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ABSTRACT

How do infants find the words in the speech stream? Computational

models help us understand this feat by revealing the advantages and

disadvantages of different strategies that infants might use. Here,

we outline a computational model of word segmentation that aims both

to incorporate cues proposed by language acquisition researchers and

to establish the contributions different cues can make to word segmen-

tation. We present experimental results from modified versions of

Venkataraman’s (2001) segmentation model that examine the utility

of : (1) language-universal phonotactic cues; (2) language-specific

phonotactic cues which must be learned while segmenting utterances;

and (3) their combination. We show that the language-specific cue

improves segmentation performance overall, but the language-universal

phonotactic cue does not, and that their combination results in the

most improvement. Not only does this suggest that language-specific

constraints can be learned simultaneously with speech segmentation, but

it is also consistent with experimental research that shows that there

are multiple phonotactic cues helpful to segmentation (e.g. Mattys,

Jusczyk, Luce & Morgan, 1999; Mattys & Jusczyk, 2001). This result

also compares favorably to other segmentation models (e.g. Brent,

1999; Fleck, 2008; Goldwater, 2007; Johnson & Goldwater, 2009;

Venkataraman, 2001) and has implications for how infants learn to

segment.
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INTRODUCTION

How do infants come to identify words in the speech stream? Adults break

up speech into words automatically and effortlessly, without realizing that

there are no pauses between words in the same sentence. Unlike many

written languages, speech does not generally have reliable markers for word

boundaries (Cole & Jakimik, 1980). When such markers can be found, they

vary across languages (Cutler & Carter, 1987). These facts make the task of

isolating the cues used for picking out words from a speech signal especially

difficult. The task facing the human infant is more daunting. Adults have

a lexicon they can use to recognize familiar words in the speech stream, but

when infants are born, they have no pre-existing lexicon to consult. In

spite of these challenges, by the age of six months, infants are already

segmenting some words from speech (Bortfeld, Morgan, Golinkoff &

Rathbun, 2005).

Here we present an efficient word segmentation system called

PHOCUS, for PHonotactic CUe Segmenter, aimed to model how

infants accomplish this task. There are four main contributions of this

work. First, this model shows that the use of phonotactic cues improves

the accuracy of existing segmentation models. These findings support

the hypothesis that phonotactic cues are useful for segmentation (Mattys

et al., 1999; Mattys & Jusczyk, 2001). Second, the model shows that

it is possible to learn language-specific phonotactic constraints while

simultaneously segmenting words. These two processes feed each other

with the model initially learning phonotactic constraints from entire

unsegmented utterances. This helps the model segment later utterances,

which consequently helps the model refine the constraints it extracts

from the developing lexicon. Third, this model shows that the language-

universal concept of a syllable greatly facilitates the above results, but is

of little value when used on its own. Finally, we propose a general

phonotactic-learning model to be embedded within a word segmenter

in order to facilitate the study of the relative importance of a variety

of phonotactic cues. Such a model potentially allows the systematic

investigation of the contributions particular phonotactic cues and their

combinations make to the segmentation process at different epochs,

providing a framework within which collaborative efforts between modelers

and experimentalists can obtain a deeper understanding of how infants

come to segment speech.

Hereafter, we use the phrase ‘word segmentation’ to mean some process

which adds word boundary symbols to a text that does not already contain

them. A word segmentation model is a computational implementation of

this process. This begs the question of what constitutes a word, which

we discuss in the first section below. This paper does not directly address

the problem of segmenting auditory linguistic stimuli, but any word
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segmentation model could easily be plugged into a system that recognizes

phonemes from speech (e.g. Mohri, 2005).

PHOCUS is an unsupervised and incremental algorithm. That is, it

does not rely on pre-existing knowledge of a particular language, and it

segments the corpus one utterance at a time. This is in contrast to

supervised word segmentation algorithms (e.g. Teahan, McNab, Wen

& Witten, 2000). Essentially, supervised learners receive correct seg-

mentations as feedback. In practice, this amounts to supplying a lexicon

beforehand since these models are typically used for segmenting text in

documents written in languages that do not put spaces between their

words – like Chinese. The model presented here also differs from batch

segmentation algorithms (e.g. Fleck, 2008; Goldwater, 2007; Johnson &

Goldwater, 2009), which process the entire corpus at least once before

outputting a segmentation of the corpus. Unsupervised incremental

algorithms are of special interest in modeling infant segmentation given

that: (1) infants do not have an a priori lexicon; and (2) memory limitations

suggest that it is unlikely that infants process large batches of linguistic

information at once.

Unsupervised incremental algorithms are especially challenging to

develop, as there is very little information for learners to use to make

decisions at the beginning. This contrasts with supervised systems which

have an a priori lexicon, and batch systems which may examine the

whole corpus for trends before segmenting. Furthermore, because the

algorithm is unsupervised there is no external feedback which lets it

know when a particular segmentation is incorrect. Consequently if poor

decisions are made, it may be impossible for unsupervised incremental

algorithms to recognize the error and reverse the errors in the future.

Even worse, early errors can trigger many more (a relevant example is

given later).

This article first outlines a framework of word segmentation based on

what is known about how children segment utterances. We also describe

the Emergent Coalition Model (ECM) (Golinkoff & Hirsh-Pasek, 2006;

Hollich et al., 2000) of word learning, which serves as a theoretical impetus

for the view of multiple, competing cues for segmentation presented

here. The second section introduces the segmentation models of Brent

(1999) and Venkataraman (2001), which are very similar in character.

Venkataraman’s model forms the basis for PHOCUS, and therefore

becomes a baseline against which to compare it. The theoretical motivation

for using phonotactics for segmentation is covered in the third section.

The next two sections present the phonotactically enhanced segmentation

model, and compare its performance to different segmenters on multiple

corpora. We close with a discussion of future work and the conclusions we

can draw from the current results.
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A FRAMEWORK FOR WORD SEGMENTATION

Cues for segmentation

Although first investigated in the 1950s (Harris, 1954), word segmentation

is a research topic that has seen a surge in popularity in the past fifteen

years. Researchers have uncovered a number of cues that infants appear to

use to segment speech (Saffran, Werker & Werner, 2006). We consider two

classes of cues for which there is much evidence: use of familiar words and

phonotactic cues.

