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In numerical computations of tsunamis due to submarine earthquakes, it is frequently
assumed that the initial displacement of the water surface is equal to the permanent
shift of the seabed and that the initial velocity field is equal to zero and the
shallow-water equations are often used to simulate the propagation of tsunamis. We
give a mathematically rigorous justification of this tsunami model starting from the
full water-wave problem by comparing the solution of the full problem with that of
the tsunami model. We also show that, in some cases, we have to impose a non-zero
initial velocity field, which arises as a nonlinear effect.

1. Introduction

Tsunamis are one of the most disastrous phenomena of water waves and are char-
acterized by a very long wavelength. They are mainly generated by a sudden defor-
mation of the seabed with a submarine earthquake. The motion of tsunamis can
be modelled as an irrotational flow of an incompressible ideal fluid bounded from
above by a free surface and bounded from below by a moving bottom under the
gravitational field. The model is usually called the full water-wave problem. Due to
the complexities of the model, several simplified models have been proposed and
used to simulate tsunamis. One of the most common models of tsunami propagation
is the shallow-water model under the assumptions that the initial displacement of
the water surface is equal to the permanent shift of the seabed and that the initial
velocity field is equal to zero. Namely, in numerical computations of tsunamis due
to submarine earthquakes, one usually uses the shallow-water equations

ηt + ∇ · ((h + η − b1)u) = 0, ut + (u · ∇)u + g∇η = 0 (1.1)

under the following particular initial conditions:

η|t=0 = b1 − b0, u|t=0 = 0, (1.2)

where η is the variation of the water surface, u is the velocity of the water in the
horizontal directions, g is the gravitational constant, h is the mean depth of the
water, b0 is the bottom topography before the submarine earthquake, and b1 is
the bottom topography after the earthquake. The aim of this paper is to give a
mathematically rigorous justification of this shallow-water model starting from the
full water-wave problem, especially, the justification of the initial conditions (1.2).
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In this paper two non-dimensional parameters δ and ε play an important role,
where δ is the ratio of the water depth h to the wavelength λ and ε is the ratio
of the duration t0 of the submarine earthquake to the period of tsunami λ/

√
gh.

We note that
√

gh is the propagation speed of linear shallow-water waves and that
the duration of the seabed deformation is very short compared with the period of
tsunamis in general. Therefore, ε should be a small parameter. It is known that the
shallow-water equations (1.1) are derived from the full water-wave problem in the
limit δ → +0. The derivation can be traced back to Airy [1]. Friedrichs [9] then
systematically derived the equations using an expansion of the solution with respect
to δ2 (see also Lamb [16] and Stoker [22]). A mathematically rigorous justification
of the shallow-water approximation for two-dimensional water waves over a flat
bottom was given by Ovsjannikov [19, 20] under the periodic boundary condition
with respect to the horizontal spatial variable, and then by Kano and Nishida [13] in
a class of analytic functions (see also [12,14]). The justification in Sobolev spaces was
given by Li [18] for two-dimensional water waves over a flat bottom and by Alvarez-
Samaniego and Lannes [2] and Iguchi [11] for three-dimensional water waves where
non-flat bottoms were allowed. However, there is no rigorous result concerning the
shallow-water approximation in the case of moving bottom, nor a justification of
the initial conditions (1.2).

We will show that, under appropriate conditions on the initial data and the bot-
tom topography, the solution of the full water-wave problem can be approximated
by the solution of the tsunami model (1.1) and (1.2) in the limit δ, ε → +0 under
the restriction δ2/ε → +0. This means that if the speed of seabed deformation
is fast but not too fast, then the tsunami model would be a good approximation
to the full water-wave problem. Moreover, we also show that, in the critical limit
δ, ε → +0 and δ2/ε → σ with a positive constant σ, the initial conditions (1.2)
should be replaced by

η|t=0 = b1 − b0, u|t=0 = ∇
(

1
2

∫ t0

0
bt(·, t)2 dt

)
, (1.3)

where b = b(x, t) is a bottom topography during the deformation of the seabed.
One of the hardest parts of the analysis is the derivation of a uniform bound of the
solution with respect to small parameters δ and ε for the full water-wave problem
together with its derivatives, and especially for the time interval 0 � t � ε when
the deformation of the seabed takes place. To this end, we adopt and extend the
techniques used in Iguchi [11].

It is worth mentioning here that the Korteweg–de Vries equation is also known
as a model of water waves and that the applicability of this modelling to tsunami
propagation was discussed, for example, by Craig [7], Segur [21], Lakshmanan [15],
Constantin and Johnson [5], Constantin [4] and Stuhlmeier [23], with conflicting
points of view.

We now formulate the problem mathematically. Let x = (x1, x2, . . . , xn) be the
horizontal spatial variables and xn+1 the vertical spatial variable. We denote all
of the spatial variables by X = (x, xn+1) = (x1, . . . , xn, xn+1). We will consider
a water wave in an (n + 1)-dimensional space and assume that the domain Ω(t)
occupied by the water at time t, the water surface Γ (t), and the bottom Σ(t) are
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of the forms

Ω(t) = {X = (x, xn+1) ∈ R
n+1; b(x, t) < xn+1 < h + η(x, t)},

Γ (t) = {X = (x, xn+1) ∈ R
n+1; xn+1 = h + η(x, t)},

Σ(t) = {X = (x, xn+1) ∈ R
n+1; xn+1 = b(x, t)},

where h is the mean depth of the water. The functions b and η represent the
bottom topography and the surface elevation, respectively. In this paper b is a
given function, while η is the unknown. In fact, our main interest is the behaviour
of this function η, namely, the water surface.

We assume that the water is an incompressible and inviscid fluid, and that the
flow is irrotational. Then, the motion of the water is described by the velocity
potential Φ = Φ(X, t) satisfying the equation

∆XΦ = 0 in Ω(t), (1.4)

where ∆X is the Laplacian with respect to X, that is, ∆X = ∆ + ∂2
n+1 and ∆ =

∂2
1 + · · · + ∂2

n. The boundary conditions on the water surface are given by

ηt + ∇Φ · ∇η − ∂n+1Φ = 0, Φt + 1
2 |∇XΦ|2 + gη = 0 on Γ (t), (1.5)

where ∇ = (∂1, . . . , ∂n)T and ∇X = (∂1, . . . , ∂n, ∂n+1)T are the gradients with
respect to x = (x1, . . . , xn) and to X = (x, xn+1), respectively, and g is the gravita-
tional constant. The first equation is the kinematical condition and the second one
is the restriction of Bernoulli’s law on the water surface. The kinematical boundary
condition on the bottom is given by

bt + ∇Φ · ∇b − ∂n+1Φ = 0 on Σ(t). (1.6)

Finally, we impose the initial conditions

η = η0, Φ = Φ0 at t = 0. (1.7)

These are the basic equations for the full water-wave problem.
Next, we rewrite the equations (1.4)–(1.6) in an appropriate non-dimensional

form. Let λ be the typical wavelength and let h be the mean depth. We intro-
duce a non-dimensional parameter δ by δ = h/λ and rescale the independent and
dependent variables by

x = λx̃, xn+1 = hx̃n+1, t =
λ√
gh

t̃, Φ = λ
√

ghΦ̃, η = hη̃, b = hb̃. (1.8)

Putting these into (1.4)–(1.6) and dropping the tilde in the notation we obtain

δ2∆Φ + ∂2
n+1Φ = 0 in Ω(t), (1.9)

δ2(ηt + ∇Φ · ∇η) − ∂n+1Φ = 0

δ2(Φt + 1
2 |∇Φ|2 + η) + 1

2 (∂n+1Φ)2 = 0

}
on Γ (t), (1.10)

δ2(bt + ∇Φ · ∇b) − ∂n+1Φ = 0 on Σ(t), (1.11)
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where

Ω(t) = {X = (x, xn+1) ∈ R
n+1; b(x, t) < xn+1 < 1 + η(x, t)},

Γ (t) = {X = (x, xn+1) ∈ R
n+1; xn+1 = 1 + η(x, t)},

Σ(t) = {X = (x, xn+1) ∈ R
n+1; xn+1 = b(x, t)}.

Moreover, we assume that the seabed deforms only for time interval [0, t0] in the
dimensional variable t, so that the function b = b(x, t), which represents the bottom
topography, can be written in the form

b(x, t) = β(x, t/ε), β(x, τ) =

{
b0(x) for τ � 0,

b1(x) for τ � 1
(1.12)

in the non-dimensional variables, where ε is a non-dimensional parameter defined
by

ε =
t0

λ/
√

gh
. (1.13)

In this non-dimensional time variable we note that the bottom deforms only for
the short time interval 0 � t � ε and that bt = ε−1βτ . Since we are interested
in asymptotic behaviour of the solution when δ, ε → +0, we always assume that
0 < δ, ε � 1 in the following.

As in the usual way, we transform equivalently the initial-value problem (1.9)–
(1.11) and (1.7) to a problem on the water surface. To this end, we introduce a new
unknown function φ by

φ(x, t) = Φ(x, 1 + η(x, t), t), (1.14)

which is the trace of the velocity potential on the water surface. Then, we see that
the initial-value problem is transformed equivalently to the following:

ηt − ΛDN(η, b, δ)φ + ε−1ΛNN(η, b, δ)βτ = 0,

φt + η + 1
2 |∇φ|2

− 1
2δ2(1 + δ2|∇η|2)−1(ΛDN(η, b, δ)φ − ε−1ΛNN(η, b, δ)βτ + ∇η · ∇φ)2 = 0,

⎫⎪⎬
⎪⎭

(1.15)
η = η0, φ = φ0 at t = 0, (1.16)

where ΛDN = ΛDN(η, b, δ) and ΛNN = ΛNN(η, b, δ) are linear operators depending
on (η, b, δ) and called the Dirichlet-to-Neumann and the Neumann-to-Neumann
maps for the Laplace equation, and φ0 = Φ0(·, 1 + η0(·)). In § 3 we will give the
definition and basic properties of these maps ΛDN and ΛNN. We will investigate this
initial-value problem (1.15) and (1.16) mathematically rigorously in this paper.

The contents of the paper are as follows. In § 2 we formally derive the tsunami
model (1.1)–(1.3) from the full water-wave problem, analyse a so-called general-
ized Rayleigh–Taylor sign condition and give our main results. In § 3 we define the
Dirichlet-to-Neumann map ΛDN, the Neumann-to-Neumann map ΛNN and related
operators. Then we give basic properties of the operators and derive explicit forms
of their Fréchet derivatives with respect to the surface variation η and the bottom
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topography b. In § 4 we study a boundary-value problem for the scaled Laplace equa-
tion (1.9) and derive some elliptic estimates for the solution by using the techniques
in [11]. Most notably, we carefully analyse the dependence of the small parameter
δ. In § 5, using the estimates obtained in § 4 we derive uniform bounds of the maps
ΛDN, ΛNN, and related operators with respect to small δ in Sobolev spaces. In § 6
we reduce the full nonlinear equations (1.15) to quasi-linear equations. Finally, in
§ 7, by applying energy estimates to the quasi-linear equations derived in § 6, we
prove the main theorems.

1.1. Notation

For s ∈ R, we denote by Hs the Sobolev space of order s on R
n equipped with

the inner product

(u, v)s = (2π)−n

∫
Rn

(1 + |ξ|)2sû(ξ)v̂(ξ) dξ,

where û is the Fourier transform of u, that is,

û(ξ) =
∫

Rn

u(x)e−ix·ξ dx.

We set ‖u‖s =
√

(u, u)s, (u, v) = (u, v)0 and ‖u‖ = ‖u‖0. The norm of a Banach
space X is denoted by ‖ · ‖X . We set ∂j = ∂/∂xj , ∂ij = ∂i∂j and ∂ijk = ∂i∂j∂k.
A pseudo-differential operator P (D), D = (D1, . . . , Dn) and Dj = −i∂j , with a
symbol P (ξ), is defined by

P (D)u(x) = (2π)−n

∫
Rn

P (ξ)û(ξ)eix·ξ dξ.

We set J = 1 + |D|, so that ‖u‖s = ‖Jsu‖. For operators A and B, we denote by
[A, B] = AB − BA the commutator. Throughout this paper, we denote inessential
constants by the same symbol C.

2. A shallow-water approximation

In this section we begin formally studying the asymptotic behaviour of the solu-
tion (ηδ,ε, φδ,ε) to the initial-value problem (1.15) and (1.16) when δ, ε → +0. We
also derive the shallow-water equations with appropriate initial conditions, whose
solution approximates (ηδ,ε, ∇φδ,ε) in a suitable sense. Then we analyse a so-called
generalized Rayleigh–Taylor sign condition that is important for the well-posedness
of the initial-value problem, and give the main results of this paper.

It is known that the Dirichlet-to-Neumann map ΛDN = ΛDN(η, b, δ) can be
approximated by the second-order differential operator up to O(δ2) as

ΛDN(η, b, δ)φ = −∇ · ((1 + η − b)∇φ) + O(δ2). (2.1)

For example, we refer to [11] for the above expansion. We proceed to expand the
Neumann-to-Neumann map ΛNN = ΛNN(η, b, δ) with respect to δ2. For a given
function β on Σ, we denote by Φ the solution of the boundary-value problem

δ2∆Φ + ∂2
n+1Φ = 0 in Ω, Φ = 0 on Γ, −∂n+1Φ + δ2∇b · ∇Φ = δ2β on Σ.

(2.2)
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Here and in what follows, we omit the dependence of the time t in the notation for
simplicity. Then we see that

(∂n+1Φ)(x, xn+1) = (∂n+1Φ)(x, b(x)) +
∫ xn+1

b(x)
(∂2

n+1Φ)(x, z) dz

= −δ2β(x) + δ2∇b(x) · (∇Φ)(x, b(x)) − δ2
∫ xn+1

b(x)
(∆Φ)(x, z) dz,

(2.3)

which implies that (∂n+1Φ)(X) = O(δ2) and that (∇∂n+1Φ)(X) = O(δ2). This and
the relation

(∇Φ)(x, xn+1) = (∇Φ)(x, 1 + η(x)) +
∫ xn+1

1+η(x)
(∇∂n+1Φ)(x, z) dz (2.4)

imply that (∇Φ)(X) = (∇Φ)(x, 1 + η(x)) + O(δ2). Differentiating the Dirichlet
boundary condition Φ(x, 1 + η(x)) = 0 on Γ , we obtain

(∇Φ)(x, 1 + η(x)) = −(∂n+1Φ)(x, 1 + η(x))∇η(x), (2.5)

which is O(δ2). Therefore, we obtain ∇Φ(X) = O(δ2) so that ∆Φ(X) = O(δ2). It
follows from these relations and (2.3) that (∂n+1Φ)(X) = −δ2β(x) + O(δ4), which,
together with (2.5), implies that (∇Φ)(x, 1 + η(x)) = δ2β(x)∇η(x) + O(δ4). Thus,
by (2.4), we obtain

(∇Φ)(X) = δ2β(x)∇η(x) + δ2(1 + η(x) − xn+1)∇β(x) + O(δ4). (2.6)

Particularly, it holds that

(∆Φ)(X) = δ2∇·(β(x)∇η(x))+δ2∇η(x)·∇β(x)+δ2(1+η(x)−xn+1)∆β(x)+O(δ4).

Therefore, by (2.3), we get

(∂n+1Φ)(X) = −δ2β(x) + δ4∇b(x) · (β(x)∇η(x) + (1 + η(x) − b(x))∇β(x))

− δ4(xn+1 − b(x))(∇ · (β(x)∇η(x)) + ∇η(x) · ∇β(x))

+ 1
2δ4((1 + η(x) − xn+1)2 − (1 + η(x) − b(x))2)∆β(x) + O(δ6).

Since the Neumann-to-Neumann map ΛNN is defined by:

(ΛNNβ)(x) = δ−2(∂n+1Φ)(x, 1 + η(x)) − ∇η(x) · (∇Φ)(x, 1 + η(x)),

we obtain

ΛNN(η, b, δ)β = −β − δ2∇ · ((1 + η − b)(∇η)β + 1
2 (1 + η − b)2∇β) + O(δ4). (2.7)

For the definition of the map ΛNN, we refer to definition 3.1. In view of (2.1) and
(2.7), we see that the equations in (1.15) can be approximated by the ordinary
differential equations

ηt =
1
ε
βτ +

1
ε
O(ε + δ2), φt =

1
2

(
δ

ε

)2

β2
τ +

1
ε2 O(ε2 + δ4). (2.8)
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By resolving these equations under the initial conditions (1.16), we obtain

η(x, t) = η0(x) + β(x, t/ε) − b0(x) + O(ε + δ2),

φ(x, t) = φ0(x) +
1
2

δ2

ε

∫ t/ε

0
βτ (x, τ)2 dτ +

1
ε
O(ε2 + δ4)

⎫⎪⎬
⎪⎭ (2.9)

for the time interval 0 � t � ε. Particularly, we get

η(x, ε) = η0(x) + (b1(x) − b0(x)) + O(ε + δ2),

φ(x, ε) = φ0(x) +
1
2

δ2

ε

∫ 1

0
βτ (x, τ)2 dτ +

1
ε
O(ε2 + δ4).

⎫⎪⎬
⎪⎭ (2.10)

As δ, ε → +0 these data converge only in the case when δ2/ε also converges to
some value σ. Therefore, in this paper we will consider asymptotic behaviour of the
solution (ηδ,ε, φδ,ε) to the initial-value problem (1.15) and (1.16) in the limit

δ, ε → +0,
δ2

ε
→ σ. (2.11)

On the other hand, noting that βτ = 0 and b = b1 for t > ε, we see that the
equations in (1.15) can be approximated by the partial differential equations

ηt + ∇ · ((1 + η − b1)∇φ) = O(δ2), φt + η + 1
2 |∇φ|2 = O(δ2) (2.12)

for t > ε. Therefore, taking the limit (2.11) of (2.12) and (2.10), we obtain

η0
t + ∇ · ((1 + η0 − b1)∇φ0) = 0, φ0

t + η0 + 1
2 |∇φ0|2 = 0

with initial conditions

η0 = η0 + (b1 − b0), φ0 = φ0 + 1
2σ

∫ 1

0
βτ (·, τ)2 dτ at t = 0.

Finally, setting u0 := ∇φ0 and taking the gradient of the second equation, we are
led to the shallow-water equations

η0
t + ∇ · ((1 + η0 − b1)u0) = 0, u0

t + (u0 · ∇)u0 + ∇η0 = 0 (2.13)

with initial conditions

η0 = η0 + (b1 − b0), u0 = ∇φ0 + ∇
(

1
2σ

∫ 1

0
βτ (·, τ)2 dτ

)
at t = 0. (2.14)

Moreover, u0 satisfies the irrotational condition

rotu0 = 0, (2.15)

where rot u is the rotation of a vector u = (u1, . . . , un)T defined by

rotu = (∂jui − ∂iuj)1�i,j�n.

Here we note that, in the case (η0, φ0) = 0, if we rewrite (2.13) and (2.14) in the
dimensional variables, then we obtain (1.1) and (1.3).
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We proceed to analyse a generalized Rayleigh–Taylor sign condition. It is known
that the well-posedness of the initial-value problem (1.4)–(1.7) for water waves may
be broken unless a generalized Rayleigh–Taylor sign condition −∂p/∂N � c0 > 0
on the water surface is satisfied, where p is the pressure and N is the unit outward
normal to the water surface (see, for example, [3]). Wu [24, 25] showed that this
condition always holds for any smooth non-self-intersecting surface in the case of
infinite depth. In the case with variable bottom, Lannes [17] gave a relation between
this condition and the bottom topography. Constantin and Strauss [6] investigated
the pressure of Stokes waves over a flat bottom and also proved that this condition
holds for Stokes waves. We also mention the result of Ebin [8], where a motion close
to a rigid rotation of an incompressible ideal fluid surrounded by a free surface was
considered. It was shown that the corresponding initial-value problem is ill-posed.
In this case, a generalized Rayleigh–Taylor sign is not satisfied. One may think that
the vorticity breaks the condition but, even in the irrotational case, the condition
does not hold in a certain situation. In fact, Iguchi [10] considered an irrotational
circulating flow of an incompressible ideal fluid around a rigid obstacle and showed
that if the circulation is stranger than the gravity, then a generalized Rayleigh–
Taylor sign is not satisfied and the problem is ill-posed. In what follows we will
consider this important condition in the limit (2.11).

In the dimensional variables we have the so-called Bernoulli’s law

Φt + 1
2 |∇XΦ|2 +

1
ρ
(p − p0) + g(xn+1 − h) = 0 in Ω(t), (2.16)

where ρ is a constant density and p0 is a constant atmospheric pressure. This
equation is obtained by integrating the conservation of momentum, that is, the
Euler equation

0 = ρ(vt + (v · ∇X)v) + ∇Xp + ρgen+1

= ρ∇X

(
Φt + 1

2 |∇XΦ|2 +
1
ρ
(p − p0) + g(xn+1 − h)

)
,

where v = ∇XΦ is the velocity and en+1 is the unit vector in the vertical direction.
We rescale the pressure p by p = p0 + ρghp̃. Putting this and (1.8) into (2.16) and
dropping the tilde in the notation, we obtain

−p = Φt + 1
2 (|∇Φ|2 + δ−2(∂n+1Φ)2) + (xn+1 − 1). (2.17)

Moreover, in the non-dimensional variables, the generalized Rayleigh–Taylor sign
condition can be written in the form a � c0 > 0, where

a := −(1 + δ2|∇η|2)−1(∂n+1p − δ2∇η · ∇p)|Γ (t)

= −(∂n+1p)|Γ (t)

= 1 + {∂n+1(Φt + 1
2 (|∇Φ|2 + δ−2(∂n+1Φ)2))}|Γ (t)

= 1 + (∂n+1Φt + ∇Φ · ∇∂n+1Φ − (∂n+1Φ)∆Φ)|Γ (t), (2.18)

where we used the relation (∇Q)|Γ (t) = ∇(Q|Γ (t))− (∂n+1Q)|Γ (t)∇η, the boundary
condition on the water surface (1.10) and the scaled Laplace equation (1.9).

