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Feedback
On 98.10: Mark Hennings writes: When proving properties of the
symmetric difference, indicator functions are somewhat simpler than truth
tables (see [1]). If  is the universal set, then the indicator function  of a
subset  is the {0,1}-valued function  given by the
formula 

E χA

A ∈ 2E χA : E → {0,  1}

χA (x) =


 .1  x ∈ A

0  x ∉ A

Since indicator functions are {0,1}-valued, we see that

A = B ⇔  χA = χB ⇔  χA ≡ χB (mod 2)

and so identifying an indicator function modulo 2 is enough to identify the
underlying set. 

The indicator function of  is related to the indicator functions of
and  by the identity 

A + B A
B

χA + B ≡ χA + χB (mod 2)

as shown by the following table (essentially a truth table):

 χA (x) χB (x) χA (x) + χB (x) χA + B (x)

x ∈ A ∩ B 1 1 2 0
x ∈ A \  B 1 0 1 1
x ∈ B \  A 0 1 1 1

x ∈ (A ∪ B) ′ 0 0 0 0

and hence the associativity of the symmetric difference can be proved by
observing that

χA + (B + C) ≡ χA + χB + C ≡ (χA + χB) + χC ≡ χA + B + χC ≡ χ(A + B) + C

modulo 2, so that . This approach, together
with the identity 

A + (B + C) = (A + B) + C

χA ∩ B = χA × χB

enables us to show that  is a ring, with symmetric difference + as addition
and intersection  as multiplication. For example 

2E

∩

χ(A+ B)∩C ≡ χA+ BχC ≡ (χA + χB)χC ≡ χAχC + χBχC ≡ χA∩C + χB∩ C ≡ χ(A∩ C)+ (B∩C)

modulo 2, so that , establishing the
distributivity of intersection over symmetric difference.

(A+ B) ∩ C = (A∩ C) + (B∩ C)

Reference
1. P. R. Halmos, Does mathematics have elements?Math. Intelligencer

3.4 (1981), pp. 147-153.
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On 98.14: Graham Jameson and Nick Lord write:   As remarked in the
Feedback item [1] in the same issue, the stated result is the case  of
the identity

x = 1
2

Li 2 (x) + Li2 (1 − x) + ln x ln (1 − x) = ζ (2) =
π2

6
,

where the ‘dilogarithm’ function  is defined by .

Moreover, only a slight modification of the proof given for the special case
is needed to establish the general case, as follows. By termwise integration
of the series 

Li 2 Li 2 (x) = ∑
 ∞

n = 1
xn / n2

−
ln (1 − t)

t
= ∑

∞

n = 1

tn − 1

n
,

we have 

Li 2 (x) = − ∫
 x

0

ln (1 − t)
t

 dt.

Substituting , we have also, for , t = 1 − u 0 ≤ x ≤ 1

Li2 (1 − x) = − ∫
 1 − x

0

ln (1 − t)
t

 dt = − ∫
 1

x

ln u

1 − u
 du.

In particular, .  Now integrating by
parts, we have for 

− ∫
 1
0 ln u / (1 − u) du = Li2 (1) = ζ (2)

0 < x < 1

− Li2 (x) = [ln t ln (1 − t)]x
0 + ∫

 x

0

ln t

1 − t
 dt

= ln x ln (1 − x) + ∫
 1

0

ln t

1 − t
 dt − ∫

 1

x

ln t

1 − t
 dt

= ln x ln (1 − x) − ζ (2) + Li2 (1 − x) .
This identity is yet another result of Euler.  As the author states, the value of

 is not known in closed form.  In fact, rather curiously, apart from
and the obvious cases 1,  and 0, the only real numbers  for which the
value  is known in closed form are , ,  and where  is
the golden ratio number .  These values featured as exercises in
Carr's Synopsis of Pure Mathematics which inspired Ramanujan as a boy.

Li 2 (−1
2) 1

2
−1 x

Li2 (x) α −α α2 −1 − , α α
1
2 ( 5 − 1)

Reference 
1. Nick Lord, Feedback on ‘A simple series representation for Apéry's

constant’, Math. Gaz. 98 (July 2014), p. 357.
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On 98.19: Peter Coast writes: The idea behind this proof is a good one, but
I feel the demonstration is unduly complicated. Consider the following.