Familiar words. Infants, like adults, can use familiar words to help them

discover new words in the speech stream. However, it is not clear that

infants are associating any semantic information with these word forms.

This view is consistent with Jusczyk’s (1993) WRAPSA hypothesis that

infants first obtain phonological forms which are then filled with meaning.

Bortfeld et al. (2005) showed that six-month-olds could use familiar words

(their own name and some version of mother) to identify new words in

utterances. Using the Head-Turn Preference Paradigm (Nelson, Jusczyk,

Mandel, Myers, Turk & Gerken, 1995), Bortfeld et al. (2005) presented

infants with a novel word that followed their name (e.g. I like Sally’s wug).

At test, infants listened longer to the word that followed their own name

than to a word that followed someone else’s name with the same number

of syllables and the same stress pattern. Not only can children use familiar

content words, Shi & Lepage (2008) showed that French-reared eight-

month-olds could use frequent function morphemes, such as des and mes, to

segment speech. This research supports the hypothesis that once infants

recognize some words, they can use them to add new ones to their lexicon.

However, the question of how the first words are extracted is still

unanswered. According to Brent & Siskind (2001), infants learn these first

words from one-word utterances. If infants are predisposed to consider

utterances as words, then they will add entire multisyllabic utterances to

their lexicons at first. Although this results in many initial mistakes, as

long as some utterances infants hear consist of one word, this strategy could

be enough to bootstrap the lexicon. According to Brent & Siskind (2001),

as much as 10 percent of infant-directed speech is made up of one-word

utterances. It is also plausible that infants use discourse cues like rephrasing

(as when parents put the same word into different places in the utterance),

and that familiar phrases (such as Look at the __ !) would serve as indicators

of a word boundary just as well as individual words.

Phonotactic cues. The phonotactics of a language are language-specific

conditions that determine whether a word is well-formed or not (Chomsky

& Halle, 1965; Halle, 1978). For example, although English words may

contain the velar nasal [n] (e.g. sing [sIn], Lincoln [lInkn] ]), no words in

English begin with this sound. Furthermore, adult native speakers of
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English would not name objects or actions with logically possible words

which begin with [n], such as ngep [nEp]. They also judge nonce words

beginning with [n] ([nEp]) as ‘worse’ than words which are the same in

all other respects ([nEp]) (Sapir, 1925). Many other languages allow [n]
word-initially, so this phonotactic constraint is specific to English.

We consider phonotactics to be synonymous with word well-formedness,

and not exclusively to mean phoneme combinations. Thus, any rules that

govern how subunits of words may combine to form well-formed words

count as phonotactics. Consequently, even stress patterns can be considered

a kind of phonotactic constraint that operates across syllables.

Studies show that infants learn phonotactic patterns of different types

by roughly eight months of age (Friederici & Wessels, 1993; Jusczyk,

Friederici, Wessels, Svenkerud & Jusczyk, 1993; Jusczyk, Houston &

Newsome, 1999; Thiessen & Saffran, 2003). This has led researchers to

propose that infants use their knowledge of word well-formedness to help

them segment text. At the lowest level, infants’ sensitivity to permissible

allophonic variations helps them find word-like units. Jusczyk, Hohne &

Baumann (1999) showed that seven-and-a-half-month-olds use their

knowledge of allophonic variation to segment utterances (nitrate [naI.tjreIt]
vs. night rate [naIt reIt]). At the next level, knowledge of which phonemes

occur together in their language assists infants in making appropriate

segmentations. The idea is simple – if infants know that words do not begin

with [n], for example, then when faced with an utterance like Sing it! [sInIt],
they will not be tempted to segment the utterance into words [sI] and [nIt].
Similarly, Mattys & Jusczyk (2001) showed that nine-month-olds can seg-

ment speech by using the difference in probabilities between within-word

and across-word consonant clusters. For example, the novel phrase fang tine

[fan taIn] is segmented as it is because [nt] does not occur within English

words. On the syllabic level, infants come to identify predictable stress

patterns. Jusczyk, Houston & Newsome (1999) showed that seven-and-a-

half-month-olds take advantage of the trochaic stress pattern found in most

words in English to segment utterances.

Although word well-formedness is logically distinct from transitional

probability, a working hypothesis in probabilistic models of phonotactic

learning equates them (e.g. Coleman & Pierrehumbert, 1997; Hayes &

Wilson, 2008). This is because both transitional probabilities and phono-

tactics can be expressed in terms of conditional probability. Continuing the

example above, the probability that [t] follows [n] is vanishingly small.

Accordingly, word-internal [nt] sequences are considered ill-formed (so

infants posit word boundaries between them).

Finally, infants compute the transitional probabilities between syllables

or phonemes to find words in speech. Saffran, Aslin & Newport (1996)

showed in experiments that eight-month-olds segment utterances based
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on lower transitional probabilities that existed both at the syllabic

and phonemic levels of the training data. Under the working hypothesis

mentioned above, transitional probabilities between syllables can be con-

sidered a kind of phonotactic constraint : well-formed multisyllabic words

are those whose syllables have high transitional probabilities.

The only limits to the number and kind of phonotactic cues potentially

useful for word segmentation are the number and kind of phonotactic

patterns found in natural languages. In addition to the co-occurrence

restrictions and stress patterns mentioned above, it is plausible that infants

also make use of consonantal and vowel harmony patterns to segment speech,

though to our knowledge this has not been investigated experimentally.

The challenge. The evidence suggests infants do make use of phonotactic

cues to segment utterances. However, this leads to a chicken-and-egg

conundrum. Since phonotactic constraints govern the well-formedness

of words – as opposed to utterances – how do children learn these language-

specific phonotactic constraints without a lexicon? Many phonotactic-

learning models take word-sized units as input (e.g. Coleman &

Pierrehumbert, 1997; Hayes & Wilson, 2008; Heinz, 2007), which is not

necessarily representative of how infants approach the problem. Word

segmentation models, however, take as input utterances without word

boundary markers, necessitating that phonotactic constraint discovery

and word discovery happen simultaneously.