We now consider the asymptotic behaviour of this function a in the limit (2.11),
so that we can assume δ2 = O(ε). We note that Φ satisfies (1.9), (1.11) and (1.14),
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and that we have (1.12). Therefore, as in the same calculation in the previous
section, we see that

∇Φ = ∇φ − δ2

ε
βτ∇η − δ2

ε
(1 + η − xn+1)∇βτ + O(δ2)

and that

∂n+1Φ =
δ2

ε
βτ + δ2∇b ·

(
∇φ − δ2

ε
βτ∇η − δ2

ε
(1 + η − b)∇βτ

)

− δ2(xn+1 − b)
(

∇ ·
(

∇φ − δ2

ε
βτ∇η

)
− δ2

ε
∇η · ∇βτ

)

− δ2

2
δ2

ε
((1 + η − xn+1)2 − (1 + η − b)2)∆βτ + O(δ4).

Here, it follows from (2.8) that

ηt =
1
ε
βτ + O(1) φt =

1
2

(
δ

ε

)2

β2
τ + O(1), ∇φt − δ2

ε
βτ∇ηt = O(1).

Therefore,

(∂n+1Φt)|Γ (t)

=
(

δ

ε

)2

(1 − δ2|∇η|2)βττ +
δ2

ε
∇ · βτ

((
∇φ − δ2

ε
βτ∇η

))
−

(
δ2

ε

)2

βτ∇η · ∇βτ

+
(

δ2

ε

)2

∇ · ((1 + η − b)βττ∇η + 1
2 (1 + η − b)2∇βττ ) + O(δ2).

Putting these into (2.18), we obtain

a = 1 +
(

δ

ε

)2

(1 − δ2|∇η|2)βττ + 2
δ2

ε

(
∇φ − δ2

ε
βτ∇η

)
· ∇βτ

+
(

δ2

ε

)2

∇ · ((1 + η − b)(∇η)βττ + 1
2 (1 + η − b)2∇βττ ) + O(δ2). (2.19)

On the other hand, in view of (2.9) and (2.11), we define an approximate solution
(η(0), φ(0)) in the fast timescale τ = t/ε by

η(0)(x, τ) := η0(x) + β(x, τ) − β(x, 0), φ(0)(x, τ) := φ0(x) + 1
2σ

∫ τ

0
βτ (x, τ̃)2 dτ̃ .

(2.20)
Then, we have, at least formally,

η(x, t) = η(0)(x, t/ε) + O(ε), φ(x, t) = φ(0)(x, t/ε) + o(1)

for (x, t) ∈ R
n × [0, ε]. Taking this and (2.19) into account, we define a function

a(0) = a(0)(x, τ) by

a(0) := 2(∇φ(0) − σβτ∇η(0)) · ∇βτ

+ σ∇ · ((1 + η(0) − β)(∇η(0))βττ + 1
2 (1 + η(0) − β)2∇βττ ), (2.21)

https://doi.org/10.1017/S0308210509001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001279


560 T. Iguchi

where (η(0), φ(0)) is the approximate solution defined in (2.20). We note that this
function a(0) is explicitly written out in terms of the initial data (η0, φ0), the bottom
topography β and the constant σ in the limit (2.11). Then, by (2.19), we see that

a(x, t) = 1 +
(

δ

ε

)2(
1 − δ2

(∣∣∣∣∇η(0)
(

x,
t

ε

)∣∣∣∣
2

+ C

))
βττ

(
x,

t

ε

)

+ σ

(
a(0)

(
x,

t

ε

)
+ Cσβττ

(
x,

t

ε

))
+ o(1), (2.22)

where C > 0 is an arbitrary constant. Therefore, the generalized Rayleigh–Taylor
sign condition is satisfied if the following conditions are fulfilled. The conditions
depend on the relations between δ and ε.

Assumption 2.1. There exist constants C, c > 0 such that, for any (x, τ) ∈ R
n ×

(0, 1), the following conditions are satisfied.

1. In the case δ/ε → 0, no conditions are satisfied;

2. in the case δ/ε → ν, 1 + ν2βττ (x, τ) � c;

3. in the cases where δ/ε → ∞ and δ2/ε → 0, βττ (x, τ) � 0.

4. in the cases where δ/ε → ∞ and δ2/ε → σ,

βττ (x, τ) � 0, 1 + σ(a(0) + σCβττ )(x, τ) � c.

From a technical point of view, we also impose the following condition.

Assumption 2.2. For any (x, τ) ∈ R
n×(0, 1) the following conditions are satisfied.

1. In the case δ/ε → ν, no conditions are satisfied.

2. In the case δ/ε → ∞, βτττ (x, τ) � 0.

The following theorem is one of the main results in this paper and asserts the
existence of the solution to the initial-value problem for the full water-wave problem
with uniform bounds of the solution independent of δ and ε on the time interval
[0, ε].

Theorem 2.3. Let M0, c0 > 0, r > 1
2n, and s > 1

2 (n + 9). Under assumptions 2.1
and 2.2, there exist constants C0, δ0, ε0, γ0 > 0 such that, for any δ ∈ (0, δ0], ε ∈
(0, ε0], (η0, φ0) and b satisfying |δ2/ε − σ| � γ0, (1.12) and

‖β(τ)‖s+9/2 + ‖βτ (τ)‖s+5 + ‖βττ (τ)‖s+1 + ‖βτττ (τ)‖r+2 � M0,

‖∇φ0‖s+3 + ‖η0‖s+4 � M0, 1 + η0(x) − b0(x) � c0 for (x, τ) ∈ R
n × (0, 1),

the initial-value problem (1.15), (1.16) has a unique solution (η, φ) = (ηδ,ε, φδ,ε) on
the time interval [0, ε] satisfying∥∥∥∥ηδ,ε(t) − η(0)

(
t

ε

)∥∥∥∥
s+2

+
∥∥∥∥φδ,ε(t) − φ(0)

(
t

ε

)∥∥∥∥
s+2

� C0

(
ε +

∣∣∣∣δ2

ε
− σ

∣∣∣∣
)

,

‖ηδ,ε(t)‖s+3 + ‖∇φδ,ε(t)‖s+2 � C0,

1 + ηδ,ε(x, t) − b(x, t) � 1
2c0 for (x, t) ∈ R

n × [0, ε],
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where (η(0), φ(0)) is the approximate solution in the fast time variable τ = t/ε
defined by (2.20).

Once we have obtained this kind of existence theorem for the solution with uni-
form bounds, by combining the existence result obtained in [11] where the case of
a fixed bottom was investigated, we can easily consider the limits δ, ε → 0 of the
solution (ηδ,ε, φδ,ε).

Theorem 2.4. Under the same hypothesis as theorem 2.3, there exists a time T > 0
independent of δ ∈ (0, δ0] and ε ∈ (0, ε0] such that the solution (ηδ,ε, φδ,ε) obtained
in theorem 2.3 can be extended to the time interval [0, T ] and satisfies

‖ηδ,ε(t) − η0(t)‖s−1 + ‖∇φδ,ε(t) − u0(t)‖s−1 � C0(ε + |δ2/ε − σ|) for ε � t � T,

where (η0, u0) is a unique solution of the shallow-water equations (2.13) under the
initial conditions (2.14) and u0 satisfies the irrotational condition (2.15).

3. The operators ΛDN, ΛNN, ΛDD and ΛND

Throughout this and the next sections the time t is arbitrarily fixed, so that Ω(t),
Γ (t), Σ(t), η(x, t) and b(x, t) are simply denoted by Ω, Γ , Σ, η(x) and b(x), respec-
tively. Introducing an (n + 1) × (n + 1) matrix Iδ by

Iδ =
(

En 0
0 δ−1

)
,

where En is the n × n unit matrix, we consider the boundary-value problem

∇X · I2
δ ∇XΦ = 0 in Ω, Φ = φ on Γ, (∇b, −1)T · I2

δ ∇XΦ = β on Σ. (3.1)

We note that the first and the third equations in (3.1) with β replaced by −ε−1βτ are
nothing but those in (1.9) and (1.11), respectively, and that the second equation
in (3.1) corresponds to (1.14). Under suitable assumptions on η and b, for any
functions φ on Γ and β on Σ in some class of functions, there exists a unique
solution Φ of the boundary-value problem (3.1).

Definition 3.1. The solution Φ will be denoted by (φ, β)�. Using the solution Φ
we define the linear operators ΛDN = ΛDN(η, b, δ), ΛNN = ΛNN(η, b, δ), ΛDD =
ΛDD(η, b, δ) and ΛND = ΛND(η, b, δ) by

ΛDN(η, b, δ)φ + ΛNN(η, b, δ)β = (−∇η, 1)T · I2
δ (∇XΦ)(·, 1 + η(·)),

ΛDD(η, b, δ)φ + ΛND(η, b, δ)β = Φ(·, b(·)),

which are called, respectively, the Dirichlet-to-Neumann (DN) map, the Neumann-
to-Neumann (NN) map, the Dirichlet-to-Dirichlet (DD) map and the Neumann-
to-Dirichlet (ND) map. In what follows, we write ΛDN

0 = ΛDN(0, 0, δ), ΛNN
0 =

ΛNN(0, 0, δ), ΛDD
0 = ΛDD(0, 0, δ) and ΛND

0 = ΛND(0, 0, δ).

Proposition 3.2. We have

ΛDN
0 =

|D|
δ

tanh(δ|D|), ΛND
0 =

δ

|D| tanh(δ|D|), −ΛNN
0 = ΛDD

0 =
1

cosh(δ|D|) .
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Proof. In the case (η, b) = 0, the solution of (3.1) can be written explicitly in terms
of Fourier multipliers as

Φ(·, xn+1) =
cosh(δ|D|xn+1)

cosh(δ|D|) φ +
δ sinh(δ|D|(1 − xn+1))

|D| cosh(δ|D|) β,

so that we easily obtain the desired expressions.

Proposition 3.3. The operators ΛDN and ΛND are symmetric in L2, and the
adjoint operator of ΛNN in L2 is equal to −ΛDD. That is, for any φ, ψ ∈ H1 and
any β, γ ∈ L2, it holds that

(ΛDNφ, ψ) = (φ, ΛDNψ), (ΛNDβ, γ) = (β, ΛNDγ), (ΛNNβ, ψ) = −(β, ΛDDψ).

Proof. Set Φ := (φ, β)� and Ψ := (ψ, γ)�. By Green’s formula we have

0 =
∫

Ω

((∇X · I2
δ ∇XΦ)Ψ − Φ(∇X · I2

δ ∇XΨ)) dX

=
∫

∂Ω

((N · I2
δ ∇XΦ)Ψ − Φ(N · I2

δ ∇XΨ)) dS

= (ΛDNφ + ΛNNβ, ψ) − (φ, ΛDNψ + ΛNNγ)

+ (β, ΛDDψ + ΛNDγ) − (ΛDDφ + ΛNDβ, γ),

where N is the unit outward normal to the boundary ∂Ω. By setting (β, γ) = 0,
(φ, ψ) = 0 and (φ, γ) = 0 in the above equality, we obtain the respective desired
identities.

Similarly, as a simple application of Green’s formula, we have the following
lemma.

Lemma 3.4. For any φ ∈ H1 and β ∈ L2, it holds that (ΛDNφ, φ) = ‖Iδ∇XΦ‖2
L2(Ω)

with Φ = (φ, 0)� and that (ΛNDβ, β) = ‖Iδ∇XΨ‖2
L2(Ω) with Ψ = (0, β)�.

In a derivation of the linearized equations for (1.15), we need an explicit formula
of the Fréchet derivatives of the operators ΛDN and ΛNN with respect to η. The
Fréchet derivative of ΛDN was given in [17] and we can generalize the formula as
follows.

Theorem 3.5. The Fréchet derivatives of ΛDN(η, b, δ) and ΛNN(η, b, δ) with respect
to η have the form

DηΛDN(η, b, δ)[η̌]φ + DηΛNN(η, b, δ)[η̌]β = −δ2ΛDN(η, b, δ)(Zη̌) − ∇ · (vη̌),

where

Z = (1 + δ2|∇η|2)−1(ΛDN(η, b, δ)φ + ΛNN(η, b, δ)β + ∇η · ∇φ),

v = ∇φ − δ2Z∇η.

}
(3.2)

Proof. First, we will give an intuitive derivation of the formula. We take φ, ψ, β ∈
C∞

0 (Rn) and set Φ := (φ, β)� and Ψ := (ψ, 0)�, namely, Φ and Ψ are the solutions
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of the following boundary-value problems:

∇X · I2
δ ∇XΦ = 0, ∇X · I2

δ ∇XΨ = 0 in Ω,

Φ = φ, Ψ = ψ on Γ,

(∇b, −1)T · I2
δ ∇XΦ = β, (∇b, −1)T · I2

δ ∇XΨ = 0 on Σ.

⎫⎪⎬
⎪⎭ (3.3)

These solutions depend not only on X but also on η, so that we also denote these
solutions by Φ = Φ(X) = Φ(X; η) and Ψ = Ψ(X) = Ψ(X; η). Here, we note that

(DηΛDN(η, b, δ)[η̌]φ, ψ) =
d
dh

(ΛDN(η + hη̌, b, δ)φ, ψ)
∣∣∣∣
h=0

. (3.4)

By Green’s formula and proposition 3.3, we see that∫
Ω

Iδ∇XΦ · Iδ∇XΨ dX =
∫

∂Ω

(N · I2
δ ∇XΦ)Ψ dX

= (ΛDNφ + ΛNNβ, ψ) + (β, ΛDDψ)

= (ΛDNφ, ψ), (3.5)

so that

(ΛDN(η + hη̌, b, δ)φ, ψ)

=
∫

Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
Iδ∇XΦ(X; η + hη̌) · Iδ∇XΨ(X; η + hη̌) dxn+1

)
dx.

We expand formally the solutions Φ(X; η + hη̌) and Ψ(X; η + hη̌) as

Φ(X; η + hη̌) = Φ(X; η) + Φ1(X)h + O(h2),

Ψ(X; η + hη̌) = Ψ(X; η) + Ψ1(X)h + O(h2).

}
(3.6)

Then,

d
dh

(ΛDN(η + hη̌, b, δ)φ, ψ)
∣∣∣∣
h=0

=
∫

Ω

(Iδ∇XΦ1 · Iδ∇XΨ + Iδ∇XΦ · Iδ∇XΨ1) dX

+
∫

Rn

(Iδ∇XΦ · Iδ∇XΨ)|Γ η̌ dx

=: J1 + J2. (3.7)

It follows from the boundary condition on the water surface and the expansion (3.6)
that

φ(x) = Φ(x, 1 + η(x) + hη̌(x); η + hη̌)
= Φ(x, 1 + η(x); η)

+ h{(∂n+1Φ)(x, 1 + η(x); η)η̌(x) + Φ1(x, 1 + η(x))} + O(h2),

which implies that Φ1|Γ = −(∂n+1Φ)|Γ η̌. Similarly, we have Ψ1|Γ = −(∂n+1Ψ)|Γ η̌.
On the other hand, by taking the trace of the expansion (3.6) on the bottom Σ and
using the definition of the DD map ΛDD, we get

ΛDD(η + hη̌, b, δ)ψ = ΛDD(η, b, δ)ψ + hΨ1|Σ + O(h2).
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This and proposition 3.3 imply that

Ψ1|Σ = DηΛDD[η̌]ψ = −(DηΛNN[η̌])∗ψ.

Therefore, by Green’s formula we see that

J1 = −
∫

Ω

(Φ1(∇X · I2
δ ∇XΨ) + (∇X · I2

δ ∇XΦ)Ψ1) dX

+
∫

∂Ω

(Φ1(N · I2
δ ∇XΨ) + (N · I2

δ ∇XΦ)Ψ1) dS

= −
∫

Rn

((∂n+1Φ)|Γ (ΛDNψ) + (ΛDNφ + ΛNNβ)(∂n+1Ψ)|Γ )η̌ dx

− (DηΛNN[η̌]β, ψ).

On the other hand, in view of the relations (∇Q)|Γ = ∇(Q|Γ ) − (∂n+1Q)|Γ ∇η we
get

J2 =
∫

Rn

(∇φ · ∇ψ − (∂n+1Φ)|Γ ∇η · ∇ψ − (∂n+1Ψ)|Γ ∇η · ∇φ

+ δ−2(1 + δ2|∇η|2)(∂n+1Ψ∂n+1Φ)|Γ )η̌ dx.

These, together with the relations

(∂n+1Φ)|Γ = δ2(1 + δ2|∇η|2)−1(ΛDNφ + ΛNNβ + ∇η · ∇φ) = δ2Z,

(∂n+1Ψ)|Γ = δ2(1 + δ2|∇η|2)−1(ΛDNψ + ∇η · ∇ψ),

yield that

(DηΛDN[η̌]φ + DηΛNN[η̌]β, ψ) =
∫

Rn

(∇φ · ∇ψ − δ2Z(ΛDNψ + ∇η · ∇ψ))η̌ dx

= −(δ2ΛDN(Zη̌) + ∇ · (vη̌), ψ),

where we used the symmetric property of ΛDN stated in proposition 3.3. Since the
above equality holds for any ψ ∈ C∞

0 (Rn), we obtain the desired formula.
Next, we will justify the above formal argument. Note that the expansion (3.6)

has no sense because the domains of definition of the left-hand side and the right-
hand side are different. Therefore, we need to give a good definition of Φ1(X)
and Ψ1(X) in order to obtain the formula (3.7). To this end, we use a diffeomor-
phism X = Ξ(Y ; η) from a simple domain Ω0 := R

n × (0, 1) to the water region
Ω = {X ∈ R

n+1; b(x) < xn+1 < 1 + η(x)} defined by

xj = yj , 1 � j � n, xn+1 = b(y) + yn+1(1 + η(y) − b(y)).

For any function f = f(X; η) defined in Ω, we set f̃(Y ; η) := f(Ξ(Y ; η); η), which
is a function in the fixed domain Ω0, so that the Fréchet derivative of this function
f̃(Y ; η) with respect to η has a sense. For simplicity, we write f̃η = Dη f̃ [η̌]. Then,
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we see that∫
Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
f(X; η + hη̌) dxn+1

)
dx

=
∫

Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
f̃(Ξ−1(X; η + hη̌); η + hη̌) dxn+1

)
dx

=
∫

Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
f̃(Ξ−1(X; η + hη̌); η) dxn+1

)
dx

+ h

∫
Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
f̃η(Ξ−1(X; η + hη̌)) dxn+1

)
dx + O(h2).

This, together with the simple identity

∫ 1+η(x)+hη̌(x)

b(x)
f̃(Ξ−1(X; η + hη̌); η) dxn+1

=
(

1 +
hη̌(x)

1 + η(x) − b(x)

) ∫ 1+η(x)

b(x)
f̃(Ξ−1(X; η); η) dxn+1

implies that

d
dh

∫
Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
f(X; η + hη̌) dxn+1

)
dx

∣∣∣∣
h=0

=
∫

Rn

( ∫ 1+η(x)

b(x)

(
f̃η(Ξ−1(X; η)) +

η̌(x)
1 + η(x) − b(x)

f̃(Ξ−1(X; η); η)
)

dxn+1

)
dx.

Here, using integration by parts, we have∫ 1+η(x)

b(x)

η̌(x)
1 + η(x) − b(x)

f̃(Ξ−1(X; η); η) dxn+1

= η̌(x)f̃(x, 1; η) −
∫ 1+η(x)

b(x)

η̌(x)(xn+1 − b(x))
(1 + η(x) − b(x))2

(∂n+1f̃)(Ξ−1(X; η); η) dxn+1

= η̌(x)f(x, 1 + η(x); η) −
∫ 1+η(x)

b(x)

η̌(x)(xn+1 − b(x))
1 + η(x) − b(x)

(∂n+1f)(X; η) dxn+1.

Therefore, we obtain

d
dh

∫
Rn

( ∫ 1+η(x)+hη̌(x)

b(x)
f(X; η + hη̌) dxn+1

)
dx

∣∣∣∣
h=0

=
∫

Rn

f(x, 1 + η(x); η)η̌(x) dx +
∫

Ω

f1(X) dX, (3.8)

where

f1(X) := f̃η(Ξ−1(X; η)) − η̌(x)(xn+1 − b(x))
1 + η(x) − b(x)

(∂n+1f)(X; η). (3.9)
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Now, for the functions Φ = Φ(X; η) and Ψ = Ψ(X; η) defined by (3.3), we define
Φ1 and Ψ1 as in (3.9) and apply the formula (3.8) to the function f(X; η) =
Iδ∇XΦ(X; η) · Iδ∇XΨ(X; η). Then, by a straightforward calculation, we see that

f1(X) = Iδ∇XΦ1(X) · Iδ∇XΨ(X; η) + Iδ∇XΦ(X; η) · Iδ∇XΨ1(X),

so that we recover the formula (3.7). Moreover, in view of the relations Φ̃(·, 1; η) = φ,
Ψ̃(·, 1; η) = ψ and Ψ̃(·, 0; η) = ΛDD(η, b, δ)ψ, we have

Φ̃η(·, 1) = 0, Ψ̃η(·, 1) = 0, Ψ̃η(·, 0) = DηΛDD[η̌]ψ.

Therefore, it follows from (3.9) that Φ1|Γ = −(∂n+1Φ)|Γ η̌, Ψ1|Γ = −(∂n+1Ψ)|Γ η̌ and
Ψ1|Σ = DηΛDD[η̌]ψ, and that the previous formal argument is justified.

Theorem 3.6. The Fréchet derivatives of ΛDN(η, b, δ) and ΛNN(η, b, δ) with respect
to b have the form

DbΛ
DN(η, b, δ)[b̌]φ + DbΛ

NN(η, b, δ)[b̌]β = −ΛNN(η, b, δ)(∇ · (wb̌)),

where
W = (1 + δ2|∇b|2)−1(−β + ∇b · ∇(ΛDDφ + ΛNDβ)),

w = ∇(ΛDDφ + ΛNDβ) − δ2W∇b.

