to the else part is

no longer possible, which means that any region that has been marked for removal

in the condition has to be reclaimed for real, unless it is protected by a surrounding

scope.

Also, if-then-elses, like disjunctions, should do instant reclaiming of memory

allocated by backtracked-over computations. In the case of if-then-elses, this means

that at the start of the else part, we should recover any memory allocated by the

condition.

In general, we only need to provide support for changes to regions that occur

inside the condition. This is good because the conditions of if-then-elses are often

very simple, containing only one or a few tests. Conditions whose created, removed,

and allocated sets are all empty are therefore fairly common. For such if-then-

elses, the mechanisms we describe below are unnecessary, and so we optimize them

away. If at least one of these three sets is not empty, we add code at the starts of

the condition, the then part, and the else part, i.e. at points (i1), (i2), and (i3) in

Figure 19.

For each if-then-else, we use a data structure called an ite frame to store the

information used for its runtime support. As with disj frames, we embed ite frames

in the ordinary stacks used by the Mercury implementation, and link them together

into the ite stack, with a global variable pointing to its top. The structure of an ite

frame is exactly analogous to that of a disj frame, the only difference being that

the first slot of the fixed part, prev ite frame, holds a pointer to the previous ite

frame, or null if there is none.

Ite-protecting backward live regions. Since the compiler knows the regions in the

removed set of the condition (in our example in Figure 15, R1 is such a region),

we will stop them from being reclaimed by ite-protecting them at the entry to the
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if-then-else. To allow us to ite-protect regions, we add to the region header a pointer

field, ite protected, which is set to null when a region is created. A region is

ite-protected if its ite protected field is not null. The remove instruction will now

only reclaim a region if its ite protected field is null and it is not disj-protected.

(We do not use the same protection mechanism as in the case of disjunctions. We

will explain the reason for this when we describe how we handle if-then-elses with

nondet conditions.) Before entering the condition, i.e. at (i1), we push an ite frame,

and then iterate over the to-be-protected regions. If one of these regions is already

protected by a surrounding disjunction or if-then-else, we ignore it. Otherwise, we

protect it by setting its ite protected field, which must be currently null, to point

to the ite frame. For such a protected region, we add its handle to a region id

slot in the non-fixed part of the ite frame. Then we also put the final number of

regions we protect in this way into the frame’s num prot region slot. We do this so

that we can loop over all the regions protected by this ite frame in two places: at

the start of the then part (i2.a), where we reclaim all these regions (giving delayed

effect to the remove instructions in the condition), and at the start of the else part

(i3.a), where we undo their protection by resetting their ite protected fields to

null.

Instant reclaiming. When the condition fails, we want to reclaim both the new

regions created inside it and any new allocations into old regions. In our example

in Figure 15 we want to reclaim all of R3 and some of R2.

To reclaim new regions, at (i1.a) we save the current sequence number into the

new frame’s saved seq num slot, and at (i3.b), we add code that traverses the region

list and reclaims all the regions until it meets an old region.

To reclaim new allocations into an old region, at (i1.c) we save its size record

into the non-fixed part of the ite frame. Although it is reasonable to do this for

the regions in the allocated set of the condition, it would be wasteful to reclaim

new allocations into the regions that will be reclaimed right at the start of the else

part. Unfortunately, while the compiler knows the old regions that have remove

instructions at the start of the else part, it does not know which of these will

actually reclaim their regions, since it does not know which regions are protected by

surrounding code. We handle this uncertainty as follows. We generate code at (i1.c)

for every old region which is live at that point. For those that are not removed at

the start of the else branch, this code always saves their size records unconditionally.

For those that are removed at the start of the else branch, this code checks whether

they are protected before this if-then-else, and saves their size records only if they

are protected. This is an optimization because the test to see if a region is protected

takes less time than saving its size record, and restoring it if the condition fails. We

record the number of size records we saved in the num size record slot so that

code at (i3.c) can restore them all.

The final action of the support code for an if-then-else with a semidet condition

is to pop the ite frame at either (i2.b) or (i3.d).

If-then-else with nondet condition. Unlike Prolog, Mercury allows the condition of

an if-then-else to have more than one solution. If the condition is nondet, then
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execution can backtrack into the condition from the then part or later code. This

poses two problems we need to solve.

First, since the condition can succeed more than once, the code we add at the

start of the then part (i2) can also be executed more than once. Since we need the

ite frame every one of these times, we cannot let the code pop it at (i2.b); we must

keep it until after the last time it may be used, i.e., after the last success of the

condition. We arrange for this to happen by modifying the way the code generator

handles the failure of the condition.

Normally, the code generator arranges for failures of the condition before the

condition succeeds for the first time to cause a branch to the start of the else

part, while a failure of the condition after it has succeeded represents a failure

of the if-then-else as a whole, and will be handled accordingly, in whatever way

the surrounding context demands. For example, if the if-then-else is one disjunct

of a disjunction, its failure will cause execution to resume at the start of the next

disjunct. We call the place to branch to on failure of the whole if-then-else the failure

continuation.

We modified the code generator so that if the nondet condition needs support

for region operations, i.e. it has a nonempty created set, removed set, or allocated

set, we branch to the failure continuation only after we execute code to pop the ite

frame, the same code that we would execute for semidet conditions at (i2.b).

Second, the condition being nondet means that it must include, directly or

indirectly, a nondet disjunction (since this is the only Mercury construct that can

introduce nondeterminism). Therefore, we must ensure that the supporting code

fragments that we generate for the if-then-else and the disjunction inside it do not

step on each other’s toes.

Our support for if-then-elses with semidet conditions provides ite-protection for

regions in the condition’s removed set that are not yet protected before the if-then-

else. For such a region in a nondet condition, there are two cases. The first case is

when the region is removed before the first nondet disjunction inside the condition.

That means that when the remove instruction is executed, the region is ite-protected

but not disj-protected. The remove instruction will (correctly) not reclaim it. Later

on, the region will be reclaimed when the condition succeeds for the first time by the

supporting code added at (i2). Since the program may backtrack into the condition

and may reach the then part again, when the region is reclaimed at (i2.a), we need

to nullify its entry in the ite frame so that it will not be wrongly reclaimed again the

next time execution reaches (i2.a). This explains our saving of the pointer to the ite

frame in the ite protected field in the region header of a protected region.

In the second case, the region is removed after the start of the first disjunction in

the condition, either in the disjunction itself or at some point after it. In an execution

containing a nonlast disjunct when the remove instruction is encountered, the region

is not reclaimed because it is both ite- and disj-protected. We need to ensure that if

the condition succeeds and execution reaches the then part, the region should not

be reclaimed at (i2) because it may be needed when execution backtracks into the

condition. We therefore put different code at (i2.a) if the condition is nondet; this

code will reclaim a region only if it is not currently disj-protected (Figure 20). The
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for each saved region_id
if region_id != null && !is_disj_protected(region_id)

reclaim the region
region_id = null

Fig. 20. Code at (i2.a) for if-then-else with the nondet condition.

region will remain both ite- and disj-protected until the execution enters the last

disjunct, at that time it will lose its disj-protection (Section 9.1). When the remove

instruction in the condition is executed after this, it will not reclaim the region

because it is still ite-protected, but the code at (i2.a) will reclaim it.

When the nondet condition fails, in both cases above, the region is only ite-

protected, not disj-protected. It is because in the first case the region is never disj-

protected and in the second case, the failure happens only after all the disjuncts of

the nondet code have been tried and failed, and the region has been disj-unprotected

at the start of the last disjunct. This situation is exactly the same as when a semidet

condition fails. Therefore, the code at (i3) is exactly the same for nondet conditions

as for semidet conditions.

9.2.1 If-then-elses: summary

To summarize Section 9.2, we review how we handle Tasks 1 and 2 for if-then-elses;

first if-then-elses with semidet conditions, and then those with nondet conditions.

We prevent the reclamation of backward live regions (Task 1) by ite-protecting

any region that is removed in the condition, but is backward live, and is not protected

by any other mechanism. The mechanism we use for ite-protection takes the form

of ite protected fields in region headers: if this field is not null, the region is

ite-protected. At the beginning of the condition (i1.a and i1.b), we set this field to

point to the ite frame of the if-then-else for all regions that meet the above-listed

conditions. If the condition succeeds, then execution enters the then part, and the

code at (i2.a) reclaims these regions (since backtracking to the else case is no longer

possible, and the regions are therefore no longer backward live). If the condition

fails, code at (i3.a) unprotects these regions.