One of the main contributions of this paper is that we show that, with the

right model, the phonotactics of a language can be learned simultaneously

as children segment words. Essentially, our model jump-starts the lexicon

using isolated words as discussed above. This tiny lexicon allows the learner

to infer some rudimentary language-specific phonotactic constraints, which

in turn helps in segmenting additional words. Knowledge of familiar

words, combined with increasingly refined phonotactic constraints, support

and reinforce each other in speech segmentation. Brent & Cartwright (1996)

took a step toward using phonotactic cues for word segmentation with a

semi-supervised model, which learned acceptable consonant clusters at the

beginning and ends of unsegmented utterances, and then used those clusters

as phonotactic constraints for segmentation. Similarly, Fleck’s (2008)

WordEnds model segments by learning what clusters of phonemes of

variable length are most predictable word-initially and word-finally.

PHOCUS differs from both of these models in that it is neither learning

only word-initial and word-final constraints, nor making an initial pass

over the entire corpus to learn these constraints before outputting a

segmentation.

How multiple cues get along. The aforementioned cues have been studied

in isolation in controlled experimental contexts to determine whether they

were factors in word segmentation for a particular age group (but see
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Thiessen & Saffran, 2003; Toro, Nespor, Mehler & Bonatti, 2008). As a

result, researchers could know neither whether infants paid more attention

to one cue or another, nor at what age different cues became accessible to

infants. Later research has begun to address these questions. Some cues

come in before others – such as frequently occurring words (Bortfeld et al.,

2005) before stress patterns (Jusczyk, Houston & Newsome, 1999). This

is likely because frequency matters: infants often hear a core of highly

common words (their own name, mommy, etc.) in all positions within

utterances (initial, medial and final), but hearing a variety of words would

be especially useful for inferring their language’s dominant stress pattern.

Another byproduct of studying cues in isolation is that thus far there has

been little work on whether these cues complement each other. At the same

time, cues may form a ‘coalition’ and come together to determine plausible

segmentations; they may even compete, or interfere, with one another as

new cues come on-line. For example, Thiessen & Saffran (2007) have

argued that statistical cues (such as the probability that one syllable reliably

follows another) precede stress cues in their use. Furthermore, to our

knowledge no approach has yet attempted to uncover how the use of early

segmentation cues influences the emergence of subsequent cues.

Emergent Coalition Model of word learning as it applies to segmentation

The approach adopted here is inspired by the Emergent Coalition Model

(ECM) of word learning (Golinkoff & Hirsh-Pasek, 2006; Hollich et al.,

2000). Although word segmentation may be considered a different (though

not unrelated) process to word learning, there are many similarities.

The ECM is a hybrid model of word learning that has three fundamental

tenets. First, children are surrounded by multiple cues to word learning:

perceptual, social and linguistic. Each type of cue is not always accessible,

reliable or harnessed by the infant for word learning. Second, word-learning

cues change their relative importance over time. Although a range of cues in

the coalition is always available, not all cues are equally utilized in the

service of word learning. Children beginning to learn words rely on a

perceptual subset of the available cues in the coalition, and only later do

they recruit social cues like a speaker’s eye gaze and handling of an object to

learn words (Hollich et al., 2000). Third, the principles of word learning are

emergent, changing over time. Infants may start with an immature principle

of reference, such that a word will be mapped to the most salient object and

not necessarily to the one the speaker is naming. Later, children sensitive to

speaker intent map a word onto an object from the speaker’s point of view

by using the speaker’s social cues.

Although the cues differ in the domain of segmentation, the same general

tenets can be maintained. That is, there are multiple cues to segmentation
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(familiar words and a variety of phonotactic cues), though not every cue is

always accessible, reliable or harnessed. Children appear to rely on different

cues across developmental time (Thiessen & Saffran, 2003). Furthermore,

in the same way that the cues for word learning change over time, the later-

appearing cues for segmentation may emerge from the application of the

early-appearing cues. Thus, the process of segmentation itself undergoes

change with development as more cues are discovered by the infant.

Each of these tenets makes empirical predictions about the developmental

course of segmentation. The virtue of modeling segmentation is that it

helps us understand why certain cues fall out or emerge from the use of

earlier cues, potentially explaining earlier experimental results, as well as

suggesting further experiments to test predictions the model makes.

What is a word?

When developing a computational procedure to segment utterances into

words, one immediately faces a thorny question: What exactly constitutes a

‘word’? This question has proved difficult for linguists. Matthews (1991),

in a seminal book on morphology, waited until page 208 to say, ‘there have

been many definitions of the word, and if any had been successful I would

have given it a long time ago, instead of dodging the issue until now’.

Here we follow Dixon & Aikhenvald’s (2002) illuminating discussion of

words in natural language. There are phonological words, grammatical

words and orthographic words. Grammatical words are defined as consist-

ing of ‘a number of grammatical elements’ that cannot be separated, ‘occur

in a fixed order’ and ‘have a conventional coherence and meaning’ (Dixon

& Aikhenvald, 2002).1 Conversely, a phonological word can be defined

roughly as a unit of at least one syllable such that there are phonotactic

constraints governing its structure, and/or some phonological rules can

only apply within or between such units. One example highlighting the

difference between the two types of words in English is it’s. It’s consists of

two grammatical words (it and s), but only one phonological word (it’s).

This is because s is a clitic, and while it has a distinct meaning, it cannot

stand on its own as a phonological word, as it does not consist of at least

one syllable. Orthographic words, which are determined by a society’s

writing conventions, do not necessarily line up with either phonological or

grammatical words, though they often line up with one or the other (Dixon

& Aikhenvald, 2002).