}
(3.10)

Proof. We will only give an intuitive derivation of the formula. The formal calcu-
lation can be justified as in the proof of the previous theorem. We take φ, ψ, β ∈
C∞

0 (Rn) and let Φ and Ψ be the solutions of the boundary-value problems (3.3).
Since we are considering a variation of the maps with respect to b, we denote the
solutions by Φ = Φ(X) = Φ(X; b) and Ψ = Ψ(X) = Ψ(X; b) and expand them
formally as

Φ(X; b + hb̌) = Φ(X; b) + Φ1(X)h + O(h2),

Ψ(X; b + hb̌) = Ψ(X; b) + Ψ1(X)h + O(h2).

}
(3.11)

Then, in place of (3.7), we have

d
dh

(ΛDN(η, b + hb̌, δ)φ, ψ)
∣∣∣∣
h=0

=
∫

Ω

(Iδ∇XΦ1 · Iδ∇XΨ + Iδ∇XΦ · Iδ∇XΨ1) dX

−
∫

Rn

(Iδ∇XΦ · Iδ∇XΨ)|Σ b̌ dx

=: J1 + J2. (3.12)

By taking the trace of the expansion (3.11) on the water surface Γ and using the
boundary condition, we get Φ1|Γ = Ψ1|Γ = 0. By taking the trace of (3.11) on the
bottom Σ and using the definition of the map ΛDD, we see that

(ΛDD(η, b + hb̌, δ)ψ)(x)

= Ψ(x, b(x) + hb̌(x); b + hb̌)

= (ΛDD(η, b, δ)ψ)(x) + h{(∂n+1Ψ)(x, b(x); b)b̌(x) + Ψ1(x, b(x))} + O(h2).
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This and proposition 3.3 imply that Ψ1|Σ = −(DbΛ
NN[b̌])∗ψ − (∂n+1Ψ)|Σ b̌. There-

fore,

J1 =
∫

∂Ω

(Φ1(N · I2
δ ∇XΨ) + (N · I2

δ ∇XΦ)Ψ1) dS

= −(DbΛ
NN[b̌]β, ψ) −

∫
Rn

β(∂n+1Ψ)|Σ b̌ dx.

On the other hand, we have

J2 = −
∫

Rn

{∇(Φ|Σ) · ∇(Ψ |Σ) − (∂n+1Φ)|Σ∇b · ∇(Ψ |Σ)

− (∂n+1Ψ)|Σ∇b · ∇(Φ|Σ) + δ−2(1 + δ2|∇b|2)(∂n+1Ψ∂n+1Φ)|Σ}b̌ dx.

In view of the relations Φ|Σ = ΛDDφ + ΛNDβ, Ψ |Σ = ΛDDψ and

(∂n+1Φ)|Σ = δ2(1 + δ2|∇b|2)−1(−β + ∇b · ∇(ΛDDφ + ΛNDβ)) = δ2W,

(∂n+1Ψ)|Σ = δ2(1 + δ2|∇b|2)−1(∇b · ∇(ΛDDψ)),

we see that

(DbΛ
DN[b̌]φ + DbΛ

NN[b̌]β, ψ)

= −
∫

Rn

(∇(ΛDDφ + ΛNDβ) · ∇(ΛDDψ) − δ2W (∇b · ∇(ΛDDψ)))b̌ dx

= −(ΛNN(∇ · (wb̌)), ψ),

where we used proposition 3.3. Since the above equality holds for any ψ ∈ C∞
0 (Rn),

we obtain the desired formula.

Theorem 3.7. The Fréchet derivatives of ΛDD(η, b, δ) and ΛND(η, b, δ) with respect
to η have the form

DηΛDD(η, b, δ)[η̌]φ + DηΛND(η, b, δ)[η̌]β = −δ2ΛDD(η, b, δ)(Zη̌),

where Z is given by (3.2).

Proof. We take φ, β, γ ∈ C∞
0 (Rn) and set Φ := (φ, β)� and Ψ := (0, γ)�. Then, in

place of (3.5), we have

(ΛNDβ, γ) =
∫

Ω

Iδ∇XΦ · Iδ∇XΨ dX. (3.13)

We expand formally the solutions Φ(X; η + hη̌) and Ψ(X; η + hη̌) as (3.6). Then,
as in the previous theorems, we see that

(DηΛND[η̌]β, γ) =
∫

Rn

(Φ1|Γ ΛNNγ + (ΛDNφ + ΛNNβ)Ψ1|Γ + Φ1|Σγ + βΨ1|Σ) dx

+
∫

Rn

(Iδ∇XΦ · Iδ∇XΨ)|Γ η̌ dx.
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Here, we have

Φ1|Γ = −(∂n+1Φ)|Γ η̌, Ψ1|Γ = −(∂n+1Ψ)|Γ η̌,

Φ1|Σ = DηΛDD[η̌]φ + DηΛND[η̌]β, Ψ1|Σ = (DηΛND[η̌])∗γ,

so that we obtain

(DηΛDD[η̌]φ + DηΛND[η̌]β, γ)

=
∫

Rn

((∂n+1Φ)|Γ ΛNNγ + (ΛDNφ + ΛNNβ)(∂n+1Ψ)|Γ − (Iδ∇XΦ · Iδ∇XΨ)|Γ )η̌ dx

= −δ2(ΛDD(Zη̌), γ).

Since the above equality holds for any γ ∈ C∞
0 (Rn), we obtain the desired formula.

Theorem 3.8. The Fréchet derivatives of ΛDD(η, b, δ) and ΛND(η, b, δ) with respect
to b have the form

DbΛ
DD(η, b, δ)[b̌]φ + DbΛ

ND(η, b, δ)[b̌]β = δ2Wb̌ − ΛND(η, b, δ)(∇ · (wb̌)),

where W and w are given by (3.10).

Proof. We take φ, β, γ ∈ C∞
0 (Rn) and set Φ := (φ, β)� and Ψ := (0, γ)�. Then we

have (3.13). We expand formally the solutions Φ(X; b + hb̌) and Ψ(X; b + hb̌) as
(3.11). Then, as in the previous theorems, we see that

(DbΛ
ND[b̌]β, γ) =

∫
Rn

(Φ1|Γ ΛNNγ + (ΛDNφ + ΛNNβ)Ψ1|Γ + Φ1|Σγ + βΨ1|Σ) dx

−
∫

Rn

(Iδ∇XΦ · Iδ∇XΨ)|Σ b̌ dx.

Here, we have

Φ1|Γ = Ψ1|Γ = 0,

Φ1|Σ = −(∂n+1Φ)|Σ b̌ + DbΛ
DD[b̌]φ + DbΛ

ND[b̌]β,

Ψ1|Σ = −(∂n+1Ψ)|Σ b̌ + (DbΛ
ND[b̌])∗γ,

so that we obtain

(DbΛ
DD[b̌]φ + DbΛ

ND[b̌]β, γ)

=
∫

Rn

((∂n+1Φ)|Σγ + β(∂n+1Ψ)|Σ + (Iδ∇XΦ · Iδ∇XΨ)|Σ)b̌ dx

= (δ2Wb̌ − ΛND(∇ · (wb̌)), γ).

Since the above equality holds for any γ ∈ C∞
0 (Rn), we obtain the desired formula.

In reducing the full nonlinear equations (1.15) to a quasi-linear system of equa-
tions, we also need explicit formulae of second-order Fréchet derivatives of the maps
ΛDN and ΛNN, which are given in the following theorems.
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Theorem 3.9. The second-order Fréchet derivatives of

ΛDN(η, b, δ) and ΛNN(η, b, δ)

with respect to η have the form

D2
ηΛDN(η, b, δ)[η̌1, η̌2]φ + D2

ηΛNN(η, b, δ)[η̌1, η̌2]β

= δ2{ΛDN(η, b, δ)((1 + δ2|∇η|2)−1(∆φ)η̌1η̌2)

− ∇ · ((1 + δ2|∇η|2)−1(∆φ)η̌1η̌2∇η) + ∆(Zη̌1η̌2)}
+ δ4{ΛDN(η, b, δ)((1 + δ2|∇η|2)−1(η̌2Λ

DN(η, b, δ)(Zη̌1)

+ η̌1Λ
DN(η, b, δ)(Zη̌2) + Z∇η · ∇(η̌1η̌2) − η̌1η̌2Z∆η))

− ∇ · ((1 + δ2|∇η|2)−1(η̌2Λ
DN(η, b, δ)(Zη̌1) + η̌1Λ

DN(η, b, δ)(Zη̌2)
+ Z∇η · ∇(η̌1η̌2) − η̌1η̌2Z∆η)∇η)},

where Z is given by (3.2).

Proof. It follows from theorem 3.5 that

DηΛDN[η̌1]φ + DηΛNN[η̌1]β

= −δ2ΛDN((1 + δ2|∇η|2)−1(ΛDNφ + ΛNNβ + ∇η · ∇φ)η̌1)

− ∇ · {(∇φ − δ2(1 + δ2|∇η|2)−1(ΛDNφ + ΛNNβ + ∇η · ∇φ)∇η)η̌1}.
(3.14)

Taking the Fréchet derivative of (3.14) with respect to η once again, we obtain

D2
ηΛDN[η̌1, η̌2]φ + D2

ηΛNN[η̌1, η̌2]β

= −δ2DηΛDN[η̌2](Zη̌1)

− δ2ΛDN{(−2δ2(1 + δ2|∇η|2)−1Z(∇η · ∇η̌2)

+ (1 + δ2|∇η|2)−1(DηΛDN[η̌2]φ + DηΛNN[η̌2]β + ∇η̌2 · ∇φ))η̌1}
− ∇ · {(2δ4(1 + δ2|∇η|2)−1Z(∇η · ∇η̌2)∇η

− δ2(1 + δ2|∇η|2)−1(DηΛDN[η̌2]φ + DηΛNN[η̌2]β + ∇η̌2 · ∇φ)∇η

− δ2Z∇η̌2)η̌1}.

Here, we again use theorem 3.5. Then, a straightforward calculation gives the
desired identity.

Theorem 3.10. The second-order Fréchet derivatives of the DN and the NN maps
with respect to η and b have the form

DηDbΛ
DN(η, b, δ)[η̌, b̌]φ + DηDbΛ

NN(η, b, δ)[η̌, b̌]β

= δ2ΛNN(η, b, δ)∇ · {b̌(∇(ΛDD(η, b, δ)(Zη̌))

− δ2(1 + δ2|∇b|2)−1(∇b · ∇ΛDD(η, b, δ)(Zη̌))∇b)}
+ δ2ΛDN(η, b, δ)(η̌(1 + δ2|∇η|2)−1ΛNN(η, b, δ)∇ · (wb̌))

− δ2∇ · (η̌(1 + δ2|∇η|2)−1(ΛNN(η, b, δ)∇ · (wb̌))∇η),

where Z and w are given by (3.2) and (3.10), respectively.
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Proof. Taking the Fréchet derivative of (3.14) with respect to b, we obtain

DηDbΛ
DN[η̌, b̌]φ + DηDbΛ

NN[η̌, b̌]β

= −δ2DbΛ
DN[b̌](Zη̌) − δ2ΛDN((1 + δ2|∇η|2)−1(DbΛ

DN[b̌]φ + DbΛ
NN[b̌]β)η̌1)

− ∇ · {(−δ2(1 + δ2|∇η|2)−1(DbΛ
DN[b̌]φ + DbΛ

NN[b̌]β)∇η)η̌1}.

We use theorem 3.6 in the above expression. Then, a straightforward calculation
gives the desired identity.

4. Some elliptic estimates

In the next section we will give operator norms of the operators ΛDN, ΛNN, ΛDD

and ΛND in Sobolev spaces. Especially, we will analyze carefully the dependence on
the small parameter δ to obtain uniform estimates with respect to δ. Since these
operators depend on the unknown function η, we also have to accurately examine
the dependence on regularity of η.

In order to give such estimates, we need appropriate estimates of the solution Φ
of the boundary-value problem (3.1). In this section we prepare elliptic estimates
of the solution, noting in particular the dependence of δ and the regularity of η.
To this end, it would be convenient to transform the problem (3.1) on the water
region Ω into a problem on a simple domain Ω0 := R

n × (0, 1) by using an appro-
priate diffeomorphism Θ = (Θ1, . . . , Θn, Θn+1) : Ω0 → Ω, which is conformal in the
tangential and the normal directions on the boundary in some sense. As in [11], we
define such a diffeomorphism as follows. We take functions θ = (θ1, . . . , θn, θn+1)
satisfying the conditions

θj(x, 0) = θj(x, 1) = 0,

∂n+1θj(x, 0) = −∂jb(x), ∂n+1θj(x, 1) = −∂jη(x) for 1 � j � n,

θn+1(x, 0) = b(x), θn+1(x, 1) = η(x),
∂n+1θn+1(x, 0) = ∂n+1θn+1(x, 1) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

and define the diffeomorphism Θ by

Θj(X) = xj + δ2θj(X) for 1 � j � n, Θn+1(X) = xn+1 + θn+1(X). (4.2)

We set Φ̃ := Φ ◦ Θ and

P := det
(

∂Θ

∂X

)(
I−1
δ

(
∂Θ

∂X

)−1

I2
δ

((
∂Θ

∂X

)−1)T

I−1
δ

)
. (4.3)

The matrix P has the property

P (x, 0) =
(

∗ 0
0 1

)
, P (x, 1) =

(
∗ 0
0 1

)
, (4.4)

which means that the diffeomorphism Θ is conformal in the tangential and the
normal directions on the boundary, so that the Neumann boundary condition on
the bottom is transformed into the Neumann condition again with a very simple
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normal vector N = (0, . . . , 0, −1)T. Therefore, the boundary-value problem (3.1) is
transformed into

∇X · IδPIδ∇X Φ̃ = 0 in Ω0, Φ̃ = φ on Γ0, −δ−2∂n+1Φ̃ = β on Σ0, (4.5)

where Γ0 and Σ0 are upper and lower boundaries of Ω0. Moreover, it holds that

ΛDN(η, b, δ)φ + ΛNN(η, b, δ)β = δ−2(∂n+1Φ̃)(·, 1),

ΛDD(η, b, δ)φ + ΛND(η, b, δ)β = Φ̃(·, 0).

}
(4.6)

We will impose the following conditions on the water surface and the bottom.

Assumption 4.1.

(A1) There exists a C1-diffeomorphism Θ : Ω0 → Ω satisfying (4.1), (4.2) and the
conditions

det
(

∂Θ

∂X
(X)

)
� c > 0 and |∇Xθ(X)| � M for X ∈ Ω0.

(A2)
‖∇Xθ(·, xn+1)‖q � M for 0 � xn+1 � 1.

(A3)
‖Jq+1/2∇Xθ‖L2(Ω0) � M.

(A4)

‖∇X(D(η,b)θ[η̌, b̌])(·, xn+1)‖š + ‖J š+1/2∇X(D(η,b)θ[η̌, b̌])‖L2(Ω0)

� M(‖η̌‖š+1 + ‖b̌‖š+1) for 0 � xn+1 � 1, š ∈ R,

and θ depends linearly on (η, b).

The construction of a diffeomorphism Θ satisfying the above conditions was given
in [11]. More precisely, we have the following proposition.

Proposition 4.2. Let r > 1
2n, c1, M1 > 0 and suppose that η, b ∈ H1+r satisfy the

conditions

‖η‖1+r + ‖b‖1+r � M1, 1 + η(x) − b(x) � c1 for x ∈ R
n.

Then, there exists a constant δ1 = δ1(M1, c1, r) > 0 such that, for any δ ∈ (0, δ1],
we can construct a diffeomorphism Θ satisfying the conditions in (A1). Moreover,
for any s ∈ R and k ∈ N, we have

‖Js∇Xθ‖L2(Ω0) � C1(‖η‖s+1/2 + ‖b‖s+1/2),

sup
0�xn+1�1

‖∂k
n+1θ(·, xn+1)‖s � C2(‖η‖s+k + ‖b‖s+k),

⎫⎬
⎭ (4.7)

where C1 = C1(c1) > 0 and C2 = C2(c1, k) > 0. In the case where η and b also
depend on the time t, for any l ∈ N, we have

‖Js∇X∂l
tθ(t)‖L2(Ω0) � C1(‖∂l

tη(t)‖s+1/2 + ‖∂l
tb(t)‖s+1/2),

sup
0�xn+1�1

‖∂k
n+1∂

l
tθ(·, xn+1, t)‖s � C2(‖∂l

tη(t)‖s+k + ‖∂l
tb(t)‖s+k).

⎫⎬
⎭ (4.8)
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We proceed to give elliptic estimates for (4.5) in Sobolev spaces. Although stan-
dard theory for elliptic equations could provide an estimate of the solution, such an
estimate depends strongly on the parameter δ and it does not give a uniform bound
of the solution with respect to small δ. Therefore, we will perform an estimation
of the solution with particular care on the dependence of the parameter δ and on
regularity of η. The following six lemmas were slight modifications of those given
in [11].

Lemma 4.3. Under assumption (A1), there exists a constant C = C(M, c) � 1
independent of δ such that we have

C−1‖Iδ∇XΦ‖L2(Ω) � ‖Iδ∇X Φ̃‖L2(Ω0) � C‖Iδ∇XΦ‖L2(Ω),

where Φ̃ = Φ ◦ Θ.

Lemma 4.4. Under assumption (A1), there exists a constant C = C(M, c) � 1
independent of δ such that, for any φ ∈ H1, we have

C−1‖(ΛDN
0 )1/2φ‖2 � (ΛDNφ, φ) � C‖(ΛDN

0 )1/2φ‖2.

Lemma 4.5. Let r > 1
2n. There exists a constant C = C(r) > 0 independent of δ

such that we have

‖[(ΛDN
0 )1/2, a]u‖ � C‖∇a‖r‖u‖, ‖[(ΛDN

0 )1/2, a]u‖r � C‖∇a‖r‖u‖r.

Lemma 4.6. For any s ∈ R, we have

‖(ΛDN
0 )1/2φ‖s � min{‖∇φ‖s, δ

−1/2‖φ‖s+1/2},

‖∇φ‖s �
√

2(1 + δ)‖(ΛDN
0 )1/2φ‖s+1/2.

Lemma 4.7. For any s ∈ R and r > 1
2n, there exists a constant C = C(s, r) > 0

independent of δ such that we have

‖(ΛDN
0 )1/2(φψ)‖s � C(‖φ‖r‖(ΛDN

0 )1/2ψ‖s + ‖φ‖s‖(ΛDN
0 )1/2ψ‖r

+ ‖(ΛDN
0 )1/2φ‖s‖ψ‖r + ‖(ΛDN

0 )1/2φ‖r‖ψ‖s).

Lemma 4.8. For any s ∈ R and r > 1
2n, there exists a constant C = C(s, r) > 0

independent of δ such that we have

‖(ΛDN
0 )1/2[Js, ψ]∇φ‖ � C(‖∇ψ‖r+1‖(ΛDN

0 )1/2φ‖s + ‖∇ψ‖s‖(ΛDN
0 )1/2φ‖r+1).

Lemma 4.9. For any function Φ̃ defined on Ω0, we have

‖(ΛDN
0 )1/2Φ̃(·, 0)‖ � ‖Iδ∇X Φ̃‖L2(Ω0).

Proof. We take ψ ∈ H0 arbitrarily and set

Ψ̃(·, xn+1) =
cosh(δ|D|(1 − xn+1))

cosh(δ|D|) ψ,

which is a solution of the boundary-value problem

∇X · I2
δ ∇X Ψ̃ = 0 in Ω0, ∂n+1Ψ̃ = 0 on Γ0, Ψ̃ = ψ on Σ0.
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Then, it holds that −δ−2∂n+1Ψ̃(·, 0) = ΛDN
0 ψ. By Green’s formula, we see that

|(ΛDN
0 Φ̃(·, 0), ψ)| = |(Φ̃(·, 0), ΛDN

0 ψ)|

=
∣∣∣∣
∫

Σ0

Φ̃(N · I2
δ ∇X Ψ̃) dS

∣∣∣∣
=

∣∣∣∣
∫

Ω0

Iδ∇X Φ̃ · Iδ∇X Ψ̃ dX

∣∣∣∣
� ‖(ΛDN

0 )1/2Iδ∇X Φ̃‖L2(Ω0)‖(ΛDN
0 )−1/2Iδ∇X Ψ̃‖L2(Ω0)

= ‖Iδ∇X((ΛDN
0 )1/2Φ̃)‖L2(Ω0)‖ψ‖,

which gives ‖ΛDN
0 Φ̃(·, 0)‖ � ‖Iδ∇X((ΛDN

0 )1/2Φ̃)‖L2(Ω0). If we replace (ΛDN
0 )1/2Φ̃ by

Φ̃ in this inequality, then we obtain the desired estimate.

As a preliminary step, we will consider the boundary-value problem

∇X · IδPIδ∇X Φ̃ = ∇X · IδF + f in Ω0, Φ̃ = 0 on Γ0,

−δ−2∂n+1Φ̃ = β + (ΛDN
0 )1/2γ on Σ0,

}
(4.9)

where the matrix P is given by (4.3).

Lemma 4.10. Under assumption (A1), there exists a constant C = C(M, c) > 0
independent of δ such that the solution Φ̃ of (4.9) with Fn+1(·, 0) = 0 satisfies

‖Iδ∇X Φ̃‖L2(Ω0) � C(‖F‖L2(Ω0) + ‖J−1f‖L2(Ω0) + δ‖β‖ + ‖γ‖).

