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Sound generation in a mixing layer
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The sound generated by vortex pairing in a two-dimensional compressible mixing layer
is investigated. Direct numerical simulations (DNS) of the Navier–Stokes equations
are used to compute both the near-field region and a portion of the acoustic field. The
acoustic analogy due to Lilley (1974) is also solved with acoustic sources determined
from the near-field data of the DNS. It is shown that several commonly made
simplifications to the acoustic sources can lead to erroneous predictions for the
acoustic field. Predictions based on the quadrupole form of the source terms derived
by Goldstein (1976a, 1984) are in excellent agreement with the acoustic field from
the DNS. However, despite the low Mach number of the flow, the acoustic far
field generated by the vortex pairings cannot be described by considering compact
quadrupole sources. The acoustic sources have the form of modulated wave packets
and the acoustic far field is described by a superdirective model (Crighton & Huerre
1990). The presence of flow–acoustic interactions in the computed source terms
causes the acoustic field predicted by the acoustic analogy to be very sensitive to
small changes in the description of the source.

1. Introduction
Direct numerical simulation (DNS) of the unsteady Navier–Stokes equations is

used to compute both the near field and a portion of the acoustic field of a plane
mixing layer. The acoustic field is also determined by solving an acoustic analogy
(Lilley 1974) with necessary source terms determined from the near-field data of the
Navier–Stokes equations. This allows a detailed investigation of the acoustic sources
associated with the flow and validates the acoustic analogy approach for a flow with
an extensive vorticity field.

The mixing layer, consisting of two streams of fluid with unequal velocities, occurs
in many natural, laboratory, and technological flows and serves as a model for
the initial shear layer region of a jet. Large-scale coherent structures in mixing
layers, such as those observed by Brown & Roshko (1974), have been extensively
studied experimentally and computationally. Often the structures are initiated by
forcing the flow at its fundamental (most unstable) frequency, f, or one of its
subharmonics, f/2, f/4, etc. These frequencies are determined by linear stability
analysis of the corresponding steady flow (usually an inviscid parallel flow.) The
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fundamental frequency excites instability waves which roll up into vortices which
subsequently convect downstream. Subharmonic forcing causes adjacent vortices to
pair further downstream. Such large-scale vortices and vortex pairings can also be
present in jets.

Kibens (1980) measured the acoustic field of a high-speed round jet which was
forced at its most unstable frequency and showed that the natural broad-band noise
of the jet was suppressed, and the most significant sound was generated at the
subharmonic frequencies. He identified the sources with the vortex pairing locations.
Laufer & Yen (1983) also found that the acoustic field of a forced round jet was
consistent with stationary sources, and associated the sources with the nonlinear
saturation of the unstable wave amplitudes at the vortex pairing locations. Huerre
& Crighton (1983) showed that the results of Laufer & Yen were inconsistent with
certain features of Lighthill’s (1952) theory. Later they showed that the inconsistency
could be resolved by analysing the superdirective nature of the acoustic sources
(Crighton & Huerre 1990). Mankbadi (1990) used Laufer & Yen’s curve fits for the
growth and decay of instability waves to determine the acoustic source term for
Lighthill’s equation. He showed that a superdirective acoustic field results. It is worth
noting that Bridges & Hussain (1992) also measured an acoustic field (of a forced jet)
consistent with stationary sources, though they did not find a superdirective acoustic
field.

1.1. Overview of the present investigation

The remainder of this section is devoted to a brief review of previous theoretical
results relevant to the present study. Aeroacoustic theory is discussed in general in
§1.2 and Lilley’s equation in particular in §1.3.

In §2, the results of the DNS of the mixing layer are presented. For brevity,
many details regarding the numerical method are omitted – details of the scheme are
presented in Colonius, Lele & Moin (1995). In order to investigate the sound generated
by vortex roll up and pairings without the additional complication of ‘random’ fine-
grained turbulent fluctuations the mixing layer is forced at its most unstable frequency,
f, and the first three subharmonics, f/2, f/4 and f/8, respectively. The resulting flow
field is highly organized and nearly periodic in time. The two vortex pairing locations
are fixed in space and the generated acoustic field is dominated by waves at the
frequencies of the vortex pairings. The acoustic field at other frequencies is very much
smaller. The computational domain is not long enough to capture a third pairing of
the vortices.

In §3, Lilley’s acoustic analogy is considered. It is shown that the acoustic field from
the DNS is in excellent agreement with the acoustic analogy prediction. However,
the predicted acoustic field is extremely sensitive to the details of how the source
terms are computed. The computational details of the sensitivity are particular to the
methodology used here and may be of limited interest to the general reader. Thus
they are discussed in the Appendix.

The remainder of §3 is devoted to the details of the acoustic sources and the far-field
directivity produced by the vortex pairings. In §3.3 the full (‘exact’) acoustic source is
analysed and compared to the simplified quadrupole source proposed by Goldstein
(1976a, 1984). The predicted acoustic field is inconsistent with certain rationales which
have in the past been put forth for the neglect of certain parts of the full acoustic
source. An alternative explanation for the efficacy of Goldstein’s quadrupole source
term is put forward by exploiting a connection between the acoustic analogy and
an asymptotic expansion of the flow. In §3.4, the radiation of compact quadrupole

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

39
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096003928


Sound generation in a mixing layer 377

sources in the present layer is considered and it is shown there that the source structure
and directivity of the present flow are not well modelled by compact quadrupoles.
In §3.5 it is shown that a relatively simple ‘superdirective’ radiation model (Crighton
& Huerre 1990) is in reasonable agreement with the computational results. Finally,
flow–acoustic interactions are discussed in §3.6.

1.2. Aeroacoustic theory

The prediction of the sound which is generated by turbulent flows has been extensively
researched since Lighthill (1952, 1954) first proposed the acoustic analogy for turbulent
jets. In his acoustic analogy, the jet flow is replaced by a distribution of acoustic
sources (stationary or convecting) in an ambient fluid at rest. Lighthill’s equation is
‘exact’ (it is a rearrangement of the Navier–Stokes and continuity equations) but it
is a single equation in several dependent variables, and only yields predictions if the
source terms are known a priori. Detailed experimental measurements of the source
term (and its retarded time) would be very difficult and have never been performed.
Thus, simplifying assumptions about the forms of the source terms have been used
to predict scaling laws and the directivity of the acoustic field. In certain cases the
theory and its subsequent modifications is in good agreement with experiments, but
it can be argued that no theory yet satisfactorily predicts subsonic jet noise without
a good deal of empirical input (Tam 1995).

Crow (1970) examined the theory of aerodynamic sound generation with singular
perturbation methods and showed that Lighthill’s equation is equivalent to a matched
asymptotic expansion of a low-Mach-number flow when the length scale of an eddy
and the extent of the vortical flow surrounding that eddy are both small compared to
the acoustic wavelength. The mathematical difficulty stems in part from the inability
of the acoustic analogy to extract the sound ‘generation’ problem from the interaction
of acoustic waves with turbulence and the mean flow. The flow considered here
has an extensive vorticity field which leads to significant flow–acoustic interaction.
It is possible to overcome some of these difficulties by moving certain terms from
Lighthill’s source term to the left-hand side of the equation, as was done by (amongst
others) Lilley (1974) and described by Doak (1972), and Goldstein (1976a, 1984).
An unambiguous description of the sources can be obtained by carrying out, to
second order, a systematic asymptotic expansion which treats the unsteady flow as
a small perturbation to a parallel mean flow (Goldstein 1984). However, such linear
expansions are at best only locally valid, and ultimately nonlinear effects will dominate
the near-field disturbances and cause the expansion to break down. Since the acoustic
far field depends on a global solution to the problem, this approach does not lead
to a rigorous first-principles method for calculating the sound field (Goldstein 1984).
In that case one must again regard the source term as independently known (as in
Lighthill’s acoustic analogy).

Thus, to date no acoustic analogy theory has been successful in fully isolating the
source terms from terms which are linear in the acoustic perturbations for a spreading
shear flow. However, from a computational point of view, it is possible, within the
accuracy limits of the computation, to evaluate any particular ‘exact’ source term of
an acoustic analogy (whether or not it includes such linear flow–acoustic interaction
terms) and predict the radiated acoustic field. Such results are presented here for
Lilley’s acoustic analogy. The reasons for concentrating on Lilley’s equation are
twofold. First, Lilley’s equation (in its form discussed in §1.3) allows for a mean flow
which incorporates the unequal convection velocities on either side of the mixing layer,
and some approximation of the mean shear through the layer. Though Lighthill’s
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second-order equation may be written so that the left-hand side is the convective
wave operator in a uniform flow (the equations of motion are Galilean invariant),
the unequal convection velocities above and below the mixing region require that
two different equations be written for each side of the layer and that their solution
be matched at the centre. This was in fact done by Ffowcs Williams (1974) and
Dowling, Ffowcs Williams & Goldstein (1978), where the acoustic field arising from
convecting sources in a mixing layer was computed in the vortex sheet limit. However,
the acoustic sources computed from the DNS data depend on the mean flow shear
and its spreading and vary smoothly across the layer. As shown a posteriori in §3.6,
flow–acoustic interaction is significant in the mixing layer (despite the relatively low
Mach number considered here), and the prediction for the radiated acoustic field is
sensitive to the particular form of the velocity profile used in the wave propagation
operator (left-hand side) of Lilley’s acoustic analogy (see equation (2), below).

1.3. Lilley’s equation

Lilley’s (1974) third-order wave equation can be obtained by combining the equations
describing conservation of mass and momentum in a compressible fluid:

D

Dt

(
D2Π

Dt2
− ∂

∂xj

(
a2 ∂Π

∂xj

))
+ 2

∂uk

∂xj

∂

∂xk

(
a2 ∂Π

∂xj

)
= −2

∂uj

∂xk

∂ui

∂xj

∂uk

∂xi
, (1)

where Π = (1/γ) ln p. Equation (1) is an exact equation except for the viscous terms
which have been omitted – they are generally thought to contribute very little to
the acoustic field (e.g. Goldstein 1976a). In equation (1) and in what follows p is the
pressure normalized with ρ∞a

2
∞, where ρ∞ and a∞ are the density and sound speed far

from the mixing region and are equal in both streams; ui are the Cartesian components
of the velocities normalized by a∞; xi are the spatial coordinates normalized with
δ, the vorticity thickness of the layer at x1 = 0 (defined in §2.1.2); and t is time is
normalized by δ/a∞. The fluid is assumed to be an ideal gas so that a2 = γp/ρ, where
γ is the (assumed constant) ratio of specific heats.