As our computational model operates over phonetically transcribed text,

and one of our goals is to examine the contribution phonotactic cues make to

[1] There are a number of possible exceptions to these criteria, but in general, the definition
seems to hold.
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the segmentation process, our target unit for extraction is the phonological

word. If we were to use grammatical words, the model would not be

learning phonotactic constraints over the correct domain and would not be

developmentally appropriate, as they are not the type of words infants first

acquire.

PHOCUS : A PHONOTACTIC CUE SEGMENTER

Baseline model

In this section, we describe PHOCUS. Essentially, PHOCUS is a modified

version of Venkataraman’s (2001) model and is similar to MBDP-Phon

(Blanchard & Heinz, 2008). The code for PHOCUS, along with documen-

tation for installation and usage is available at http://cis.udel.edu/yblanchar/

research/.

What properties would a model of word segmentation have that would

most resemble what an infant might do? First, the model should work

incrementally, segmenting each utterance as it encounters it, rather than

waiting until it has seen the entire corpus. Second, the model should not be

heuristically biased such that it overlooks a possibly correct segmentation.

Finally, the model should base its segmentation decisions on the lexicon

it has acquired so far. Such a model allows the incorporation of word

well-formedness conditions that are acquired from the current lexicon.

One additional criterion when designing a model of word segmentation

is grounded in the computational domain. The model must be probabil-

istically sound; that is, it must describe a probability distribution over all

logically possible words that sums to one. This ensures that the model

functions in a more predictable fashion, making it easier to conduct analyses

of the factors that effect its performance.

There is one well-known model which satisfies the aforementioned

constraints: the one described by Venkataraman (2001). This model uses

the idea of isolated words at its core. That is, it adds whole utterances to its

lexicon when it is completely unsure of how to segment a string. It also

learns the most rudimentary of logically possible phonotactic constraints :

words that contain frequently observed phonemes are better than those

with rare phonemes (e.g. ‘words containing [n] are better than words

containing [n] ’). While this may seem like an overly simple approach to

deciding word well-formedness, Venkataraman’s model, along with

MBDP-12 (Brent, 1999), was the most accurate unsupervised word

segmentation systems until Goldwater (2007). Both Brent (1999) and

Venkataraman (2001) suggested that their models should be extended to

[2] MBDP stands for Model-Based Dynamic Programming. The ‘1’ indicates Brent’s desire
for the development of subsequent versions.
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incorporate more sophisticated, natural language-like phonotactic models,

such as the one presented here.

Although Venkataraman’s model is almost functionally identical to

Brent’s MBDP-1 (which Venkataraman (2001) explains is due to some of

the terms in his model being approximately equivalent to the terms in

Brent’s (1999) model and vice versa), there is one important difference.

Venkataraman’s model initially assumes a uniform probability distribution

over the phonemes, whereas MBDP-1’s initial state assumes no well-formed

probability distribution over the phonemes. Not only does this make

MBDP-1 not probabilistically sound, it makes its performance much less

predictable, as we discuss below (see Goldwater (2007) for additional

discussion). We implemented Venkataraman’s model and were able to

replicate the results in the 2001 paper.

PHOCUS, illustrated in Figure 1, is very similar to Venkataraman’s

(2001) model. It initially assumes an empty lexicon. When given an

utterance, PHOCUS chooses the most likely segmentation from all possible

segmentations. The likelihood of any particular segmentation is obtained by

multiplying together the probabilities of the individual words that make

up the segmentation. How PHOCUS determines the likelihood of any

particular word depends on whether it is familiar (i.e. exists in the current

lexicon) or not. If it is familiar, its probability is equivalent to, considering

all words posited so far, the percentage of words that are the familiar one.

When a word is unfamiliar (i.e. not in the lexicon), PHOCUS assigns a

likelihood to it based on its phonotactic well-formedness. When the most

likely segmentation is determined, the frequency counts in the lexicon are

updated. Consequently, any unfamiliar words in the segmentation are

added to the lexicon, and are henceforth considered familiar. As a result of

Input

z

Possible 
Segmentations

Current Lexicon

New words

Potential Words

z
For each word...

In lexicon?

Yes No

Word 
score based 

on frequency of
word in 
lexicon

Word score 
based on 

phonotactic 
cues

Multiply with other word scores 
to get segmentation score

Best Segmentation Highest 
Score

Fig. 1. PHOCUS: Venkataraman’s model with n-grams over phonemes, n>1.
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this procedure, the first utterance of any corpus is added to the lexicon

as a whole word, in accordance with Brent & Siskind’s (2001) observations

discussed earlier.

Where PHOCUS departs from Venkataraman (2001), is the phonotactic

cues employed which determine a word’s well-formedness. There are two

phonotactic cues used to evaluate unfamiliar words. The first determines

word well-formedness based on phoneme combinations. Since languages

differ in the kinds of phoneme combinations that are allowed within

words, this is a language-specific phonotactic that must be learned. The

idea is simple: segmentations that include words with unlikely phoneme

combinations are less well-formed. The second phonotactic is a universal

constraint : well-formed words must have at least one SYLLABIC sound.

A sound is syllabic if it is the nucleus of a syllable in a word. In English

all vowels are syllabic, and there are also syllabic [l,n,r] sounds (e.g. bottle

[batl]], button [bvtn] ], butter [bvtr]]). As explained below, the syllabic con-

sonants are transcribed differently from their non-syllabic counterparts in

the English corpus we test PHOCUS on.3 Unlike the phoneme combination

phonotactic, this constraint is plausibly a priori, and does not need to be

learned. This is because phonological words are made up of syllables, and

syllables must have a nucleus.

Phoneme combinations

According to the phoneme combination cue, the likelihood of an unfamiliar

word is determined by the likelihood of phoneme combinations within it.