For ,x = N / D ∈ q

(a) Let  be the string ( in binary notation)2( in binary notation),y N D
(b) Let  be the integer defined by  in ternary notation,z y
(c) Let .f (x) = z

Then  is 1-1 (by construction) and into (1 is not in the range) and
therefore injective but not surjective.

f

A similar approach works for algebraic numbers and computable
numbers as well.

On ‘Two girls − the value of information’:  Michael Jewess writes:  The
concluding paragraph of the interesting and stimulating article [1] is a little
dismissive of the following statement in Wikipedia:  ‘The answer [to the
two-girls problem] depends on how this information comes to us − what
kind of selection process brought us this knowledge.’  But Wikipedia has a
point, which complements the article, and which can be demonstrated by
means of a game show.

In a game show, both the host and the contestant are mathematically
skilful, and each plays to win.  In accordance with the game rules, the game
show host first chooses at random a family with two children, and conceals
them from the contestant.  The host has access to full information about the
children, but initially the contestant knows only their number (two) and the
fact of random selection.  The host then provides some further information
about the children to the contestant.  Next, in the light of the further
information, the contestant computes the probability  that the family
contains two girls, and thereby the probability  that it does not.
Finally, the contestant guesses whether or not the family has in fact two girls
(in line with the higher of the computed probabilities so as to maximise his
chance of receiving the prize offered for a correct guess).

x
(1 − x)

Problem 3 as worked out in the article corresponds to such a game in
which (i) the rules additionally prescribe that the host provides the further
information only in response to a challenge as follows
Challenge A:  By selecting one option within the square brackets, construct
a true statement from ‘[At least one/neither] of the two children is a girl who
was born on a Tuesday.’ − 
and in which (ii) the response is in fact −
Response R:  ‘At least one of the two children is a girl who was born on a
Tuesday.’

On receiving Response R, the contestant computes, as in the article by
reference to its Table 1, that .x = 13/ 27

But Table 1 also shows that, for a randomly-chosen family with two
children, there is only a  probability that Response R is a truthful
response to Challenge A.  If Response R is untrue (a  probability),

27/ 196
169/ 196
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the host must give the following response:
Response S: ‘Neither of the two children is a girl who was born on a
Tuesday.’

A contestant receiving Response S computes from Table 1 that

.  (Check: , the probability of

two girls in a randomly-chosen family with two children.)

x = 36/ 169
27
196

×
13
27

+
169
196

×
36
169

=
1
4

Suppose instead that the challenge in the game is the following:
Challenge B:  By selecting one option within each pair of square brackets,
construct a true statement from ‘At least one of the two children is a [girl/
boy] who was born on a [Sunday/Monday/Tuesday/Wednesday/Thursday/
Friday/Saturday].’

To Challenge A there is only one truthful response for any particular
family in question.  But to Challenge B there exist either one or two truthful
responses depending on the family in question.  If there are two truthful
responses, and the one is less helpful to the contestant than the other, then
the host will give the less helpful one.

If there are two boys (1/4 probability in a randomly-chosen family with
two children), the host is forced to respond to Challenge B in a way that
admits the existence of a boy − and to identify the birth day of one of the
two boys.  The contestant then knows, regardless of what birth day is given,
that  and the contestant will win the game for certain.  If there are two
girls (1/4 probability in a randomly-chosen family with two children) or a
boy and a girl (2/4 probability in a randomly-chosen family with two
children), the host opts for ‘girl’ over ‘boy’, and identifies the birth day of
one of the two girls or of the girl respectively.  Regardless of whether the
host's response is identical with Response R or whether it is Response R
with ‘Tuesday’ substituted by a different day, the contestant then computes

that .  (Check: .)

x = 0

x = 1/ (1 + 2) = 1/ 3
1
4

× 0 + (1
4

+
2
4) ×

1
3

=
1
4

Judged as games, neither the game with Challenge A nor that with
Challenge B is very interesting: whatever response the host gives, the
contestant's better guess is always that the family does not contain two girls
− though, interestingly for the mathematician, only just (by 1/27), if
Response R is given to Challenge A.