Unlike Lighthill’s equation, the left-hand side of Lilley’s equation is nonlinear.
The usual approach (see, for example, Goldstein 1976a), is to linearize it about
a time-independent base flow. Below, such a linearization of the left-hand-side is
performed, but all terms removed from the left-hand side are taken to the right-
hand side, i.e. added to the source term. Thus the equation will still be exact.
Because the mean of a turbulent shear layer varies much more slowly with x1,
the streamwise coordinate, than with x2, the coordinate normal to the layer, the
time-independent base flow is often taken to be a parallel flow with a streamwise
velocity, U(x2) (giving u1(x1, x2, t) = U(x2) + u′1(x1, x2, t)), and zero normal velocity
(u2(x1, x2, t) = u′2(x1, x2, t)). The pressure and speed of sound are taken to be uniform
(Goldstein 1976a) and thus for an ideal gas Π(x1, x2, t) = (1/γ) ln(1/γ) +Π ′(x1, x2, t),

and a2(x1, x2, t) = 1 + a2′(x1, x2, t). Note that a2′, the departure of the speed of sound
from its value in the base flow, is equivalent to departures from the base flow
temperature, since the fluid is considered to be a perfect gas. Then the parallel flow
velocity, U(x2), is chosen to correspond with the true mean streamwise velocity of the
mixing layer at a particular value of x1. Unless otherwise noted the mean streamwise
velocity of the DNS at x1 = 0 is used for U(x2). The effect of making a different
choice is discussed below in §3.6.
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The resulting equation is

Do

Dt

(
Do

2Π ′

Dt2
− ∂

∂xj

(
∂Π ′

∂xj

))
+ 2

∂U

∂x2

∂2Π ′

∂x1∂x2

= Γ , (2)

where Do/Dt = ∂/∂t+U(x2)∂/∂x1, and Γ is given by

Γ =
Do

Dt

(
∂2u′iu

′
j

∂xixj︸ ︷︷ ︸
Term Ia

− ∂u′i
∂xi

∂u′k
∂xk︸ ︷︷ ︸

Term IIa

+
∂

∂xj

(
a2′ ∂Π

′

∂xj

)
︸ ︷︷ ︸

Term IIIa

+ a2 ∂Π
′

∂xi

∂Π ′

∂xi︸ ︷︷ ︸
Term IVa

+
∂Π ′

∂xj

(
u′i
∂u′j

∂xi

)
+ u′j

∂

∂xj

(
u′i
∂Π ′

∂xi

)
︸ ︷︷ ︸

Term Va

)

− 2
dU

dx2

(
∂2u′2u

′
j

∂x1xj︸ ︷︷ ︸
Term Ib

− ∂u′2
∂x1

∂u′k
∂xk︸ ︷︷ ︸

Term IIb

+
∂

∂x1

(
a2′ ∂Π

′

∂x2

)
︸ ︷︷ ︸

Term IIIb

+ a2 ∂Π
′

∂x1

∂Π ′

∂x2︸ ︷︷ ︸
Term IVb

+
∂Π ′

∂x1

(
u′2
∂u′i
∂xi

)
+ u′i

∂

∂x1

(
u′2
∂Π ′

∂xi

)
︸ ︷︷ ︸

Term Vb

)
. (3)

Equation (2) with the source given by equation (3) remains exact regardless of the
time-independent parallel base flow chosen. Note that the nonlinear Euler equations
(written in terms of the base flow and primed quantities) have been used in writing
the source in the form of equation (3). For ease of future reference, the various parts
of the source have been labelled with Roman numerals. Each term has two parts,
part (a) which is convected with the parallel base flow, and part (b) which is sheared
by the parallel base flow. In what follows, when we refer to a Roman numeral alone
(without the suffix a or b), we mean both parts taken together.

The form in which the source term, equation (3), has been written is motivated
by Goldstein’s (1976a, 1984) analysis, where a simplified version of the source is
proposed:

Γ ≈ Do

Dt

(
∂2u′iu

′
j

∂xixj︸ ︷︷ ︸
Term Ia

)
− 2

dU

dx2

∂2u′2u
′
j

∂x1xj︸ ︷︷ ︸
Term Ib

. (4)

Note that equation (4) was derived in two different ways in Goldstein (1976a) and
Goldstein (1984). The details of the different derivations are of importance, and are
discussed below in §3.3. Equation (4) is of an appealing form because it extends
Lighthill’s (1952) concept of a quadrupole source distribution to parallel shear flows
(Goldstein 1976a, 1984). That is, the source given by equation (4) is equivalent to that
which would be produced by an external distribution of stresses, u′iu

′
j , imposed on a

parallel shear flow.
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2. Direct numerical simulations
2.1. Methodology

2.1.1. Approach and computational issues

As is discussed by Lighthill (1992), computations of aerodynamic sound gener-
ation can be broadly divided into three strategies. (i) The computational domain
includes only the near-field region without attempting to resolve the acoustic waves.
Subsequently an acoustic analogy is solved with source terms that have been deter-
mined from the near-field computations. (ii) The computational domain includes the
near-field region and, to a small extent, the acoustic region. The acoustic far field is
deduced by solving the wave equation in the exterior domain given boundary data
from the near field. (iii) The computational domain includes both the near field and a
significant portion of the acoustic field. Both regions are solved using the compressible
Navier–Stokes equations.

For subsonic flows, category (iii) computations are difficult for several reasons
(Crighton 1986, 1993): the large extent of the acoustic field compared to the flow
field; the very small energy of the acoustic field relative to the flow field; and the
possibility that numerical discretization itself may act as a more significant source
of sound than the continuous flow field which is approximated. A fourth difficulty
is the application of accurate free-space boundary conditions appropriate at an
artificial computational boundary. The latter three difficulties are also encountered
in category (ii) computations. Computations in category (ii) rely on the so-called
Kirchhoff surface surrounding the acoustic sources to predict the far field. The linear
Kirchhoff surface theory inevitably breaks down at regions where flow structures
leave the computational domain and linear equations do not hold; such issues are at
present being investigated (e.g Lyrintzis 1993; Freund, Lele & Moin 1995; Mitchell,
Lele & Moin 1996). By contrast, category (i) computations do not rely on resolving
the acoustics and can be performed with existing incompressible DNS codes. For
this reason, Lighthill (1992) at present urges using strategy (i) for low Mach number
flows. This approach is not without its own difficulties. In particular, it is difficult
to evaluate the integrals in the acoustic analogies accurately (e.g. Sarkar & Hussaini
1993).

Computational aeroacoustics is a relatively new field and time will tell which
methods yield the best results. It may be that all three categories are useful for
their own subset of problems. At present, investigations in categories (ii) and (iii),
we would argue, promise to yield more fundamental knowledge about the sound
generation process, since they allow an exploration of flow problems for which the
use of the acoustic analogy approach requires assumptions whose validity is not know
a priori .

In the present study, the computational resources required to compute both the
near and far fields together is large and therefore only a two-dimensional flow has
been computed. This allows a relatively large portion of the acoustic field to be
computed and flow features are very well resolved. Even for the two-dimensional
mixing layer considered here several hundred CPU hours on the CRAY Y-MP
supercomputer were required. To accurately resolve the compressible flow and its
generated acoustic field, fourth- and sixth-order-accurate compact finite difference
schemes (Lele 1992) and fourth-order Runge–Kutta time marching are used. These
schemes have very small inherent dissipation and give a highly accurate representation
of wave propagation. Non-reflecting boundary conditions (see the review by Givoli
1991) are used at all computational boundaries. Giles (1990) provided approximate
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non-reflecting boundary conditions for the linearized Euler equations. While such
linear boundary conditions are sufficiently accurate for acoustic waves exiting the
computational domain at various angles (such as the inflow and normal boundaries of
the present problem), the accuracy of the boundary conditions at the outflow boundary
where large-scale non-acoustic flow structures (i.e. fluctuations whose magnitude is a
considerable percentage of the mean flow) is poor (Colonius, Lele & Moin 1993). To
circumvent this problem, we use a technique where, in a region of the computation
just upstream of the outflow, a combination of grid stretching (in the streamwise
direction) and low-pass filtering (applied spatially) effectively reduce the amplitudes
of fluctuations before they interact with the downstream boundary, thus diminishing
the reflections. Previous experiments with the ‘sponge region’ showed that spurious
reflections were reduced in amplitude by as many as 3 orders of magnitude over the
linearized boundary conditions alone (Colonius et al. 1993). The sponge region does
have some impact on the computation of the acoustic sources, but it was found that
the damping of the sources provided by the sponge was not a significant source of
sound in the computations (Colonius et al. 1995).

The present numerical scheme has been validated by solving a number of model
problems including the interaction of sound waves with a two-dimensional vortex
(Colonius, Lele & Moin 1994), and the sound produced by a pair of co-rotating
vortices (Mitchell, Lele & Moin 1995). These computations gave good agreement
with both experimental and theoretical predictions. Finally a similar method has
recently been applied to a axisymmetric jet flow by Mitchell et al. (1996).

2.1.2. Flow and computational configuration

The two-dimensional, unsteady, compressible Navier–Stokes equations plus con-
tinuity, conservation of energy, and the perfect gas equation of state are solved
numerically. Independent and dependent variables are non-dimensionalized as dis-
cussed in §1.3. In particular, lengths are made non-dimensional with the vorticity
thickness of the layer at x1 = 0:

δ =

(
∆U

|∂u1/∂x2|max

)
x=0

, (5)

where ∆U is the difference in velocity across the layer.
The Mach numbers of the high- and low-speed streams areM1 = 0.5 andM2 = 0.25,

respectively. The Reynolds number, based on the vorticity thickness and velocity
difference across the layer, Re = ρ∞∆Uδ/µ is 250. The temperatures of the two free
streams are equal. Given the relatively low Mach numbers and equality of temperature
in the free streams, temperature dependence of the transport properties is not likely to
be a significant effect. Therefore the molecular viscosity, µ, and thermal conductivity,
k, are taken to be constant, and Pr = cpµ/k = 1. The ratio of specific heats, γ, is
taken to be 1.4.