Task 2 consists of two parts. Instant reclaiming of new regions happens at the

beginning of the else part (at i3.b); as with disjunctions, new regions are identified as

such by their sequence numbers. Instant reclaiming of new allocations in old regions

also happens at the beginning of the else part (at i3.c). To allow us to restore the

size of old regions, each ite frame contains a list of old live regions, together with

their sizes at the start of the if-then-else (set at i1.c).

We need extra support for nondet conditions. The reclaiming at the beginning of

the then part has to be done only if the region is not disj-protected by a disjunction

inside the condition. The code that executes this reclaiming executes once for each

success of the condition. A region may be unprotected by disjunctions inside the

condition for more than one of these executions, yet it must be reclaimed only once.

That is why after we reclaim a region whose protection by a nondet if-then-else has

just expired, we remove it from the list of regions protected by that if-then-else.
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some [...]
(c1): entry to the commit

(a) push a commit frame
(b) save the sequence number
(c) save the pointer to the top disj frame
(d) save the pointer to the top ite frame
(e) save the to-be-reclaimed old regions and their number

( the inner goal )

(c2): commit point
(a) reclaim the saved old regions
(b) reclaim the new regions
(c) restore the state of the disj stack
(d) restore the state of the ite stack
(e) pop the commit frame

(c3): failure point
(a) restore status of the saved regions
(b) pop the commit frame

Fig. 21. RBMM runtime support for commit.

9.3 Support for commit

When the goal inside a commit succeeds for the first time, we commit to that

solution by discarding the inner goal’s outstanding alternatives. We call the point

in the code where this happens the commit point. If the inner goal is nondet (rather

than multi), it may also fail. When it fails, the compiler’s failure-handling mechanism

causes execution to pass through a failure point before the program resumes forward

execution at the resumption point of the next surrounding goal. The failure point is

there to allow the execution of some cleanup code. We add code to support region

operations at two or three points in Figure 21: the entry point of the commit (c1),

the commit point (c2), and the failure point (c3). If the inside goal has determinism

multi, there is no (c3) to modify, as execution would never reach there.

Consider a region that is in the removed set of a commit goal. If it is already

protected by a disjunction or if-then-else when execution arrives at (c1), then the

region should not be reclaimed by any code inside the commit, and the mechanisms

we have described so far are sufficient to ensure this. If the region is not already

protected at (c1), then the region should be reclaimed before execution reaches (c2).

Ensuring this needs a new mechanism because the goal inside a commit will contain

directly or indirectly at least one disjunction that can succeed more than once (if

it did not, it would have at most one solution, and there would be no commit

operation), and the runtime support for this disjunction will protect the region from

being reclaimed during the execution of its nonlast disjuncts. On the other hand,

we cannot simply insert code at (c2) to reclaim the region, since it can already

be reclaimed by its remove instruction in the execution of the last disjunct before

reaching (c2). We need not worry about the case when regions are protected only

by semidet disjunctions or by if-then-elses with semidet conditions inside a commit,

since these constructs, if they occur, protect regions only temporarily, and ensure

that any regions that are removed inside them and are not protected when execution

enters them will be reclaimed before execution exits them. If-then-elses with nondet

conditions cannot protect regions either, although the nondet disjunctions inside

their conditions can.
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As before, our solution involves a new embedded stack, the commit stack. We push

a new commit frame at (c1), and fill in its fixed fields, which we will discuss shortly.

Following this will be the code that, for each region in the removed set of the commit

goal, checks whether the region is already protected. If it is protected, then that

region is left alone. If it is not, we add the handle of the region to the commit frame’s

non-fixed part, and record the address where this handle is stored in the commit

frame in the region’s own header, in a new field called commit slot. This way, when

a region that should be reclaimed inside the commit actually survives to (c2) because

of the protection of an inner disjunction, code at (c2) can iterate through all the

region handles in the commit frame and reclaim those regions. However, we cannot

do this for regions that are actually reclaimed inside the commit (whose remove

instructions were executed in the last disjuncts). That is why, when we reclaim a

region, we check whether its header’s commit slot field is null. If not, then it will

contain the address of a pointer to the region header, an address that will be in a

commit frame, and the reclaim operation will replace that pointer in the commit

frame with a null. Making the loop at (c2.a) ignore such nulled-out region handle

pointers ensures that each region recorded in the commit frame’s list is reclaimed

exactly once, and that this happens as soon as possible.

If the goal inside the commit fails, we need to undo the update of the saved

regions’ commit slot fields, so at (c3.a) we reset them all to their original values.

To make this possible, we save each original value in the commit frame next to the

pointer to the region header from which it is taken. This effectively chains together

all the entries referring to a given region in the commit stack. The reclaim operation

will set to null not just the first slot in this chain but all of them.

This mechanism is sufficient to correctly handle any old regions that are in the

commit goal’s removed set. To handle any new regions (regions created inside the

commit) that are also removed inside the commit, we record the current region

sequence number in the commit frame at (c1). When a new region is removed in the

commit, it is reclaimed if not protected. If it is protected, we mark it so that at the

commit point we can reclaim it. We add a field destroy at commit to the region

header, and we augment the remove instruction again so that when a protected,

new region is removed in a commit, the remove instruction will set the region’s

destroy at commit field to true (it is always initialized to false). At the (c2.b) part

of the commit point, we traverse the region list until meeting an old region, and

reclaim new regions whose destroy at commit field is true.

We need not worry about instant reclaiming of new regions in the created set and

of new allocations into regions in the allocated set of the commit, since that will be

done by the goals surrounding the commit.

At the commit point, the Mercury execution algorithm throws away all the

remaining alternatives of the goal inside the commit. To reflect this, at (c2) we need

to restore the embedded disj stack to the state it had at (c1). That is why at (c1.c)

we save the current disj stack pointer in a fixed slot in the new commit frame, and

at (c2.c) we restore the disj stack pointer from there. The regions protected by the

disj frames thrown away by this action will be exactly the ones removed by the code

at (c2.b).
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prev-commit-frame
saved-seq-num
saved-dis-jsp
saved-ite-sp
num-saved-regions
region-id
prev-commit-slot
...

(previous commitframe)
(saved sequence number)
(saved disj stack pointer)
(saved if-then-else stack pointer)
(number of saved regions)
(handle of a saved region)
(original commit slot of the saved region)

Fig. 22. Structure of a commit frame.

In some rare cases, the thrown-away disj frames will be from disjunctions inside

if-then-elses with nondet conditions. Such if-then-elses cannot protect any regions in

any code outside their conditions, but we do still need to ensure that we leave the

embedded ite stack in the same state as we found it. That is why at (c1.d) and (c2.d)

we save and restore its stack pointer. (The ite frames of if-then-elses with semidet

conditions will be popped by the time we get to c2, but the ite frames of if-then-elses

with nondet conditions may still be there.)

The layout of commit frames is shown in Figure 22, with fixed and non-fixed

parts separated by a thick line.

The meaning of the first two fields should be clear. The third and fourth fields

contain the values of the disj and ite stack pointers, respectively, at the time when

the commit was entered. The last fixed field gives the number of region handles and

saved commit slot fields actually stored by the code at (c1.d) in the non-fixed part.

9.3.1 Commits: summary

To summarize Section 9.3, we review how we handle commits.

A commit does not need to protect any regions against reclamation, as it does

not make any regions backward live. When the commit goal succeeds, it cuts away

any backtrack points set up inside it, so we need to take away all the protections

associated with those backtrack points, and if this leaves a region (old or new)

unprotected, we need to reclaim it.

We keep in each commit frame a list of old regions (existing before the commit)

that may be subject to such reclamation. We store this list at (c1.e), and we reclaim

the regions in it at (c2.a), provided they have not been reclaimed within the commit

goal itself, by code executing within or after a last disjunct. We set the commit slot

of each of these regions’ headers to point to their entry in the commit frame; if and

when the region is reclaimed within the commit goal, we delete this entry to prevent

double reclamation.

Since commits may be nested, a given to-be-reclaimed region may be listed in

several commit frames. We keep its entries in these frames in a chain, and when a

region is actually reclaimed, we delete its entries in all these frames.