This differs from Venkataraman (2001), which only uses the likelihood

of individual phonemes. The probabilities of phoneme combinations can

be modeled with a traditional N-GRAM model over phonemes. An n-gram

model is one that estimates the probability of a sequence by calculating

how frequently different subsequences of phonemes (of length n) occur

in the corpus (Jurafsky & Martin, 2008). For example, suppose PHOCUS

encounters the string He’s right [hizrait] and then considers the one-word

segmentation [#hizrait#] (# is the word boundary symbol). With n set to

two, the n-gram model estimates the probability of the word [#hizrait#]

by multiplying the conditional probabilities of the phoneme pairs that it

consists of ([#h], [hi], [iz], [zr], [ra], [ai], [it] and [t#]). The likelihood of a

phoneme n-gram is determined by dividing its frequency by the frequency

of its (nx1) long prefix. PHOCUS initially assumes a uniform probability

distribution over the phoneme n-grams. In the example above, if none of

[hiz], [rait] or [hizrait] is in the lexicon, the idea is that PHOCUS may

[3] The syllabic consonants are plausibly distinguished acoustically from their non-syllabic
counterparts (Toft, 2002; Xie & Niyogi, 2006).
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prefer the segmentation [#hiz#rait#] over [#hizrait#] because by this point

the bigram [zr] has such a low likelihood (i.e. by this point the algorithm

has learned [zr] is such an unlikely combination), that it drastically reduces

the overall score of [#hizrait#], but not [#hiz#rait#].

PHOCUS updates the frequency counts of the phoneme n-grams

immediately after it updates the lexicon. The frequency counts of the

phoneme n-grams are calculated from the lexicon, not the corpus (i.e. we

measure n-gram frequencies from word types, not word tokens; see

Venkataraman, 2001, for discussion).

We refer to the model which keeps track of phoneme n-grams as

PHOCUS-n (PHOCUS-1 is identical to Venkataraman’s (2001) model).

In other words, the model can be made to find words and at the same

time keep track of single phonemes (PHOCUS-1), phoneme pairs

(PHOCUS-2) or phoneme triples (PHOCUS-3). Below we report results

for PHOCUS-1, PHOCUS-2 and PHOCUS-3. We do not consider

n-grams n greater than 3 since such models often run into the problem of

overfitting (Jurafsky & Martin, 2008). That is, when the length of the

phoneme n-grams is too long, the model will not see enough examples of

n-grams of that length (as there are exponentially more possible n-grams

as the value of n increases), and will not learn general enough phonotactic

constraints.

Requiring syllabic sounds

The other phonotactic cue PHOCUS uses is a constraint that requires

hypothetical words to have syllabic sounds. If a hypothetical word does

not have a syllabic sound, it receives a likelihood of zero. Because the

probability of any segmentation is the product of the probabilities of each

word in it, any segmentation of an utterance which contains a word with

no syllabic element receives a probability of zero. For example, the

segmentation of he’s right as [#hi#zr#ait#] would receive a likelihood of

zero because the hypothetical word [zr] has no syllabic element.

We refer to the model with only this syllabic constraint, and no attention

to phoneme combinations, as PHOCUS-s. In the next section we report

results with PHOCUS-s, as well as its use in combination with PHOCUS-2

and PHOCUS-3.

MODEL EVALUATION

The corpora

Computational models are evaluated by studying their performance

on different corpora. Generally, a model is deemed more successful if it

effectively segments utterances in a variety of languages. Here we used two
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child-directed corpora, one in English and one in Sesotho (Bantu), to test

the model’s generality.

Bernstein-Ratner (1987) corpus. The Bernstein-Ratner (1987, hereafter

BR) corpus from the CHILDES database (MacWhinney & Snow, 1985)

consists of 9,790 utterances containing 33,399 words of English infant-

directed speech. The BR corpus is the same one that Brent (1999),

Venkataraman (2001), Goldwater (2007), Fleck (2008) and Johnson &

Goldwater (2009) used to evaluate their models, and it has become the de

facto standard for segmentation testing ever since it was phonemicized by

Brent & Cartwright (1996).

The transcription system described in Brent & Cartwright (1996) makes

some unorthodox choices. In particular, complex sounds traditionally

transcribed with multiple symbols are transcribed with only one. These

include diphthongs and vowels followed by /r/. Another decision was to use

different symbols for stressed and unstressed syllabic /r/ – that is, there are

different symbols for the /r/ in butter and the /r/ in bird – though stress is not

marked elsewhere in the corpus. Following Blanchard &Heinz (2008), we use

a modified version of the corpus where the bi-phone symbols were split into

two4 and the syllabic /r/ symbols were collapsed into one. Blanchard & Heinz

(2008) showed that current segmentation models do worse on the modified

BR corpus, because the models have to learn that the diphthongs always

co-occur without incorrectly grouping them together into their own words.

Sesotho corpus. Johnson (2008) trimmed the Demuth (1992) corpus from

the CHILDES database (MacWhinney & Snow, 1985) of speech between

mother–child dyads to include only the child-directed speech. He did not

convert the orthography to phonemes, because the writing system for

Sesotho is nearly phonemic to begin with.5 The final corpus contains 8,503

utterances consisting of 21,037 word tokens.

Evaluation procedure

As a general guide to a model’s performance, we used a standard metric in

computational linguistics : a combination of precision and recall, known as

the F0 score. Precision (also known simply as accuracy in the cognitive

science community) is the percentage of items identified that are correct.

Recall (also known as completeness) is the percentage of correct items

identified. To illustrate the difference between these two measures, a

segmentation system could achieve a boundary precision of 100% by simply

[4] Only diphthongs whose first phoneme can occur in isolation in English were split, so the
vowels in bay and boat were not split.

[5] In addition to vowels, nasals sounds and the lateral liquid [l] can be syllabic in Sesotho.
However, these sounds are not marked as such in the transcription, and so we treated all
[l] and [n] sounds as non-syllabic.
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inserting one correct boundary into the entire corpus, because 100% of the

boundaries it inserted would be correct (although lacking all others). On the

other hand, a segmentation model could achieve a boundary recall of 100%

by inserting word boundaries between every phoneme in the corpus,

because it would insert all of the correct boundaries (in spite of many

extras). It is clear that neither precision nor recall is sufficient, and so

the harmonic mean is used, called F0.
6 We follow earlier researchers in

reporting precision, recall and F0 scores for word identification (as opposed

to boundary), since words are the ultimate goal of the segmentation process

(Brent, 1999; Goldwater, 2007).7

Despite representing an appropriate balance between precision and recall,

F0 can still be misleading for several reasons. First, precision and recall are

measured with respect to orthographic words, though PHOCUS is trying

to segment phonological words. We would like to see phonological word

corpora developed in the future, but this time-consuming process is beyond

the scope of this work.