The initial condition for the mixing layer is the laminar solution to the steady
compressible two-dimensional boundary layer equations. The boundary layer equa-
tions and solution method are given by Sandham & Reynolds (1989). The dividing
streamline of the layer is chosen to fall below x2 = 0 such that initially the normal
velocity is directed into the computational domain at the normal boundaries, as is
the case later after the layer rolls up into vortices and pairs. Thus at the normal
boundaries inflow boundary conditions hold for all time.

The computational domain extends to x2 = ±200 and x1 = 285, not including the
sponge region (recall that lengths are made dimensionless with the vorticity thickness,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

39
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096003928


382 T. Colonius, S. K. Lele and P. Moin

x2

x1

M1

M2

200

–200

1150

"Physical region" "Sponge region"

285

δ
ω

Figure 1. Schematic diagram of computational domain.

δ). The sponge region extends from x1 = 285 to x1 = 1150. A schematic diagram of
the flow including the initial laminar velocity profile at x1 = 0 is shown in figure 1.
A Cartesian grid of 2300 by 847 grid points in the x1- and x2-directions, respectively,
is used. The grid in x1 is uniform with spacing ∆x1 = 0.15 up to x1 = 285. In the
sponge the grid is highly stretched over the last 400 nodes. The grid is stretched in
the normal direction such that it is very nearly uniform with a fine grid spacing of
∆x2 = 0.15 in a region around x2 = 0, and nearly uniform, but with a coarser spacing
of ∆x2 = 0.80 for large ±x2. Smooth functions are used for the mesh stretching in
both directions (Colonius et al. 1995). The time step, ∆t, was 0.0567, chosen to give
an integral number of time steps in the period of the fundamental frequency of the
layer. The maximum CFL number of the computation is roughly 3 times smaller
than the stability limit of the current scheme (CFL < 1.43, Colonius et al. 1995).
Grid resolution studies on the near-field portion of the layer were performed, and it
was found that a computation with double the grid spacing in the x1-direction (i.e.
∆x1 = 0.30), and roughly 1.5 times the grid spacing in x2 gave very nearly identical
results for the near-field portion of the present grid. Note that the high spatial and
temporal resolution were chosen to ensure that the flow variables were sufficiently
well resolved to allow the repeated differentiations of the data necessary to compute
the source terms to be performed accurately.

2.1.3. Eigenfunction forcing

The flow is forced at the inflow (x1 = 0) with eigenfunctions (linearized distur-
bances) found by solving Rayleigh’s equations for a velocity profile corresponding to
the viscous mean flow at x1 = 0. The eigenfunctions are determined by the method
given by Sandham & Reynolds (1989). The two-dimensional spatially growing distur-
bances have the form:

g′(x1, x2, t) = g̃(x2)e
2πi(αx1−ωt), (6)

where g is any of u1, u2, ρ or p, and where the tilde denotes the complex eigenfunctions.
Here α = αR + iαI is the complex wavenumber in the x1-direction, normalized by the
inverse of the vorticity thickness defined by equation (5), and ω is the real frequency,
normalized by the speed of sound divided by the vorticity thickness. The factor of
2π in the exponential term in equation (6) gives α and ω in units of the circular
wavenumber and frequency respectively. The eigenfunctions for each frequency are
normalized with respect to the maximum value of |ũ1(x2)|, and then multiplied by a
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x1
0 285

x2

–10

10

Figure 2. Vorticity contours in near-field mixing region. The normal axis is expanded by a factor
of 2.5. Contour levels: min: −0.13, max: 0.01, increment: 0.02.

small amplitude ratio. The amplitude ratio is chosen such that the maximum value
of |ũ1| is 0.001 times the velocity of the high-speed stream. The eigenfunctions are
then added together, with the phase of the first three subharmonics (relative to
the fundamental) being adjusted such as to minimize the distance between pairings.
The fundamental frequency, ω = f, for the current mixing layer is 0.0501, and the
wavenumbers, α, are (0.131 − 0.0193i), (0.0635 − 0.0146i), (0.0309 − 0.00852i), and
(0.0152− 0.00454i) for frequencies f, f/2, f/4 and f/8 respectively. The phase shifts
of the subharmonics (in radians relative to the phase of the fundamental) are: −0.028,
0.141, and 0.391 for f/2, f/4 and f/8, respectively.

Note that the specification of the forcing at the inflow must be done in a way
which is compatible with the non-reflecting boundary conditions used at the inflow.
The incoming instability waves are added to the the incoming (one-dimensional)
characteristics (the form of which, relative to the mean flow at x1 = 0, is given by
Colonius et al. 1993). Done in this way, the forcing does not affect the accuracy of the
non-reflecting boundary condition for the upstream propagating acoustic wave. Since
the non-reflecting boundary conditions are not exact (they are an approximation valid
for waves propagating at angles close to normal to the boundary), some error (i.e.
incoming acoustic wave) is generated by the forcing. This error is discussed in §§ 2.3
and 3.2.

2.2. Evolution of the near-field region

The instantaneous vorticity at a time corresponding to 68 periods of the fundamental
frequency is shown in figure 2. The vorticity contours plainly show the roll-up and
two subsequent pairings. Figure 3 shows time traces of the streamwise velocity at
x2 = 0 for various streamwise locations downstream of the inflow boundary. At the
first location, x1 = 0 (inflow), the forcing is felt instantly, and all components of the
forcing are felt equally. The start-up transient is seen to arrive at points downstream at
progressively later times. The growth and relative dominance of the different forcing
frequencies can be seen at points further downstream. Evidently the layer becomes
nearly periodic in time over the entire length of the physical domain after about 48T .

The frequency content of the mixing layer can be found by taking a discrete Fourier
transform (DFT) of the nearly periodic data. Errors in the value of the transform
at a particular frequency can arise if the signal F(tj) is not sampled sufficiently fast
or if the total duration of the signal is not sufficiently long. It was found (Colonius
et al. 1995) that by sampling the DNS data at a rate of 22∆t (corresponding to 16
samples per fundamental period, T ) aliasing effects (both in the transforms of the
primitive variables and in products and differentiations of products which arise in
the acoustic source terms) are negligible at frequencies up to 2f, which is at the high
end of frequencies relevant to the present study. A total time of 112T was computed,
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u1
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(a ) (b)

(c) (d )

(e)

u1

t /T
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Figure 3. Streamwise velocity, u1, as a function of time (normalized by the period of the fundamental
frequency, T = 1/f) at x2 = 0 and various streamwise locations. (a) x1 = 285.0, (b) x1 = 200.0,
(c) x1 = 100.0, (d) x1 = 45.0, (e) x1 = 0.

of which the last 64T is after the entire domain has settled into its nearly periodic
steady state. Thus 8 periods of the lowest forced frequency, f/8, are available for the
DFT. Since the data are not strictly periodic, windowing and data segmenting (e.g.
Press et al. 1989) can be used to increase the accuracy of the power spectrum in a
particular frequency bin. Such techniques were evaluated (Colonius et al. 1995), and
it was found that the spectra of the primary dependent variables (e.g. u1, u2, etc.) are
not very sensitive to the details of the DFT. Differing techniques, data lengths, etc.
led to at most a 5% difference in the amplitude of the spectra throughout the layer.
Note that the same is true for the measured acoustic waves and sources, but not for
the acoustic analogy predictions, which turn out to be extremely sensitive to small
differences in the values of the DFT as discussed in the appendix.

The growth, saturation and decay of the different modes can be seen by plotting
the energy, E(ω), as a function of x1 for ω = f, f/2, and f/4. E(ωn) is defined by

E(ω) =

∫ +L

−L
|û1ω|2dx2 (7)

where ±L is the upper and lower extent of the computational domain. For each of
the fundamental and first two subharmonics an exponential growth of the energy
is followed by saturation and eventual decay. The saturation of the fundamental
frequency, f, and its subharmonics f/2 and f/4 occurs near x1 = 50, 75, and 175,
respectively.

2.3. Evolution of the far-field region

Away from the mixing region fluctuations become very small and nonlinear effects are
negligible. In this region the mean flow is nearly uniform with a single component M1
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x1
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0 100 200 300

E (ω)

Figure 4. Energy, E(ω), as a function of x1: , ω = f; , ω = f/2; , ω = f/4.

(for x2 > 0) or M2 (for x2 < 0). There is a small mean value of the normal velocity
directed into the computational domain at both the top and bottom boundaries
because the layer entrains fluid due to the mean flow spreading.

Small fluctuations in the far field are discrete Fourier transformed into frequency
space as discussed in the last section. Results are given here for the dilatation,
Θ = ∂ui/∂xi, in the far field. The dilatation is chosen to best display the acoustic
waves in the far field. The pressure shows very similar fluctuations, but is slightly
contaminated by a very slow drift in its value with time. The pressure drift, which
arises because of the non-reflecting boundary conditions, is not a serious problem in
the computation – the change in pressure over 64T is just 0.03% of its ambient value
(Colonius et al. 1995). The dilatation is directly related to the acoustic pressure. In
the high-speed stream, at large x2,

∂p′

∂t
+M1

∂p′

∂x1

= −Θ. (8)

For the low-speed stream at large −x2, M1 is replaced by M2 in equation (8). Since
the dilatation is related to the time derivative of the pressure and the drift in the
pressure signal is nearly linear, the drift shows up as a small mean value added to the
dilatation. The dilatation is therefore more nearly periodic in time than the pressure
and thus the DFT can be computed with less contamination of the low and high
frequencies.