To reclaim new regions, we store a snapshot of the sequence region number in

the commit frame at (c1.b). When the commit goal succeeds, we reclaim all regions

younger than this whose destroy at commit field has been set to be true by a

remove instruction.
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If the commit goal fails, all the protections set up by any disjunctions or if-then-

elses inside it must have expired already, so we need not do more than simply restore

the commit stack to its original state.

9.4 Compatibility with tabling

Mercury supports three forms of tabling: loop checking (which detects the simplest

form of infinite loops, and aborts the program if found), memoization (caching of

results), and minimal model tabling.

The mechanisms that we have discussed in this section so far are compatible with

loop checking because the only two changes loop checking makes to the flow of

execution are to force the execution of some table lookups, which have no effect

on our data structures, and (maybe) to abort the program, in which case what our

mechanisms do does not matter.

Our mechanisms are also compatible with automatic caching for det and semidet

procedures. This tabling method surrounds the body of the tabled procedure with

code that checks whether a call with the current argument list has been seen before.

If it has not been seen, it computes the answer and records it. For det procedures,

the answer consists of the values of output arguments; for semidet procedures, it

includes the success/failure indication as well. If this call has been seen before,

the transformed procedure just returns the recorded answer. Neither the extra code

executed at the starts and ends of new calls nor the table lookup executed for

previously seen calls interfere with any of our mechanisms.

Automatic caching for nondet and multi procedures is a more complex case

because the code that adds answers to a table adds one answer at a time, and only

when execution is about to backtrack out of a new call does the tabling system know

that its set of answers is complete. The Mercury system handles the interaction of

tabled nondet/multi procedures with commits, just as it handles the interaction of

nondet/multi procedures using RBMM with commits, but it does not handle the

interaction of tabled nondet/multi procedures using RBMM with commits. There is

no reason why it could not do so, we just have not implemented it, mainly because

memoization is not as useful for nondet and multi procedures as minimal model

tabling.

The current implementation of minimal model tabling in the Mercury system

works by saving segments of the Mercury stacks and restoring them later, possibly

several times (Somogyi and Sagonas 2006). This makes minimal model tabling

fundamentally incompatible with the mechanisms we have presented earlier in this

section.

10 Experimental evaluation

10.1 The experimental systems

We have implemented the region analysis and transformation shown in Sections 5–7,

as well as the runtime support described in Sections 8 and 9 by incorporating them
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in the Melbourne Mercury compiler. The runtime support is currently available in

the back end that generates low-level C code.

We use three variants of the RBMM system in our experiments. The first one,

rbmm1, is similar to the RBMM system in Phan et al. (2008), in which we do

not track which regions are allocated into. In rbmm1, while the region operations

(Section 8) are implemented as C functions, the runtime support for backtracking

(Section 9) is implemented using C macros. The functionality of the second system,

rbmm2, is exactly the same as rbmm1; however, we consistently implement the whole

runtime support in functions. The third system, rbmm3, also uses only functions in

the runtime system, but differs from rbmm2 in that it does track which regions are

allocated into (using the algorithms in Section 5.4), which allows us to restrict the set

of old regions for which we take size snapshots for later reclaiming (see Section 9)

to just the regions for which this may have an effect. We chose these three versions

to evaluate because comparing rbmm1 and rbmm2 tells us which implementation

technology is better, while comparing rbmm2 and rbmm3 can reveal the impact of

tracing which regions are allocated into and which are not. We also compare these

RBMM variants with a Mercury compiler that is identical in all aspects except that

instead of RBMM it uses the Boehm garbage collector (Boehm and Weiser 1988),

which is Mercury’s standard garbage collector. We call this system boehm.

For all three RBMM systems, we use a region page size of 2,048 words, of which

2,047 are available to store program data. When needed, we request blocks of 100

region pages from the operating system. The three systems use the same regions and

create and remove them at exactly same places. However, they do differ in other

aspects, such as compilation time, size of object files, and runtime performance.

Next, we will present the benchmarks and give the results of our experiments,

and then we will discuss the RBMM behavior of the benchmarks in more detail.

The experiments were performed on a Dell Optiplex 760 PC with a 2.83-GHz Core

2 Quad Q9550 CPU, 8 GB RAM, running Ubuntu Linux, with the kernel version

being 2.6.24-25-server SMP. The Mercury programs were compiled to C with the 3

December 2009 release-of-the-day for Mercury system (with different options for the

different variants). This and other releases of the day are available on the Mercury

web site. The resulting C files were compiled to executables by gcc 3.4.4. Every time

report was derived by running the program eight times, discarding the lowest and

the highest times and averaging the rest.

10.2 The benchmark programs

In our experiments, we used a set of relatively small benchmark programs. We

selected the benchmarks carefully; they are actually more like a collection of case

studies that illustrate the strong and weak points of RBMM. While we would have

liked to test our system with bigger and more realistic programs, we are currently

not able to do so because the region analysis and transformation do not yet support

higher order code, foreign language code, and multi-module programs.

The benchmark programs in Table 4 are divided into three groups. The first group

contains benchmarks that do not need any runtime support for backtracking. The
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Table 4. Information about the benchmarks

disjunction

# Predicates # LOC if-then-else semidet nondet

dna 16 251 x

isort 6 101 x

nrev 5 72 x

primes 8 93 x

qsort 6 92 x

bigcatch 12 159 x

boyer 17 372 x

bsolver 41 805 x x

crypt 15 219 x x

filrev 12 154 x

life 18 338 x

healthy 24 485 x x

queens 9 128 x x

sudoku 22 441 x x

rdna 17 262 x

risort 7 111 x

rlife 19 343 x

rqueens 10 138 x x

benchmarks in the second group do need such support. The third group consists

of manually modified versions of benchmarks that illustrate how programs can be

made more region-friendly (hence the “r” as prefix on their names).

The programs in the first group contain only det code, and maybe some if-then-

elses with semidet conditions, whose created, removed, and allocated sets are empty.

dna computes similarities between gene sequences, isort implements insertion sort

on a list of 10,000 integers, nrev reverses a list of 5,000 integers, primes finds all the

primes less than 20,000, and qsort sorts a list of 100,000 integers.

The programs in the second group need runtime support for if-then-elses and/or

disjunctions. bigcatch and filrev are the Mercury versions of programs used

in Aspinall et al. (2008). They manipulate lists of integers and introduce sharing

between the input, the temporary data, and the output, and as such they also

present difficult cases for RBMM. bsolver is a simple solver for systems of binary

linear equations and inequations over integers; boyer is a toy theorem prover; crypt

finds unique answer to a cryptoarithmetic puzzle; life implements the Game of Life

(known to be a difficult case for RBMM); healthy is a nondeterministic variant of

life that searches for a generation that after a certain number of reproductions (8)

still has a number of live cells that is higher than a threshold (80); queens solves the

12-queens problem by first generating permutations and then checking; and sudoku

finds the solution for a sudoku puzzle by doing propagation on finite domains.

The programs rlife and rdna are the versions of life and dna that have been

manually made region-friendly by copying some data instead of letting it be shared.
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Table 5. Compilation time and object file size

Compilation time (s) Object file size (bytes)

boehm
rbmm r3/b

boehm
rbmm r3/b

1 2 3 (%) 1 2 3 (%)

dna 0.51 0.66 0.60 0.60 18 4,782 6,670 6,366 6,142 28

isort 0.41 0.47 0.43 0.45 10 1,048 1,800 1,512 1,512 44

nrev 0.38 0.43 0.42 0.43 13 976 1,728 1,408 1,408 44

primes 0.39 0.44 0.43 0.42 8 1,026 1,712 1,408 1,408 37

qsort 0.41 0.47 0.45 0.47 15 1,209 2,088 1,768 1,768 46

bigcatch 0.45 0.45 0.49 0.42 –7 1,601 3,569 2,657 2,241 40

boyer 0.78 1.23 1.20 1.18 51 13,748 21,509 17,716 16,165 18

bsolver 0.97 1.37 1.35 1.25 29 16,034 26,227 22,867 18,931 18

crypt 0.57 0.67 0.68 0.58 2 5,656 9,808 7,184 7,136 26

filrev 0.40 0.47 0.48 0.48 20 1,650 3,105 2,561 2,401 46

life 0.56 0.70 0.67 0.67 20 5,564 9,771 8,123 7,147 28

healthy 0.61 0.95 0.77 0.78 28 7,906 16,610 11,988 10,498 33

queens 0.42 0.48 0.46 0.47 12 1,880 3,619 2,595 2,563 36

sudoku 0.65 0.87 0.87 0.85 31 7,685 11,989 11,077 10,213 33

rdna 0.55 0.62 0.59 0.61 11 4,831 6,815 6,511 6,287 30

risort 0.40 0.43 0.46 0.44 10 1,194 2,040 1,752 1,752 47

rlife 0.55 0.70 0.71 0.66 20 5,741 10,284 8,652 7,628 33

rqueens 0.43 0.50 0.43 0.49 14 2,155 3,941 2,933 2,901 35

rqueens is a modified form of queens; its delete predicate (called by permute)

copies the list remaining after a deletion. Similarly, risort copies the remaining list

when inserting an element into a sorted list. We will come back to this group of

programs when discussing the benchmarks in detail.