Proof. Taking the inner product of the first equation in (4.9) with Φ̃ and using
Green’s formula and the boundary conditions, we see that

C−1‖Iδ∇X Φ̃‖L2(Ω0) �
∫

Ω0

PIδ∇X Φ̃ · Iδ∇X Φ̃ dX

=
∫

Ω0

(F · Iδ∇X Φ̃ − fΦ̃) dX +
∫

Rn

(β + (ΛDN
0 )1/2γ)Φ̃(·, 0) dx

� ‖F‖L2(Ω0)‖Iδ∇X Φ̃‖L2(Ω0) + ‖J−1f‖L2(Ω0)‖JΦ̃‖L2(Ω0)

+ ‖β‖‖Φ̃(·, 0)‖ + ‖γ‖‖(ΛDN
0 )1/2Φ̃(·, 0)‖.

Here, we easily get

‖Φ̃(·, xn+1)‖ =
∥∥∥∥

∫ xn+1

1
(∂n+1Φ̃)(·, z) dz

∥∥∥∥ � δ‖Iδ∇X Φ̃‖L2(Ω0),

‖JΦ̃‖L2(Ω0) � ‖Φ̃‖L2(Ω0) + ‖∇Φ̃‖L2(Ω0) � (δ + 1)‖Iδ∇X Φ̃‖L2(Ω0).

Therefore, by applying lemma 4.9 to the last term in the above estimate, we obtain
the desired estimate.

Lemma 4.11. Let s > 1
2n + 1. Under assumptions (A1) and (A2) with q = s, there

exists a constant C = C(M, c, s) > 0 independent of δ such that the solution Φ̃ of

https://doi.org/10.1017/S0308210509001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001279


574 T. Iguchi

(4.9) with Fn+1(·, 0) = 0 satisfies

‖JsIδ∇X Φ̃‖L2(Ω0) � C(‖JsF‖L2(Ω0) + ‖Js−1f‖L2(Ω0) + δ‖β‖s + ‖γ‖s).

Proof. It is easy to see that JsΦ̃ satisfies

∇X · IδPIδ∇XJsΦ̃ = ∇X · Iδ(JsF − [Js, P ]Iδ∇X Φ̃) + Jsf in Ω0,

JsΦ̃ = 0 on Γ0,

−δ−2∂n+1J
sΦ̃ = Jsβ + (ΛDN

0 )1/2Jsγ on Σ0,

and that N · [Js, P ]Iδ∇X Φ̃ = 0 on ∂Ω0 thanks to (4.4). Therefore, by lemma 4.10,
we obtain

‖JsIδ∇X Φ̃‖L2(Ω0) � C(‖JsF‖L2(Ω0) + ‖[Js, P ]Iδ∇X Φ̃‖2(Ω0)

+ ‖Js−1f‖L2(Ω0) + δ‖β‖s + ‖γ‖s).

The second term on the right-hand side can be evaluated by a commutator estimate
‖[Js, a]u‖ � C‖∇a‖s−1‖u‖s−1, an interpolation inequality ‖u‖s−1 � ε‖u‖ + Cε‖u‖
for ε > 0, and lemma 4.10, so that we obtain the desired estimate.

Lemma 4.12. Let s > 1
2n. Under assumptions (A1) and (A2) with q = s + 1, there

exists a constant C = C(M, c, s) > 0 independent of δ such that the solution Φ̃ of
(4.9) with Fn+1(·, 0) = 0 satisfies

‖Js(ΛDN
0 )1/2Iδ∇X Φ̃‖L2(Ω0)

� C(‖Js(ΛDN
0 )1/2F‖L2(Ω0) + ‖Js−1(ΛDN

0 )1/2f‖L2(Ω0)

+ ‖β‖s + ‖(ΛDN
0 )1/2γ‖s + ‖F‖L2(Ω0) + ‖J−1f‖L2(Ω0) + ‖γ‖). (4.10)

Proof. It is easy to see that (ΛDN
0 )1/2Φ̃ satisfies

∇X · IδPIδ∇X(ΛDN
0 )1/2Φ̃

= ∇X · Iδ((ΛDN
0 )1/2F − [(ΛDN

0 )1/2, P ]Iδ∇X Φ̃) + (ΛDN
0 )1/2f in Ω0,

(ΛDN
0 )1/2Φ̃ = 0 on Γ0,

−δ−2∂n+1(ΛDN
0 )1/2Φ̃ = (ΛDN

0 )1/2(β + (ΛDN
0 )1/2γ) on Σ0,

and that N · [(ΛDN
0 )1/2, P ]Iδ∇X Φ̃ = 0 on ∂Ω0 thanks to (4.4). Therefore, by

lemma 4.11, we obtain

‖Js(ΛDN
0 )1/2Iδ∇X Φ̃‖L2(Ω0)

� C(‖Js(ΛDN
0 )1/2F‖L2(Ω0) + ‖Js[(ΛDN

0 )1/2, P ]Iδ∇X Φ̃‖L2(Ω0)

+ ‖Js−1(ΛDN
0 )1/2f‖L2(Ω0) + ‖β‖s + ‖(ΛDN

0 )1/2γ‖s).

Here, an interpolation inequality and lemma 4.6 imply that

‖u‖s � ε‖∇u‖s−1/2 + Cε‖u‖ � 2ε‖(ΛDN
0 )1/2u‖s + Cε‖u‖.
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Thanks to this and lemma 4.5, the second term on the right-hand side of the above
estimate can be evaluated as

‖Js[(ΛDN
0 )1/2, P ]Iδ∇X Φ̃‖L2(Ω0)

� ε‖Js(ΛDN
0 )1/2Iδ∇X Φ̃‖L2(Ω0) + Cε‖Iδ∇X Φ̃‖L2(Ω0).

These estimates, together with lemma 4.10 give the desired estimate.

Lemma 4.13. For any s ∈ R, the solution Φ̃ of (4.9) with Fn+1(·, 0) = Fn+1(·, 1) =
γ = 0 satisfies

δ−2‖∂n+1Φ̃(·, 1)‖s � ‖Js(ΛDN
0 )1/2PIδ∇X Φ̃‖L2(Ω0)

+ ‖Js(ΛDN
0 )1/2F‖L2(Ω0) + ‖Jsf‖L2(Ω0) + ‖β‖s.

Proof. We take ψ ∈ H0 arbitrarily and define Ψ̃ by

Ψ̃(·, xn+1) =
cosh(δ|D|xn+1)

cosh(δ|D|) ψ,

which is a solution of the boundary-value problem

∇X · I2
δ ∇X Ψ̃ = 0 in Ω0, Ψ̃ = ψ on Γ0, ∂n+1Ψ̃ = 0 on Σ0,

so that we have ‖(ΛDN
0 )−1/2Iδ∇X Ψ̃‖L2(Ω0) = ‖ψ‖ and ‖Ψ̃‖L2(Ω0) � ‖ψ‖. By Green’s

formula, we see that∫
Ω0

JsPIδ∇X Φ̃ · Iδ∇X Ψ̃ dX

= −
∫

Ω0

(Js(∇X · IδF + f))Ψ̃ dX +
∫

∂Ω0

(N · JsIδPIδ∇X Φ̃)Ψ̃ dS

=
∫

Ω0

(JsF · Iδ∇X Ψ̃ − (Jsf)Ψ̃) dX + (δ−2Js∂n+1Φ̃(·, 1), ψ) + (Jsβ, ΛDD
0 ψ).

Therefore, by propositions 3.2 and 3.3, we obtain

|(δ−2Js∂n+1Φ̃(·, 1), ψ)|

=
∣∣∣∣
∫

Ω0

(Js(ΛDN
0 )1/2(PIδ∇X Φ̃ − F ) · (ΛDN

0 )−1/2Iδ∇X Ψ̃ + (Jsf)Ψ̃) dX

+ (JsΛNN
0 β, ψ)

∣∣∣∣
� (‖Js(ΛDN

0 )1/2PIδ∇X Φ̃‖L2(Ω0) + ‖Js(ΛDN
0 )1/2F‖L2(Ω0)

+ ‖Jsf‖L2(Ω0) + ‖β‖s)‖ψ‖,

which gives the desired estimate.

Lemma 4.14. Let s > 1
2n. Under assumptions (A1) and (A2) with q = s + 1, there

exists a constant C = C(M, c, s) > 0 independent of δ such that the solution Φ̃ of
(4.9) with f = 0 and Fn+1(·, 0) = Fn+1(·, 1) = γ = 0 satisfies

δ−2‖∂n+1Φ̃(·, 1)‖s � C(‖Js(ΛDN
0 )1/2F‖L2(Ω0) + ‖F‖L2(Ω0) + ‖β‖s).
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Proof. By lemma 4.7 we have

‖Js(ΛDN
0 )1/2PIδ∇X Φ̃‖L2(Ω0)

� C(‖Js(ΛDN
0 )1/2Iδ∇X Φ̃‖L2(Ω0) + ‖JsIδ∇X Φ̃‖L2(Ω0)).

This and lemmas 4.11–4.13 give the desired estimate.

Now we give estimates of the solution of the boundary-value problem (4.5).

Proposition 4.15. Under (A1), there exists a constant C = C(M, c) > 0 indepen-
dent of δ such that the solution Φ̃ of (4.5) satisfies

‖Iδ∇X Φ̃‖L2(Ω0) � C(‖(ΛDN
0 )1/2φ‖ + δ‖β‖).

Proof. We set Φ1 := (φ, 0)�, Φ2 := (0, β)�, Φ̃1 := Φ1 ◦ Θ and Φ̃2 := Φ2 ◦ Θ. Then,
the solution can be decomposed as Φ̃ = Φ̃1 + Φ̃2. By lemma 4.10, we have

‖Iδ∇X Φ̃2‖L2(Ω0) � Cδ‖β‖.

It follows from lemmas 4.3, 3.4 and 4.4 that

‖Iδ∇X Φ̃1‖L2(Ω0) � C‖Iδ∇XΦ1‖L2(Ω) = C(ΛDNφ, φ)1/2 � C‖(ΛDN
0 )1/2φ‖.

Therefore, we obtain the desired estimate.

Proposition 4.16. Let s > 1
2n + 1. Under assumptions (A1) and (A2) with q = s,

there exists a constant C = C(M, c, s) > 0 independent of δ such that the solution
Φ̃ of (4.5) satisfies

‖JsIδ∇X Φ̃‖L2(Ω0) � C(‖(ΛDN
0 )1/2φ‖s + δ‖β‖s). (4.11)

Proof. Set Φs := (Jsφ, 0)� and Φ̃s := Φs ◦ Θ. Then, we have

∇X · IδPIδ∇X(JsΦ̃ − Φ̃s) = −∇X · Iδ[Js, P ]Iδ∇X Φ̃ in Ω0,

(JsΦ̃ − Φ̃s) = 0 on Γ0,

−δ−2∂n+1(JsΦ̃ − Φ̃s) = Jsβ on Σ0.

Therefore, by lemma 4.10, we obtain

‖Iδ∇X(JsΦ̃ − Φ̃s)‖L2(Ω0) � C(‖[Js, P ]Iδ∇X Φ̃‖L2(Ω0) + δ‖β‖s)

� ε‖JsIδ∇X Φ̃‖L2(Ω0) + Cε(‖Iδ∇X Φ̃‖L2(Ω0) + δ‖β‖s).
(4.12)

On the other hand, by proposition 4.15, we have

‖Iδ∇X Φ̃s‖L2(Ω0) � C‖(ΛDN
0 )1/2φ‖s.

These estimates, together with proposition 4.15, yield the desired estimate.

Proposition 4.17. Let s > 1
2n + 1. Under assumptions (A1) and (A2) with q =

s + 1, there exists a constant C = C(M, c, s) > 0 independent of δ such that the
solution Φ̃ of (4.5) satisfies

‖Js(ΛDN
0 )1/2Iδ∇X Φ̃‖L2(Ω0) � C(‖ΛDN

0 φ‖s + ‖(ΛDN
0 )1/2φ‖s + ‖β‖s).
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Proof. Set Φ1 := ((ΛDN
0 )1/2φ, 0)� and Φ̃1 := Φ1 ◦ Θ. Then, we have

∇X · IδPIδ∇X((ΛDN
0 )1/2Φ̃ − Φ̃1) = −∇X · Iδ[(ΛDN

0 )1/2, P ]Iδ∇X Φ̃ in Ω0,

((ΛDN
0 )1/2Φ̃ − Φ̃1) = 0 on Γ0,

−δ−2∂n+1((ΛDN
0 )1/2Φ̃ − Φ̃1) = (ΛDN

0 )1/2β on Σ0.

Therefore, by lemmas 4.11 and 4.5, we obtain

‖JsIδ∇X((ΛDN
0 )1/2Φ̃ − Φ̃1)‖L2(Ω0) � C(‖Js[(ΛDN

0 )1/2, P ]Iδ∇X Φ̃‖L2(Ω0) + ‖β‖s)

� C(‖JsIδ∇X Φ̃‖L2(Ω0) + ‖β‖s).

On the other hand, it follows from proposition 4.16 that

‖JsIδ∇X Φ̃1‖L2(Ω0) � C‖ΛDN
0 φ‖s.

These estimates, together with proposition 4.16, yield the desired estimate.

We proceed to give an L∞-estimate of ∇X Φ̃ in order to obtain a correct order of
δ and the estimate under a weaker hypothesis on the water surface and the bottom.
As shown in [11], the matrix P has the form

P =

(
(1 + ∂n+1θn+1)En + δ2P11 δp12

δpT
12 (1 + ∂n+1θn+1)−1 + δ2p22

)
,

where P11, p12 and p22 are n×n, 1×n and 1×1 matrices whose elements are rational
functions of ∇Xθ and whose denominators are positive definite under assump-
tion (A1). Moreover, p12 can be written in the form p12 = p0

12 + δ2p̃12, where
each element of p̃12 is also a rational function of ∇Xθ and

p0
12 = −(1 + ∂n+1θn+1)−1(∂n+1(θ1, . . . , θn)T + (1 + ∂n+1θn+1)∇θn+1). (4.13)

We note that it follows from (4.4) that

p12(x, 0) = p12(x, 1) = 0, p22(x, 0) = p22(x, 1) = 0. (4.14)

Using this notation we can rewrite the first equation in (4.5) as

∂n+1((δ−2(1 + ∂n+1θn+1)−1 + p22)∂n+1Φ̃)

= −∇ · (((1 + ∂n+1θn+1)En + δ2P11)∇Φ̃)

− ∇ · (p12∂n+1Φ̃) − ∂n+1(p12 · ∇Φ̃).

Integrating this with respect to xn+1 and using (4.1), (4.14) and a boundary con-
dition in (4.5), we see that

((1 + ∂n+1θn+1)−1 + δ2p22)∂n+1Φ̃

= −δ2β − δ2
∫ xn+1

0
∇ · (((1 + ∂n+1θn+1)En + δ2P11)∇Φ̃) dxn+1

− δ2
∫ xn+1

0
∇ · (p12∂n+1Φ̃) dxn+1 − δ2p12 · ∇Φ̃. (4.15)
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We also have

∇Φ̃ = ∇φ −
∫ 1

xn+1

∇∂n+1Φ̃ dxn+1. (4.16)

Corollary 4.18. Let s > 1
2n + 1. Under assumptions (A1) and (A2) with q = s,

there exists a constant C = C(M, c, s) > 0 independent of δ such that the solution
Φ̃ of (4.5) with φ = 0 satisfies

‖Js∂n+1Φ̃‖L2(Ω0) + ‖Js−1∇Φ̃‖L2(Ω0) � Cδ2‖β‖s.

Proof. It follows from proposition 4.16 that ‖Js∂n+1Φ̃‖L2(Ω0) � δ2‖β‖s. This and
(4.16) show that

‖Js−1∇Φ̃‖L2(Ω0) � ‖Js∂n+1Φ̃‖L2(Ω0) � δ2‖β‖s.

The proof is complete.

Corollary 4.19. Let s > 1
2n + 1. Under assumptions (A1) and (A2) with q = s,

there exists a constant C = C(M, c, s) > 0 independent of δ such that the solution
Φ̃ of (4.5) with β = 0 satisfies

‖Js∇Φ̃‖L2(Ω0) � C‖(ΛDN
0 )1/2φ‖s,

‖Js−1∂n+1Φ̃‖L2(Ω0) � Cδ2‖(ΛDN
0 )1/2φ‖s.

Proof. The first estimate comes directly from proposition 4.16. It follows from (4.15)
that ‖Js−1∂n+1Φ̃‖L2(Ω0) � Cδ2‖Js∇X Φ̃‖L2(Ω0). This and proposition 4.16 give the
second estimate. The proof is complete.

Proposition 4.20. Let r > 1
2n. Under assumptions (A1) and (A2) with q = r + 1,

there exists a constant C = C(M, c, r) > 0 independent of δ such that the solution
Φ̃ of (4.5) satisfies

‖∇Φ̃‖L∞(Ω0) � C(‖∇φ‖r + δ‖(ΛDN
0 )1/2φ‖r+1 + δ2‖β‖r+1),

‖∂n+1Φ̃‖L∞(Ω0) � Cδ2(‖(ΛDN
0 )1/2φ‖r+1 + ‖β‖r+1).

Proof. Note that the assumptions imply the uniform boundedness of P11, p22, p12
and their first derivatives with respect to x. It follows from (4.16) and the Sobolev
inequality that

‖∇Φ̃‖L∞(Ω0) � C(‖∇φ‖r + δ‖Jr+1Iδ∇X Φ̃‖L2(Ω0)),

which, together with proposition 4.16, implies the first estimate of the proposition.
Similarly, it follows from (4.15) that

‖∂n+1Φ̃‖L∞(Ω0) � Cδ2(‖β‖r + ‖Jr+1Iδ∇X Φ̃‖L2(Ω0) + ‖∇Φ̃‖L∞(Ω0)),

which, together with the first estimate, proposition 4.16 and lemma 4.6, gives the
second estimate. The proof is complete.

Corollary 4.21. Let s > 1
2 (n + 3). Under assumptions (A1)–(A3) with q = s − 1

2 ,
there exists a constant C = C(M, c, s) > 0 independent of δ such that the solution
Φ̃ of (4.5) satisfies (4.11).
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Proof. The proof is the same as that of proposition 4.16, except that the first term
on the right-hand side of (4.12) is evaluated as

‖[Js, P ]Iδ∇X Φ̃‖L2(Ω0)

� C(‖∇P‖L∞(Ω0)‖Js−1Iδ∇X Φ̃‖L2(Ω0) + ‖JsP‖L2(Ω0)‖Iδ∇X Φ̃‖L∞(Ω0))

� ε‖JsIδ∇X Φ̃‖L2(Ω0) + Cε(‖Iδ∇X Φ̃‖L2(Ω0) + ‖Iδ∇X Φ̃‖L∞(Ω0)).

Here, the last term can be evaluated by proposition 4.20 and lemma 4.6. The proof
is complete.

The solution Φ̃ of the boundary-value problem (4.5) depends on (η, b) through
the matrix coefficient P . Here, we will give estimates of Fréchet derivatives of the
solution Φ̃ with respect to (η, b).

Proposition 4.22. Let s > 1
2n+1 and m ∈ N. Under assumptions (A1)–(A4) with

q = s, there exists a constant C = C(M, c, s, m) > 0 independent of δ such that the
solution Φ̃ of (4.5) satisfies

‖JsIδ∇X(Dm
η Φ̃[η̌1, . . . , η̌m])‖L2(Ω0)

� C‖η̌1‖s+1/2 · · · ‖η̌m‖s+1/2(‖(ΛDN
0 )1/2φ‖s + δ‖β‖s).

A similar estimate holds for the Fréchet derivatives with respect to b.

Proof. We only show the estimate in the case m = 1, and the general case can be
proved in the same way. For simplicity, we write Φ̃η = DηΦ̃[η̌] and Pη = DηP [η̌].
Taking the Fréchet derivative of (4.5), we obtain

∇X · IδPIδ∇X Φ̃η = −∇X · IδPηIδ∇X Φ̃ in Ω0,

Φ̃η = 0 on Γ0,

−δ−2∂n+1Φ̃η = 0 on Σ0.

Therefore, by lemmas 4.11 and 4.6 and propositions 4.16 and 4.20, we see that

‖JsIδ∇X Φ̃η‖L2(Ω0)

� C‖JsPηIδ∇X Φ̃‖L2(Ω0)

� C(‖Pη‖L∞(Ω0)‖JsIδ∇X Φ̃‖L2(Ω0) + ‖JsPη‖L2(Ω0)‖Iδ∇X Φ̃‖L∞(Ω0))

� C‖η̌‖s+1/2(‖(ΛDN
0 )1/2φ‖s + δ‖β‖s),

which gives the desired estimate.

Corollary 4.23. Let s > 1
2n + 1 and m ∈ N. Under assumptions (A1)–(A4) with

q = s, there exists a constant C = C(M, c, s, m) > 0 independent of δ such that the
solution Φ̃ of (4.5) with φ = 0 satisfies

‖Js∂n+1(Dm
η Φ̃[η̌1, . . . , η̌m])‖L2(Ω0) + ‖Js−1∇(Dm

η Φ̃[η̌1, . . . , η̌m])‖L2(Ω0)

� Cδ2‖η̌1‖s+1/2 · · · ‖η̌m‖s+1/2‖β‖s.

A similar estimate holds for the Fréchet derivatives with respect to b.
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Proof. The estimate of the first term comes directly from proposition 4.22. On the
other hand, it follows from (4.16) that

∇Dm
η Φ̃ = −

∫ 1

xn+1

∇∂n+1D
m
η Φ̃ dxn+1,

which, together with the estimate of the first term, gives an estimate of the second
term. The proof is complete.

Corollary 4.24. Let s > 1
2n and m ∈ N. Under assumptions (A1)–(A4) with

q = s + 1, there exists a constant C = C(M, c, s, m) > 0 independent of δ such that
the solution Φ̃ of (4.5) with β = 0 satisfies

‖Js∂n+1(Dm
η Φ̃[η̌1, . . . , η̌m])‖L2(Ω0) + ‖Js−1∇(Dm

η Φ̃[η̌1, . . . , η̌m])‖L2(Ω0)

� Cδ2‖η̌1‖s+3/2 · · · ‖η̌m‖s+3/2‖(ΛDN
0 )1/2φ‖s+1.