In figure 5, contours of the real part of the DFT of the dilatation are plotted
away from the sheared region at four different frequencies: the fundamental, f, its
first two subharmonics, f/2 and f/4, and an unforced frequency 3f/2. Note that
the real part of the DFT corresponds to a particular (but arbitrarily chosen) phase.
The saturation locations for the instability waves are indicated on the plots along the
x1-axis. It is evident that the acoustic waves at the first two subharmonic frequencies
emanate from the region of the layer where the instability waves at those frequencies
saturate. That is, the acoustic waves at the subharmonics appear to emanate from
the regions where the pairings occur. This is similar to the observations of Laufer &
Yen (1983) and Bridges & Hussain (1992), and to the analysis of Mankbadi & Liu
(1984), Crighton & Huerre (1990), and Mankbadi (1990). It appears also that the
waves are primarily focused downstream, reaching their maximum amplitude (for a
given distance from their apparent origin) near the +x1-axis.

The computations of the acoustic field at the fundamental frequency, f, have
maximum amplitude in directions nearly normal to the layer (at least for the portion
of the field downstream of the inflow boundary). The waves also appear to emanate
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x2

(a ) (b)

(c) (d )

x2

x1x1

Figure 5. Contours of the real part of the DFT of the dilatation away from the sheared region for
several frequencies: (a) f/4, (b) f/2, (c) f, (d) 3f/2. The entire domain (except sponge) is shown.
The approximate saturation locations for the fundamental frequency and its first two subharmonics
are indicated on the plot with the tic marks on the x1-axis at x1 = 50, 75 and 175, respectively.
Dashed lines are negative contours and solid lines are zero and positive contours. Contour levels
(all times 106): (a) −1.0 to 1.0 at intervals of 0.1; (b) −0.4 to 0.4 at intervals of 0.04; (c) −0.2 to 0.2
at intervals of 0.02; (d) −0.004 to 0.004 at intervals of 0.0004.

from a region upstream of the saturation location for the fundamental frequency, at a
location very near the inflow boundary. These waves are an artifact of the instability
wave forcing at the inlet (Colonius et al. 1995). Approximations in the non-reflecting
boundary conditions used at the inflow make it impossible to entirely eliminate any
spurious incoming wave from the inlet forcing. The amplitude of the acoustic waves
shown in figure 5(c) is roughly 5000 times smaller than the amplitude of the inlet
forcing, indicating that the error is very small indeed. It appears that any sound at the
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fundamental frequency which is actually generated by the flow is at a smaller level.
Upon further examination of the dilatation fields at the subharmonic frequencies, it
appears that some contamination from the inlet forcing is also present – waves can
be seen emanating from a region very near the inflow. These waves appear to have
their highest amplitude along the inlet boundary. They are of comparable magnitude
to those emanating near the inflow at the fundamental frequency – however they are,
in the case of the subharmonics, smaller than those waves which are produced by the
flow itself.

For the unforced frequency, 3f/2, spurious acoustic waves emanating from the
outflow boundary (sponge region) are evident. In fact, such spurious waves are found
for nearly all the frequencies except those explicitly forced (the results for additional
frequencies can be found in Colonius et al. 1994b). Some waves produced near the
region of the first pairing are also evident, but the field is seriously contaminated
by the waves produced downstream of the physical domain. The amplitude of these
spurious waves, at both 3f/2 and all other unforced frequencies, is at least an
order of magnitude smaller than the waves at the forced frequencies. Evidently the
sound generated by the flow within the physical part of the domain is also very
much smaller for the unforced frequencies. Note that spurious reflections from the
sponge at the forced frequencies, if they exist, are of sufficiently small amplitude so
as to be undetectable compared to the actual sound generated within the physical
computational domain. The presence of these spurious waves indicates the need for
further refinements to the downstream boundary conditions.

3. Acoustic analogy solution
3.1. Numerical solution of Lilley’s equation

Unlike the standard wave equation, an exact Green’s function for equation (2) is not
known. However, since the acoustic analogy is to be solved for a source term which
is only known numerically (that is from DNS on a finite number of computational
nodes), the acoustic analogy must also be solved numerically. Since the non-constant
coefficients in equation (2) depend only on the normal coordinate, x2, the equation
can be reduced to an ODE by performing a Fourier transform in x1 and t and there
is little additional complication or expense to solving Lilley’s equation compared to
acoustic analogies for which exact Green’s functions exist.

Because the Fourier transform in time is used, only the sound that is produced
after a periodic state has been reached is considered. It is assumed that the source
term decays sufficiently rapidly downstream so that its Fourier transform (in x1) is
well defined and that the sources are not significantly altered by the presence of the
sponge region. These last two assumptions have been verified in detail (Colonius et
al. 1995).

Equation (2) is discretized over a finite period of time, T , such that tj = Tj/N
with j = 0, 1, · · · , N − 1, where N is the number of samples. The variable x1 is left in
continuous form, and thus the transformed pressure perturbation is defined by

Π̂n(k, y) =
1

N

N−1∑
j=0

∫ +∞

−∞
Π ′(x1, x2, tj)e

−2πi(kx1+jn/N)dx1. (9)

Now let

φn(k, x2) = (ωn +Uk)−1Π̂n(k, x2). (10)
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Transforming equation (2) according to equations (9) and (10) gives

φ′′n + λ2
n(k, x2)φn =

−Gn(k, x2)

2πi(ωn +Uk)2
, (11)

where the prime denotes differentiation with respect to x2, Gn is the Fourier transform
of the source term, Γ , and

λ2
n =

[
4π2
(
(ωn +Uk)2 − k2)

]
+
[
−(ωn +Uk)((ωn +Uk)−1)′′

]
, (12)

where ωn = n/T .

When λ2 > 0 the solutions to equation (11) are oscillatory; for λ2 < 0 the solutions
are damped exponentially for large |x2|. λ2 is positive, for large x2, on at least one
side of the layer when:

−ωn
1 +M2

< k <
ωn

1−M1

. (13)

Boundary conditions depend on the sign of λ2
n as x2 → ±∞. For λ2

n < 0, the correct
boundary condition is that φn decays. For λ2

n > 0, the Sommerfeld radiation condition
(in one dimension) should be applied:

φ′n + i(λ2
n)

1/2φn = 0, x2 → +∞, (14a)

φ′n − i(λ2
n)

1/2φn = 0, x2 → −∞, (14b)

where the positive branch of the square-root function is used for ωn positive and the
negative branch is used for ωn negative.

Note that equation (2) also admits causal solutions, for a particular frequency,
which grow exponentially in x1 (i.e. the instability waves of the layer, see Dowling et
al. 1978). When the phase speed of these waves is subsonic they decay exponentially
fast on either side of the layer (Tam & Morris 1980). Thus in solving equation (2) we
ignore the unbounded solutions (note that the instability waves have phase speeds
which fall outside the bounds of the integration in equation (15)), since they have
negligible impact on the acoustic farfield.

A numerical method for solving equation (11) is discussed by Colonius et al.
(1994b). The infinite domain in x2 is mapped to a finite computational region and
finite differences are used for the derivatives. An important aspect of the scheme is
that the oscillatory nature of the solutions to equation (11) for large |x2| is accounted
for analytically by a change of dependent variable. The code has been validated
with grid resolution studies, and by comparison with a solution to the full Euler
equations for a specified source term as described by Colonius et al. (1995). Solving
equation (11) requires the source term Γ to be discrete Fourier transformed in t and
continuously Fourier transformed in x1. Numerical quadrature is used to compute
the continuous Fourier transform. Since the transform need only be performed for
values of k given by equation (13) and we are interested in the low frequencies,
the exponential factors in the quadrature do not oscillate too rapidly to obtain an
accurate solution. The details of the integration and its validation are discussed by
Colonius et al. (1995). The effect of the attenuation of the acoustic sources in the
sponge outflow region was also investigated by Colonius et al. (1995) and found to
not significantly impact the predicted acoustic fields.

Once the solution to equation (11) is found, the pressure and dilatation (at discrete
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x2

(a ) (b)

x1 x1

Figure 6. Acoustic field (dilatation) predicted from the acoustic analogy with the simplified source
term of equation (4) for (a) f/4, (b) f/2. Contour levels (all times 106): (a) −1.0 to 1.0 at intervals
of 0.1; (b) −0.4 to 0.4 at intervals of 0.04.

frequencies), are determined by

Π̂n(x1, x2) =

∫ ωn/(1−M1)

−ωn/(1+M2)

(ωn +Uk)φn(k, x2)e
2πikx1dk, (15)

and

Θ̂n(x1, x2) = 2πi

∫ ωn/(1−M1)

−ωn/(1+M2)

(ωn +Uk)2φn(k, x2)e
2πikx1dk, (16)

respectively. Note that the infinite limits on the integration have been replaced by
−ωn/(1+M2) and ωn/(1−M1), since for larger values of k, φn decays exponentially in
±x2. Thus the solution found will only be valid outside the mixing region where the
exponential terms will have decayed significantly. Note also that when the pressure
fluctuations are small the logarithmic pressure fluctuation Π ′ is equivalent to the
regular pressure fluctuation, p′. The integrals are once again computed using numerical
quadrature as discussed by Colonius et al. (1995). The far-field directivity can also
be determined asymptotically from equations (15) and (16) for large r = (x2

1 + x2
2)

1/2

using the method of stationary phase; the details of the asymptotic analysis are
straightforward and are given in Colonius et al. (1995).

3.2. Comparison of acoustic analogy predictions and DNS

The results of the acoustic analogy predictions are found using the simplified source
term equation (4). The acoustic analogy is solved as discussed in the previous section.
Note that the source is sampled every 22 time steps from the DNS data and its DFT
is taken using the method described in the Appendix. The results of the computation
are shown in figure 6, where the predicted dilatation outside the mixing region is
plotted for frequencies f/2 and f/4.