10.3 Experimental results

10.3.1 Compilation times and object file sizes

We first compare the three RBMM systems and the boehm system with respect to

their compilation times and the sizes of their object files (the text sections). The

results are given in Table 5, which contains two sets of columns, for compilation

time and object file size, respectively. The first four columns in each group report

results for each of our four system variants, rbmm1/2/3 and boehm, while the fifth

column is computed by (rbmm3 – boehm)/boehm × 100.

Compilation times for most benchmarks are so short that we get significant

fluctuations because of clock granularity; times in the table that differ only by a

couple of tenths of seconds are effectively indistinguishable in practice. That said,

compilation is always somewhat slower for RBMM systems than when targeting the

Boehm collector, which is not surprising, given the analysis we have to do. However,

the cost of including RBMM is reasonable; the average slowdown for rbmm3 is

17%, and it is only a bit higher for rbmm1 and rbmm2. Compilation with function-

based systems is usually faster than compilation for the partly macro-based rbmm1
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because the runtime support functions in rbmm2 and rbmm3 are compiled just once

(when the runtime system itself is built), while in rbmm1 the macros containing their

functionality are expanded and compiled several times during the compilation of

each benchmark. Compared with rbmm2, tracing and making use of the allocated

regions in rbmm3 sometimes helps to reduce the compilation time, but the effect

is quite small. This is because the overhead of tracking is rather small, and having

information about allocated regions allows the compiler to do less work: it does not

need to pass many region arguments in calls, and it can skip adding some runtime

support code.

The object files of RBMM systems are, as expected, larger than those of the boehm

system. The use of macros in rbmm1 can double the size compared with boehm,

as shown by bigcatch and healthy, with average increase being 74%. Replacing

macros with calls reduces the overhead significantly; the object size ratio between

rbmm2 and boehm ranges from 27% to 66%, averaging 43%. Rbmm3 yields even

smaller object files, since keeping track of allocated-into regions allows the compiler

to reduce the number of region arguments passed and the amount of support code

generated; the object size ratio between rbmm3 and boehm ranges from 18% to

47%, averaging only 35%. This shows that for larger programs, rbmm3 is likely to

be preferable.

10.3.2 Memory usage

We measured the memory consumption of the regions for RBMM systems. Also note

that the runtime support consumes some memory as will be discussed later. Here we

focus on the storage of program data. The results given in Table 6 are the same for

all three RBMM systems. For each benchmark, we give the total number of regions

created during its execution and the maximum number of regions coexisting during

its run. We also include the total number of words allocated and the maximum

number of words that coexist. SLR is the size of the largest region and S (%) is the

saving, calculated by (1 –max words/total words).

The region-based memory management achieves optimum memory management

in nrev, in primes, and in qsort. For nondeterministic programs crypt, healthy,

queens, and sudoku, the memory savings are also high. The impact of instant

reclaiming on memory reuse differs among these programs (Table 7): In crypt and

queens, instant reclaiming collects most of the words, while in healthy, it collects

only a small fraction of words, and it reclaims none in sudoku.

For cases such as isort, bigcatch, bsolver, and filrev, we see that most of the

memory goes to the biggest region. Typically, this biggest region contains some

garbage data, but as it also holds some live data it cannot be reclaimed.

The boehm version of our system uses the Boehm–Demers–Weiser garbage

collector (Boehm and Weiser 1988) for memory management. In our experiments,

we just use the default configuration of this collector as it is in the Mercury compiler

distribution. It is a stop-the-world, sequential mark-and-sweep collector that uses

1,024-word pages. It starts with a heap of 64k words and heuristically carries out

collections of garbage or expands the heap on demand.
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Table 6. Memory use in rbmm systems

Regions Words used

Total Max. Total Max. SLR S (%)

dna 2,082,006 8 18,926,797 4,590,797 4,096,000 75.7

isort 3 1 67,029,222 67,009,222 67,009,222 0.0

nrev 5,003 2 25,015,000 10,000 10,000 99.9

primes 2,265 1 5,221,386 39,998 39,998 99.2

qsort 200,003 21 5,865,744 200,000 200,000 96.6

bigcatch 3 2 25,015,000 25,015,000 25,005,000 0.0

boyer 5 3 143,561 143,561 143,505 0.0

bsolver 78 7 2,914,444 2,911,528 2,908,442 0.1

crypt 417 3 3,442 94 64 97.3

filrev 6 3 25,023,004 25,019,000 25,009,000 0.0

life 50,304 102 894,336 8,208 6,486 99.1

healthy 3,917,124 82 62,639,310 2,794 2,054 99.9

queens 4,545,703 2 121,453,230 114 90 99.9

sudoku 6,651 88 84,080 16,678 10,916 80.1

rdna 2,083,006 9 18,930,797 501,752 428,733 97.3

risort 373,214 1 289,968,666 2,000 2,000 99.9

rlife 50,356 102 894,594 2,056 1,722 99.8

rqueens 23,080,416 13 142,047,288 156 24 99.9

Table 7. Words reclaimed by runtime support (other words are reclaimed by remove

instructions). Only programs with some nontrivial numbers are shown

New allocations New regions Start of then Commit point

Words % Words % Words % Words %

bigcatch 0 0.00 0 0.00 10,000 0.04 0 0.00

crypt 0 0.00 3,270 95.00 0 0.00 6 0.17

queens 12,356,378 10.17 109,096,776 89.83 52 0.00 0 0.00

rqueens 0 0.00 133,809,696 94.20 0 0.00 132 0.00

healthy 81,862 0.13 3,314 0.01 0 0.00 0 0.00

sudoku 0 0.00 0 0.00 0 0.00 6,480 7.71

Data about memory use in the boehm system is shown in Table 8. The second

column (# gc) shows the numbers of times the collector is run, while the third

column (# expans) tells the number of expansions of the heap. The maximal sizes

of the heap in kB and words are shown in the next two columns, respectively. The

maximal number of words used and the number of words requested (i.e. 2048 × the

number of region pages requested) in our RBMM systems are shown in the last two

columns for reference purposes.

The numbers show that in almost all of the benchmarks, the RBMM systems can

work within spaces that are smaller than those requested by the Boehm collector.

RBMM systems often need to request only the minimum, which in our system is

100 × 2,048 words. The worst case for RBMM is isort in which RBMM is not able
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Table 8. Memory use in one iteration

boehm max. size rbmm

# gc # expans kB words max. words words requested

dna 7 4 30,524 7,814,144 4,590,797 4,710,400

isort 20 4 30,524 7,814,144 67,009,222 67,174,400

nrev 9 4 30,524 7,814,144 10,000 204,800

primes 3 4 30,524 7,814,144 39,998 204,800

qsort 3 4 30,524 7,814,144 200,000 409,600

bigcatch 5 10 119,804 30,669,824 25,015,000 25,190,400

boyer 2 2 17,168 4,395,008 143,561 204,800

bsolver 2 4 30,524 7,814,144 2,911,528 3,072,000

crypt 1 2 17,168 4,395,008 94 204,800

filrev 5 10 119,804 30,669,824 25,019,000 25,190,400

life 2 3 22,892 5,860,352 8,208 409,600

healthy 19 4 30,524 7,814,144 2,794 204,800

queens 36 4 30,524 7,814,144 114 204,800

sudoku 1 2 17,168 4,395,008 16,678 204,800

rdna 7 4 30,524 7,814,144 501,752 614,400

risort 83 4 30,524 7,814,144 2,000 204,800

rlife 2 3 22,892 5,860,352 2,056 409,600

rqueens 42 4 30,524 7,814,144 156 204,800

to reuse memory efficiently. The boehm system can work with only a bit more than

one-tenth the memory in this case.