A similar estimate holds for the Fréchet derivatives with respect to b.

Proof. We only show the estimate in the case m = 1. For simplicity, we write
Φ̃η = DηΦ̃[η̌]. By taking the Fréchet derivative of (4.15), we see that

‖Js∂n+1Φ̃η‖L2(Ω0)

� Cδ2(‖Js+1∇X Φ̃η‖L2(Ω0) + ‖Js+1∇X(Dηθ[η̌])‖L2(Ω0)‖∇X Φ̃‖L∞(Ω0)

+ ‖∇X(Dηθ[η̌])‖L∞(Ω0)‖Js+1∇X Φ̃‖L2(Ω0))

� Cδ2‖η̌‖s+3/2‖(ΛDN
0 )1/2φ‖s+1,

where we used propositions 4.16, 4.20 and 4.22 and lemma 4.6. On the other hand,
by (4.16), it holds that

∇Φ̃η = −
∫ 1

xn+1

∇∂n+1Φ̃η dxn+1,

so that
‖Js−1∇Φ̃η‖L2(Ω0) � ‖Js∂n+1Φ̃η‖L2(Ω0).

These estimates imply the desired estimate.

5. Estimates of the operators

The following four propositions on the DN map ΛDN = ΛDN(η, b, δ) were given
in [11].

Proposition 5.1. Let s > 1
2n+1. Under assumptions (A1) and (A2) with q = s+1,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have
‖ΛDNφ‖s � C(‖ΛDN

0 φ‖s + ‖(ΛDN
0 )1/2φ‖s). In particular, it holds that

‖ΛDNφ‖s � Cδ−1‖φ‖s+1.
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Proposition 5.2. Let s > 1
2n + 2. In addition to assumptions (A1) and (A2)

with q = s, we assume that ‖(η, b)‖s+1 � M . Then, there exists a constant C =
C(M, c, s) > 0 independent of δ such that we have

‖ΛDNφ‖s � Cδ−1/2‖(ΛDN
0 )1/2φ‖s+1/2.

Proposition 5.3. Let s > 1
2n. Under assumptions (A1)–(A3) with q = s+ 5

2 , there
exists a constant C = C(M, c, s) > 0 independent of δ such that we have

‖ΛDNφ + ∇ · ((1 + η − b)∇φ)‖s � Cδ2(‖(ΛDN
0 )1/2φ‖s+3 + ‖∇φ‖s).

Proposition 5.4. It holds that |(ΛDNφ, ψ)| �
√

(ΛDNφ, φ)
√

(ΛDNψ, ψ).

Proposition 5.5. Under assumption (A1), there exists a constant C = C(M, c) >
0 independent of δ such that we have ‖ΛDNφ‖−1 � C‖∇φ‖.

Proof. Set Φ := (φ, 0)� and Φ̃ := Φ ◦ Θ. Then, Φ̃ satisfies (4.5) with β = 0 and
δ−2∂n+1Φ̃(·, 1) = ΛDNφ. Therefore, it follows from lemmas 4.13 and 4.6 that

‖ΛDNφ‖−1 � ‖J−1(ΛDN
0 )1/2PIδ∇X Φ̃‖L2(Ω0) � ‖PIδ∇X Φ̃‖L2(Ω0) � C‖∇φ‖,

where we also used lemmas 4.3, 3.4 and 4.4. The proof is complete.

Now we give commutator estimates for the DN map ΛDN.

Proposition 5.6. Let r > 1
2n. Under assumptions (A1) and (A2) with q = r + 1,

there exists a constant C = C(M, c, r) > 0 independent of δ such that we have
‖[∇, ΛDN]φ‖−1 � C‖∇φ‖.

Proof. Set Φ := (φ, 0)�, Φi := (∂iφ, 0)�, Φ̃ := Φ◦Θ and Φ̃i := Φi ◦ Θ. Then, it holds
that

∇X · IδPIδ∇X(∂iΦ̃ − Φ̃i) = −∇X · Iδ(∂iP )Iδ∇X Φ̃ in Ω0,

(∂iΦ̃ − Φ̃i) = 0, δ−2∂n+1(∂iΦ̃ − Φ̃i) = [∂i, Λ
DN]φ on Γ0,

−δ−2∂n+1(∂iΦ̃ − Φ̃i) = 0 on Σ0.

⎫⎪⎬
⎪⎭
(5.1)

Therefore, it follows from lemmas 4.13 and 4.6 that

‖[∂i, Λ
DN]φ‖−1 � ‖J−1(ΛDN

0 )1/2PIδ∇X(∂iΦ̃ − Φ̃i)‖L2(Ω0)

+ ‖J−1(ΛDN
0 )1/2(∂iP )Iδ∇X Φ̃‖L2(Ω0)

� C(‖Iδ∇X(∂iΦ̃ − Φ̃i)‖L2(Ω0) + ‖Iδ∇X Φ̃‖L2(Ω0)).

On the other hand, by lemma 4.10, we have

‖Iδ∇X(∂iΦ̃ − Φ̃i)‖L2(Ω0) � C‖(∂iP )Iδ∇X Φ̃‖L2(Ω0) � C‖Iδ∇X Φ̃‖L2(Ω0).

Hence, we obtain ‖[∂i, Λ
DN]φ‖−1 � C‖Iδ∇X Φ̃‖L2(Ω0) � C‖∇φ‖, where we also used

lemmas 4.3, 3.4 and 4.4. The proof is complete.

Proposition 5.7. Let r > 1
2n. Under assumptions (A1) and (A2) with q = r + 1,

there exists a constant C = C(M, c, r) > 0 independent of δ such that we have
‖[ΛDN, a]φ‖−1 � C‖∇a‖r+2‖φ‖.
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Proof. Set Φ := (φ, 0)�, A := (a, 0)�, Φa := (aφ, 0)�, Φ̃ := Φ ◦ Θ, Ã := A ◦ Θ and
Φ̃a := Φa ◦ Θ. Then it holds that

∇X · IδPIδ∇X(Φ̃a − ÃΦ̃) = −2PIδ∇XÃ · Iδ∇X Φ̃ in Ω0,

(Φ̃a − ÃΦ̃) = 0, δ−2∂n+1(Φ̃a − ÃΦ̃) = [ΛDN, a]φ − φΛDNa on Γ0,

−δ−2∂n+1(Φ̃a − ÃΦ̃) = 0 on Σ0.

Therefore, it follows from lemmas 4.13 and 4.6 that

‖[ΛDN, a]φ − φΛDNa‖
� ‖(ΛDN

0 )1/2PIδ∇X(Φ̃a − ÃΦ̃)‖L2(Ω0) + 2‖PIδ∇XÃ · Iδ∇X Φ̃‖L2(Ω0)

� C(‖JIδ∇X(Φ̃a − ÃΦ̃)‖L2(Ω0) + ‖Iδ∇XÃ · Iδ∇X Φ̃‖L2(Ω0)).

Here, by lemma 4.10, we have

‖Iδ∇X(Φ̃a − ÃΦ̃)‖L2(Ω0) � C‖Iδ∇XÃ · Iδ∇X Φ̃‖L2(Ω0).

Moreover, it also holds that

∇X · IδPIδ∇XJ(Φ̃a − ÃΦ̃) = −∇X · Iδ[J, P ]Iδ∇X(Φ̃a − ÃΦ̃)

− 2JPIδ∇XÃ · Iδ∇X Φ̃ in Ω0,

J(Φ̃a − ÃΦ̃) = 0 on Γ0,

−δ−2∂n+1J(Φ̃a − ÃΦ̃) = 0 on Σ0,

so that lemma 4.10 gives

‖JIδ∇X(Φ̃a − ÃΦ̃)‖L2(Ω0)

� C(‖[J, P ]Iδ∇X(Φ̃a − ÃΦ̃)‖L2(Ω0) + ‖PIδ∇XÃ · Iδ∇X Φ̃‖L2(Ω0))

� C(‖Iδ∇X(Φ̃a − ÃΦ̃)‖L2(Ω0) + ‖Iδ∇XÃ · Iδ∇X Φ̃‖L2(Ω0)).

Hence, we obtain

‖[ΛDN, a]φ‖ � ‖φΛDNa‖ + C‖Iδ∇XÃ · Iδ∇X Φ̃‖L2(Ω0)

� C(‖φ‖‖ΛDNa‖r + ‖Iδ∇XÃ‖L∞(Ω0)‖Iδ∇X Φ̃‖L2(Ω0))
� C‖∇a‖r+2‖φ‖1,

where we used propositions 5.1 and 4.20 and lemmas 4.3, 3.4, 4.4 and 4.6. Since
the adjoint operator of [ΛDN, a] in L2 is equal to −[ΛDN, a], the above estimate,
together with the standard duality argument, shows the desired estimate.

The following three propositions on the DN map ΛDN were given in [11].

Proposition 5.8. Let s > 1
2n+1. Under assumptions (A1) and (A2) with q = s+1,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have
‖[Js, ΛDN]φ‖ � C‖(ΛDN

0 )1/2φ‖s.

Proposition 5.9. Let r > 1
2n. Under assumption (A1), there exists a constant

C = C(M, c, r) > 0 independent of δ such that we have

|([∂t, Λ
DN]φ, φ)| � C‖(ηt, bt)‖r+1(ΛDNφ, φ).
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Proposition 5.10. Let r > 1
2n. Under assumption (A1) and ‖(η, b)‖r+2 � M ,

there exists a constant C = C(M, c, r) > 0 independent of δ such that we have
|(ΛDNφ, v · ∇φ)| � C‖v‖r+1(ΛDNφ, φ).

We now give estimates for the other operators.

Proposition 5.11. Let s > 1
2n. Under assumptions (A1) and (A2) with q = s + 1,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have
‖ΛNNβ‖s � C‖β‖s.

Proof. Set Φ := (0, β)� and Φ̃ := Φ ◦ Θ. Then, Φ̃ satisfies (4.5) with φ = 0 and
δ−2∂n+1Φ̃(·, 1) = ΛNNβ. Therefore, lemma 4.14 gives the desired estimate.

Lemma 5.12. For any function Φ̃ defined on Ω0, we have

‖Φ̃(·, 0)‖ � ‖(ΛND
0 )1/2Iδ∇X Φ̃‖L2(Ω0) + ‖ΛDD

0 Φ̃(·, 1)‖.

Proof. We take γ ∈ H0 arbitrarily and set

Ψ̃(·, xn+1) =
δ

|D|
sinh(δ|D|(1 − xn+1))

cosh(δ|D|) γ,

which is a solution of the boundary-value problem

∇X · I2
δ ∇X Ψ̃ = 0 in Ω0, Ψ̃ = 0 on Γ0, −δ−2∂n+1Ψ̃ = γ on Σ0,

so that we have
‖(ΛND

0 )−1/2Iδ∇X Ψ̃‖L2(Ω0) = ‖γ‖.

By Green’s formula, we see that

(Φ̃(·, 0), γ) + (Φ̃(·, 1), ΛNN
0 γ) =

∫
∂Ω0

Φ̃(N · I2
δ ∇X Ψ̃) dS

=
∫

Ω0

∇X · (Φ̃I2
δ ∇X Ψ̃) dX

=
∫

Ω0

Iδ∇X Φ̃ · Iδ∇X Ψ̃ dX.

This, together with proposition 3.3, implies that

|(Φ̃(·, 0), γ)|
� ‖ΛDD

0 Φ̃(·, 1)‖‖γ‖ + ‖(ΛND
0 )1/2Iδ∇X Φ̃‖L2(Ω0)‖(ΛND

0 )−1/2Iδ∇X Ψ̃‖L2(Ω0)

= (‖ΛDD
0 Φ̃(·, 1)‖ + ‖(ΛND

0 )1/2Iδ∇X Φ̃‖L2(Ω0))‖γ‖.

This gives the desired estimate.

Proposition 5.13. Let s > 1
2 (n+5). Under assumptions (A1)–(A3) with q = s−1,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have
‖∇ΛDDφ‖s−1 � C‖∇φ‖s−1 and ‖ΛDDφ‖s � C‖φ‖s.
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Proof. Set Φ := (φ, 0)� and Φ̃ := Φ ◦ Θ. Then, Φ̃ satisfies (4.5) with β = 0 and
Φ̃(·, 0) = ΛDDφ. Therefore, by lemma 5.12 and proposition 3.2, we see that

‖∂iΛ
DDφ‖s−1 � ‖Js−1(ΛND

0 )1/2Iδ∇X∂iΦ̃‖L2(Ω0) + ‖ΛDD
0 ∂iφ‖s−1

� 2δ1/2‖Js−3/2Iδ∇X∂iΦ̃‖L2(Ω0) + ‖∂iφ‖s−1.

Here, we also set Φi := (∂iφ, 0)� and Φ̃i := Φi ◦ Θ. Then, (5.1) holds. Therefore, by
lemma 4.11, we see that

‖Js−3/2Iδ∇X(∂iΦ̃ − Φ̃i)‖L2(Ω0)

� C‖Js−3/2(∂iP )Iδ∇X Φ̃‖L2(Ω0)

� C(‖Js−3/2∂iP‖L2(Ω0)‖Iδ∇X Φ̃‖L∞(Ω0) + ‖∂iP‖L∞(Ω0)‖Js−3/2Iδ∇X Φ̃‖L2(Ω0))
� C‖∇φ‖s−3/2,

where we used propositions 4.16 and 4.20 and lemma 4.6. Moreover, we also obtain

δ1/2‖Js−3/2Iδ∇X Φ̃i‖L2(Ω0) � Cδ1/2‖(ΛDN
0 )1/2∂iφ‖s−3/2 � C‖∂iφ‖s−1.

These estimates give the first estimate. A similar argument gives the second esti-
mate.

Proposition 5.14. Let s > 1
2n + 2. Under assumptions (A1) and (A2) with q = s,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have
‖ΛNDβ‖s � C min{δ2‖β‖s, δ‖β‖s−1}.

Proof. Set Φ := (0, β)� and Φ̃ := Φ ◦ Θ. Then, Φ̃ satisfies (4.5) with φ = 0 and
Φ̃(·, 0) = ΛNDβ. Therefore, by lemma 5.12 and propositions 3.2 and 4.16, we see
that

‖ΛNDβ‖s � ‖Js(ΛND
0 )1/2Iδ∇X Φ̃‖L2(Ω0) � δ‖JsIδ∇X Φ̃‖L2(Ω0) � Cδ2‖β‖s.

On the other hand, it follows from lemma 5.12 and propositions 3.2, 4.15, and 4.17,
we see that

‖ΛNDβ‖s � ‖Js(ΛND
0 )1/2Iδ∇X Φ̃‖L2(Ω0)

� C(‖Js−1|D|(ΛND
0 )1/2Iδ∇X Φ̃‖L2(Ω0) + ‖(ΛND

0 )1/2Iδ∇X Φ̃‖L2(Ω0))

� Cδ(‖Js−1(ΛDN
0 )1/2Iδ∇X Φ̃‖L2(Ω0) + ‖Iδ∇X Φ̃‖L2(Ω0))

� Cδ‖β‖s−1,

where we used the relation |D|2ΛND
0 = δ2ΛDN

0 . These two estimates give the desired
estimate.

The next two propositions are mathematically rigorous versions of the formal
expansion (2.7).

Proposition 5.15. Let s > 1
2n − 1. Under assumptions (A1) and (A2) with q =

s + 2, there exists a constant C = C(M, c, s) > 0 independent of δ such that we
have ‖ΛNNβ + β‖s � Cδ2‖β‖s+2.
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Proof. Set Φ := (0, β)� and Φ̃ := Φ ◦ Θ. Then, Φ̃ satisfies (4.15) and

ΛNNβ = δ−2∂n+1Φ̃(·, 1),

so that we have

ΛNNβ = −β − ∇ ·
∫ 1

0
((1 + ∂n+1θn+1)∇Φ̃ + p12∂n+1Φ̃ + δ2P11∇Φ̃) dxn+1, (5.2)

where we used (4.1) and (4.14). This and corollary 4.18 give the desired estimate.

Proposition 5.16. Let s > 1
2n − 2. Under assumptions (A1) and (A2) with q =

s + 4, there exists a constant C = C(M, c, s) > 0 independent of δ such that we
have

‖ΛNNβ + β + δ2∇ · ((1 + η − b)(∇η)β + 1
2 (1 + η − b)2∇β)‖s � Cδ4‖β‖s+4.

Proof. Set Φ := (0, β)� and Φ̃ := Φ ◦ Θ. It follows from (4.15) that

∂n+1Φ̃ + δ2(1 + ∂n+1θn+1)β

= −δ2(1 + ∂n+1θn+1)

×
{

p22∂n+1Φ̃ + p12 · ∇Φ̃

+ ∇ ·
∫ xn+1

0
((1 + ∂n+1θn+1)∇Φ̃ + p12∂n+1Φ̃ + δ2P11∇Φ̃) dxn+1

}
,

(5.3)

so that

‖Js+2(∂n+1Φ̃ + δ2(1 + ∂n+1θn+1)β)‖L2(Ω0) � Cδ2‖Js+3∇X Φ̃‖L2(Ω0).

In view of the relation

Φ̃ + δ2(xn+1 + θn+1 − 1 − η)β =
∫ xn+1

1
(∂n+1Φ̃ + δ2(1 + ∂n+1θn+1)β) dxn+1, (5.4)

we obtain

‖Js+1∇(Φ̃ + δ2(xn+1 + θn+1 − 1 − η)β)‖L2(Ω0) � Cδ2‖Js+3∇X Φ̃‖L2(Ω0).

Therefore, by corollary 4.18 we obtain

‖Js+1∇X(Φ̃ + δ2(xn+1 + θn+1 − 1 − η)β)‖L2(Ω0) � Cδ4‖β‖s+4. (5.5)

On the other hand, by (4.1) and (4.13) we see that∫ 1

0
{(1 + ∂n+1θn+1)∇((1 + η − xn+1 − θn+1)β) − p0

12(1 + ∂n+1θn+1)β} dxn+1

=
∫ 1

0
∂n+1{(xn+1 + θn+1)∇((1 + η)β)

− 1
2 (xn+1 + θn+1)2∇β + (θ1, . . . , θn)Tβ} dxn+1

= (1 + η − b)(∇η)β + 1
2 (1 + η − b)2∇β.
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Therefore, we can rewrite (5.2) as

ΛNNβ = −β − δ2∇ · ((1 + η − b)(∇η)β + 1
2 (1 + η − b)2∇β)

− δ2∇ ·
∫ 1

0
(p̃12∂n+1Φ̃ + P11∇Φ̃) dxn+1

− ∇ ·
∫ 1

0
{(1 + ∂n+1θn+1)∇(Φ̃ + δ2(xn+1 + θn+1 − 1 − η)β)

+ p0
12∂n+1(Φ̃ + δ2(xn+1 + θn+1 − 1 − η)β)} dxn+1.

(5.6)

This, together with corollary 4.18 and (5.5), gives the desired estimate.

Next, we will give estimates of Fréchet derivatives. The following two propositions
on the DN map ΛDN = ΛDN(η, b, δ) were given in [11].

Proposition 5.17. Let s > 1
2n and m ∈ N. Under assumptions (A1), (A2) and

(A4) with q = s + 1, there exists a constant C = C(M, c, s, m) > 0 independent of
δ such that we have

‖Dm
η ΛDN[η̌1, . . . , η̌m]φ‖s � C‖η̌1‖s+3/2 · · · ‖η̌m‖s+3/2‖(ΛDN

0 )1/2φ‖s+1.

A similar estimate holds for the Fréchet derivative of ΛDN with respect to b.

Proposition 5.18. Let s > 1
2 (n + 1) and m ∈ N. Under assumptions (A1), (A2)

and (A4) with q = s+ 1
2 , there exists a constant C = C(M, c, s, m) > 0 independent

of δ such that we have

‖Dm
η ΛDN[η̌1, . . . , η̌m]φ‖s � Cδ−1/2‖η̌1‖s+1 · · · ‖η̌m‖s+1‖(ΛDN

0 )1/2φ‖s+1/2.

A similar estimate holds for the Fréchet derivative of ΛDN with respect to b.

In the next proposition we will modify the estimate in proposition 5.17. Specifi-
cally, we improve the norm of (η̌1, . . . , η̌m) and the hypothesis on the regularity of
the water surface and the bottom.

Proposition 5.19. Let s > 1
2n+2 and m ∈ N. Under assumptions (A1)–(A4) with

q = s+ 1
2 and ‖η‖s+1+‖b‖s+3/2 � M , there exists a constant C = C(M, c, s, m) > 0

independent of δ such that we have

‖Dm
η ΛDN[η̌1, . . . , η̌m]φ‖s � C‖η̌1‖s+1 · · · ‖η̌m‖s+1‖(ΛDN

0 )1/2φ‖s+1.

A similar estimate holds for the Fréchet derivative of ΛDN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1. It is sufficient to
evaluate ‖DηΛDN[η̌]φ‖s−1 and ‖∇(DηΛDN[η̌]φ)‖s−1. By proposition 5.17 we have

‖DηΛDN[η̌]φ‖s−1 � C‖η̌‖s+1/2‖(ΛDN
0 )1/2‖s.

Let T j
h be a translation operator with respect to the jth spatial variable, that is,

(T j
hu)(x) = u(x1, . . . , xj−1, xj + h, xj+1, . . . , xn).
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Then, it is easy to see that T j
hΛDN(η, b, δ) = ΛDN(T j

hη, T j
hb, δ)T j

h and that

∂jΛ
DNφ = ΛDN∂jφ + DηΛDN[∂jη]φ + DbΛ

DN[∂jb]φ.

Therefore, we see that

∂j(DηΛDN[η̌]φ) = Dη(∂jΛ
DNφ)[η̌]

= Dη(DηΛDN[∂jη]φ)[η̌] + DηDbΛ
DN[η̌, ∂jb]φ + DηΛDN[η̌]∂jφ.