The above demonstrates that what one deduces from Response R
depends on what the challenge was.  A similar issue arose in a real TV game
show, Monty Hall's Let's make a deal.  In the Monty Hall game, the host
knows which one (and only one) of three doors hides a prize, and the
contestant has to guess which one.  Marilyn vos Savant [2] imagines a little
green woman who arrives from a UFO part-way through the game, in time
to observe that the host has opened one door showing there is no prize there,
but not in time to know the challenge to which the host has responded.
Conceivably, the challenge to the host might have been: ‘Open as you
choose any one of the three doors;’ or ‘Open a particular door which I the
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contestant choose;’  or − the actual, rather interesting case − ‘Open as you
choose either one of a particular pair of doors which I the contestant
choose.’  Unaware of what form the challenge has taken and of what choices
(if any) the contestant has made, the little green woman is less able than the
contestant to guess correctly where the prize is.  The context in which the
information has been supplied is crucial knowledge.

References
1. Keith Parramore and Joan Stephens, Two girls − the value of

information, Math. Gaz., 98 (July 2014), pp. 243-249.
2. Marilyn vos Savant, quoted by Paul Hoffman,The man who loved only

numbers (Hyperion;  Fourth Estate) 1998, p. 236.

On ‘A non-calculator challenge: show that ’: Nick Lord

writes: It is great to see such a range of elegant approaches to this problem.
Henry Ricardo and John Mahony place it within the more general context of
the logarithmic mean inequality in either of the equivalent forms (A)

 or (B)  with , .  My

original note showed that  which gives (B) on

substituting . Bob Burn's argument with abscissae , ,
establishes (A), as does David Miles's with  replaced by

.

ln 2 <
1
2

ln
b

a
<

b − a

ab
ln x < x −

1
x

0 < a < b x = b
a > 1

ln
1 + b

1 + a
< b − a

a = 1
b a ab b

x = 2 − 1

x =
b

a
− 1

For the specific case , I note that Henry Ricardo's second

proof gives  and

John Mahony and K. B. Subramaniam's idea of using series expansions

inspired this short argument:  so that

.

ln 2 <
1
2

0 < ∫
 2

0
(1 −

1
x)2

dx = x −
1
x

− 2 ln x

2

 0
=

1
2

− ln 2

cosh
1
2

= 1 +
1
2 ( 1

2)2

+  … >
5
4

1
2

> cosh−1 5
4

= ln 2

Henry Ricardo writes: I cannot resist responding to Nick Lord's challenge
with several alternative proofs, the first four of which validate the left-hand
member of the well-known logarithmic mean inequality

ab <
b − a

ln b − ln a
<

a + b

2
,

from which the desired inequality follows by letting , .a = 1 b = 2

I. First we can give an easy geometric proof by noting that the area under
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the curve , , is less than the sum of the areas
of the trapezia with vertices
and . This comparison yields

y = 1/ x 0 < a ≤ x ≤ b
{(a,  0), ( ab,  0), ( ab,  1/ ab), (a,  1/a)}

{( ab,  0), (b,  0), (b,  1/b), ( ab,  1/ ab)}

ln b − ln a <
ab − a2

2a ab
+

b2 − ab

2b ab
=

b − a

ab
.

II. Consider the function .  Since  and
 for , we see that

 for , or .  Assuming  and

 in the last inequality, we get

f (x) = x − 1/ x − 2 ln x f (1) = 0
f ′ (x) = 1 + 1/ x2 − 2/ x = (x − 1)2 / x2 > 0 x > 1

f (x) > 0 x > 1 ln x <
x2 − 1

2x
0 < a < b

x = b / a

ln b − ln a = ln
b

a
<

b
a − 1

b
a

=
b − a

ab
.

III. For , the AM-GM inequality gives ust > 0

1
t

=
1
t
·

1
t t

≤
1

2 t
+

1
2t t

.

Then

ln
b

a
= ∫

 b/a

1

dt

t
≤ ∫

 b/a

1

1
2 t

 dt + ∫
 b/a

1

1
2t t

 dt = ( b

a
− 1) + (− a

b
+ 1)

=
b

a
−

a

b
=

b − a

ab
.