Comparing figure 6 with the results from the DNS (figure 5a,b), it is evident that the
acoustic analogy predictions agree quite well with the acoustic fields directly measured
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Figure 7. Comparison of the magnitude of the acoustic waves (dilatation) predicted by solving the
acoustic analogy (solid lines) with the simplified source of equation (4) and from the DNS (open
circles). Refer to figure 8 for the locations in the computational domain from which the above data
are taken. (a) f/2, r = 100.0; (b) f/4, r = 100.0; (c) f/2, r = 150.0; (d) f/4, r = 150.0; (e) f/2,
r = 200.0; (f) f/4, r = 200.0.

from the DNS. One exception is near the inflow boundary where spurious waves are
created by the boundary conditions in the DNS. To aid in a more quantitative
comparison of the acoustic fields from the DNS and the acoustic analogy, the
predictions are replotted in figure 7. The magnitude of the dilatation is plotted
along arcs at various distances from the saturation point for the instability wave
corresponding to the particular frequency plotted, i.e. x1 = 75 for frequency f/2 and
x1 = 175 for frequency f/4. We pick this saturation point as the ‘apparent origin’ of
the waves. Figure 8 shows a diagram of the computational domain with the locations
from which the data in figure 7 are taken. Note that the DNS and acoustic analogy
field are not plotted for |x2| < 40.0 in the plots since it is impossible to distinguish
between the acoustic waves and the near-field dilatation in the DNS. Also, since the
acoustic fields from the DNS at other frequencies were found to be contaminated by
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(a)r = 100.0
(b)r = 150.0
(c)r = 200.0

(a)r = 100.0
(b)r = 150.0
(c)r = 200.0

(solid lines)
f /2 locations x2

x1

Apparent origin of
waves of
frequency f /4
(x1 = 175.0)

Apparent origin
of waves of
frequency f /2
(x1 = 75.0)

r

r

h h
f/4 locations
(dotted lines)

Figure 8. Diagram of computational domain showing the locations for the
curves plotted in figure 7.

boundary condition errors, and are anyway very much smaller than those at f/2 and
f/4, the acoustic analogy predictions for those frequencies are not presented.

Very little decay with increasing r is evident in the magnitude of the acoustic waves
in figure 7. Apparently the waves have not reached their asymptotic far field (where
their amplitude should decay like r−1/2) which is not surprising since there are only
1 to 4 wavelengths (depending on the frequency and observation angle θ) of the
generated sound inside the computational domain.

While the acoustic analogy predictions are in good agreement with the DNS, we
point out that the very small differences in the manner in which the source terms
were computed (specifically the DFT of the sources) led to large variations in the
predicted acoustic field. The computational details of the sensitivity are specific to the
methodology of the present analysis and may not be of interest to the general reader.
Details about the sensitivity of the prediction are therefore placed in the Appendix. In
§3.6 evidence is given that connects the sensitivity of the numerics with the presence
of flow–acoustic interaction terms in the source.

3.3. The full form of the source term

The acoustic fields generated by those parts of the full source which are neglected
in arriving at the simplified source of equation (4) are now examined. Given that
the predictions based on the simplified source are in good agreement with the
DNS, it would appear that the remainder of the terms should (together) produce
a negligible acoustic field. This is verified in figure 9, where the acoustic field (at
the first subharmonic frequency, f/2) produced the by full source, equation (3), is
compared to the acoustic field produced by the simplified source, equation (4). The
two predictions are very nearly identical, indicating that the total contribution of
terms II–V in equation (3) are negligible. The same conclusion holds for frequency,
f/4, but the figures have been omitted for the sake of brevity.

The acoustic fields produced by each of the neglected terms (IIa,b, IIIa,b, IVa,b
and Va,b) are shown in figure 10 at the same contour levels as figure 9. The sum
of all these terms is also plotted (figure 10a). For terms IIIa and IIIb only the zero
crossings of the waves can be seen in the plot, and thus the amplitude is more than
an order of magnitude smaller than amplitude of the acoustic waves generated by the
total source. Terms Va and Vb individually have a slightly more significant amplitude,
amounting to about 20% of those from the full source. But they are nearly equal in
amplitude and of opposite phase – thus their total contribution is negligible.
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x2

x1 x1

(a) (b)

Figure 9. The acoustic field at frequency f/2 predicted by acoustic analogy with: (a) the full source
term (equation (3)), and (b) the simplified source, terms Ia and Ib only (equation (4)). Contour
levels for all plots (all times 106): −0.4 to 0.4 at intervals of 0.04.

On the other hand, terms IIb and IVa and IVb are not negligible individually.
Each generates an acoustic field of the same order of magnitude as the full source.
Moreover, the conclusions are very similar for the acoustic field at frequency f/4.

In Goldstein’s (1976a) derivation of equation (4), term II of equation (3) has
been neglected because it is proportional to the dilatation and thus, for low Mach
number, it should be (and, in fact, is) significantly smaller than term I. Terms III–V
of equation (3) contain Π ′, and arise from the linearization of the left-hand side
of equation (1). Interpreting Π ′ as the solution of the acoustic analogy, Goldstein
(1976a) concludes that these terms arise from scattering of the sound by the flow.
Neither of the two arguments can be strictly correct because parts of terms II and
IV individually produce acoustic fields which are quite intense compared to the total.

A better justification for neglecting terms II, IV and V is actually provided in a later
paper by Goldstein (1984), though in a different context. In this later work Goldstein
derives equation (4) by performing a perturbation expansion about a transversely
sheared parallel mean flow, rather than by the acoustic analogy approach used here.
In that case, to first order, the solution for disturbances in the flow is given by the
solution of equation (2) with the Γ set to zero. These solutions are then taken as the
‘first order’ solutions and the equations are written to second order in the deviations
of the pressure from its uniform value in the base flow. The second-order equation is
essentially equation (4), but with a few important differences. The source term only
contains the ‘first order’ interactions. That is the primed quantities are no longer the
deviations of the flow from the parallel base flow, but are, in fact, the ‘first order’
disturbances. Therefore term V (which contains only triple products) is not included
in the second-order equation, but rather would appear as a source in the equation
at third order. Then Goldstein (1984) cleverly rewrites the second-order equation
in terms of a new dependent variable Π2 − 1

2
(γ − 1)Π2

1 , where the subscript here
refers to the order of the quantity. Since the first-order pressure, Π1, has no acoustic
field when the flow is subsonic (Goldstein 1984) the new variable is equivalent to
the second-order pressure in the far field. The source term for the new dependent
variable, Π2 − 1

2
(γ − 1)Π2

1 , however, does not contain terms II and IV.
Now, since the source is computed from the DNS data, it is impossible to decompose

the total velocities and pressure into first-order, second-order, etc. quantities. However,
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it is possible to write an equation for the square of Π ′:

L( 1
2
Π ′2) = Γ̃ =

Do

Dt

(
∂u′i
∂xi

∂u′k
∂xk︸ ︷︷ ︸

Term IIa

− a2 ∂Π
′

∂xi

∂Π ′

∂xi︸ ︷︷ ︸
Term IVa

)
−2

dU

dx2

(
∂u′2
∂x1

∂u′k
∂xk︸ ︷︷ ︸

Term IIb

− a2 ∂Π
′

∂x1

∂Π ′

∂x2︸ ︷︷ ︸
Term IVb

)
+ · · ·

(17)
where the dots refer to terms which are triple products similar in form to term V of Γ ,
and L is the linear wave operator of equation (2). Equation (17) follows (after some
tedious algebra) from equations (2) and (3). Now, adding equations (17) and (2) gives

L
(
Π ′ + 1

2
Π ′

2)
= ˜̃Γ = Γ + Γ̃ , (18)

The source ˜̃Γ of equation (18) will consist solely of terms I, III, and terms which
are triple products of the primed variables. And in the far field Π ′ + 1

2
Π ′

2 will be
indistinguishable from Π ′ since the acoustic field has very small amplitude. This leads
to the conclusion that the sum of terms II, IV, and V in Γ produces an acoustic field
which can be regarded as a ‘higher order’ approximation in a perturbation expansion
of the flow. Finally, note that the preceding arguments apply equally well to the
second subharmonic frequency, f/4, which has been omitted for the sake of brevity.

3.4. The structure of the source terms and their asymptotic far-field radiation

The asymptotic far-field directivity is determined, as noted in §3.1, by using the method
of stationary phase to evaluate the inverse Fourier transform of the acoustic analogy

solutions for large r =
(
x2

1 + x2
2

)1/2
. In figure 11 the acoustic pressure (multiplied

by r1/2) in the asymptotic far field at frequencies f/2 and f/4 is plotted against
the angle between the observation point at a distance r from the source and the
positive x1-axis. Note that for large r, information about the actual source position
for the waves is lost, and therefore r is taken as the distance from x1 = x2 = 0. The
directivity shown in figure 11 is complicated, but overall is strongly peaked for angles
−90◦ < θ < 90◦, attaining a global maximum near θ = −30◦. Unlike the directivity
from a jet, which is expected to be symmetric about θ = 0, the directivity is weaker
for θ > 0. Furthermore, the maximum directivity occurs at a cusp. Such cusps are the
result of the difference in velocity on either side of the layer, causing certain spatial
harmonic components (at a particular frequency) to radiate to one side of the layer
only (they are evanescent waves on the other side). These cusps have been seen in
simple acoustic models of sources near vortex sheets (Gottlieb 1960; Ffowcs Williams
1974). For M1 = 0.5 and M2 = 0.25 it can be shown that the cusps occur at angles
θ = −30◦ and θ = 117◦ in the low- and high-speed streams respectively (Colonius et
al. 1995).

In addition to the overall trends, the directivity also contains smaller-scale oscilla-
tions such as occur when a wave field is significantly scattered. In fact, for frequency
f/2 the directivity is highly oscillatory and qualitatively resembles the directivity for
low-frequency waves which are scattered by a single vortex (see, for example, figure 5
of Colonius et al. 1994).

Consider now the far field which would be generated by a compact quadrupole
source of the form of equation (4). The directivity produced by low-frequency con-
vecting point sources in jets has been computed using equation (2) with the source
given by equation (4) (or something very similar) by Goldstein (1975, 1976b), Tester
& Morfey (1976), and Balsa (1977); solutions in the high-frequency limit are given by
Tester & Burrin (1974), Balsa (1976, 1977), Tester & Morfey (1976), and Goldstein
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Figure 11. The asymptotic far-field directivity. (a) f/2, (b) f/4.