Here, by proposition 5.17 we have

‖DηDbΛ
DN[η̌, ∂jb]φ‖s−1 � C‖η̌‖s+1/2‖∂jb‖s+1/2‖(ΛDN

0 )1/2φ‖s,

‖DηΛDN[η̌]∂jφ‖s−1 � Cδ2‖η̌‖s+1/2‖∂j(ΛDN
0 )1/2φ‖s.

It follows from theorem 3.5 that

DηΛDN[∂jη]φ = −δ2ΛDN((1 + δ2|∇η|2)−1(ΛDNφ + ∇η · ∇φ)(∂jη))

− ∇ · {(∇φ − δ2(1 + δ2|∇η|2)−1(ΛDNφ + ∇η · ∇φ)∇η)(∂jη)},

so that

Dη(DηΛDN[∂jη]φ)[η̌]

= −δ2DηΛDN[η̌]((1 + δ2|∇η|2)−1(ΛDNφ + ∇η · ∇φ)(∂jη))

− δ2ΛDN{(1 + δ2|∇η|2)−1(ΛDNφ + ∇η · ∇φ)(∂j η̌)

+ (1 + δ2|∇η|2)−1(DηΛDN[η̌]φ + ∇η̌ · ∇φ)(∂jη)

− 2δ2(1 + δ2|∇η|2)−2(∇η · ∇η̌)(ΛDNφ + ∇η · ∇φ)(∂jη)}
− ∇ · {(∇φ − δ2(1 + δ2|∇η|2)−1(ΛDNφ + ∇η · ∇φ)∇η)(∂j η̌)

− δ2(1 + δ2|∇η|2)−1(DηΛDN[η̌]φ + ∇η̌ · ∇φ)(∂jη)∇η

− δ2(1 + δ2|∇η|2)−1(ΛDNφ + ∇η · ∇φ)(∂jη)∇η̌

+ 2δ4(1 + δ2|∇η|2)−2(∇η · ∇η̌)(ΛDNφ + ∇η · ∇φ)(∂jη)∇η}.

Therefore, by propositions 5.18, 5.1, and 5.2 and lemma 4.6, we see that

‖Dη(DηΛDN[∂jη]φ)[η̌]‖s−1 � C{‖η̌‖s+1(δ‖ΛDNφ‖s + ‖∇φ‖s) + δ‖DηΛDN[η̌]φ‖s}
� C‖η̌‖s+1‖(ΛDN

0 )1/2φ‖s+1/2,

so that we obtain ‖∇(DηΛDN[η̌]φ)‖s−1 � C‖η̌‖s+1‖(ΛDN
0 )1/2φ‖s+1, where we used

propositions 5.17 and 5.1 and lemma 4.6. Hence, we obtain the desired estimate.

We proceed to give estimates of the Fréchet derivatives of the NN map ΛNN =
ΛNN(η, b, δ).

Proposition 5.20. Let s > 1
2 (n + 1) and m ∈ N. Under assumptions (A1)–(A4)

with q = s+1, there exists a constant C = C(M, c, s, m) > 0 independent of δ such
that we have

‖Dm
η ΛNN[η̌1, . . . , η̌m]β‖s � Cδ1/2‖η̌1‖s+1 · · · ‖η̌m‖s+1‖β‖s+1/2.

A similar estimate holds for the Fréchet derivative of ΛNN with respect to b.
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Proof. We only show the estimate in the case m = 1, and the general case can be
proved in the same way. Set Φ := (0, β)� and Φ̃ := Φ ◦ Θ. Then, Φ̃ satisfies (4.5) with
φ = 0 and δ−2∂n+1Φ̃(·, 1) = ΛNNβ. For simplicity, we write ΛNN

η β = DηΛNN[η̌]β,
Φ̃η = DηΦ̃[η̌] and Pη = DηP [η̌]. Taking the Fréchet derivative of (4.5) with respect
to η, we obtain

∇X · IδPIδ∇X Φ̃η = −∇X · IδPηIδ∇X Φ̃ in Ω0,

Φ̃η = 0, δ−2∂n+1Φ̃η = ΛNN
η β on Γ0,

−δ−2∂n+1Φ̃η = 0 on Σ0.

Therefore, by lemmas 4.14 and 4.6, we obtain

‖ΛNN
η β‖s � C(‖Js(ΛDN

0 )1/2PηIδ∇X Φ̃‖L2(Ω0) + ‖PηIδ∇X Φ̃‖L2(Ω0))

� Cδ−1/2‖Js+1/2PηIδ∇X Φ̃‖L2(Ω0). (5.7)

Here, as in the proof of proposition 4.22, we have

‖Js+1/2PηIδ∇X Φ̃‖L2(Ω0) � Cδ‖η̌‖s+1‖β‖s+1/2.

These estimates give the desired estimate.

As a corollary of this proposition, we can obtain the estimate for the NN map
ΛNN in proposition 5.11 under a weaker hypothesis on the water surface and the
bottom.

Corollary 5.21. Let s > 1
2 (n+3). In addition to assumptions (A1)–(A4) with q =

s, we assume that ‖(η, b)‖s+1 � M . Then, there exists a constant C = C(M, c, s) >
0 independent of δ such that we have ‖ΛNNβ‖s � C‖β‖s.

Proof. It is sufficient to evaluate ‖ΛNNβ‖s−1 and ‖∇ΛNNβ‖s−1. We have from
proposition 5.11 that ‖ΛNNβ‖s−1 � C‖β‖s−1. Let T j

h be a translation operator
with respect to the jth spatial variable. Then, it is easy to see that

T j
hΛNN(η, b, δ) = ΛNN(T j

hη, T j
hb, δ)T j

h

and that
∂jΛ

NNβ = ΛNN∂jβ + DηΛNN[∂jη]β + DbΛ
NN[∂jb]β. (5.8)

Hence, by propositions 5.11 and 5.20 we get

‖∇ΛNNβ‖s−1 � C(‖∇β‖s−1 + ‖(∇η,∇b)‖s‖β‖s−1/2) � C‖β‖s.

Therefore, we obtain the desired estimate.

Proposition 5.22. Let s > 1
2n and m ∈ N. Under assumptions (A1)–(A4) with

q = s + 1, there exists a constant C = C(M, c, s, m) > 0 independent of δ such that
we have

‖Dm
η ΛNN[η̌1, . . . , η̌m]β‖s � Cδ‖η̌1‖s+3/2 · · · ‖η̌m‖s+3/2‖β‖s+1.

A similar estimate holds for the Fréchet derivative of ΛNN with respect to b.
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Proof. For simplicity, we only show the estimate in the case m = 1 and use the same
notation as in the proof of proposition 5.20. It follows from (5.7) and lemma 4.6
that

‖ΛNN
η β‖s � C‖Js+1PηIδ∇X Φ̃‖L2(Ω0)

� C(‖Js+1Pη‖L2(Ω0)‖Iδ∇X Φ̃‖L∞(Ω0)

+ ‖Pη‖L∞(Ω0)‖Js+1Iδ∇X Φ̃‖L2(Ω0)).

This, together with propositions 4.16 and 4.20, gives the desired estimate.

Proposition 5.23. Let s > 1
2n−1 and m ∈ N. Under assumptions (A1)–(A4) with

q = s + 2, there exists a constant C = C(M, c, s, m) > 0 independent of δ such that
we have

‖Dm
η ΛNN[η̌1, . . . , η̌m]β‖s � Cδ2‖η̌1‖s+5/2 · · · ‖η̌m‖s+5/2‖β‖s+2.

A similar estimate holds for the Fréchet derivative of ΛNN with respect to b.

Proof. For simplicity, we only show the estimate in the case where m = 1 and
use the same notation as in the proof of proposition 5.20. By taking the Fréchet
derivative of (5.2), we see that

‖DηΛNN[η̌]β‖s

� C(‖Js+1∇X Φ̃η‖L2(Ω0) + ‖∇X(Dηθ[η̌])‖L∞(Ω0)‖Js+1∇X Φ̃‖L2(Ω0))

� Cδ2‖η̌‖s+5/2‖β‖s+2,

where we used corollaries 4.18 and 4.23. The proof is complete.

In the next proposition we will modify the estimate in the above proposition.
Specifically, we improve the norm of (η̌1, . . . , η̌m) and the hypothesis on the regu-
larity of the water surface and the bottom.

Proposition 5.24. Let s > 1
2n+2 and m ∈ N. Under assumptions (A1)–(A4) with

q = s+1 and ‖η‖s+2+‖b‖s+5/2 � M , there exists a constant C = C(M, c, s, m) > 0
independent of δ such that we have

‖Dm
η ΛNN[η̌1, . . . , η̌m]β‖s � Cδ2‖η̌1‖s+2 · · · ‖η̌m‖s+2‖β‖s+2.

A similar estimate holds for the Fréchet derivative of ΛNN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1. It is sufficient to
evaluate ‖DηΛNN[η̌]β‖s−1 and ‖∇(DηΛNN[η̌]β)‖s−1. By proposition 5.23 we have

‖DηΛNN[η̌]β‖s−1 � Cδ2‖η̌‖s+3/2‖β‖s+1.

In view of (5.8), we see that

∂j(DηΛNN[η̌]β) = Dη(∂jΛ
NNβ)[η̌]

= Dη(DηΛNN[∂jη]β)[η̌] + DηDbΛ
NN[η̌, ∂jb]β + DηΛNN[η̌]∂jβ.
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Here, by proposition 5.23, we have

‖DηDbΛ
NN[η̌, ∂jb]β‖s−1 � Cδ2‖η̌‖s+3/2‖∂jb‖s+3/2‖β‖s+1

and ‖DηΛNN[η̌]∂jβ‖s−1 � Cδ2‖η̌‖s+3/2‖∂jβ‖s+1. It follows from theorem 3.5 that

DηΛNN[∂jη]β = −δ2ΛDN((1 + δ2|∇η|2)−1(∂jη)ΛNNβ)

+ δ2∇ · ((1 + δ2|∇η|2)−1(∂jη)(ΛNNβ)∇η),

so that

Dη(DηΛNN[∂jη]β)[η̌]

= −δ2DηΛDN[η̌]((1 + δ2|∇η|2)−1(∂jη)ΛNNβ)

− δ2ΛDN{(1 + δ2|∇η|2)−1((∂j η̌)ΛNNβ + (∂jη)DηΛNN[η̌]β)

− 2δ2(1 + δ2|∇η|2)−2(∇η · ∇η̌)(∂jη)ΛNNβ}
+ δ2∇ · {(1 + δ2|∇η|2)−1((∂j η̌)ΛNNβ + (∂jη)DηΛNN[η̌]β)∇η

− 2δ2(1 + δ2|∇η|2)−2(∇η · ∇η̌)(∂jη)(ΛNNβ)∇η

+ (1 + δ2|∇η|2)−1(∂jη)(ΛNNβ)∇η̌}.

Therefore, by propositions 5.17, 5.1 and 5.22, lemma 4.6 and corollary 5.21, we see
that

‖Dη(DηΛNN[∂jη]β)[η̌]‖s−1 � C(δ2‖η̌‖s+2‖ΛNNβ‖s+1 + δ‖DηΛNN[η̌]β‖s)

� Cδ2‖η̌‖s+2‖β‖s+1,

so that we get ‖∇(DηΛNN[η̌]β)‖s−1 � Cδ2‖η̌‖s+2‖β‖s+2. Hence, we obtain the
desired estimate.

As a corollary of this proposition, we can obtain the estimate for the NN map
ΛNN in proposition 5.15 under a weaker hypothesis on the water surface and the
bottom.

Corollary 5.25. Let s > 1
2n + 3. In addition to assumptions (A1)–(A4) with

q = s + 1, we assume that ‖(η, b)‖s+2 � M . Then, there exists a constant C =
C(M, c, s) > 0 independent of δ such that we have ‖ΛNNβ + β‖s � Cδ2‖β‖s+2.

Proof. It is sufficient to evaluate ‖ΛNNβ+β‖s−1 and ‖∇(ΛNNβ+β)‖s−1. By propo-
sition 5.15 we have ‖ΛNNβ + β‖s−1 � Cδ2‖β‖s+1. Moreover, by (5.8) and proposi-
tions 5.15 and 5.24, we get

‖∂j(ΛNNβ + β)‖s−1

� ‖ΛNN∂jβ + ∂jβ‖s−1 + ‖DηΛNN[∂jη]β‖s−1 + ‖DbΛ
NN[∂jb]β‖s−1

� Cδ2(‖∂jβ‖s+1 + ‖(∂jη, ∂jb)‖s+1‖β‖s+1).

Therefore, we obtain the desired estimate.

We end this section by giving expansions of Fréchet derivatives of the maps ΛDN

and ΛNN with estimates of error terms.
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Proposition 5.26. Let s > 1
2n − 1. Under assumptions (A1)–(A4) with q = s + 3,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have

‖DηΛDN[η̌]φ + DbΛ
DN[b̌]φ + ∇ · ((η̌ − b̌)∇φ)‖s � Cδ2‖(η̌, b̌)‖s+7/2‖(ΛDN

0 )1/2φ‖s+3.

Proof. We only show the estimate for DηΛDN. The estimate for DbΛ
DN can be

proved in the same way. Set Φ := (φ, 0)� and Φ̃ := Φ ◦ Θ. Then, we have (4.5) with
β = 0 and, in place of (5.2),

ΛDNφ + ∇ · ((1 + η − b)∇φ)

= ∇ ·
∫ 1

0

{
(1 + ∂n+1θn+1)∇

∫ 1

xn+1

∂n+1Φ̃(·, z) dz − p12∂n+1Φ̃ − δ2P11∇Φ̃

}
dxn+1.

For simplicity, we write Φ̃η = DηΦ̃[η̌]. Taking the Fréchet derivative of the above
equation with respect to η, we obtain

‖DηΛDN[η̌]φ + ∇ · (η̌∇φ)‖s

� C(‖Js+2∂n+1Φ̃η‖L2(Ω0) + δ2‖Js+1∇Φ̃η‖L2(Ω0))

+ C‖η̌‖s+2(‖Js+2∂n+1Φ̃‖L2(Ω0) + δ2‖Js+1∇Φ̃‖L2(Ω0))

� Cδ2‖η̌‖s+7/2‖(ΛDN
0 )1/2φ‖s+3,

where we used corollaries 4.19 and 4.24. The proof is complete.

Proposition 5.27. Let s > 1
2n − 1. Under assumptions (A1)–(A4) with q = s + 4,

there exists a constant C = C(M, c, s) > 0 independent of δ such that we have

‖DηΛNN[η̌]β + DbΛ
NN[b̌]β

+ δ2∇ · ((1 + η − b)(∇η̌)β + (η̌ − b̌)(∇η)β + (1 + η − b)(η̌ − b̌)∇β)‖s

� Cδ4‖(η̌, b̌)‖s+9/2‖β‖s+4.

Proof. We only show the estimate for DηΛNN. The estimate for DbΛ
NN can be

proved in the same way. We set Φ := (0, β)�, Φ̃ := Φ ◦ Θ and Φ̃η := DηΦ̃[η̌]. Taking
the Fréchet derivative of (5.6) with respect to η, we obtain

‖DηΛNN[η̌]β + δ2∇ · ((1 + η − b)(∇η̌)β + η̌(∇η)β + (1 + η − b)η̌∇β)‖s

� C(δ2‖Js+1∇X Φ̃η‖L2(Ω0) + ‖Js+1∇X(Φ̃η + δ2(Dηθn+1[η̌] − η̌)β)‖L2(Ω0))

+ C‖η̌‖s+2(δ2‖Js+1∇X Φ̃‖L2(Ω0)

+ ‖Js+1∇X(Φ̃ + δ2(xn+1 + θn+1 − 1 − η)β)‖L2(Ω0)).

Here, taking the Fréchet derivative of (5.3) and (5.4) with respect to η, we see that

‖Js+1∇X(Φ̃η + δ2(Dηθn+1[η̌] − η̌)β)‖L2(Ω0)

� Cδ2(‖Js+3∇X Φ̃η‖L2(Ω0) + ‖η̌‖s+4‖Js+3∇X Φ̃‖L2(Ω0)).

By the above estimates, (5.5) and corollaries 4.18 and 4.23, we obtain the desired
estimate.
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6. Reduction to a quasi-linear system

In this section we reduce full nonlinear equations (1.15) to a quasi-linear system of
equations. Suppose that (η, φ) is a solution of (1.15). In view of theorem 3.5, we
define Z and v by

Z = (1 + δ2|∇η|2)−1(ΛDN(η, b, δ)φ − ε−1ΛNN(η, b, δ)βτ + ∇η · ∇φ),

v = ∇φ − δ2Z∇η.

}
(6.1)

By the same way as in [11], we differentiate the second equation in (1.15) with
respect to xi and obtain

∂iφt + ∂iη + v · (∇∂iφ − δ2Z∇∂iη) − δ2Z∂i(ΛDNφ − ε−1ΛNNβτ ) = 0.

Differentiating this with respect to xj and xk, we see that

∂ijkφt + ∂ijkη

+ v · {∇∂ijkφ − δ2(Z∇∂ijkη + (∂jkZ)∇∂iη + (∂jZ)∇∂kiη + (∂kZ)∇∂ijη)}
+ (∂jv) · {∇∂kiφ − δ2(Z∇∂kiη + (∂kZ)∇∂iη)}
+ (∂kv) · {∇∂ijφ − δ2(Z∇∂ijη + (∂jZ)∇∂iη)} + (∂jkv) · (∇∂iφ − δ2Z∇∂iη)

− δ2{(∂jZ)∂ki(ΛDNφ − ε−1ΛNNβτ ) + (∂kZ)∂ij(ΛDNφ − ε−1ΛNNβτ )

+ (∂jkZ)∂i(ΛDNφ − ε−1ΛNNβτ ) + Z∂ijk(ΛDNφ − ε−1ΛNNβτ )} = 0.

Here, by the definition (6.1) of Z and v we have ΛDNφ − ε−1ΛNNβτ = Z − v · ∇η.
Therefore,

∂ki(ΛDNφ − ε−1ΛNNβτ ) = ∂kiZ − v · ∇∂kiη

− (∂kiv) · ∇η − (∂kv) · ∇∂iη − (∂iv) · ∇∂kη,

so that

(∂ijkφ − δ2Z∂ijkη)t + v · ∇(∂ijkφ − δ2Z∂ijkη) + (1 + δ2Zt + δ2v · ∇Z)∂ijkη

= δ2((∂jZ)(∂kiZ) + (∂kZ)(∂ijZ) + (∂iZ)(∂jkZ)) + f ijk
3 ,

where

f ijk
3 = −(∂jv) · (∇∂kiφ − δ2Z∇∂kiη)

− (∂kv) · (∇∂ijφ − δ2Z∇∂ijη) − (∂jkv) · (∇∂iφ − δ2Z∇∂iη)

− δ2{(∂jZ)((∂kiv) · ∇η + (∂iv) · ∇∂kη)
+ (∂kZ)((∂ijv) · ∇η + (∂iv) · ∇∂jη) + (∂jkZ)(∂iv) · ∇η}.

Now, we write u = (η, b) and denote by ΛDN
n and ΛNN

n the nth Fréchet derivative of
the DN map ΛDN and NN map ΛNN with respect to u, respectively. Then, it holds
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that

∂ijk(ΛDNφ − ε−1ΛNNβτ )

= ΛDN∂ijkφ − ε−1ΛNN∂ijkβτ + ΛDN
1 [∂ijku]φ − ε−1ΛNN

1 [∂ijku]βτ

+ ΛDN
1 [∂iu]∂jkφ + ΛDN

1 [∂ju]∂kiφ + ΛDN
1 [∂ku]∂ijφ

− ε−1(ΛNN
1 [∂iju]∂kβτ + ΛNN

1 [∂jku]∂iβτ + ΛNN
1 [∂kiu]∂jβτ )

+ ΛDN
2 [∂iju, ∂ku]φ + ΛDN

2 [∂jku, ∂iu]φ + ΛDN
2 [∂kiu, ∂ju]φ

− ε−1(ΛNN
2 [∂iju, ∂ku]βτ + ΛNN

2 [∂jku, ∂iu]βτ + ΛNN
2 [∂kiu, ∂ju]βτ ) + f ijk

4 ,

where

f ijk
4 = −ε−1(ΛNN

1 [∂iu]∂jkβτ + ΛNN
1 [∂ju]∂kiβτ + ΛNN

1 [∂ku]∂ijβτ )

+ ΛDN
1 [∂iju]∂kφ + ΛDN

1 [∂jku]∂iφ + ΛDN
1 [∂kiu]∂jφ

+ ΛDN
2 [∂iu, ∂ju]∂kφ + ΛDN

2 [∂ju, ∂ku]∂iφ + ΛDN
2 [∂ku, ∂iu]∂jφ

− ε−1(ΛNN
2 [∂iu, ∂ju]∂kβτ + ΛNN

2 [∂ju, ∂ku]∂iβτ + ΛNN
2 [∂ku, ∂iu]∂jβτ )

+ ΛDN
3 [∂iu, ∂ju, ∂ku]φ − ε−1ΛNN

3 [∂iu, ∂ju, ∂ku]βτ .

Here, by theorem 3.5, we obtain

ΛDN∂ijkφ + ΛDN
1 [∂ijku]φ − ε−1ΛNN

1 [∂ijku]βτ

= ΛDN(∂ijkφ − δ2Z∂ijkη) − ∇ · (v∂ijkη) + f ijk
5 ,

ε−1ΛNN
1 [∂iju]∂kβτ = −ε−1δ2ΛDN((ΛNN∂kβτ )∂ijη) + f ijk

6 ,

where

f ijk
5 = DbΛ

DN[∂ijkb]φ − ε−1DbΛ
NN[∂ijkb]βτ ,

f ijk
6 = ε−1δ4ΛDN((1 + δ2|∇η|2)−1|∇η|2(∂ijη)(ΛNN∂kβτ ))

+ ε−1δ2∇ · ((1 + δ2|∇η|2)−1(∂ijη)(ΛNN∂kβτ )∇η) + ε−1DbΛ
NN[∂ijb]∂kβτ .