10.3.3 Runtime performance

We also studied the runtime performance of our benchmark programs because this

is probably the most important criterion for the practicality of RBMM. To control

the uncertainty involved in measuring small times, we ran each program many times

in a loop. Each benchmark has a row in Table 9 that gives the number of iterations,

actual execution times with boehm (boehm), the boehm system’s gc time (gc), and

the boehm system’s runtime minus the gc time (nogc), and then the runtime with the

three RBMM systems (all in seconds, all for user mode only). Each row also includes

the number of collections executed by the Boehm collector, and the savings achieved

by using our preferred RBMM system, rbmm3, instead of the boehm system. The

savings are given by (1 – rbmm3 runtime/boehm runtime).

The rbmm3 system gets clearly better runtimes than the boehm system for 15 out

of our 18 benchmark programs, including both deterministic and nondeterministic

programs. The speedups range from around 8% to more than 60%. (We do not

count the 2.3% speedup as “clearly better”.) The overall average speedup, even

including the two programs with slowdowns, is about 24%. We get this promising

result because with RBMM, we avoid the burden of runtime garbage collection, and

because the overhead of supporting regions is reasonably modest. Moreover, the

runtimes of 10 of these 15 programs are smaller than the corresponding runtimes in
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Table 9. Runtime performance result

boehm runtime RBMM runtime Saving

# Iter boehm gc nogc # gcs rbmm1 rbmm2 rbmm3 rbmm3

dna 100 25.27 8.80 16.47 549 20.81 20.20 21.19 16.1%

isort 60 53.47 17.90 35.57 1141 21.43 21.45 21.66 59.5%

nrev 160 50.09 17.58 32.51 1134 20.39 20.39 21.12 57.8%

primes 400 40.94 9.46 31.48 597 24.86 24.51 24.62 39.9%

qsort 400 41.41 12.65 28.76 701 20.62 20.45 21.15 48.9%

bigcatch 30 28.31 5.70 22.61 20 20.39 20.90 20.38 28.0%

boyer 8,000 25.69 5.60 20.09 357 22.59 34.34 34.83 –35.6%

bsolver 1500 55.00 19.44 35.56 1242 22.92 23.05 22.91 58.3%

crypt 300,000 21.19 4.53 16.66 293 18.85 20.84 20.70 2.3%

filrev 50 38.40 11.03 27.37 54 24.09 24.00 23.85 37.9%

life 700 27.18 2.77 24.41 179 26.16 31.41 23.71 12.8%

healthy 30 37.65 8.34 29.31 533 41.63 61.12 29.62 21.3%

queens 15 32.90 7.97 24.93 517 22.34 29.60 30.05 8.7%

sudoku 20,000 23.02 6.45 16.58 413 17.65 17.69 17.57 23.7%

rdna 120 30.41 10.52 19.89 657 24.38 25.59 23.66 22.2%

risort 25 89.81 31.84 57.89 2051 35.28 35.56 35.62 60.3%

rlife 700 27.02 2.74 24.28 179 26.04 31.23 23.54 12.9%

rqueens 15 35.65 9.57 26.08 604 43.09 50.24 48.95 –37.3%

Table 10. Frame statistics in rbmm1 and rbmm2 systems

Disj frames Ite frames

Total M # Words Mw Sr Total M # Words Mw Sr P

bigcatch 0 0 0 0 0 5,046 1 35,504 11 5,091 47

boyer 0 0 0 0 0 38,629 2 271,469 14 38,984 1

bsolver 90 1 1,170 13 270 244 1 4,031 19 1,018 1

crypt 55 4 220 16 0 2 1 9 5 0 1

filrev 0 0 0 0 0 5,001 1 50,005 10 10,000 1

life 0 0 0 0 0 177,789 1 1,777,885 10 355,576 1

healthy 2,431 9 24,304 84 4,860 17,449,110 2 174,491,089 14 34,898,216 1

queens 12,356,498 12 86,495,486 84 12,356,498 2 1 10 5 0 2

sudoku 81 81 810 810 162 2 1 21 16 4 1

rlife 0 0 0 0 0 177,789 1 1,777,885 10 355,576 1

rqueens 12,356,498 12 86,495,486 84 12,356,498 2 1 10 5 0 2

the boehm system even excluding garbage collection times, which strongly suggests

that RBMM also improves data locality. In bigcatch and filrev, two difficult cases

for RBMM, their memory-use pattern actually has even more adverse effects on the

operation of the Boehm collector. These programs all build very large lists that are

live data before producing any garbage, so during their initial phase the traversal of

the memory allocated so far by the collector’s marking pass is almost completely a

wasted effort.

Before discussing the results of other programs, we show detailed information

about disj and ite frames that are used in the benchmark programs per iteration.

This information is given in Table 10 for rbmm1 and rbmm2 (which always behave
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Table 11. Frame statistics in rbmm3 system

Disj frames Ite frames

Total M # Words Mw Sr Total M # Words Mw Sr P

bigcatch 0 0 0 0 0 47 1 235 5 0 47

boyer 0 0 0 0 0 38,272 1 267,899 7 38,270 1

bsolver 0 0 0 0 0 18 1 175 10 34 1

crypt 55 4 220 16 0 2 1 9 5 0 1

filrev 0 0 0 0 0 1 1 5 5 0 1

life 0 0 0 0 0 1 1 5 5 0 1

healthy 2,431 9 24,304 84 4,860 2 1 9 5 0 1

queens 12,356,498 12 86,495,486 84 12,356,498 2 1 10 5 0 2

sudoku 81 81 324 324 0 2 1 15 10 2 1

rlife 0 0 0 0 0 1 1 5 5 0 1

rqueens 12,356,498 12 86,495,486 84 12,356,498 2 1 10 5 0 2

the same in these respects) and in Table 11 for rbmm3. Both tables include only the

programs that use at least two frames during their runtime.

The five columns related to disj frames are as follows: Total is the total number

of disj frames used in one iteration; M is the maximal number of disj frames

coexisting at some point; # Words is the total number of words used for all disj

frames; Mw is the maximal number of words used at some point; and Sr is the total

number of size records saved. No regions are protected at semidet disjunctions in

these benchmarks. For ite frames, the first five columns have meanings analogous

to those for disj frames, while the last column gives the total number of regions

that are protected by ite frames by having their handles saved in these frames. The

Mw columns show that the memory used by both these kinds of embedded frames

is negligible in all benchmarks. We do not show information about commit frames

because each nondeterministic program uses just one commit frame of four words

and no dynamic information is saved in them.

The rbmm3 system is only a little faster than the boehm system on crypt. Despite

being a nondeterministic program, the runtime support for backtracking it needs

is rather cheap (see Table 11). However, the program handles a large number of

small regions, more than 125 million regions in total (417 regions in each of 300,000

iterations), with an average of just over eight words per region, and the largest

region being of 64 words. The cost of creating and destroying the region has to be

amortized over the words stored in the region. In large regions, the proportion of

this overhead falling on any one word is negligible, but in small regions it can be

substantial. So rbmm3’s gain due to avoiding runtime garbage collection is almost

exactly counterbalanced by the overhead of handling many small regions, resulting

in just a small overall speedup.

This problem also manifests itself to various extents in the other programs that

handle many small-to-medium size regions (more than 10 million of them). This can

be seen in programs such as dna, life, healthy, sudoku, rdna, and rlife, where we still

have clear speedups but they are not as good as the speedups for programs with

fewer and larger regions. The memory results in Table 6 show that with rbmm3, rdna
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indeed needs much less memory than dna, since it can reuse memory better with

the help of its copying predicate. Unfortunately, the overhead of copying still causes

rdna to be about 12% slower than dna, although the slowdown for rbmm3 is less

than that for boehm (where it is 20%). However, compared with crypt, queens has

many more nondet disjunctions, so it has to pay the cost of supporting backtracking

within them many times (see Tables 10 and 11), and it has to pay for handling

many small regions (68M regions with an average of about 27 words each), and yet

rbmm3 gets a speedup of 8.7% over boehm on this benchmark.

