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In numerical computations of tsunamis due to submarine earthquakes, it is frequently
assumed that the initial displacement of the water surface is equal to the permanent
shift of the seabed and that the initial velocity field is equal to zero and the
shallow-water equations are often used to simulate the propagation of tsunamis. We
give a mathematically rigorous justification of this tsunami model starting from the
full water-wave problem by comparing the solution of the full problem with that of
the tsunami model. We also show that, in some cases, we have to impose a non-zero
initial velocity field, which arises as a nonlinear effect.

1. Introduction

Tsunamis are one of the most disastrous phenomena of water waves and are char-
acterized by a very long wavelength. They are mainly generated by a sudden defor-
mation of the seabed with a submarine earthquake. The motion of tsunamis can
be modelled as an irrotational flow of an incompressible ideal fluid bounded from
above by a free surface and bounded from below by a moving bottom under the
gravitational field. The model is usually called the full water-wave problem. Due to
the complexities of the model, several simplified models have been proposed and
used to simulate tsunamis. One of the most common models of tsunami propagation
is the shallow-water model under the assumptions that the initial displacement of
the water surface is equal to the permanent shift of the seabed and that the initial
velocity field is equal to zero. Namely, in numerical computations of tsunamis due
to submarine earthquakes, one usually uses the shallow-water equations

e+ V- ((h+n—>b)u) =0, ur+ (u-Viu+gVn=0 (1.1)
under the following particular initial conditions:
Nli=0 = b1 — bo, ult=0 = 0, (1.2)

where 7 is the variation of the water surface, u is the velocity of the water in the
horizontal directions, ¢ is the gravitational constant, i is the mean depth of the
water, by is the bottom topography before the submarine earthquake, and by is
the bottom topography after the earthquake. The aim of this paper is to give a
mathematically rigorous justification of this shallow-water model starting from the
full water-wave problem, especially, the justification of the initial conditions (1.2).
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In this paper two non-dimensional parameters § and & play an important role,
where § is the ratio of the water depth h to the wavelength A and € is the ratio
of the duration tq of the submarine earthquake to the period of tsunami \/+/gh.
We note that 1/gh is the propagation speed of linear shallow-water waves and that
the duration of the seabed deformation is very short compared with the period of
tsunamis in general. Therefore, € should be a small parameter. It is known that the
shallow-water equations (1.1) are derived from the full water-wave problem in the
limit § — 40. The derivation can be traced back to Airy [1]. Friedrichs [9] then
systematically derived the equations using an expansion of the solution with respect
to 62 (see also Lamb [16] and Stoker [22]). A mathematically rigorous justification
of the shallow-water approximation for two-dimensional water waves over a flat
bottom was given by Ovsjannikov [19,20] under the periodic boundary condition
with respect to the horizontal spatial variable, and then by Kano and Nishida [13] in
a class of analytic functions (see also [12,14]). The justification in Sobolev spaces was
given by Li [18] for two-dimensional water waves over a flat bottom and by Alvarez-
Samaniego and Lannes [2] and Iguchi [11] for three-dimensional water waves where
non-flat bottoms were allowed. However, there is no rigorous result concerning the
shallow-water approximation in the case of moving bottom, nor a justification of
the initial conditions (1.2).

We will show that, under appropriate conditions on the initial data and the bot-
tom topography, the solution of the full water-wave problem can be approximated
by the solution of the tsunami model (1.1) and (1.2) in the limit 4, — +0 under
the restriction 62/ — +0. This means that if the speed of seabed deformation
is fast but not too fast, then the tsunami model would be a good approximation
to the full water-wave problem. Moreover, we also show that, in the critical limit
§,e — +0 and §2/¢ — o with a positive constant o, the initial conditions (1.2)
should be replaced by

to
1
77|t:0 = by — by, U|t:0 = V(2/ bt('»t)2 dt), (1~3)
0

where b = b(z,t) is a bottom topography during the deformation of the seabed.
One of the hardest parts of the analysis is the derivation of a uniform bound of the
solution with respect to small parameters  and ¢ for the full water-wave problem
together with its derivatives, and especially for the time interval 0 < ¢ < € when
the deformation of the seabed takes place. To this end, we adopt and extend the
techniques used in Iguchi [11].