(1982) and others; full solutions are given for the special case of plug flow by Mani
(1976). These computations are reviewed by Goldstein (1984).

For low frequency, Goldstein (1975, 1976b) and others use equation (4) with u′iu
′
j

modelled by

u′iu
′
j = Aij exp (2πiωt)δ(x1 − Ct)δ(x2), (19)

where Aij is a tensor of constants, and C is a constant convection velocity. Specifically,
Goldstein (1975, 1976b) has shown that for convecting sources, Doppler factors,
(1 − C cos θ)−n with n as high as 5, can multiply the directivity and thus produce
a highly directive acoustic field. This is in accord with experimental observations.
Similarly, Ffowcs Williams (1974), and later Dowling et al. (1978) have shown that
the directivity associated with compact convecting quadrupole sources is modified by
proximity to a vortex sheet, causing a more highly directive acoustic field and a zone
of silence along the shear layer axis due to refraction by the vortex sheet, similar to
that which exists in the current acoustic field (see figure 11).

In the present flow which is nearly periodic in time, the sources are stationary and
the representation of the acoustic sources at a particular frequency as convecting
disturbances is not appropriate. A stationary compact quadrupole source would,
instead, be given by

u′iu
′
j = Aij exp (2πiωt)δ(x1)δ(x2). (20)

To investigate the directivity associated with such sources in the mixing layer, the
numerical scheme for solving equation (2) is used with a source of the form given by
equation (20). In order to solve for the point source numerically, the delta functions
in equation (20) must be replaced with sources of finite support. We choose the
distribution

u′iu
′
j = Aij exp (2πiωt)e−π(x1/ε1)2

e−π(x2/ε2)2

/(ε1ε2). (21)

In the limit as ε1 and ε2 both go to zero equation (21) approaches equation (20).
By experimentation, it was found that for frequencies f/2 and f/4, a source with
ε1 = ε2 = 0.1 is sufficiently compact such that the acoustic fields produced by each
of A11, A22 and A12 are identical to those which would be produced by equation (20).
Figure 12 presents the directivity patterns for the point quadrupoles A11, A22 and A12

with a frequency f/2 in a flow with mean streamwise velocity U(x2) which is taken as
the real mean flow of the mixing layer at x1 = 0. The pressure is normalized in each
case by the corresponding strength of the source. The mean velocity and shear have
a dramatic effect on the directivity. In comparison, the directivities of the compact
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Figure 12. The far-field directivity of stationary point quadrupole sources in a mixing layer at
frequency f/2 for the A11 component only ( ); the A12 component only ( ); the A22

component only ( ).

sources in a quiescent media are cos2 θ, sin2 θ, and cos θ sin θ for A11, A22 and A12,
respectively. The mean flow causes the amplitude of the waves to be increased for
waves propagating upstream (i.e. angles greater than 90◦) and decreased for waves
propagating downstream. Note that this is the Doppler effect, but for a stationary
observer and stationary source in a flow (as opposed to a convecting source relative
to a stationary observer in a flow, as considered by Goldstein (1975, 1976b)). For
a stationary source the frequency of the source and observer are the same, but the
waves propagating upstream have shorter wavelength and greater magnitude. This
is opposite to the desired trend of greater amplitude in the downstream direction.
Clearly it is difficult to imagine constructing the observed directivity (figure 11) from
any linear combination of the point sources.

The acoustic field for the source in equation (21) with varying values of ε1 and ε2

has also been computed, and thus, to a limited extent, certain effects of source non-
compactness have been considered. While there is a gradual trend towards attenuation
of the directivity in the upstream direction as ε1 and/or ε2 are increased from 0.1, the
effect is not of sufficient magnitude to explain the observed directivity of figure 11.
At large values of ε1 and/or ε2 equation (21) merely gives an acoustic field which is
beamed to ±90◦.

In short, the directivity of the acoustic field produced by the vortex pairings is
dissimilar to that which would be produced by a stationary compact quadrupole
source. Many would argue that equation (4) is, by definition, a quadrupole source,
albeit a possibly non-compact one. The utility of such a definition is unclear, given
that the far field of a non-compact quadrupole is in principle no different from a non-
compact monopole, dipole, etc. Further complicating the discussion of the acoustic
field produced by terms Ia and Ib is the presence of flow–acoustic interactions in the
source, which will be discussed in the next section.

Figure 13 shows part of the simplified source term ∂2u′iu
′
j/∂xixj in the near field.

Its real part, imaginary part and amplitude (in frequency space) are plotted for the
frequencies f/2 and f/4. The source term for each frequency attains a maximum
amplitude near the saturation point of the instability wave of that frequency (x1 ≈ 75
and x1 ≈ 175 for frequency f/2 and f/4 respectively, see figure 4). The source term
has a very large extent in the x1-direction, decaying very little by the end of the
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x1 x1

x2

x2

x2

f /2 f /4(a) (b )

(c ) (d )

(e) ( f )

Figure 13. Isocontours of the real part (a,b), imaginary part (c,d), and magnitude (e,f) of the DFT
of the quantity ∂2u′iu

′
j/∂xixj at frequencies f/2 (a, c, e) and f/4 (b, d, f). A portion of the domain

extending to x2 = ±10 and x1 = 400 is plotted, and the normal direction has been blown up by a
factor of 5. The solid line at x1 = 285 indicates the end of the ‘physical’ part of the computational
domain. Dashed lines are negative contours and solid lines are zero and positive contours. Contour
levels: (a), (c) and (e) −0.4×10−2 to 0.4×10−2 at intervals of 0.04×10−2; (b), (d) and (f) −0.1×10−2

to 0.1× 10−2 at intervals of 0.01× 10−2.

computational domain. Most of the decay occurs in the sponge region (downstream
of the solid line in the plot which demarks the end of the ‘physical’ part of the
computation, x1 = 285, from the sponge). In the normal direction, the source term
is quite concentrated near the centre of the layer, decaying rapidly for large |x2|.
Note that the x2-axis has been expanded by a factor of 5 in the figure. The width
(in the normal direction) of the source term at frequency f/4 is essentially double
the width at frequency f/2. The real and imaginary parts of the source term show
a very regular structure – they are approximately sinusoidal with the wavelength of
the instability wave for the corresponding frequency. The real and imaginary parts
are nearly identical but for a phase shift of π/2. Thus they are propagating wave
packets whose amplitude grows and decays in x1. Since the phase shift is so nearly
constant, they propagate at a nearly constant speed, roughly the phase velocity for
the instability waves, M ≈ 0.4, for both frequencies. The data from figure 13 are
replotted in figure 14 along the centreline, x2 = 0, to show the wave structure of the
source terms more clearly.

Note that the while the acoustic waves produced at the pairing frequencies appear
to emanate from a small region near the saturation locations, the source terms are
not highly concentrated near those points – they do not resemble point sources.
Since they have the form of a modulated wave packet their energy is largest at the
wavenumber of the instability wave at the corresponding frequency. This wavenumber
is well outside the range of wavenumbers for which acoustic waves are radiated to
the far field, given by equation (13).
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Figure 14. The DFT of ∂2u′iu
′
j/∂xixj versus x1 at x2 = 0 for frequencies (a) f/2 and (b) f/4.

Real part; imaginary part; magnitude.

3.5. Comparison with superdirective acoustic fields

What is clearly missing from the compact quadrupole source of equation (20) is a
term which would account for the modulated wave packet structure of the sources in
the x1-direction. The actual source structure is the consistent with the ‘superdirective’
source considered by Crighton & Huerre (1990, hereafter referred to as CH). A
simplified situation is considered by CH, where the two-dimensional acoustic field is
found for a pressure disturbance at x2 = 0 having the form of a modulated wave
packet in x1. Specifically, the pressure at x2 = 0 is modelled as:

p(x1, 0, t) = A(x) exp (2πik0x) exp (2πiωt), (22)

where A(x) is the envelope function, and k0 is the wavenumber of the modulation,
equal, approximately, to the wavenumber of the instability wave at frequency ω. The
resulting acoustic far field has a directivity of the form

|p̂| ∼ sin θeaMc cos θ, (23)

for an A(x) whose Fourier transform decays exponentially fast for large k. The
constant a is related to the overall width of the envelope function compared to the
acoustic wavelength, and Mc is the phase speed of the pressure disturbance at x2 = 0,
i.e. Mc = ω/k0.

The pressure from the DNS at x2 = 0 is plotted in figure 15 and conforms to
equation (22). The Fourier transform of the pressure is plotted as a function of k/ω
for f/2 and f/4 in figure 16, and except for a spike in the transform very near k = 0,
the transform is decaying rapidly in the range of wavenumbers which can radiate
acoustic waves to the far field, −0.8 < k/ω < 2. Though the shape of the envelope
function is more complicated than those considered by CH, the transform for large
|k − k0| decays at a rate which can be roughly approximated by an exponential
function, as depicted in the plot. The sharp spike near k = 0 is due to slight overall
drift in the pressure mentioned in §2.3. It does not appear to have any significant
consequence on the results given below.

We modify the stationary-media model given by CH, to take account of the mean
flow in the mixing layer. The term Mc cos θ = (ω/k0) cos θ in equation (23) arises
from the radiation of a particular wavenumber, k, according to its stationary phase
relation k = −ω cos θ, in a stationary medium. The convection velocities on either
side of the layer can be accounted for by modifying the exponential term arising in
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Figure 15. The DFT of p at x2 = 0 for f/2 ( ) and f/4 ( ). The real part and magnitude
are shown – the imaginary part is similar to the real part in each case but shifted in phase by π/2.

0
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|p |ˆ

–2– 4 2
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10–4

10–2

100

Figure 16. The magnitude of the Fourier transform in x1 of the DFT of p at x2 = 0 for f/2 ( ,
ε = 0.05) and f/4 ( , ε = 0.08). The straight lines and values of ε correspond to an exponential
decay given by equation (24).

the Fourier transform of the pressure at x2 = 0:

|p̂| ∼ exp (−2π|ksp − k0|/ε), (24)

where p̂ is the Fourier transformed pressure at x2 = 0, ε is a small number, related to
a and thus the width of the envelope function. The stationary point for the mixing
layer is (Colonius et al. 1995)

ksp =


ωn

1−M2
1

(
M1 −

cos θ

(1−M2
1 sin2 θ)1/2

)
if 0 < θ < π

ωn

1−M2
2

(
M2 −

cos θ

(1−M2
2 sin2 θ)1/2

)
if −π < θ < 0 .