Second, the kinds of errors the segmenters make can be more informative

thanF0. Generally, a segmenters’ errors can be classified three ways. Consider

the utterance you see the doggy [#ju#si#De#dcgi#]. OVER-SEGMENTATION

ERRORS are those when the segmenter segments a true word into multiple

words (e.g. the segmenter segments doggy [dcgi] as [#dc#gi#]). UNDER-

SEGMENTATION ERRORS are those when the segmenter segments a sequence

of true words as a single word (e.g. the segmenter guesses [#Dedcgi#] is a

single word). MIXED ERRORS are those when the segmenter segments a word

which is both under-segmented and over-segmented (e.g. [#edcg#]).
For PHOCUS, under-segmentation errors are preferred over over-

segmentation errors. This is because once the segmenter adds a word to its

lexicon, nothing can ever subtract it. Consequently, it becomes more likely

that this word will be segmented out of future utterances, potentially

creating more and more errors. For example, if the segmenter errs by

adding [dc] to its lexicon (instead of doggy [dcgi]), it is very likely that it will

segment [dclr] ] as [#dc#lr]#], which causes [lr] ] to be added to the lexicon.

On the other hand, if the segmenter adds [Dedcgi] to its lexicon, it can

overcome this error in principle by later adding [De] and [dcgi] to the

lexicon.8

[6]
F0=

2rprecisionrrecall

precision+recall
:

[7] See http://cis.udel.edu/yblanchar/research/ for complete results including boundary and
lexical precision, recall and F0 scores.

[8] We calculate that PHOCUS prefers [#De#dcgi#] to [#Dedcgi#] only when the product of
the lexical frequency of [De] and [dcgi] divided by the square of the size of the lexicon is
greater than the lexical frequency of [Dedcgi]. Generally, if w1, w2 _ wn and w1w2 _ wn

are words in the lexicon, l(w) is the lexical frequency of w, and L is the sum of the
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We measured each model’s performance on all utterances except those in

the first tenth of the corpus. We did this because we are primarily interested

in the performance of the segmenter once it stabilizes. Unsupervised,

incremental models spend the first several hundred utterances learning

before their performance levels off and can make many errors during this

learning time. If not excluded from the evaluation, these early learning

errors are counted against incremental models. Considering the model’s

performance after its learning curve is behind it allows one to make a fair

comparison between batch and incremental models, since unsupervised

batch models do all their learning prior to any segmentation. Thus, for the

BR corpora, we excluded the first 1000 utterances, and for Sesotho, we

excluded the first 800 utterances in the results reported below.

Results

We report several comparisons of the different versions of PHOCUS to

each other as well as to other models on the two corpora described above.

Our main results compare PHOCUS to other incremental segmenters:

Venkataraman’s (2001) model (i.e. PHOCUS-1), MBDP-1 (Brent, 1999)

and MBDP-Phon (Blanchard & Heinz, 2008). We also include comparison

to the batch models of Goldwater (2007) and Johnson & Goldwater (2009,

hereafter Johnson), since the code to run them was available from the

authors and we were interested if the computationally simpler PHOCUS

could achieve comparable performance. We also refer readers to the website

http://cis.udel.edu/yblanchar/research/, which contains comprehensive

outputs of the computational experiments, summaries of the results and

more detailed error analyses.

Our main results support the conclusion of Blanchard & Heinz (2008)

that phoneme combinations help incremental unsupervised models. Figure 2

shows that PHOCUS-2 achieves a higher F0 score than Venkataraman’s

model (PHOCUS-1) on both the modified BR and Sesotho corpora.

The fact that PHOCUS-2 also outperforms PHOCUS-3 is due to reasons

discussed below.

Although PHOCUS-2 shows an improvement over PHOCUS-1, the

improvement is not as great as we might expect on the modified BR corpus.

To get a sense of what the maximum possible benefit of phoneme n-grams

is in principle, in one experiment we trained the phonotactic component

of the grammar on the BR lexicon, and then ran PHOCUS (initialized

with an empty lexicon but with the mature phonotactic grammar) on the

unsegmented BR corpus. With phoneme bigrams this semi-supervised

frequencies of all the words in the lexicon, PHOCUS segments utterance [w1w2 _ wn] as
[#w1#w2 _ #wn#] only if P1fifnl(wi)

Lnx1 >l(w1w2 . . .wn):
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model achieved a F0 of 73.8% and with trigrams of 80.4%. We conclude

that: (1) phoneme combinations are potentially very useful for word

segmentation; and (2) there must be a reason that PHOCUS does not

realize this potential.

We hypothesize that the reason is that early errors condemn future

segmentation choices and these snowball into increasingly many mistakes.

For example, after observing the one-word utterance block [blak],

PHOCUS-2 adds it to its lexicon. Later, since block [blak] is a familiar word

when the learner encounters an utterance with blocks [blaks], it segments it

as [#blak#s#]. Now s is considered a familiar word, and is consequently

picked off everywhere. The first error creates others elsewhere and the

errors compound. With PHOCUS-3, the problem is worse because an

examination of its output reveals that it segments much earlier than

PHOCUS-2 and the resulting snowball is much larger (hence its lower F0).

These kinds of errors are not unique to PHOCUS-2 and PHOCUS-3; they

occur with all incremental unsupervised models. PHOCUS-3 does worse

than PHOCUS-2 because it is prone to segment earlier and therefore more

likely to make unrecoverable errors, resulting in more mistakes later on.