It is worth mentioning here that the Korteweg—de Vries equation is also known
as a model of water waves and that the applicability of this modelling to tsunami
propagation was discussed, for example, by Craig [7], Segur [21], Lakshmanan [15],
Constantin and Johnson [5], Constantin [4] and Stuhlmeier [23], with conflicting
points of view.

We now formulate the problem mathematically. Let x = (z1, 2, ...,x,) be the
horizontal spatial variables and z,41 the vertical spatial variable. We denote all
of the spatial variables by X = (x,2,11) = (21,...,%n, Tnt1). We will consider
a water wave in an (n + 1)-dimensional space and assume that the domain §2(t)
occupied by the water at time ¢, the water surface I'(t), and the bottom X'(¢) are

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

A mathematical analysis of tsunami generation 553

of the forms
Q) ={X = (z,2p41) € R"; b(x,t) < Tpy1 < h+n(z,t)},
I(t) ={X = (z,2011) € R"™Y 2pyr = ht (2, 0)},
Y(t)={X = (z,2p41) € R"™Y: 2,1 = b(2, 1)},

where h is the mean depth of the water. The functions b and n represent the
bottom topography and the surface elevation, respectively. In this paper b is a
given function, while 7 is the unknown. In fact, our main interest is the behaviour
of this function 7, namely, the water surface.

We assume that the water is an incompressible and inviscid fluid, and that the
flow is irrotational. Then, the motion of the water is described by the velocity
potential & = ¢(X,t) satisfying the equation

Ax® =0 in Q(t), (1.4)

where Ay is the Laplacian with respect to X, that is, Ax = A + 8721“ and A =
0? + -+ + 92. The boundary conditions on the water surface are given by

N+ VP -Vn—0,11®=0, &+ 1Vxd|*+gn=0onI(t), (1.5)

where V. = (9y,...,0,)T and Vx = (01,...,0n,0,:1)T are the gradients with
respect to = (21,...,z,) and to X = (x, Z41), respectively, and g is the gravita-
tional constant. The first equation is the kinematical condition and the second one
is the restriction of Bernoulli’s law on the water surface. The kinematical boundary
condition on the bottom is given by

bt +V@Vb—3n+1@:0 on Z(t) (16)
Finally, we impose the initial conditions
n=mny, P=0 att=0. (1.7)

These are the basic equations for the full water-wave problem.

Next, we rewrite the equations (1.4)—(1.6) in an appropriate non-dimensional
form. Let A be the typical wavelength and let A be the mean depth. We intro-
duce a non-dimensional parameter § by § = h/A and rescale the independent and
dependent variables by

A - - N
=A%, Tpg1=hinp1, t=—=1, ®=A/gh®, n=~hij, b=hb (18
T =A%, Tpi1 = hTpp N g n = hij (1.8)

Putting these into (1.4)—(1.6) and dropping the tilde in the notation we obtain

SPAP+02,,9=0 in 0t), (1.9)

2 + VP -Vn) — 0 1P =0
) L ) X ) on I'(t), (1.10)
82(by + V& - Vb) — 019 =0 on (), (1.11)
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where

{X = (w7mn+1) € Rn—i_l; b(mvt) < Tp1 < 1+ 77(3771;)}’
() ={X = (z,2041) € R™Y @ppr = L+ n(z, 1)},
Y(t)={X = (z,7p41) € R"™Y 2,11 =b(z,1)}.
Moreover, we assume that the seabed deforms only for time interval [0, o] in the

dimensional variable ¢, so that the function b = b(x,t), which represents the bottom
topography, can be written in the form

bo(z) for 7 <0,
b(z,t) = Bz, t/e), ,T) = 1.12
(0.1) = Blot/e). Ba.7) {w) oy (112)
in the non-dimensional variables, where ¢ is a non-dimensional parameter defined
by
g= 10 (1.13)
M Vgh' '

In this non-dimensional time variable we note that the bottom deforms only for
the short time interval 0 < ¢ < ¢ and that b, = 5’1ﬂ7. Since we are interested
in asymptotic behaviour of the solution when §,& — +0, we always assume that
0 < d,e < 1 in the following.