(25)

Note that when M1 = M2 = 0, equation (25) reduces to k = −ω cos θ.
The constant ε is related to the width of the envelope function, and is determined

from the DNS data by forcing the exponential term in equation (24) to pass through
the Fourier transform of the pressure at x2 = 0, again ignoring the spike near k = 0.
These curves are shown in figure 16 along with the Fourier transform of the pressure
at x2 = 0. The exponential function captures the overall trend of the transformed
pressure with ε = 0.08 for frequency f/4 and ε = 0.05 for frequency f/2. Note that
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Figure 17. The asymptotic far-field directivity resulting from: the full source at f/4 ( ); the
modelled directivity at f/4 ( ); the full source at f/2 ( ); and the modelled directivity at
f/2 ( ).

for both frequencies, 1/ε is about a quarter of the acoustic wavelength at θ = ±90◦

to the source.

It is more difficult to account for the shearing by the mean flow. First, the model
proposed by CH has no structure in the x2-direction. The acoustic waves are assumed
to be forced by the pressure at the centreline of the layer. The dipole-like term,
sin θ, in equation (23) will surely be modified by the shear in a manner similar to
the quadrupole components Aij discussed above. Here we correct for shear in the
sin θ-term of equation (23) in an ad hoc way by finding the directivity for a stationary
dipole (aligned with the x2-axis) in the present shear flow and multiply that directivity
by the superdirective factor equation (24).

To ascertain the form of this modified dipole directivity equation (2) is solved with
Γ replaced by a dipole source of the form

Γ =
D2
o

Dt2

[
exp (2πiωt)

∂

∂x2

(
e−π(x1/ε1)2

e−π(x2/ε2)2)
/(ε1ε2)

]
, (26)

where, as in equation (21), ε1 and ε2 control how compact the dipole is. This is
the form of a dipole mass source inserted into the equations of motion. Note that
equation (21) should not be interpreted as a source model – it is only used to
determine how shear might be accounted for in the sin θ-term of equation (23).

The resulting directivity (i.e. the product of modified dipole-like factor given by the
acoustic field produced by equation (26) and the superdirective factor of equation (24))
is plotted figure 17. The directivity of the present mixing layer (figure 11) is replotted
in figure 17 for comparison. The agreement, while quantitatively inaccurate, captures
the overall trends of the directivity including the cusps and the asymmetry in the
directivity. Note that ε1 = 0.01 has been used for both frequencies and the less compact
values of ε2 = 1 and ε2 = 2 are used for frequencies f/2 and f/4 respectively; the
results are not very sensitive to the value of ε2 (unless ε2 is much larger than 1).
The values of ε1, ε2, and the overall amplitude of the directivity used were chosen
to produce the best agreement with the computations. The main point is that the
directivity produced by the vortex pairings is similar to that which would be produced
by superdirective sources in a shear flow.
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x1

x2

x1 x1 x1

(a) (b) (c) (d )

Figure 18. The acoustic field predicted by the acoustic analogy with individual components of the
full source: (a) f/2, Term Ia; (b) f/2, Term Ib; (c) f/4, Term Ia; (d) f/4, Term Ib. Contour levels
(all times 106): (a, b) −0.4 to 0.4 at intervals of 0.04; (c, d) −1.0 to 1.0 at intervals of 0.1.

3.6. The effects of flow–acoustic interaction

Consider the acoustic fields produced individually by the two important parts of the
overall source term, i.e. terms Ia and Ib. The acoustic fields produced by each of the
two terms individually at both subharmonic frequencies are plotted in figure 18, and
should be compared to the acoustic fields produced by the total source (figures 6b,
and 6a for frequencies f/2 and f/4, respectively). Both parts of term I produce an
acoustic field with a magnitude which is significantly larger than that produced by
their sum. The fields produced individually by terms Ia and Ib at f/2 make very large
contributions to the acoustic field which emanates from the region downstream of the
second pairing, unlike their sum which appears to radiate waves predominately from
the region of the first pairing. Compact quadrupole sources arise from a cancellation
between two opposing dipole sources, but it is difficult to imagine why the acoustic
field produced by the flow in the region of the first pairing should be the produced by
two large but mutually cancelling sources in an entirely different region of the flow.
More likely, there is another reason, apart from any multipole nature of the sources,
for such a cancellation.

In fact, parts of the large nearly cancelling acoustic fields produced by terms Ia
and Ib individually (downstream of the pairing) are due to the presence of so-called
flow–acoustic interactions in the source terms (specifically terms which are linear in
the perturbations to the true mean flow). The primed quantities in equation (4) are
defined as departures from the parallel base flow, U(x2), and therefore the products
of primed quantities in equation (4) in reality contain terms which are linear in the
true fluctuations of the flow about its true mean. To accertain the effects of such
terms, we recompute equation (4) from the DNS data as follows. Let the true mean
(time average) velocities be given by ūi and the fluctuations about the mean by ũi.
Then equation (4) can be written

Γ ≈ Do

Dt

(
∂2ũiũj

∂xixj︸ ︷︷ ︸
Term A

)
− 2

dU

dx2

∂2ũ2ũj

∂x1xj︸ ︷︷ ︸
Term B

(27)

where we have neglected all terms linear in the true fluctuations (i.e. products of
the true fluctuations and the mean flow or the parallel base flow). Equation (27) is
consistent with past interpretations of the primed quantities in equation (4) as being
turbulent fluctuations (see, for example, the discussion on page 282 of Goldstein
1984). Note that equation (27) together with equation (2) is no longer ‘exact’. This
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x1

x2

10

–10

2850

Figure 19. Mean streamwise velocity contours in near-field mixing region. The normal axis is
expanded by a factor of 2.5. Contour levels: min: 0.26, max: 0.49, increment: 0.023.

implies that the choice of the parallel base flow velocity, U(x2), which appears in
both equations (27) and (2) is no longer arbitrary. That is, different choices of U(x2)
change the linear terms which are neglected in writing the source in the form of
equation (27).

We now examine the acoustic field produced by the source of equation (27), with
different choices of U(x2). U(x2) is chosen to correspond to the true mean streamwise
velocity of the layer, but at different positions in the layer. In figure 19, the contours
of the mean streamwise velocity, ū1(x1, x2), are shown in the near-field region of
the mixing layer. Near the locations where the pairings take place, the thickness
of the layer essentially doubles. Thus, for example, the acoustic waves produced by
the first pairing are radiated downstream into a flow with a significantly different
mean streamwise velocity profile than that which exists at x1 = 0 where U(x2) was
previously defined.

In figure 20, the acoustic field at frequency f/2 which results from the source given
by equation (27) with two different choices for U(x2) is plotted. In figure 20(a) U(x2)
is set equal to ū1(0, x2) (which is the value of U(x2) which was used in conjunction
with the source of equation (4) in obtaining the acoustic field shown in figure 6b).
The agreement with the DNS (figure 5b) is not very good, and there appear to
be some spurious waves emanating from the region downstream of the pairing. In
figure 20(d) the acoustic field is computed using the source of equation (27), but with
U(x2) is set equal to ū1(100, x2), which is near the apparent origin of the acoustic
waves for frequency f/2. At x1 = 100, the thickness of the layer has approximately
doubled from its value at x1 = 0. This field is in good agreement with both the
prediction obtained from the source of equation (4) (figure 6b), and with the DNS
result (figure 5b).

Thus the quadrupole source term of equation (4) can reasonably be interpreted
as due solely to fluctuations about the true mean flow, so long as U(x2) is chosen
to conincide with correct mean flow near the apparent origin of the waves. This is
consistent with the idea of assuming that the mean flow is spreading slowly and can
be considered as ‘locally parallel’. Note that the acoustic field is not very sensitive to
the choice of U(x2) so long as the chosen U(x2) is not too different from the true mean
flow in the vicinity of the apparent source of the waves. In the context of the present
results this means that for the waves emanating from the first pairing, reasonable
predictions can be obtained when U(x2) is chosen from streamwise locations in the
layer where the thickness is essentially double that of the initial thickness (i.e. from
about x1 = 90 to x1 = 180).

In figure 20, the acoustic fields for the two different choices of U(x2) are also
decomposed into their contributions produced individually by the two parts of overall
quadrupole source term, terms A and B of equation (27). When U(x2) = ū1(0, x2)
(which gives a total field in poor agreement with the DNS) the individual contributions
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x1

x2

x1 x1

x2

(a) (b) (c)

(d ) (e ) ( f )

Figure 20. The acoustic field predicted by the acoustic analogy with the source given by equa-
tion (27), with different choices for U(x2): (a) total source with U(x2) = ū1(0, x2); (b) term A with
U(x2) = ū1(0, x2); (c) term B with U(x2) = ū1(0, x2); (d) total source with U(x2) = ū1(100, x2); (d)
term A with U(x2) = ū1(100, x2); (d) term B with U(x2) = ū1(100, x2). The circles on the x1-axis
indicate the location where U(x2) is taken to be equal to the mean streamwise velocity. Contour
levels (all times 106) for all plots: −0.4 to 0.4 at intervals of 0.04.

from terms A and B are significantly larger than the total field, largely cancel one
another, and appear to emanate from a region of the flow downstream of the second
pairing. This is similar to the situation arising when the source given by equation (4) is
used (figure 18a,b). By contrast, when U(x2) is chosen as the true mean flow near the
apparent origin of the waves, the two contributions to the acoustic field from terms
A and B (figure 20e,f) are similar in magnitude to the total and appear to emanate
from the region of the flow near the vortex pairing. Here term B only modifies the
acoustic field produced by term A at very shallow angles in the low-speed stream.