The two worst cases for rbmm3 are rqueens and boyer. rqueens uses about five

times as many regions as queens, which makes the average region much smaller than

the already too small regions in queens. This is the negative side effect of copying

terms to new regions to allow their old ones to be freed earlier. That copying does

achieve its objective; we can see in Table 7 that the memory queens recovers from

within regions is recovered by rqueens in the form of whole regions. rqueens actually

never recovers memory from within regions, which means that the overhead it pays

for trying to do that (saving size records at disj frames) is useless while being quite

expensive. The slowdown in boyer is mainly due to the cost of saving size records

(more than 306 million of them) at ite frames, which all are in vain. A closer look

at boyer reveals that it contains some semidet procedures that allocate into their

input regions, and the conditions of some if-then-elses call these procedures. So the

compiler needs to save the size records of these regions if it wants to have instant

reclaiming. However, for the specific input used in our benchmark, the calls to

these semidet predicates succeed, so instant reclaiming has no words to reclaim. See

Section 12 for an idea that would allow us to eliminate such unprofitable overhead.

Comparing the runtime results for rbmm2 and rbmm3 gives us an idea about

the usefulness of tracking allocated regions. While the reduction in the number of

region arguments does not have a strong impact on these benchmarks, having less

supporting code for backtracking shows marked speedups for life, healthy and rlife.

This enhanced performance corresponds with reductions in Table 11 compared with

Table 10. We can see that the main impact is on ite frames. For filrev and life,

we can get rid of them completely, except for one needed by the benchmarking

mechanism itself. For some others, we no longer have to save any size records to ite

frames. This is very important because while nondet disjunctions are rare in Mercury

programs, if-then-elses are very common. Ensuring their efficiency is therefore vital

to the efficiency of Mercury programs as a whole. However, tracking of allocated

regions cannot help in all cases, such as in the case of boyer. For the programs for

which rbmm3 seems slower than rbmm2, this is purely a chance cache effect. We

have examined the C files generated by the Mercury compiler, and for each such

benchmark, the only difference between the two versions is that the rbmm2 version

executes some statements that the rbmm3 version does not, while using larger stack

frames.

Comparing runtimes for rbmm1 and rbmm2, we see that in the programs that

use runtime support for backtracking, using macros to implement that support may

improve performance. Table 9 shows that boyer, life, healthy, queens, rlife, and

rqueens are all at least 5% faster in rbmm1 than in rbmm2. This is because using
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Gen 2 Gen n−1 Gen n
:=next_gen

Fig. 23. The computation of generations in life.

macros avoids the cost of calling functions, and because these programs are so small

that the increase in code size does not adversely affect instruction cache behavior.

However, we expect that for larger programs, the slowdown due to the reduction in

the effectiveness of the instruction cache will outweigh the cost of calls. However,

in multi-module programs, it should be possible to compile most modules with

function calls while compiling the modules in which the program spends most of its

time with macros, thus getting the best of both worlds.

10.4 The impact of sharing on reusing regions

One can argue that sharing is the most basic and natural form of memory reuse.

However, sharing can conflict with RBMM because in RBMM we want terms with

different lifetimes to be stored in different regions, and a subterm shared between

two terms of different lifetimes obviously cannot be stored in two different regions at

once. In this section we study in detail some benchmark programs that we specifically

selected for insights on the impact of sharing an RBMM. Some of these are known

difficult cases for RBMM such as dna and life. Some others create sharing that

makes it hard for in-place updating such as isort, bigcatch, and filrev (Aspinall et al.

2008).

In our region points-to analysis, we essentially put two program variables into the

same region in two cases: when there is an assignment between them, or they are

bound to a term and its same type subterm in a recursive data structure (Section 5).

When variables in a region have different lifetimes, we have a sort of memory leak,

because the memory of variables with shorter lifetimes cannot not be reclaimed until

the longest living variable dies.

One solution for this is to copy the live data in the region to a different region

so that the space used by the dead data can be reclaimed. We experiment with this

approach in rdna, rlife, risort, and rqueens.

The life benchmark encodes the Game of Life in which a new generation is

generated from the previous one based on a set of production rules. From an initial

generation, it uses a loop (in the life predicate) to produce several intermediate

ones before reaching the final generation, which is the wanted output. We represent

a generation by a list of live cells, with each cell being represented by its row and

column in a 20 × 20 board. To store a generation, we need two regions, one for

the skeleton and another for the cells. In the program, the list skeletons of two

successive generations are independent while their cells may share. In the recursive

case of predicate life, we first call next gen to compute the next generation whose

skeleton could be in a different region, and then we call life recursively with

the next generation as input. In the base case, we assign the current generation,

which is the “next” generation created by the caller, to the output generation. The

computation is summarized in Figure 23. Because of the assignment in the base case,
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which creates sharing only between the last intermediate generation and the output

generation, our region points-to analysis decides that the skeletons of the input and

output generations in the life predicate are in the same region, and then enforces

this for all the (recursive) calls to life. This eventually means that the skeletons of

all the generations are placed in one big region with a size of 6,486 words. In rlife,

we replace the assignment in the base case with a call to a copying predicate that

does not create any sharing, thus allowing the compiler to store the skeleton of each

generation in a separate region, which then can be reclaimed in time. We observe in

Table 6 that the maximum amount of memory needed by rlife is 2,056 words, which

is a 75% reduction compared with life’s 8,208 words. This is because in rlife, the

skeletons of old generations are reclaimed at each step.

The program dna simulates the matching of a given dna sequence to each of

the dna sequences in a predefined set. The matching degree of two sequences is

represented by a similarity, which is computed on the basis of the similarities of

their elements with respect to their spatial relations. The similarities between two

sequences are calculated one by one and put in an ordered tree, which is a recursive

data structure. To store a tree, we need two regions, one for the tree nodes and

another for the structures where similarities are stored. Other than this, in this

program there are assignments in different predicates that establish sharing among

similarity structures in such a way that all the similarities ever computed end up in

the same large region of 4M words. The maximal number of words in use during

a run of a program is about 4.6M. In the so-called region-friendly version rdna,

we make a fresh copy of each similarity and add the copy to the tree. This allows

the region analysis to decide that the region to which the similarity is copied is the

region of the nodes of the tree, and it can reclaim its previous region containing

all temporary similarities involved in its computation. The maximum amount of

memory needed drops from 4.6M words to only 0.5M words. The size of the largest

region also drops from 4M words to 0.43M words; in rdna, it contains only the

skeleton of the tree.

In Phan and Janssens (2009) we proposed a more desirable solution, a more

refined region analysis that, by taking into account different execution paths, can

keep apart the regions of variables in an assignment. A dedicated implementation

of improved analysis should achieve the same effect as changing life into rlife and

changing dna into rdna, without either requiring manual rewriting of the program

or incurring the cost of copying.

Another issue that we found was that one of the Mercury compiler’s existing

optimizations, common structure reuse, was reducing the effectiveness of our region’s

analysis. This optimization looks for conjunctions in which the same term is assigned

to two or more variables, and then changes the code so that the term is constructed

just once and then is assigned to all the variables. This is always an optimization for

the boehm system, but in cases where our region analysis would want to assign those

variables to different regions, making them refer to the same memory cell creates

unwanted sharing, and requires our region analysis to merge the two variables’

regions. In general, the unmerged regions would be reclaimed at different times.

Therefore, merging of two regions can delay the reclamation of an unbounded
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amount of memory by an unbounded amount of time. The best way to avoid

this problem is to teach the optimization about regions, and make it perform the

transformation only if the variables involved are in the same region.

The problems with memory reuse in RBMM in isort and queens are typical for

programs that use recursive data structures such as lists and trees, and continuously

update them by adding to them and deleting from them. Because the updated

structure normally shares most parts of the original, they are stored in the same

regions; this prevents us from reclaiming the now-obsolete parts of the original

structure. In risort and rqueens, we try to improve memory reuse by adding a

predicate to copy the modified structure so that the original region can be reclaimed

after copying. In risort, the copying happens after an integer is inserted, while

in rqueens it happens after a queen is deleted. This modification obtains optimal

memory management for risort (see Table 6). In rqueens, compared with queens, the

peak memory usage is higher. This is due to region protection: some disj-protected

regions are removed but not reclaimed, and instant reclaiming does not recover their

memory until later. However, the size of the largest region drops to 24 words, which

is the storage needed to represent a list of 12 queens.