As in the usual way, we transform equivalently the initial-value problem (1.9)—-
(1.11) and (1.7) to a problem on the water surface. To this end, we introduce a new
unknown function ¢ by

¢(z,1) = (x,1 4 1(x, 1), 1), (1.14)

which is the trace of the velocity potential on the water surface. Then, we see that
the initial-value problem is transformed equivalently to the following:

e — APN(n,b,6)¢ + e ANN(n,,6) 8, =0,
¢¢ +n+ %|V¢\2

—362(1+ 8*|Vnl*) " (AN (0, b,6)p — e ANN (0, b,8) B, + V- Vg)? = 0,
(1.15)
n=mny, ¢=¢o att=0, (1.16)

where APN = APN(5 b §) and ANN = ANN(5 b, ) are linear operators depending
on (n,b,d) and called the Dirichlet-to-Neumann and the Neumann-to-Neumann
maps for the Laplace equation, and ¢g = Po(-,1 + n9(+)). In §3 we will give the
definition and basic properties of these maps APN and ANN. We will investigate this
initial-value problem (1.15) and (1.16) mathematically rigorously in this paper.
The contents of the paper are as follows. In §2 we formally derive the tsunami
model (1.1)-(1.3) from the full water-wave problem, analyse a so-called general-
ized Rayleigh-Taylor sign condition and give our main results. In § 3 we define the
Dirichlet-to-Neumann map APN, the Neumann-to-Neumann map ANN and related
operators. Then we give basic properties of the operators and derive explicit forms
of their Fréchet derivatives with respect to the surface variation n and the bottom
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topography b. In § 4 we study a boundary-value problem for the scaled Laplace equa-
tion (1.9) and derive some elliptic estimates for the solution by using the techniques
n [11]. Most notably, we carefully analyse the dependence of the small parameter
0. In § 5, using the estimates obtained in §4 we derive uniform bounds of the maps
APN - ANN “and related operators with respect to small § in Sobolev spaces. In §6
we reduce the full nonlinear equations (1.15) to quasi-linear equations. Finally, in
§7, by applying energy estimates to the quasi-linear equations derived in §6, we
prove the main theorems.

1.1. Notation

For s € R, we denote by H?® the Sobolev space of order s on R equipped with
the inner product

(wo)e=m)™ [ A+ IehPaiE e,

where @ is the Fourier transform of u, that is,
w(€) :/ u(z)e % da.

We set |lulls = /(u,u)s, (u,v) = (u,v)o and |lu|]| = ||ullo. The norm of a Banach
space X is denoted by || - ||x. We set 0; = 0/0x;, 0;; = 0;0; and 0,1, = 0;0;0%.
A pseudo-differential operator P(D), D = (D1,...,D,) and D; = —i0;, with a
symbol P(£), is defined by

P(D)u(e) = (20) " [ P(@)a(e)e™ de.
We set J = 1+ |D|, so that ||u||s = ||J*u||. For operators A and B, we denote by
[A, B = AB — BA the commutator. Throughout this paper, we denote inessential
constants by the same symbol C.

2. A shallow-water approximation

In this section we begin formally studying the asymptotic behaviour of the solu-
tion (n>%, ¢%) to the initial-value problem (1.15) and (1.16) when §,& — +0. We
also derive the shallow-water equations with appropriate initial conditions, whose
solution approximates (7%¢, V¢*¢) in a suitable sense. Then we analyse a so-called
generalized Rayleigh—Taylor sign condition that is important for the well-posedness
of the initial-value problem, and give the main results of this paper.