In summary, when the acoustic anology is ‘exact’ (as in figure 6), then the presence
of products of the mean flow and fluctuations in terms Ia and Ib cause large but
mutually cancelling acoustic fields. This gives good overall predictions for the acoustic
fields, but can give misleading pictures of the individual contributions. When terms
linear in the fluctuations are removed from the source terms, good overall predictions
can be obtained, provided the appropriate base flow velocity, U(x2) is used.

As discussed in the Appendix, the solution to the acoustic analogy equation can be
sensitive to the computational details of discrete Fourier transforming of the source.
These sensitivities can, in fact, be traced entirely to the inclusion of linear terms
in the source terms of equation (4). Though the total source equation (4) gives the
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correct prediction, linear terms present in individual parts of the source create intense
mutually cancelling acoustic fields as shown above. Thus small computational errors
can easily upset the cancellation and yield large errors in the predicted acoustic fields.

From a computational point of view, the two main conclusions which can be drawn
from the results of this section are that (i) if linear terms are neglected in the source
terms, then the predicted acoustic field can be sensitive to the particular parallel flow
velocity which is used in solving the acoustic analogy, and (ii) the presence of linear
terms in the source leads to acoustic field predictions which are very sensitive to
the details of the computation. Though it has been widely speculated that acoustic
sources computed using DNS could exhibit such a sensitivity, it has usually been
attributed to the idea of upsetting the ‘multipole’ cancellation of compact sources.
Here such sensitivity arises when terms linear in fluctuations about the mean are
lumped into the source term. This confirms the theoretical conclusion of Doak (1972)
who proposed that an effective formulation of the acoustic analogy can only be
obtained by extracting from the right-hand side all flow acoustic interaction terms.

4. Summary
The sound generated by vortex pairing in a compressible two-dimensional mixing

layer which is forced to roll up into vortices and undergo two pairings has been
investigated with DNS of the Navier–Stokes equations and with the acoustic analogy
due to Lilley (1974). The source terms necessary to solve Lilley’s acoustic analogy
are determined from the DNS data. The predictions from the acoustic analogy
are found to be in remarkably good agreement with the acoustic field from the
DNS at the frequencies corresponding to the vortex pairings (these frequencies alone
dominate the acoustic field), especially considering that the acoustic field is 4 to 5
orders of magnitude smaller (in amplitude) than the near-field fluctuations. Thus
Lilley’s equation has been validated in detail against a solution to the Navier–Stokes
equations for the first time.

By considering the acoustic fields produced individually by the various terms in
the full acoustic source for Lilley’s equation, it was found that certain combinations
of terms produced negligible acoustic fields. The negligible terms are identical to
those Goldstein (1976a) neglected in arriving at a simplified quadrupole form of the
source term (equation (4)). However, when taken individually, the neglected terms do
not produce negligible acoustic fields. That is, some of the neglected terms produce
large but mutually cancelling acoustic fields, and this indicates the need for caution
in interpreting the relative importance of different terms in the acoustic source.
Alternatively, it was shown, by analogy with the perturbation expansion for parallel
shear flows considered by Goldstein (1984), that the neglected terms can, when taken
in combination, be considered as producing only a ‘higher-order’ correction to the
acoustic field.

The simplified source proposed by Goldstein (1976a, 1984) is of an appealing form
because it extends the concept of Lighthill’s (1952) quadrupole acoustic sources to
parallel flows with mean shear. While the source term written in this form accounts for
the observed acoustic field well, it was shown that the sources are not well modelled
by compact quadrupole sources, despite the relatively low Mach number of the flow.
In fact, the vortex pairings in the layer led to sources of the form of modulated
wave packets in the streamwise direction. A model for a such a source (Crighton &
Huerre 1990) was examined and the resulting ‘superdirective’ acoustic field compared
favourably with the computations. It should be kept in mind, however, that the
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present flow is one with no small-scale turbulence, and it is not well understood
at present how the addition of small and random eddies to the large-scale vortices
studied here will effect the modelling of the source terms.

Contributions to the source from products of the mean flow and fluctuations about
the mean (the so-called flow–acoustic interaction terms) cause individual parts of the
source to produce intense but mutually cancelling acoustic fields; small computational
errors can upset this cancellation, giving rise to acoustic field predictions which are
grossly in error, and small changes in the source terms can lead to misleading views
of the relative importance of various terms. Therefore the present results point to
the need for caution in applying acoustic analogies, for the good agreement between
the direct computations and the acoustic analogy was only obtained provided that
sufficient care was taken in processing the DNS data.

The authors are grateful to Professor Geoffrey Lilley for his helpful remarks on a
draft of this paper. Part of this work was completed under grants ONR-N00014-88-K-
0592 and ONR-N00014-92-J-1626 from the Office of Naval Research, while the first
author was a graduate student at Stanford University. The first author is also grateful
for recent support from the National Science Foundation under grant number CTS-
9501349. Supercomputing time and support was provided by NASA-Ames Research
Center and the Center for Turbulence Research. Some of the work presented here was
presented in preliminary form in AIAA Paper 93-4328, CEAS/AIAA Paper 95-036,
and ASME FED-Vol. 219.

Appendix A. Sensitivity of the acoustic analogy predictions
The acoustic analogy solutions of §3.2 require that the acoustic sources be discrete

Fourier transformed in time. The DFT of a discrete time signal F(tj) is given by

F̂n =
1

N

N−1∑
j=0

F(tj)e
−2πijn/N, (A 1)

where tj = Tj/N, and where T is the period of the transform. As noted in §2.2, the
signal from the DNS is not perfectly periodic in time, but only nearly so. Thus error
is introduced into the representation of the sources at a particular frequency.

When the power spectrum of a sampled function is desired, windowing techniques
and averaging transforms of individual (overlapping) segments of the data may be
used to increase the accuracy of the power spectrum in a particular frequency bin
(see, for example, Press et al. 1992). In computing the frequency spectra of various
quantities in the near field (including the acoustic sources), it was found (Colonius
et al. 1995) that the values of the transformed quantities differed by as much as 5%
(in amplitude) depending on which signal processing techniques were used. However,
it was found that the value of the acoustic field predicted by solving the acoustic
analogy varies by orders of magnitude depending on the particulars of the DFT
computation. In particular none of the standard techniques (windowing, overlapping
segments, etc.) gave agreement with the DNS results.

The key problem with the standard windowing techniques is that they are developed
to attempt to ‘resolve’ the energy of both the periodic and aperiodic parts of a signal
into nearby ‘frequency bins’. They give the undesired effect of smearing sharp spectral
peaks across several adjacent bins and apparently this modifies the source to the
extent that the resulting acoustic field is grossly in error.
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A technique which removes the unresolved low-frequency components instead of
folding their energy into the nearby frequency bins is desirable. The technique should
have as little effect on the sharp spectral features (i.e. the periodic components) as
possible. One common method for accomplishing this is to subtract any linear trend
between the first and last† data points of the signal before performing the transform.
Obviously if the frequency of the unresolved energy is low enough that it can be
represented as a linear function over the period of the transform then the unresolved
energy is removed. If the signal consists of a superposition of periodic components
and aperiodic components then this method has no effect on the periodic components.

Moreover, the data can first be segmented into a number of (possibly) overlapping
segments, and a linear trend can be subtracted between the first and last points of
each segment. The transforms of the individual segments are subsequently averaged
together. Again, this technique has no effect on the components of the signal that
are periodic over the segment length. However, the energy contained in components
of the signal that not exactly resolved on the length of a segment is attenuated by
the subtraction of the linear trends. Since the lowest frequency to resolve is f/8 a
transform of length at least 8T is needed. This corresponds to 128 samples. The
efficacy of this modified DFT technique in removing spurious low-frequency noise
components added to a periodic signal is shown by example in Colonius et al. (1995).
Its efficacy in transforming the acoustic sources is shown below. Given the segment
length of 128 (a period of 8T ) samples and the total length of the signal 1024 samples
(a period of 64T ), the only parameter left to choose is the amount of overlap of
each segment. It is shown in Colonius et al. (1995) that for spurious low frequencies
(0 < ω < f/8) overlapping the segments by all but 1 point is the best choice.

In summary, the modified DFT procedure is defined by

F̂n =
1

Mp′

p′∑
p=0

j ′+M−1∑
j=j ′

(
F(tj)−

(j − j ′)(F(tj ′+M)− F(tj ′))

M

)
e−2πinj/M, (A 2)

where j ′ = p(M − R), p′ = Integer(N −M)/(M − R), n is the integer frequency, N
is the total number of samples, M is the segment length, and R is the amount of
overlap in successive segments. The predictions given in §3 rely on sources which were
transformed according to equation (A 2).

The efficacy of this approach for transforming the sources is now demonstrated.
In figure 21, the magnitude of the total source term (equation (3)) and the resulting
prediction for the acoustic field are given for three different cases: (a) the standard
DFT (equation (A 1)) is used with 1024 samples over the 64 periods of the fundamental
frequency; (b) the modified DFT (equation (A 2)) is used; (c) the difference between
the sources computed in (b) and (a) is used as the source for the acoustic analogy
prediction. Note that the contour levels for the difference in the sources are 20 times
smaller than those of (a) and (b). Differences between the source computed with
the different DFT procedures appear to be minor, and arise primarily in the sponge
region, and to a much lesser degree in the physical part of the domain downstream
of the saturation point of the second subharmonic frequency.

However, these small differences in the source terms computed using different DFT
procedures are apparently greatly amplified in solving the acoustic analogy. While
the modified DFT gives good agreement with the DNS, the standard DFT procedure

† By ‘last point in the data’ we mean the point which completes a full period of the data – in
terms of equation (9) this point would be labeled tN .
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gives an acoustic field which is nearly an order of magnitude too large and which,
unlike the DNS, appears to emanate primarily from the region downstream of the
second pairing and from the sponge. It is also evident that the predictions for cases
(a) and (c) are nearly identical, but opposite in sign. We conclude that the spurious
waves emanating downstream of the second pairing in procedure (a) are due entirely
to the differences in the source terms, which in turn arise from the slightly aperiodic
contamination of the DNS signal.
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