By theorems 3.5, 3.6, 3.9 and 3.10, we see that

ΛDN
1 [∂ku]∂ijφ + ΛDN

2 [∂iju, ∂ku]φ − ε−1ΛNN
2 [∂iju, ∂ku]βτ = f ijk

7 ,

where

f ijk
7 = DηDbΛ

DN[∂kη, ∂ijb]φ − ε−1DηDbΛ
NN[∂kη, ∂ijb]βτ

+ D2
bΛDN[∂ijb, ∂kb]φ − ε−1D2

bΛNN[∂ijb, ∂kb]βτ + ΛDN
1 [∂ku](∂ijφ − δ2Z∂ijη)

+ δ2ΛDN((1 + δ2|∇η|2)−1(∂kη)(∂ijη)∆φ) + δ2∇ · ((∂ijη)Z∇∂kη)

− δ2∇ · ((1 + δ2|∇η|2)−1(∂kη)(∂ijη)(∆φ)∇η)

+ δ4ΛDN{(1 + δ2|∇η|2)−1(∂ijη)

× (ΛDN(Z∂kη) + Z∇η · ∇∂kη − (∂kη)∇ · (Z∇η))}
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− δ4∇ · {(1 + δ2|∇η|2)−1(∂ijη)

× (ΛDN(Z∂kη) + Z∇η · ∇∂kη − (∂kη)∇ · (Z∇η))∇η}
− δ2ΛDN((1 + δ2|∇η|2)−1(∂ijη)(DbΛ

DN[∂kb]φ − ε−1DbΛ
NN[∂kb]βτ ))

+ δ2∇ · ((1 + δ2|∇η|2)−1(∂ijη)(DbΛ
DN[∂kb]φ − ε−1DbΛ

NN[∂kb]βτ )∇η).

Therefore, it holds that

∂ijk(ΛDNφ − ε−1ΛNNβτ ) = ΛDN(∂ijkφ − δ2Z∂ijkη) − v · ∇∂ijkη

− Lijkη + ε−1∂ijkβτ + f ijk
1 , (6.2)

where Lijk is a linear operator depending on (η, b, δ, ε−1βτ ) defined by

Lijkη̌ = ε−1δ2ΛDN((ΛNN∂kβτ )∂ij η̌ + (ΛNN∂iβτ )∂jkη̌ + (ΛNN∂jβτ )∂kiη̌)

and

f ijk
1 = f ijk

4 − ε−1(ΛNN∂ijkβτ + ∂ijkβτ ) − (∇ · v)∂ijkη

+ f ijk
5 − f ijk

6 − f jki
6 − fkij

6 + f ijk
7 + f jki

7 + fkij
7 .

Hence, introducing new functions ζijk and ψijk by

ζijk = ∂ijkη, ψijk = ∂ijkφ − δ2Z∂ijkη, (6.3)

we obtain the following quasi-linear system of equations:

∂tζijk + v · ∇ζijk − ΛDNψijk + Lijkη = ε−1∂ijkβτ + f ijk
1 ,

∂tψijk + v · ∇ψijk + aζijk = ε−1gijk
2 + f ijk

2 ,

}
(6.4)

where a, f ijk
2 and gijk

2 are given by

a = 1 + δ2Zt + δ2v · ∇Z (6.5)

and

f ijk
2 = f ijk

3 + δ2{(∂jZ)∂ki(Z − ε−1βτ ) + (∂j(Z − ε−1βτ ))ε−1∂kiβτ

+ (∂kZ)∂ij(Z − ε−1βτ ) + (∂k(Z − ε−1βτ ))ε−1∂ijβτ

+ (∂iZ)∂jk(Z − ε−1βτ ) + (∂i(Z − ε−1βτ ))ε−1∂jkβτ},

gijk
2 = ε−1δ2((∂jβτ )(∂kiβτ ) + (∂kβτ )(∂ijβτ ) + (∂iβτ )(∂jkβτ )).

Remark 6.1. The functions Z and v in (6.1) are related to the velocity potential
Φ by δ2Z = (∂n+1Φ)|Γ (t) and v = (∇Φ)|Γ (t), so that the function a in (6.5) can be
written in terms of the pressure p in (2.17) as

a = −(1 + δ2|∇η|2)−1(∂n+1p − δ2∇η · ∇p)|Γ (t).

Thus, the generalized Rayleigh–Taylor sign condition ensures the positivity of this
function a.

https://doi.org/10.1017/S0308210509001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001279


A mathematical analysis of tsunami generation 595

We proceed to give some estimates of the coefficients v and a, and the remainder
terms f1 = (f ijk

1 ) and f2 = (f ijk
2 ). In the following we will use the notation ∂φ =

(∂jφ), ∂2φ = (∂ijφ), ∂3φ = (∂ijkφ), ∂3φ − δ2Z∂3η = (∂ijkφ − δ2Z∂ijkη) and

E := ‖η‖s+3 + ‖∇φ‖s+2 + ‖(ΛDN
0 )1/2(∂3φ − δ2Z∂3η)‖s,

and we will let δ2 := δ1(M1, c1, s + 1) be the constant occurring proposition 4.2.

Lemma 6.2. Let s > 1
2n + 3, M1, c1 > 0 and suppose that

‖η‖s+2 + ‖∇φ‖s+1 � M1, ‖b‖s+5 + ‖βτ‖s+5 � M1,

1 + η(x) − b(x) � c1 for x ∈ R
n.

}
(6.6)

Then, there exists a constant C = C(M1, c1, s) > 0 such that, for any δ ∈ (0, δ2]
and ε ∈ (0, 1] satisfying ε−1δ2 � M1, we have

‖f1‖s � C(E + 1 + δ2‖Z‖s+2).

Proof. By proposition 4.2, for any δ ∈ (0, δ2] we can construct a diffeomorphism Θ
satisfying assumptions (A1)–(A4) with q = s + 1 and a constant M independent of
δ. Therefore, we can directly evaluate f5 and f6 by propositions 5.1, 5.17 and 5.24,
lemma 4.6 and corollary 5.21, so that

‖(f5, f6)‖s � C(‖η‖s+3 + ‖∇φ‖s+1 + 1).

We can rewrite f4 symbolically as

f4 = −ε−1(3ΛNN
1 [∂u]∂2βτ + 3ΛNN

2 [∂u, ∂u]∂βτ + ΛNN
3 [∂u, ∂u, ∂u]βτ )

+ 3ΛDN
1 [∂2u]∂φ + 3ΛDN

2 [∂u, ∂u]∂φ + ΛDN
3 [∂u, ∂u, ∂u]φ,

so that we have

∂f4 = −ε−1(3ΛNN
1 [∂u]∂3βτ + 3ΛNN

1 [∂2u]∂2βτ

+ 6ΛNN
2 [∂u, ∂u]∂2βτ + 6ΛNN

2 [∂2u, ∂u]∂βτ

+ 4ΛNN
3 [∂u, ∂u, ∂u]∂βτ + 3ΛNN

3 [∂2u, ∂u, ∂u]βτ

+ ΛNN
4 [∂u, ∂u, ∂u, ∂u]βτ )

+ 3ΛDN
1 [∂2u]∂2φ + 3ΛDN

1 [∂3u]∂φ + 3ΛDN
2 [∂2u, ∂u]∂φ

+ ∂(3ΛDN
2 [∂u, ∂u]∂φ + ΛDN

3 [∂u, ∂u, ∂u]φ).

Therefore, by propositions 5.19 and 5.24 and lemma 4.6, we obtain

‖f4‖s � ‖f4‖s−1 + ‖∇f4‖s−1 � C(‖η‖s+3 + ‖∇φ‖s+2 + 1).

Concerning f7, by proposition 5.19 and lemma 4.6, we see that

‖ΛDN
1 [∂ku](∂ijφ − δ2Z∂ijη)‖s

� C‖(ΛDN
0 )1/2(∂ijφ − δ2Z∂ijη)‖s+1

� C(‖(ΛDN
0 )1/2∇(∂ijφ − δ2Z∂ijη)‖s + ‖∇(∂ijφ − δ2Z∂ijη)‖s)

� C(‖(ΛDN
0 )1/2(∇∂ijφ − δ2Z∇∂ijη)‖s + δ2‖(∇Z)∂ijη‖s+1

+ ‖∇φ‖s+2 + δ2‖Z∂ijη‖s+1).
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Here, it holds that

δ2‖(∇Z)∂ijη‖s+1 � Cδ2(‖∇Z‖s+1‖∂ijη‖s−1 + ‖∇Z‖s−1‖∂ijη‖s+1)

� Cδ2(‖Z‖s+2 + ‖Z‖s‖η‖s+3).

Similarly, we have δ2‖Z∂ijη‖s+1 � Cδ2(‖Z‖s+1 + ‖Z‖s‖η‖s+3). Moreover, by the
definition (6.1) of Z, propositions 5.1 and 5.11, lemma 4.6 and corollary 5.25, we
have ‖Z−ε−1βτ‖s � C(‖∇φ‖s+1+1), which also yields that δ2‖Z‖s � C(‖∇φ‖s+1+
1). Hence, we obtain

‖ΛDN
1 [∂ku](∂ijφ − δ2Z∂ijη)‖s � C(E + 1 + δ2‖Z‖s+2).

The other terms in f7 can be evaluated by propositions 5.2, 5.17 and 5.24 and
lemma 4.6. For example, by proposition 5.2 and lemma 4.6, we have

δ4‖ΛDN((1 + δ2|∇η|2)−1(∂ijη)ΛDN(Z∂kη))‖s

� Cδ3‖(∂ijη)ΛDN(Z∂kη)‖s+1

� Cδ3(‖∂ijη‖s+1‖ΛDN(Z∂kη)‖s−1 + ‖ΛDN(Z∂kη)‖s+1)

� Cδ2(‖η‖s+3‖Z∂kη‖s + ‖Z∂kη‖s+2)

� C(‖η‖s+3 + δ2‖Z‖s+2),

and by proposition 5.17 we have

‖DbΛ
DN[∂kb]φ‖s+1 � ‖DbΛ

DN[∂kb]∇φ‖s + ‖DbΛ
DN[∇∂kb]φ‖s

+ ‖DuDbΛ
DN[∇u, ∂kb]φ‖s + ‖DbΛ

DN[∂kb]φ‖s

� C(‖η‖s+3 + ‖∇φ‖s+2).

Hence, we obtain

‖f7‖s � C(E + 1 + δ2‖Z‖s+2).

These estimates, together with corollary 5.25, give the desired estimate.

Proposition 6.3. Let s > 1
2 (n + 7), M1, c1 > 0 and suppose the conditions in

(6.6) to hold. Then, there exists a constant C = C(M1, c1, s) > 0 such that, for any
δ ∈ (0, δ2] and ε ∈ (0, 1] satisfying ε−1δ2 � M1, we have

‖Z − ε−1βτ‖s+2 + δ‖(ΛDN
0 )1/2(Z − ε−1βτ )‖s+2 � C(E + 1),

‖v‖s+2 + ‖(ΛDN
0 )1/2v‖s+2 � CE.

Proof. Note that we have the diffeomorphism Θ satisfying assumptions (A1)–(A4)
with q = s + 1 and the estimate ‖Z − ε−1βτ‖s + δ2‖Z‖s � C(‖∇φ‖s+1 + 1). In
order to evaluate higher derivatives of Z − ε−1βτ , we will derive an expression of a
derivative of Z. Differentiating the identity

(1 + δ2|∇η|2)Z = ΛDNφ − ε−1ΛNNβτ + ∇η · ∇φ
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and using (6.2) and the definition (6.1) of v, we see that

(1 + δ2|∇η|2)∂ijkZ = (ΛDN + ∇η · ∇)(∂ijkφ − δ2Z∂ijkη) − Lijkη + ε−1∂ijkβτ

− δ2(2Z(∇∂iη · ∇∂jkη + ∇∂jη · ∇∂kiη + ∇∂kη · ∇∂ijη)

+ (∂iZ)∂jk|∇η|2 + (∂jZ)∂ki|∇η|2 + (∂kZ)∂ij |∇η|2

+ (∂jkZ)∂i|∇η|2 + (∂kiZ)∂j |∇η|2 + (∂ijZ)∂k|∇η|2)
+ ∇∂iη · ∇∂jkφ + ∇∂jη · ∇∂kiφ + ∇∂kη · ∇∂ijφ

+ ∇∂jkη · ∇∂iφ + ∇∂kiη · ∇∂jφ + ∇∂ijη · ∇∂kφ

+ δ2(∇η · ∇Z)∂ijkη + f ijk
1 .

Therefore, by propositions 5.1 and 5.11, lemmas 4.6, 4.7 and 6.2 and an interpolation
inequality, we obtain

‖∂ijk(Z − ε−1βτ )‖s−1 + δ‖(ΛDN
0 )1/2∂ijk(Z − ε−1βτ )‖s−1

� C(E + 1 + δ2‖(ΛDN
0 )1/2Z‖s+1 + δ1/2‖f1‖s−1/2)

� C(E + 1 + δ2‖(ΛDN
0 )1/2Z‖s+1 + δ2‖Z‖s+3/2)

� ε(‖(ΛDN
0 )1/2(Z − ε−1βτ )‖s+2 + ‖Z − ε−1βτ‖s+2) + Cε(E + 1)

for any ε > 0. This gives the desired estimates for Z − ε−1βτ , so that we also
have δ2‖Z‖s+2 + δ2‖(ΛDN

0 )1/2Z‖s+2 � C(E + 1). Since v = ∇φ−δ2Z∇η, we easily
obtain ‖v‖s+2 � CE. Moreover, by lemma 4.7, it holds that

‖(ΛDN
0 )1/2∂2v‖s � ‖(ΛDN

0 )1/2(∂3φ − δ2Z∂3η)‖s

+ δ2(‖(ΛDN
0 )1/2((∂2Z)(∂η))‖s + 2‖(ΛDN

0 )1/2((∂Z)(∂2η))‖s)

� E + Cδ2(‖(ΛDN
0 )1/2Z‖s+2 + ‖Z‖s+2 + ‖Z‖s‖η‖s+3).

Therefore, we obtain the desired estimate for v.

Proposition 6.4. Let s > 1
2 (n + 7), M1, c1 > 0 and suppose the conditions in

(6.6) to hold. Then there exists a constant C = C(M1, c1, s) > 0 such that, for any
δ ∈ (0, δ2] and ε ∈ (0, 1] satisfying ε−1δ2 � M1, we have

‖f1‖s � C(E + 1), ‖(ΛDN
0 )1/2f2‖s � Cε−1δ(E + 1).

Proof. The estimate for f1 is a direct consequence of lemma 6.2 and proposition 6.3.
It follows from lemmas 4.6 and 4.7 and proposition 6.3 that ‖(ΛDN

0 )1/2f3‖s � CE.
This and proposition 6.3 give the desired estimate for f2.

Proposition 6.5. Let s > 1
2 (n + 7) and M1, c1 > 0. In addition to the conditions

in (6.6) we assume that ‖βττ‖s+1 � M1 and ‖(ηt, φt)‖s � M1ε
−1. Then, there

exists a constant C = C(M1, c1, s) > 0 such that, for any δ ∈ (0, δ2] and ε ∈ (0, 1]
satisfying ε−1δ2 � M1, the function a defined by (6.5) satisfies

‖a − 1‖s−1 � Cε−1, ‖a − 1‖s+1 � C(ε−1(E + 1) + ‖(ηt, φt)‖s+2).

Proof. In view of proposition 6.3 we have ‖v‖s + δ2‖Z‖s � C, ‖v‖s+2 � CE and
δ2‖Z‖s+2 � C(E + 1). Differentiating the identity

(1 + δ2|∇η|2)Z = ΛDNφ − ε−1ΛNNβτ + ∇η · ∇φ
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we have

(1 + δ2|∇η|2)Zt = −2δ2(∇η · ∇ηt)Z + ΛDNφt − ε−2ΛNNβττ

+ ΛDN
1 [ut]φ − ε−1ΛNN

1 [ut]βτ + ∇η · ∇φt + ∇ηt · ∇φ. (6.7)

Therefore, by propositions 5.1, 5.11, 5.19 and 5.23 and lemma 4.6, we see that
δ2‖Zt‖s−1 � Cε−1 and that

δ2‖Zt‖s+1 � δ2(‖∇Zt‖s + ‖Zt‖s) � C(ε−1(E + 1) + ‖(ηt, φt)‖s+2).

Since a − 1 = δ2v · ∇Z + δ2Zt, we obtain the desired estimates.

The next proposition ensures the positivity of the function a, namely, the gener-
alized Rayleigh–Taylor sign condition. We let δ3 = δ1(M1, c1, r+4) be the constant
occurring in proposition 4.2.

Proposition 6.6. Let r > 1
2n, M1, c1 > 0 and suppose that

‖βτ‖r+9/2 + ‖βττ‖r+4 + ‖βτττ‖r+2 + ‖(η, b)‖r+5 + ‖∇φ‖r+3 � M1,∥∥∥∥ηt(t) − ε−1βτ

(
t

ε

)∥∥∥∥
r+9/2

+
∥∥∥∥∇

(
φt(t) − 1

2

(
δ

ε

)2

βτ

(
t

ε

)2)∥∥∥∥
r+3

� M1,

‖ηtt‖r+5/2 + ‖∇φtt‖r+1 � M1ε
−2,

1 + η(x, t) − b(x, t) � c1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(6.8)

Then, there exists a constant C = C(M1, c1, r) > 0 such that, for any δ ∈ (0, δ3]
and ε ∈ (0, 1] satisfying ε−1δ2 � M1, the function a defined by (6.5) satisfies∥∥∥∥a(t) −

(
1 +

(
δ

ε

)2

(1 − δ2|∇η(t)|2)βττ

(
t

ε

)
+ σa(0)

(
t

ε

))∥∥∥∥
r

� C

(
ε +

∣∣∣∣δ2

ε
− σ

∣∣∣∣
)

,∥∥∥∥at(t) − ε−3δ2βτττ

(
t

ε

)∥∥∥∥
r

� Cε−1 for 0 < t < ε,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.9)

where a(0) is the function defined by (2.21). Particularly, if we assume additionally
assumptions 2.1 and 2.2, then there exist small constants ε0, γ0 > 0 such that we
have

1
2c � a(x, t) � Cε−1, at(x, t) � Cε−1

as long as 0 < ε � ε0 and |δ2/ε − σ| � γ0.

Proof. Note that under our hypothesis we have the diffeomorphism Θ satisfying
assumptions (A1)–(A4) with q = r + 4 and that we have ∂k

t b = ε−k∂k
τ β and∥∥∥∥η(t) − η(0)

(
t

ε

)∥∥∥∥
r+9/2

+
∥∥∥∥∇

(
φ(t) − φ(0)

(
t

ε

))∥∥∥∥
r+3

� C

(
ε +

∣∣∣∣δ2

ε
− σ

∣∣∣∣
)

,

‖ηt(t)‖r+9/2 + ‖∇φt(t)‖r+3 � Cε−1 for 0 < t < ε,

⎫⎪⎬
⎪⎭

(6.10)

https://doi.org/10.1017/S0308210509001279 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001279


A mathematical analysis of tsunami generation 599

where (η(0), φ(0)) is the approximate solution defined by (2.20). By the definition
of a, we have at = δ2(Ztt + v · ∇Zt + vt · ∇Z). In the same way as in the proof of
the previous proposition, we easily obtain

δ2‖Z‖r+1 + ‖v‖r+1 � C and δ2‖Zt‖r+1 + ‖vt‖r+1 � Cε−1.

Differentiating the identity

(1 + δ2|∇η|2)Z = ΛDNφ − ε−1ΛNNβτ + ∇η · ∇φ,

we have

(1 + δ2|∇η|2)(Ztt − ε−3βτττ )

= −4δ2(∇η · ∇ηt)Zt − 2δ2(∇η · ∇ηtt + |∇ηt|2)Z − ε−3δ2|∇η|2βτττ

+ ΛDNφtt − ε−3(ΛNNβτττ + βτττ ) + ΛDN
1 [utt]φ − ε−1ΛNN

1 [utt]βτ

+ 2ΛDN
1 [ut]φt − 2ε−2ΛNN

1 [ut]βττ + ΛDN
2 [ut, ut]φ − ε−1ΛNN

2 [ut, ut]βτ

+ ∇η · ∇φtt + ∇ηtt · ∇φ + 2∇ηt · ∇φt,

which, together with propositions 5.1, 5.17 and 5.23, implies that

δ2‖Ztt − ε−3βτττ‖r � Cε−1.

Therefore, we obtain the second estimate in (6.9). To show the first estimate, we
first note that

‖Z − ε−1βτ‖r � C and ‖Zt − ε−2βττ‖r � Cε−1.

In view of (6.7), we can rewrite Zt as Zt = Z
(0)
t + Z

(1)
t , where

δ2Z
(0)
t = δ2∂t

{
− ∇ · ((1 + η − b)∇φ) + ∇η · ∇φ +

1
ε
(1 − δ2|∇η|2)βτ

+
δ2

ε
∇ · ((1 + η − b)(∇η)βτ + 1

2 (1 + η − b)2∇βτ )
}

=
(

δ

ε

)2

(1 − δ2|∇η|2)βττ +
δ2

ε

(
∇φ − δ2

ε
βτ∇η

)
· ∇βτ

+
(

δ2

ε

)2

∇ · ((1 + η − b)(∇η)βττ + 1
2 (1 + η − b)2∇βττ )

+ δ2
{

− ∇ · ((1 + η − b)∇(φt − 1
2δ2b2

t ) + (ηt − bt)∇φ)

+ ∇(ηt − bt) · ∇φ + ∇η · ∇(φt − 1
2δ2b2

t ) − 2
δ2

ε
βτ∇η · ∇(ηt − bt)

+
δ2

ε
∇ · ((ηt − bt)(∇η)βτ + (1 + η − b)∇((ηt − bt)βτ ))

}
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and

Z
(1)
t = −δ2|∇η|2(Zt − ε−1βττ ) − 2δ2(∇η · ∇ηt)(Z − ε−1βτ )

+ {ΛDNφt + ∇ · ((1 + η − b)∇φt)} + {ΛDN
1 [ut]φ + ∇ · ((ηt − bt)∇φ)}

− ε−2{ΛNNβττ + βττ + δ2∇ · ((1 + η − b)(∇η)βττ + 1
2 (1 + η − b)2∇βττ )}

− ε−1{ΛNN
1 [ut]βτ + δ2∇ · ((1 + η − b)(∇ηt)βτ

+ (ηt − bt)(∇η)βτ + (1 + η − b)(ηt − bt)∇βτ )}.