Next we examine the effect of adding the language-universal phonotactic

that all words must consist of at least one syllabic sound. Every version of

PHOCUS improves dramatically after this addition, with PHOCUS-3s

obtaining the highest F0 of 80.8% on the BR corpus (Figure 3). The reason

for the improvement is that this language-universal constraint eliminates

the over-segmentation errors described above. For example, the [s] in

[blaks] cannot be peeled off as its own word because it is not a syllabic
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Fig. 2. F0 of PHOCUS-1, -2 and -3 on modified Bernstein-Ratner and Sesotho corpora.
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element. This reduces the overall number of exclusive over-segmentation

errors. In other words, this constraint makes the learner more conservative

in introducing words into the lexicon, which makes it less prone to make

irreversible, costly mistakes at the beginning.

Although the ‘require syllabic’ constraint greatly improves the perform-

ance of the PHOCUS models that use phoneme combinations, it is almost

entirely ineffective by itself. When we ran a version of PHOCUS that

included the syllabic constraint, but which assigned unfamiliar words a

small constant probability9 instead of one based on phoneme n-grams, we

found that the best F0 obtained for a variety of different constant values

was 19.30%. In fact, when we ran a version of PHOCUS with neither

the ‘require syllabic’ constraint nor the phoneme combinations, the output

was identical. This is because, when assigning a constant probability to

unfamiliar words, longer words receive the same probability as shorter

words, so there is no incentive to segment an utterance in such a way that it

contains unfamiliar words and, consequently, single-word segmentations

become very likely. The only type of utterance that this model segments

is one made up of multiple utterances that the model has already added

to its lexicon. Therefore, PHOCUS without any phoneme combinations

exclusively makes under-segmentation errors. As the ‘require syllabic’

constraint only helps prevent over-segmentation errors, we conclude that

it is the combination of the language-universal syllabic constraint and

the simultaneous learning of language-specific phoneme combinations that

results in the high level of performance of PHOCUS-3s.
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Fig. 3. F0 of all PHOCUS models on modified Bernstein-Ratner and Sesotho corpora.

[9] The probability was chosen to be small to ensure that familiar words would still be more
likely than unfamiliar ones.
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Interestingly PHOCUS-1s beats PHOCUS-2s in terms of F0, and an

error analysis reveals why. As can be seen in Figure 4, 34.0% of the words

PHOCUS-1 finds are over-segmentation errors, and y3% are under-

segmentation errors. For PHOCUS-2, only 25.4% of found words are

over-segmentation errors and 8% of found words are under-segmentation

errors. Consequently, there are substantially fewer consonant-only

over-segmentations for the ‘require syllabic’ constraint to prevent when

added to PHOCUS-2, and thus the F0 improvement is less pronounced

than with PHOCUS-1.

Next we compare the top-performing version of PHOCUS

(PHOCUS-3s) on the modified BR corpus to the top-performing versions

of the unsupervised batch algorithms developed by Goldwater and Johnson

(Figure 5). PHOCUS-3s outperforms Goldwater (81% vs. 71% F0). While

PHOCUS-3s does not come out ahead of Johnson’s best adaptor grammar,

it does begin to close the gap between incremental and batch systems (81%

vs. 86% F0).

However, the above comparisons ought to be interpreted with some

caution. First, the models are not implementing the same set of cues.

For example, both Goldwater and Johnson’s models build in sensitivity

to frequent word collocations to reduce the number of exclusive under-

segmentation errors which PHOCUS currently does not. Second, neither

model is sensitive to phoneme combinations, though Johnson’s adaptor

grammars include the concept of a syllable and require every word to have

one. We expect that Goldwater’s and Johnson’s results will also improve

if they include more phonotactic cues like PHOCUS. Also, while we

are explicit that the aim of our model is to segment phonological words,

other researchers have not been explicit about exactly what kinds of words

their models aim to segment. In the case of phonological words, some
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of the errors PHOCUS makes may not really be errors – for example the

determiner a [e] is frequently under-segmented (e.g. a boy is segmented as

[#ebc#], but it is plausible that this is actually one phonological word, with

the determiner sticking to the noun in the same way that s sticks to it in it’s.

Until a corpus is uncontroversially segmented into phonological words,

such issues will go unaddressed.

The models’ performances on Sesotho highlight the importance of testing

acquisition models on data from a variety of languages because the results

can be so different than from what is obtained with English corpora.

For example, MBDP-Phon outperforms all other models on the Sesotho

corpus, as shown in Figure 6. As MBDP-Phon does not start with a

uniform distribution over the phoneme n-grams, it is not probabilistically

sound, which makes determining why it performs better on Sesotho

difficult. Also, PHOCUS-2s and PHOCUS-2 are about the same on

Sesotho (but requiring a syllabic sound makes a difference for PHOCUS-1s

vs. PHOCUS-1, and for PHOCUS-3s vs. PHOCUS-3). This is again due to

PHOCUS-2making fewer over-segmentation errors than either PHOCUS-1

or PHOCUS-3 (Figure 7). It may appear there is not as reliable of an

improvement when adding the language-universal cue when PHOCUS is

evaluated on Sesotho. This is because the over-segmentation errors that

the models make in Sesotho are almost entirely with single vowel sounds.

As such, the ‘require syllabic’ constraint does not prevent these early

over-segmentations from snowballing into a massive problem. For example,

the most common isolated word in the corpus is [e] ‘yes, what’, and

of course many words contain this sound as well, which results in much
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over-segmentation (e.g. [ee] ‘no, this ’ is segmented as [#e#e#] 224 times).

Despite these complications, the same general result as seen with the

BR corpus can be reported about Sesotho: adding richer phonotactic cues

improves the performance of incremental segmenters.

In conclusion, these results show that the performance of an incremental,

unsupervised segmentation model greatly improves when it is equipped

with both a language-specific phonotactic learning component (here

phoneme n-grams) and a language universal phonotactic constraint (words

have at least one syllabic element). We have also shown how these two

components work together – language-specific knowledge of phoneme

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PHOCUS-2 MBDP-Phon Goldwater Johnson

55.6%

39.9%

55.8%

46.7%W
or

d 
F

0

Fig. 6. F0 of PHOCUS-2 and competing models on Sesotho corpus.