While memory reuse can be improved by this copying approach, its runtime

overhead is very expensive. In Table 9 we see a 63% increase in runtime for rqueens

compared with queens, and for risort we have to reduce the input size by a factor of

10 (to 1,000 integers, compared with 10,000 integers in isort) to allow the program

to finish in a reasonable time. Similar problems with memory reuse in the presence

of recursive data structures can also be seen in dna and rdna, which insert similarity

structures into trees, and in bsolver, which reduces the domains of integral variables,

with the domains being represented as lists of integers.

The reason why bigcatch and filrev are not even faster is also related to recursive

data structures. In this case the structures are not updated and only a part of them

is used, i.e. only a part is live data, but that still requires us to keep the whole region

alive. Copying the live data out of the region would work just as well to recover

memory, and at just as high an overhead as in the previous case. We do not have an

automatic solution for the problems related to the use of recursive data structures

in RBMM-only systems, but then, neither does anyone else. The problem is well-

known among researchers who use type systems or type inference to reason about

memory structures (Baker 1990; Chase et al. 1990; Tofte and Talpin 1997; Henglein

et al. 2001) and who nevertheless have to accept the loss of precision as the price

of having a finite model. To improve storage use in such cases, one can combine

RBMM with other techniques, such as runtime or compile time garbage collection.

The copying approach used by our region-friendly benchmarks can be viewed as a

simulation of runtime copying garbage collection. Combining RBMM with copying

garbage collection has been realized in the MLKit (Hallenberg et al. 2002).

11 Related works

In this section we only mention the most important and most related papers. It is

not our intention to give a detailed overview of the research on RBMM for other
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programming paradigms. An in-depth review of RBMM research for functional

programming can be found in Tofte et al. 2004.

The research on automated region-based memory management for programming

languages started with the work of Tofte and Talpin (1997) for functional

programming, in particular for a simplified call-by-value lambda calculus. They

divide program terms into regions using a technique similar to unification-based type

inference in which the types have been annotated with region variables. The lifetimes

of the regions are computed on the basis of the lexical scope of the expressions,

and the regions themselves are forced to follow stack discipline, with the last region

created always being the first one destroyed. While lexically scoped regions and stack

discipline seem natural for the evaluation of lambda expressions and they simplify

the task of deciding region lifetimes, they often give regions lifetimes that are longer

than needed, increasing the program’s memory requirements. Possibly even more

important is that the cleanup they often require after a tail call also spoils tail call

optimization. Birkedal et al. (1996) refined this system in several ways, the most

important being storage mode analysis, which mitigates the problems caused by the

stack discipline by resetting regions to zero size when their contents are no longer

needed. However, to make this region resetting possible, programmers often have to

rewrite their programs in unusual ways.

While Aiken et al. (1995) also used a stack in their inference algorithm, they

nevertheless thought that forcing stack discipline on the lifetimes of regions is

too strict, and they decoupled region creation and removal, allowing regions to

have arbitrarily overlapped lifetimes. Going further in this direction, Henglein et al.

(2001) proposed an imperative sublanguage on regions. In their system, regions are

allowed not only to have arbitrary lifetimes but also to change their bindings. Their

regions also contain reference counters that can give their system more flexibility in

controlling their lifetimes. The most complete functional programming system with

RBMM is the MLKit (Tofte et al. 2006), which manages storage solely by RBMM.

This system, while still using stack discipline for the lifetimes of regions, supports

both resetting regions to zero size and runtime garbage collection within regions. Its

performance is competitive with other state-of-the-art SML compilers.

Our static region analysis and transformation for Mercury were inspired by the

work in Cherem and Rugina (2004), which also allowed arbitrarily overlapped

region lifetimes. The analyses in that paper take into account the data flow in a

Java program in order to determine the set of needed regions and their lifetimes.

Therefore the analyses had to be redefined for Mercury to deal with unification

and a control flow that are fundamentally different from object manipulation and

control flow in Java. Cherem and Rugina (2004) use the classes of Java to achieve

a finite representation of storage of (recursive) structures in terms of regions, but

their starting assumptions are different from ours. In our analysis, we start by

associating each variable with as many regions as its type requires (e.g. skeletons

and elements for list int), whereas they start by associating each variable with

only one region (the one for its class), and add other nodes later, on demand. In

the case of recursive types, we know from the start that all the list skeleton nodes

of a given variable are in the same region. Given a variable v of class c whose
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fields include, directly or indirectly, other variables of class c, they initially allocate

different nodes in the region graph to v and those other variables, and merge some

of those nodes only when they see a link between them. This complicates their

analysis, although in some cases it allows them to keep the regions separate and

thus free some memory earlier. In logic programs, recursive types are almost always

processed using recursive procedures, and such cases would be vanishingly rare.

Another difference between the two systems that is likely to be more important in

practice is that the liveness information we derive in Section 6 allows interprocedural

creation of regions, something that was not handled in Cherem and Rugina (2004).

This can give finer lifetimes to regions, which can result in better memory reuse in

certain situations. For example, for a region like R1 in p in Figure 13, the system

in Cherem and Rugina (2004) would force R1 to be live throughout p. If we had

replaced the atom at (4) with a recursive call to p (such as p(A - 1, B)), then their

system would build up all the temporary memory allocated at (1) in R1.

Note that using graphs to model storage is not at all new in research about heap

structures (Chase et al. 1990; Steensgaard 1996). Our graphs share many features

with annotated types where the annotation on each type constructor is a location

or region (see e.g. Baker 1990; Tofte and Talpin 1997). Baker (1990) and many

others have pointed out that such annotated types can also give information about

sharing, very similar to the concept of region-sharing in this paper.

The first application of RBMM to logic programming was the work of Makholm

(2000a, 2000b) for Prolog. He realized that backtracking can be handled completely

by runtime support, which can keep the region inference simple. However, the

Prolog system he used was not based on the usual implementation technology

for Prolog, the Warren Abstract Machine or WAM. This shortcoming was fixed

by Makholm and Sagonas (2002), who extended the WAM to enable region-based

memory management. The main differences between their and our works are that

Mercury supports if-then-elses with conditions that can succeed more than once,

and the Mercury implementation generates specialized code for many situations that

Prolog handles with a more general mechanism (for example, Mercury has separate

implementations for nondet and semidet disjunctions). The first difference required

new algorithms, while the second posed a tough engineering challenge in keeping

overheads down, since due to Mercury’s higher speed, any given overhead would

hurt Mercury more than Prolog.

12 Future work

Our RBMM implementation already has some support for profiling. When given

a certain option, the Mercury compiler will augment the RBMM support code it

generates with code that counts and keeps track of several things: the number

of region creations and removals, the amount of memory allocated in regions, the

maximum size of regions, the number and size of the embedded disj, ite, and commit

frames, and so on. This option was the source of the information in Tables 6, 7, 10,

and 11. We would like to modify this profiling mechanism to also report, for each

region variable (both old and new) at each resume point, the number of instant
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reclaiming attempts made at that point for that region variable, and the amount of

memory recovered in those attempts. We would like to then feed this information

back to the compiler so that it can find out the attempts that are too expensive for

the amount of memory they recover, so it can simply avoid generating them.

Our current system prevents the reclamation of regions that are forward dead

but backward live entirely at runtime. Such runtime protection is in fact necessary

in general. Given a procedure p and a region r with r ∈ deadR(p), p cannot know

whether some disjunction to the left of its caller makes r backward live or not. We

could handle this situation by generating three versions of p. The first version would

assume that r is backward live and therefore never reclaim r, the second version

would assume that r is backward dead, and therefore always reclaim r, and the third

version would make no assumption and would reclaim r only if it is not protected,

as in our current system. The caller would call the first version if it itself makes the

region backward live (e.g. the call may be in one disjunct, and a later disjunct in

that disjunction may need the region), or because the caller itself is a specialized

version that assumes that the region is backward live. The caller would call the

second version if it itself created the region, and if there is no nondet construct

between that creation and the call that could make the region backward live.