Here, by hypothesis, we have

‖ηt − bt‖r+4 � M1 and ‖∇(φt − 1
2δ2b2

t )‖r+4 � M1.

By propositions 5.3, 5.16, 5.26 and 5.27, we also have ‖Z
(1)
t ‖r � C. On the other

hand, we can rewrite δ2v · ∇Z as

δ2v·∇Z =
δ2

ε

(
∇φ− δ2

ε
βτ∇η

)
·∇βτ +δ2

(
v·∇(Z−ε−1βτ )− δ2

ε
(Z−ε−1βτ )∇η·∇βτ

)
.

Therefore, we can obtain ‖a − (1 + (δ/ε)2(1 − δ2|∇η|2)βττ + α(0))‖r � Cδ2, where

α(0) := 2
δ2

ε

(
∇φ− δ2

ε
βτ∇η

)
·∇βτ +

δ2

ε
∇·((1+η−b)(∇η)βττ + 1

2 (1+η−b)2∇βττ ).

In view of this, (2.21) and (6.10), we easily get ‖α(0) − σa(0)‖r � C(ε + |δ2/ε − σ|).
These show the second estimate in (6.9). The last assertion of the proposition follows
directly from (6.9) and the Sobolev inequality. The proof is complete.

7. Proof of the main theorems

In this section we first consider a linear system of equations and give an energy
estimate for the solution. Then, applying the estimate to the quasi-linear system of
equations (6.4), we will derive a uniform estimate of the solution (η, φ) with respect
to small δ and ε.

Now we consider the following system of linear equations:

∂tζijk + v · ∇ζijk − ΛDNψijk + Lijkη = ε−1∂ijkg1 + f ijk
1 , ζijk = ∂ijkη,

∂tψijk + v · ∇ψijk + aζijk = ε−1gijk
2 + f ijk

2 ,

}
(7.1)

where a, v = (v1, . . . , vn)T, f1 = (f ijk
1 ), f2 = (f ijk

2 ) are given functions of x and
t and may depend on δ and ε, whereas g1 and g2 = (gijk

2 ) are given functions of
x and τ = t/ε, ΛDN = ΛDN(η, b, δ) is the DN map, and Lijk are linear operators
defined by

Lijkη = ΛDN(pk∂ijη + pi∂jkη + pj∂kiη),

where p = (p1, . . . , pn) are given functions of x and t and may depend on δ and ε.
The above system in the case where p = 0 and (g1, g2) = 0 was investigated in [11].

Remark 7.1. It follows from proposition 5.1 that ‖Lijkη‖s � Cδ−1‖p‖s+1‖η‖s+3,
so we can regard Lijkη in (7.1) as a lower-order term and put it into the right-
hand side if we fix the parameter δ. However, in order to derive a uniform estimate
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of the solution with respect to small δ, we have to use the estimate ‖Lijkη‖s �
C‖p‖s+2‖η‖s+4, so that Lijkη cannot be regarded as a lower-order term. Note that
the norm ‖η‖s+4 in the last estimate is optimal because ΛDN converges a second-
order differential operator as δ goes to zero. This is the reason why we have to treat
Lijkη as one of the principal terms.

Proposition 7.2. Let r > 1
2n. In addition to assumptions (A1) and (A2) with

q = r + 1, we assume that

‖(η, b)‖r+2 � M, ‖(ηt, bt)‖r+1 � Mε−1, ‖v‖r+1 � M, ‖p‖r+3 � M,

M−1 � a(x, t) � Mε−1, at(x, t) � Mε−1, ‖∇a‖r+2 � Mε−1.

}
(7.2)

Then, there exists a constant C = C(M, c, r) > 0 independent of δ and ε such that,
for any smooth solution (η, ζ, ψ) of (7.1), we have

‖ζ(t)‖2 + ‖(ΛDN
0 )1/2ψ(t)‖2

� CeCt/ε

{
‖η(0)‖2

4 + ‖(ΛDN
0 )1/2ψ(0)‖2

+
( ∫ t/ε

0
(‖g1(τ)‖4 + ‖(ΛDN

0 )1/2g2(τ)‖) dτ

)2

+
∫ t

0
e−Ct̃/ε

(
1
ε
(‖f1(t̃)‖2 + ‖η(t̃)‖2) + ε‖(ΛDN

0 )1/2f2(t̃)‖2
)

dt̃

}
.

Proof. First, we will consider the case where (g1, g2) = 0 and η|t=0 = 0, so that we
also have ζ|t=0 = 0. Let (η, ζ, ψ) be a smooth solution of (7.1) and define an energy
function E(t) by

E(t) = (aζ(t), ζ(t)) + (ΛDNψ(t), ψ(t)).

Then it holds that

d
dt

E(t) = (atζ, ζ) + 2(aζ, ζt) + ([∂t, Λ
DN]ψ, ψ) + 2(ΛDNψ, ψt)

= (atζ, ζ) + ((∇ · (av))ζ, ζ) + 2(aζ, f1) − 2(aζ, Lη)

+ ([∂t, Λ
DN]ψ, ψ) − 2(ΛDNψ, v · ∇ψ) + 2(ΛDNψ, f2). (7.3)

Here, by the definition we have

(aζ, Lη) =
n∑

ijk=1

{(a∂ijkη, ΛDN(pk∂ijη))

+ (a∂ijkη, ΛDN(pi∂jkη)) + (a∂ijkη, ΛDN(pj∂kiη))}.

By proposition 3.3 and using integration by parts, we see that

2(a∂ijkη, ΛDN(pk∂ijη))

= −(∂ijη, (∂ka)ΛDN(pk∂ijη) + a[∂k, ΛDN](pk∂ijη)

+ aΛDN((∂kpk)∂ijη) + [a, ΛDN](pk∂ijkη) + [ΛDN, pk](a∂ijkη)),
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so that

2|(a∂ijkη, ΛDN(pk∂ijη))|

�
√

(ΛDN((∂ka)∂ijη), (∂ka)∂ijη)
√

(ΛDN(pk∂ijη), pk∂ijη)

+ ‖a∂ijη‖1‖[∂k, ΛDN](pk∂ijη)‖−1

+
√

(ΛDN(a∂ijη), a∂ijη)
√

(ΛDN((∂kpk)∂ijη), (∂kpk)∂ijη)

+ ‖∂ijη‖1(‖[a, ΛDN](pk∂ijkη)‖−1 + ‖[ΛDN, pk](a∂ijkη)‖−1)

� C(‖∇a‖r+2 + ‖a‖L∞(Rn))‖p‖r+3‖η‖2
3,

where we used propositions 5.4, 5.6 and 5.7 and lemmas 4.4 and 4.6. The other
terms on the right-hand side of (7.3) can be evaluated by propositions 5.9, 5.10 and
5.4 and lemma 4.4, so that we obtain

d
dt

E(t) � Cε−1E(t) + C(ε−1(‖f1(t)‖2 + ‖η(t)‖2) + ε‖(ΛDN
0 )1/2f2(t)‖2).

This, together with Gronwall’s inequality and the relations

‖ζ(t)‖2 + ‖(ΛDN
0 )1/2ψ(t)‖2 � CE(t), E(0) � C‖(ΛDN

0 )1/2ψ(0)‖2,

gives

‖ζ(t)‖2 + ‖(ΛDN
0 )1/2ψ‖2

� CeCt/ε

{
‖(ΛDN

0 )1/2ψ(0)‖2

×
∫ t

0
e−Ct̃/ε(ε−1(‖f1(t̃)‖2 + ‖η(t̃)‖2) + ε‖(ΛDN

0 )1/2f2(t̃)‖2) dt̃

}
.

(7.4)

Next we will consider the general case. Let (η, ζ, ψ) be a smooth solution of (7.1)
and define (η(0), ζ(0)) and (η̄, ζ̄) by

η(0)(x, t) := η(x, 0) +
∫ t/ε

0
g1(x, τ) dτ, ζ

(0)
ijk := ∂ijkη(0)

and η̄ := η − η(0), ζ̄ := ζ − ζ(0). Then, it holds that

∂tζ̄ijk + v · ∇ζ̄ijk − ΛDNψijk + Lijkη̄ = f̄ ijk
1 , ζ̄ijk = ∂ijkη̄,

∂tψijk + v · ∇ψijk + aζ̄ijk = f̄ ijk
2 ,

and η̄|t=0 = 0, where

f̄ ijk
1 = f ijk

1 − v · ∇ζ
(0)
ijk − Lijkη(0), f̄ ijk

2 = ε−1gijk
2 + f ijk

2 − aζ
(0)
ijk.
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Therefore, applying the estimate obtained in the previous case, we obtain

‖ζ̄(t)‖2 + ‖(ΛDN
0 )1/2ψ(t)‖2

� CeCt/ε

{
‖(ΛDN

0 )1/2ψ(0)‖2

+
∫ t

0
e−Ct̃/ε(ε−1(‖f̄1(t̃)‖2 + ‖η̄(t̃)‖2) + ε‖(ΛDN

0 )1/2f̄2(t̃)‖2) dt̃

}
.

It is easy to see that

‖ζ(t)‖ � ‖ζ̄(t)‖ + ‖η(0)‖3 +
∫ t/ε

0
‖g1(τ)‖3 dτ

and

ε−1(‖f̄1(t)‖2 + ‖η̄(t)‖2) + ε‖(ΛDN
0 )1/2f̄2(t)‖2

� C

{
ε−1(‖f1(t)‖2 + ‖η(t)‖2 + ‖η(0)‖2

4) + ε‖(ΛDN
0 )1/2f2(t)‖2

+ ε−1
( ∫ t/ε

0
(‖g1(τ)‖4 + ‖(ΛDN

0 )1/2g2(τ)‖) dτ

)2}
.

To summarize the above estimates, we obtain the desired estimate.

Let (η, φ) be the solution of (1.15) and (1.16) and set

E(t)2 := ‖η(t)‖2
s+3 + ‖∇φ(t)‖2

s+2 + ‖(ΛDN
0 )1/2(∂3φ(t) − δ2Z∂3η(t))‖2

s,

where Z is determined by (6.1). Suppose that the solution (η, φ) satisfies

E(t) � N1, ‖η(t)‖s+2 + ‖∇φ(t)‖s+1 � N2,

1 + η(x, t) − b(x, t) � 1
2c0 for x ∈ R

n, 0 � t � ε, 0 < δ � δ0,

}
(7.5)

where positive constants N1, N2 and δ0 will be determined later. Then, by propo-
sition 4.1, there exists a constant δ1 = δ1(M0, N2, c0, s) independent of N1 such
that, for any δ ∈ (0, δ1], we can construct a diffeomorphism Θ satisfying assump-
tions (A1)–(A4) with r = s + 1 and a constant M independent of δ and N1 but
depending on N2. Set δ0 := min{δ1, δ2, δ3}, where δ2, δ3 > 0 are the constants
occurring in propositions 6.3–6.6. In the following we simply write the constants
depending only on (M0, N1, c0, s) and (M0, N2, c0, s) by C1 and C2, respectively. It
follows from (1.15) that

ηt − ε−1βτ = (Z − ε−1βτ ) + δ2|∇η|2Z − ∇η · ∇φ,

φt − 1
2

(
δ

ε

)2

β2
τ = −η − 1

2 |∇φ|2 + 1
2 (δ4|∇η|2Z2 + δ2(Z + ε−1βτ )(Z − ε−1βτ )).

⎫⎪⎬
⎪⎭

(7.6)
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By proposition 5.1, lemma 4.6 and corollary 5.25 we obtain ‖Z − ε−1βτ‖s � C2, so
that ∥∥∥∥ηt(t) − ε−1βτ

(
t

ε

)∥∥∥∥
s

+
∥∥∥∥φt(t) − 1

2

(
δ

ε

)2

βτ

(
t

ε

)2∥∥∥∥
s

� C2,

‖ηt(t)‖s + ‖φt(t)‖s � C2ε
−1.

Moreover, it holds that

ηtt = ΛDNφt + ΛDN
1 [ut]φ − ε−2ΛNNβττ − ε−1ΛNN

1 [ut]βτ ,

φtt = δ2Zηtt − ηt − (∇φ − δ2Z∇η) · (∇φt − δ2Z∇ηt),

which, together with the previous estimates, propositions 5.1, 5.19, 5.11 and 5.20
and lemma 4.6, easily yields that ‖ηtt(t)‖s−1 + ‖φtt(t)‖s−1 � C2ε

−2. Therefore,
by propositions 6.5 and 6.6, there exist small constants ε0, γ0 > 0 such that the
function a defined by (6.5) satisfies ‖∇a(t)‖s−2 � C2ε

−1, 1
2c � a(x, t) � C2ε

−1 and
at(x, t) � C2ε

−1 as long as 0 < ε � ε0 and |δ2/ε − σ| � γ0. It is easy to see that
‖(v(t), p(t))‖s � C2, where p = ε−1δ2ΛNN(∇βτ ). Hence, we have checked all of the
conditions in proposition 7.2.

Now, introducing new variables ζ = (ζijk) and ψ = (ψijk) by (6.3), we obtain the
quasi-linear system of equations (6.4). Applying the operator Js to the equations
in (6.4), we have

∂t(Jsζ)ijk + v · ∇(Jsζ)ijk − ΛDN(Jsψ)ijk + Lijk(Jsη) = ε−1∂ijk(Jsβτ ) + f̃ ijk
1 ,

∂t(Jsψ)ijk + v · ∇(Jsψ)ijk + a(Jsζ)ijk = ε−1(Jsg2)ijk + f̃ ijk
2 ,

}

(7.7)
where

f̃ ijk
1 = Jsf ijk

1 − [Js, v] · ∇ζijk + [Js, ΛDN]ψijk

− [Js, ΛDN](pk∂ijη + pi∂jkη + pj∂kiη)

− ΛDN([Js, pk]∂ijη + [Js, pi]∂jkη + [Js, pj ]∂kiη),

f̃ ijk
2 = Jsf ijk

2 − [Js, v] · ∇ψijk − [Js, a]ζijk.

Here, it follows from propositions 5.1 and 5.8 and lemmas 4.6 and 4.8 that

‖f̃1(t)‖ � C2(E(t) + ‖v(t)‖s + ‖p(t)‖s+2 + ‖f1(t)‖s),

‖(ΛDN
0 )1/2f̃2(t)‖ � C2(E(t) + ‖v(t)‖s+1 + ‖∇a(t)‖s + ‖(ΛDN

0 )1/2f2(t)‖s).

By propositions 6.3–6.5, we can evaluate the right-hand sides of the above estimates
except the term ‖p‖s+2. Since p = ε−1δ2ΛNN(∇βτ ), we have

∂jkpi = ε−1δ2(ΛNN∂ijkβτ + ΛNN
1 [∂ku]∂ijβτ + ΛNN

1 [∂ju]∂kiβτ

+ ΛNN
1 [∂jku]∂iβτ + ΛNN

2 [∂ju, ∂ku]∂iβτ ),

so that, by propositions 5.11 and 5.20, we can also evaluate ‖p‖s+2 and obtain that

ε−1‖f̃1(t)‖2 + ε‖(ΛDN
0 )1/2f̃2(t)‖2 � C2(ε−1E(t)2 + 1).
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Therefore, applying the basic energy estimate in proposition 7.2 to (7.7), we obtain

‖ζ(t)‖2
s + ‖(ΛDN

0 )1/2ψ(t)‖2
s � C2 +

C2

ε

∫ t

0
E(t̃)2 dt̃ for 0 � t � ε.

It is easy to see that

‖∇φ(t)‖s+2 � ‖∇φ(t)‖s+1 + ‖∇(∂3φ(t) − δ2Z∂3η(t))‖s−1 + δ2‖Z∂3η(t)‖s

� C2(1 + ‖(ΛDN
0 )1/2ψ(t)‖s−1/2 + ‖ζ(t)‖s).

By the above two estimates, we have

E(t)2 � C2 +
C2

ε

∫ t

0
E(t̃)2 dt̃ for 0 � t � ε,

so that Gronwall’s inequality gives

E(t) � C2 for 0 � t � ε. (7.8)

On the other hand, in view of (7.6) and proposition 6.3, we have∥∥∥∥ηt(t) − ε−1βτ

(
t

ε

)∥∥∥∥
s+2

+
∥∥∥∥φt(t) − 1

2

(
δ

ε

)2

βτ

(
t

ε

)2∥∥∥∥
s+2

� C1.

Let (η(0), φ(0)) be the approximate solution defined by (2.20). Then, we see that∥∥∥∥η(t) − η(0)
(

t

ε

)∥∥∥∥
s+2

+
∥∥∥∥φ(t) − φ(0)

(
t

ε

)∥∥∥∥
s+2

�
∫ t

0

(∥∥∥∥ηt(t̃) − ε−1βτ

(
t̃

ε

)∥∥∥∥
s+2

+
∥∥∥∥φt(t) − σ

ε
βτ

(
t̃

ε

)2∥∥∥∥
s+2

)
dt̃

� C1

(
t +

t

ε

∣∣∣∣δ2

ε
− σ

∣∣∣∣
)

� C1

(
ε +

∣∣∣∣δ2

ε
− σ

∣∣∣∣
)

for 0 � t � ε. (7.9)

In particular, we obtain

‖η(t)‖s+2 + ‖∇φ(t)‖s+1

� max
0�τ�1

(‖η(0)(τ)‖s+2 + ‖∇φ(0)(τ)‖s+1) + C1(ε + |δ2/ε − σ|) (7.10)

for 0 � t � ε. Moreover, we see that

1 + η(x, t) − b(x, t)

= 1 + η0(x) − b0(x) +
∫ t

0

(
ηt(x, t̃) − ε−1βτ

(
x,

t̃

ε

))
dt̃

� c0 − C

∫ t

0

∥∥∥∥ηt(t̃) − ε−1βτ

(
t̃

ε

)∥∥∥∥
s+2

dt̃

� c0 − C1t � c0 − C1ε for 0 � t � ε. (7.11)
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In view of (7.8), (7.10) and (7.11), we define the constants N1, N2, ε0 and γ0 by

N2 := 2 max
0�τ�1

(‖η(0)(τ)‖s+2 + ‖∇φ(0)(τ)‖s+1), N1 := C2,

ε0 := (2C1)−1 min{c0, N2}, γ0 := (2C1)−1N2.

Then, we see that the estimates in (7.5) hold. Therefore, by (7.9), we obtain the
error estimate. The proof of theorem 2.3 is complete.

We proceed to prove theorem 2.4. By theorem 2.3, we have

‖ηδ,ε(ε)‖s+3 + ‖∇φδ,ε(ε)‖s+2 � C0,

1 + ηδ,ε(x, ε) − b1(x) � 1
2c0 for x ∈ R

n

and

‖ηδ,ε(ε) − η(0)(1)‖s+2 + ‖∇φδ,ε(ε) − ∇φ(0)(1)‖s+1 � C0(ε + |δ2/ε − σ|). (7.12)

Since b(x, t) = b1(x) for t � ε, the results in [11] imply that the solution (ηδ,ε, φδ,ε)
obtained in theorem 2.3 can be extended to a time interval [0, T ] independent of
δ ∈ (0, δ0] and ε ∈ (0, ε0] and satisfies

‖ηδ,ε(t) − ηε(t)‖s−1 + ‖∇φδ,ε(t) − uε(t)‖s−1 � Cδ2,

‖ηδ,ε(t)‖s+2 + ‖∇φδ,ε(t)‖s+1 � C for ε � t � T,

}
(7.13)

where (ηε, uε) ∈ C([−T, T ];Hs+2) is a unique solution of the shallow-water equa-
tions

ηε
t + ∇ · ((1 + ηε − b1)uε) = 0, uε

t + (uε · ∇)uε + ∇ηε = 0

under the initial conditions ηε = ηδ,ε(·, ε), uε = ∇φδ,ε(·, ε) at t = ε, and satisfies

‖(ηε(t), uε(t))‖s+2 + ‖(ηε
t (t), u

ε
t (t))‖s+1 � C for − T � t � T.

In particular, we have

‖ηε(ε) − ηε(0)‖s+1 + ‖uε(ε) − uε(0)‖s+1 � Cε. (7.14)

Now, let (η0, u0) be the unique solution to the initial-value problem for the shallow-
water equations (2.13) and (2.14). Since η(0)(1) = η0(0) and ∇φ(0)(1) = u0(0), equa-
tion (7.12) implies that

‖ηε(ε) − η0(0)‖s+2 + ‖uε(ε) − u0(0)‖s+1 � C0(ε + |δ2/ε − σ|),

which, together with (7.14), yields that

‖ηε(0) − η0(0)‖s+1 + ‖uε(0) − u0(0)‖s+1 � C(ε + |δ2/ε − σ|).

Since (ηε, uε) and (η0, u0) satisfy the same shallow-water equations and their initial
data satisfy the above estimate, we obtain

‖ηε(t) − η0(t)‖s+1 + ‖uε(t) − u0(t)‖s+1 � C(ε + |δ2/ε − σ|) for − T � t � T,

which, together with (7.13), yields the desired estimate. The proof of theorem 2.4
is complete.
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Sud, thanks to the ‘professeur invité’ programme. I would like to thank Professor
Jean-Claude Saut and the Département de Mathématiques d’Orsay for their kind
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de Friedrichs. J. Math. Kyoto Univ. 26 (1986), 101–175.
13 T. Kano and T. Nishida. Sur les ondes de surface de l’eau avec une justification mathé-
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