                 PHOCUS-1               PHOCUS-1s              PHOCUS-2                PHOCUS-2s                PHOCUS-3              PHOCUS-3s

Correctly Segmented Over-segmented Under-segmented Mixed Errors

T
ru

e 
W

or
ds

F
ou

nd
 W

or
ds

T
ru

e 
W

or
ds

F
ou

nd
 W

or
ds

T
ru

e 
W

or
ds

F
ou

nd
 W

or
ds

T
ru

e 
W

or
ds

F
ou

nd
 W

or
ds

T
ru

e 
W

or
ds

F
ou

nd
 W

or
ds

T
ru

e 
W

or
ds

F
ou

nd
 W

or
ds

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 7. Found word and true word errors for PHOCUS models on Sesotho corpus.
‘Correct’ for found words is precision, and ‘correct’ for true words is recall.

BLANCHARD ET AL.

506

https://doi.org/10.1017/S030500090999050X Published online by Cambridge University Press

https://doi.org/10.1017/S030500090999050X


n-grams helps to correctly identify likely positions of word boundaries, and

the language-universal constraint helps prevent earlier errors that derail the

learning process. Furthermore, PHOCUS-2s and PHOCUS-3s compare

favorably to state-of-the-art unsupervised batch algorithms.

SIGNIFICANCE OF FINDINGS AND FUTURE WORK

The findings reported above are significant to researchers from many

disciplines who are interested in word segmentation. Our findings suggest

that knowledge of even simple phonotactic constraints is useful for seg-

mentation. Specifically, having a phonotactic component that keeps track of

likely phoneme combinations within words helps the model’s performance

in at least two ways. First, the model can learn which phonemes are more

likely to start and end words, because they will be parts of bigrams or

trigrams that contain the word boundary symbol. Second, the model can

make decisions about the well-formedness of novel words by evaluating the

probabilities of the phoneme combinations within words. This is analogous

to the infants in the Mattys & Jusczyk (2001) experiment who segment

[fan taIn] fang tine properly by realizing that [nt] is not a valid phoneme

combination within English words.

Our results also suggest that a plausible language universal phono-

tactic – well-formed words have at least one syllabic sound – helps the cue

above by reducing the number of errors made in the learning curve that

later prove to be costly. The language-universal cue seems to especially help

in languages like English, which do not contain many one-word utterances

where the word is a single vowel sound, unlike Sesotho. This result is

consistent with the claim within the Emergent Coalition Model that there

are multiple cues, which can reinforce (and compete with) each other.

Generally, the analysis of the performance of PHOCUS adds support to the

results from developmental studies which suggest that infants use multiple

sources of phonotactic information to aid word segmentation.

Although it is standard in computational linguistics to evaluate the worth

of models on their performance on multiple corpora, it is also important to

look at the fundamental properties of the models in relation to the task at

hand. In the case of modeling infant language segmentation, it is important

for the model to utilize the types of cues that infants do, and combine them

in a way that does not conflict with data on how infants process language.

Under these two criteria, an incremental segmenter that makes use of both

phonotactic and familiar word cues is a desirable model of how infants

segment speech. The fact that PHOCUS – an incremental segmenter which

uses phonotactic cues – comes close to (and in some cases surpasses) the

performance of batch segmenters lends support to the idea that PHOCUS is

on the right track.
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One aspect of the model we would like to change in the future is the

relationship between the implementation of the familiar word cue and the

phonotactic cues. Currently, the model only relies on the phonotactic

cues when a hypothetical word is unfamiliar. Ultimately, we would like to

implement a model that, like the Emergent Coalition Model, considers

all available cues simultaneously, perhaps some more than others. In the

computational linguistics literature, a common approach for many tasks

which involve multiple sources of information is to weight them and then to

determine the ‘best’ weights for each of the various sources. However, such

models are exclusively either supervised (and so weights can be updated

appropriately and confidently) or batch (so trends in the data can be

established and then optimal weights can be assigned). In general, it is

unknown how to assign and update weights for unsupervised and

incremental models. The problem of how to assign and update weights

incrementally when there is very little information and no feedback is an

open problem in computer science and computational linguistics.

We would also like to see segmentation models which make use of a

variety of phonotactic cues. As discussed earlier, phonotactic constraints

can encompass more than just ordering restrictions over phonemes, and

infants seem to use many types of constraints for segmentation. To this

end, we argued that a more general concept of word well-formedness

is appropriate: a well-formed word is made up of frequently occurring

subsequences of units. These units can be syllables, phonemes/phones or

even bundles of phonological features. Additionally, the subsequences could

be of any length, including one, or even non-contiguous (e.g. in order to

describe vowel or consonantal harmony in languages like Finnish or

Navajo; see Heinz, 2007). Once implemented, this generalized notion of

word well-formedness allows a model to keep track of different cues shown

to be useful by previous researchers: transitional probabilities between

syllables (Saffran et al., 1996), phonotactic constraints (Mattys & Jusczyk,

2001), allophonic variation (Jusczyk, Hohne & Baumann, 1999) and stress

(Jusczyk, Houston & Newsome, 1999).

CONCLUSION

Three important findings have emerged from the development of this

model for infant speech segmentation. First, evidence from the computer

simulations conducted here suggests that both language-specific and

language-universal phonotactic constraints are useful for word seg-

mentation, and that language-specific constraints can be learned at the same

time that the model segments speech. Second, incremental models with a

phonotactic component come close to achieving (and in some cases surpass)

the same level of accuracy as state-of-the-art batch models. Given that
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infants are more likely to process their input incrementally, the computa-

tional complexity of batch models may not be necessary for the task of

segmentation. This suggests that the present model has some psychological

reality. Finally, the research program outlined here investigates the utility

of different types of phonotactic cues to word segmentation, shows how

to quantitatively evaluate how such cues interact with one another and

highlights an area of common interest shared by language acquisition

researchers and computational linguists.
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