Unfortunately, a procedure’s deadR set may contain several regions, and given

n regions, we may need up to 3n copies of the procedure, which is far too many,

as that many copies would significantly degrade the effectiveness of the instruction

cache. Nevertheless, in some situations, the fraction of execution time spent in the

procedure may justify creation of one or more specialized copies of the procedure.

We eventually intend to implement an optimization that figures out which of the

possible specialized versions that can ever be called, attempts to compare their cost

in lost locality to the speedup we can expect from optimizing away unnecessary

remove instructions, and creates specialized versions if and only if the comparison

indicates that it is beneficial to do so. If a specialized version is not worth it, the

caller can call the original version of the procedure; since this does runtime tests on

all the removed regions before reclaiming them, it still works in all cases.

What we could improve without considering such complicated tradeoffs are

situations where the instruction that removes a region is in a procedure that itself

makes the region unconditionally protected at the removal site. In such cases, we

know statically that the removal will not actually reclaim the region, and therefore

we can simply optimize it away. If such protection is only conditional, we do have

to consider the tradeoff. Since we cannot guarantee optimizing away all protected

removals, the mechanisms we described in Section 9 will always be needed.

The main limitation of our work is that currently the program analysis underlying

our system supports only a subset of Mercury. We intend to work on extending the

analysis to handle the rest of the language. Since we already handle almost all of

Mercury, “the rest of the language” covers only a few features: Mercury procedures

defined in foreign languages, multi-module programs, and higher order code. To

handle them, we need to ensure two things. First, the callers and callees involved in

calls to foreign language code, cross-module calls, and higher order calls all agree

on the liveness of the regions involved in the call; and second, they all agree on
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the sharing between those regions. The first one is relatively easy to achieve by

simply setting the bornR and deadR sets of those calls to empty. This will work;

any creations and removals of the regions that would have been in those sets will

happen around the call. The cost is that it may increase the program’s memory

consumption, although only to the levels seen in some other RBMM systems. The

real problem is the second issue: getting consensus between callers and callees on

sharing.

Handling foreign language procedures. Always setting the bornR and deadR sets of

foreign language procedures to the empty set avoids burdening programmers with

the responsibility for managing the creation and removal of regions. Since most

foreign language procedures do not allocate any memory, their writers do not need

to know anything about regions at all. The foreign language procedures that do

allocate memory need to know where the allocation of each cell will happen. In a

hybrid system that combines RBMM with the Boehm collector, it is simple enough

to let such foreign procedures keep doing what they do now, that is, doing all their

allocation on the Boehm heap. An RBMM-only system would need to make the

region arguments added to each procedure by our transformation visible to the

programmer, and document which of these region variables represent which part of

each of the arguments originally created by the programmer, so that when he or

she writes code to create a new cell that will become part of a term that will be

bound to an output argument, they can allocate it in the right region. We would

also need to give programmers a mechanism that they can use to tell the compiler

about any sharing they create between the regions; our Algorithm 3 could then

take this information on trust. As for temporary structures that can never become

part of an output argument, programmers can put them where they wish. They can

put them in memory managed by malloc and free (if the foreign language is C)

and their equivalents (if the foreign language is something else), or if we expose

the functions for creating and removing regions, they can put them in one or more

programmer-managed regions.

Handling multi-module programs. Our current implementation actually allows cross-

module calls; if a program cannot call the procedures in the standard library’s I/O

module, then it cannot print out its results. The reason why we cannot yet handle

multi-module programs in general is that currently we do not do any region analyses

across modules, and hence we never pass region variables or any other information

about regions from one module to another.

The reason why implementing region analysis in multi-module programs is hard

is that the fixpoint computation in Algorithm 3 is inherently incompatible with

separate compilation. Mercury’s compilation system ensures that when a module

changes, all other modules dependent on its interface will be recompiled before the

building of the executable, but it guarantees that this will take a bounded number

of steps. As it is, Algorithm 3 cannot provide a similar guarantee; the procedures

in a single SCC may be in different modules, and each iteration of the search for

the fixpoint must analyze code in each of those modules. We therefore need to

either change the algorithm, or make the compilation system flexible enough to
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encompass fixpoint computations that need an unbounded number of iterations. We

have looked at the second option in the past, using the ideas of Bueno et al. (2001)

as the basis, but even if it were implemented, being able to limit the number of

iterations would help compile programs more quickly. There are some assumptions

we can make that can help with that. For example, we can assume that all input

variables of cross-module calls are in regions that the callee will not allocate or

remove; if their last use is during the call, the caller will remove them upon return.

This loses some precision and therefore reduces the efficiency of memory reuse,

but this is a known and fairly widespread problem: most program analysis and

optimizations lose precision at module boundaries, and in almost every case this is

seen as an acceptable tradeoff. The challenge will be in coming up with mechanisms

for handling the regions of output variables that still allow memory to be recovered

effectively enough. We have some ideas, but no solutions yet.

Handling higher order code. Mercury supports two forms of higher order calls:

calling an ordinary higher order term (a closure), and calling a typeclass method.

The challenge in both cases is that the identity of the called procedure may not

be apparent when the calling module is compiled, which prevents Algorithm 3

from analyzing it. There are two avenues of possible solutions. First, the Mercury

compiler already contains an analysis that attempts to find out the procedures that

each higher order value may call. If this analysis succeeds, an adapted version of

Algorithm 3 can convey the requirements of the calling context to these procedures,

and convey to the caller the worst-case demands that any of the callees may make

(e.g. in terms of the nodes that they need to be merged to reflect their sharing).

Second, in case the analysis fails (which may happen, for instance, because the caller

picks up those higher order values from a data structure created elsewhere), we need

an interface between caller and callee that is standard and thus does not require

negotiation (which is what the fixpoint iteration in Algorithm 3 represents).

Our search for this standard interface will not be restricted to RBMM-only

systems. We will also look at hybrid systems in which RBMM coexists with the

Boehm general purpose garbage collector, each looking after some of the program’s

memory. Hybrid system that combine RBMM with a runtime collector have proven

useful in other contexts (Hallenberg et al. 2002), and they may prove useful in this

one as well. We do not intend to look at hybrid schemes that integrate RBMM with

Mercury’s accurate garbage collector, since that collector is actually significantly

slower than the Boehm collector (Henderson 2002). We do, however, intend to look

at integrating our RBMM system with the compile time garbage collection scheme

reported in Mazur et al. (2000, 2001, 2004).

13 Conclusion

We have made region-based memory management available as an alternative storage

management technique for programs written in a very large subset of Mercury. This

involved the design and implementation of two program analyses (region points-to

analysis and region liveness analysis) and a program transformation, the modification

of the Mercury code generator to use the information produced by the analyses and
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transformation to generate code that uses RBMM to manage its memory, and the

implementation of primitive operations used by the generated code.

We provide termination and correctness theorems for our region analyses and

transformation algorithms. These ensure the safety of memory accesses and region

operations with respect to forward liveness. Our discussions in Section 9 also strongly

argue that our runtime support operations guarantee the safety of memory accesses

and region operations with respect to backward liveness (i.e. in the presence of

backtracking). These operations also instantly reclaim the memory allocated by

backtracked-over computations, which help programs to reuse memory effectively.

The main challenge for the runtime support is to support backtracking correctly

without incurring significant overhead, especially in deterministic code. Our

experiments show that using RBMM instead of the Boehm collector yields nontrivial

speedups for 15 out of our 18 benchmark programs, these speedups ranging from

near 10% to a remarkable more than 60%. We even get large speedups for some

benchmarks that are known to be difficult cases for RBMM. This indicates that the

runtime support we provided for backtracking incurs very modest overhead in most

cases, contributing to the overall better performance.

The memory use results of benchmarks are also positive: in some programs we

obtain optimal memory consumption. On average, our benchmarks require about

one-twentieth the memory with RBMM than with the Boehm collector (only 5%),

and even if we exclude the region-friendly programs, the figure is about one-

eighteenth (5.4%). This even before including any of the optimizations that have

been studied for RBMM, such as stack allocation of regions (Birkedal et al. 1996;

Cherem and Rugina 2004), and merging regions that are removed at the same

points (Makholm 2000a).

Everything we have described is available in current releases-of-the-day from

the Mercury web site. The experimental setup for this paper is available from

http://www.cs.kuleuven.be/~gerda/rbmm/rbmm benchmarks.tar; it includes

the benchmark programs as well as the benchmarking script.
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