IV. Applying the Cauchy-Schwarz-Bunyakovsky inequality to the functions
 and  on the interval , , yields f (x) = 1/ x g(x) = 1 [a, b] 0 < a < b

(∫b

a

1
x

 dx)2

< (∫b

a

1
x2

 dx) (∫b

a
1 dx) ,

or

(ln b − ln a)2 < (b − a) (1
a

−
1
b) =

(b − a)2

ab
,

giving us .ln b − ln a <
b − a

ab

In addition to the four proofs just given, we can show that
via some known inequalities whose proofs are given on pages 272-273 of
[1]:

ln 2 < 1/ 2

A If  and , then .  Let .x > 0 x ≠ 1
ln x

x − 1
≤

1
x

x = 2
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B If  and , then .  Let .  We

show that .  Setting , we have 

x > 0 x ≠ 1
ln x

x − 1
≤

1 + 3 x

x + 3 x
x = 2

1 + 3 2
2 + 3 2

<
1
2

c = 6 2

1
2

−
1 + 3 2
2 + 3 2

=
1
c3

−
1 + c2

c6 + c2
=

c6 + c2 − c3(1 + c2)
c3(c6 + c2)

=
c2(c − 1)2(c2 + c + 1)

c5(c4 + 1) > 0.

C For , .  Let .x > 0 ln (1 +
1
x) ≤

1

x2 + x
x = 1

Finally, Problem 1584 in Crux Mathematicorum [2] states that

( ln λ
λ − 1)3

<
2

λ (λ + 1)
 for  λ > 1.

Letting , we find that . But

, or .

λ = 2 ln 2 <
1

3 3
1

3 3
<

1
2

⇔ 2 < 3 3

⇔ ( 2)6 < ( 3 3)6
23 < 32

References 
1. D. S. Mitrinoviæ and P. M. Vasiæ, Analytic Inequalities, Springer-

Verlag, New York (1970).
2. I. Bluskov, Solution to Problem 1584, Crux Mathematicorum17:10

(1991), pp. 311-312.

John Mahony writes: Using the standard series expansions, for , we
have

|x| < 1

− ln (1 − x) = x ∑
∞

n = 0

1
n + 1

 xn

and 
x

1 − x
= x ∑

∞

n = 0

1
4n ( )  xn.2n

n

Since, by induction,  for all  (strict for ),

term-by-term comparison of the two series establishes that
 for .

1
n + 1

≤
1
4n ( )2n

n
n ≥ 0 n ≥ 2

− ln (1 − x) < x (1 − x)−1/2 0 < x < 1

Substituting  gives  for

 so that .  Replacing  by  also shows that

 for .

x = 1 − 1
u ln u < (1 −

1
u) (1

u)−1/2

= u −
1
u

u > 1 ln 2 < 2 − 1
2

= 1
2

u 1
u

ln u > u −
1
u

0 < u < 1
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Bob Burn writes:  The figure shows the graph of  with the abscissae
1,  and 2.  The hyperbolic area .  The rectangular area

y = 1
x

2 AHKC = ln 2
.  The overlap  is

considerable.  The required inequality is
equivalent to the area of the curvilinear
triangle  being greater than that of
the curvilinear triangle .  However
the two rectilinear triangles  and

 have the same area
 so the convex triangle

 has a greater area than the concave
.

ADFC = 1
2

ADEKC

EFK
HDE

EFK
HDE
(3 − 2 2) / (2 2)
EFK
HDE

A B C

D
E F

H

y =
1
x

K

1 2 2

David Miles writes: This result can be
immediately established by comparing
the area under the curve with the area of
the trapezium in the diagram

∫
 2−1

0

2
1 + x

 dx <
(2 + 2)( 2 − 1)

2
.

2

2

2 − 1

y =
2

1 + x

K. B. Subramaniam writes:  This note demonstrates a proof for the same
without using a calculator.  In fact, not even calculus is used.  We have

e0.7 = 1 + 0.7 +
0.72

2!
+

0.73

3!
+…

> 1 + 0.7 +
0.49

2
+

0.343
6

> 1 + 0.7 + 0.245 + 0.057

= 2.002

> 2

⇒ ln 2 <
7
10

=
49
100

<
1
2

.
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