It is known that the Dirichlet-to-Neumann map APY = APN(5 b, 6) can be
approximated by the second-order differential operator up to O(562) as

APN(,b,8)p = =V - (1 4+ 1 — b)Vo) + O(5?). (2.1)

For example, we refer to [11] for the above expansion. We proceed to expand the
Neumann-to-Neumann map ANN = ANN(y, b, 6) with respect to 62. For a given
function 8 on X, we denote by @ the solution of the boundary-value problem

AP+ 02,0 =01in £, &=0onl, —0p 1P + 0°Vb- VP = 6% on X.
(2.2)
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Here and in what follows, we omit the dependence of the time ¢ in the notation for
simplicity. Then we see that

(On1®)(,241) = (D1 B) (. () + / T (02,0) (2, 2) dz
b(x)
— _?B(x) + 02Vb(z) - (V&) (x, b(z)) — 5 / (A®)(z, 2) dz,
b(x)

(2.3)

which implies that (9,,+19)(X) = O(6?) and that (V9,+1®)(X) = O(§?). This and
the relation

(VO)(z,Tp11) = (VP)(x,1 + n(x)) + [jntl)(vanﬂ@)(x, z)dz (2.4)

imply that (V®)(X) = (V®)(z,1 + n(z)) + O(6?). Differentiating the Dirichlet
boundary condition @(x,1 + n(z)) =0 on I', we obtain

(V@) (2,1 +n(2)) = =(On11P)(z, 1 + n(x)) Vn(z), (2.5)

which is O(§?). Therefore, we obtain V&(X) = O(§?) so that AG(X) = O(§?). It
follows from these relations and (2.3) that (9,419)(X) = —§28(z) + O(6*), which,
together with (2.5), implies that (V®)(z,1 + n(x)) = 628(x)Vn(x) + O(5*). Thus,
by (2.4), we obtain

(VO)(X) = 6°B(«)Vn(z) + 8*(1 + n(x) — 2541)VB(x) + O(").  (2.6)
Particularly, it holds that
(AD)(X) = 8°V-(B(x)Vi(x))+6° Vi (z)-V(2) +6*(1+n(2) = n 1) AB(2) +O(6").
Therefore, by (2.3), we get
(On19)(X) = =0%B(x) + 6"Vb(z) - (B(z)Vn(z) + (1 +n(x) — b(z))VS(x))

= (241 = b(@))(V - (B(2)Vn(2)) + Vi(z) - VB())
+ 5041+ n(2) = 2p41)® = (1 +n(2) = b(2))*) AB(w) + O(8°).

Since the Neumann-to-Neumann map ANN is defined by:
(ANNB)(2) = 672(0p418)(x, 1 + n(x)) — Vn(x) - (VP) (2,1 + (),
we obtain
ANN(1,0,8)8 = =B = 6°V - (L +1 = b)(Vn)B + 3(1 + 7 —)*Vp) + O(8"). (2.7)

For the definition of the map ANN, we refer to definition 3.1. In view of (2.1) and
(2.7), we see that the equations in (1.15) can be approximated by the ordinary
differential equations

EE VIS SVAPINPREY ) PSS DS TIRO
m—gT - s t—2 c - 22 . .
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By resolving these equations under the initial conditions (1.16), we obtain

n(x,t) = no(x) + Bz, t/e) — bo(z) + O(e + §2),
1 52 t/e (29)

o, t) = do(@) + 2 [ Br(w.r)2dr + L0 + 6%
2¢ Jo €

for the time interval 0 < t < e. Particularly, we get
n(z,€) = no(z) + (bi(x) — bo(x)) + O(e + 8%,

1462

(2.10)
o(x,e) = do(x) _,_,7/ Br(x,7)*dr + O(E + 64).

As 8,6 — +0 these data converge only in the case when §2/e also converges to
some value o. Therefore, in this paper we will consider asymptotic behaviour of the
solution (7%, %) to the initial-value problem (1.15) and (1.16) in the limit

52
9, = 40, — o (2.11)

On the other hand, noting that 3, = 0 and b = b; for t > £, we see that the
equations in (1.15) can be approximated by the partial differential equations

n+ Vo (L+n-0)Ve) =07,  é+n+3/Vel* =0(6%) (2.12)
for ¢ > €. Therefore, taking the limit (2.11) of (2.12) and (2.10), we obtain
n o+ V(140" =b)Ve®) =0, ¢ +0° + 5Ve°P =0

with initial conditions
n” =mno + (b1 — bo), =¢o+ a/ Br(-,7)>dr att=0.

Finally, setting u® := V¢ and taking the gradient of the second equation, we are
led to the shallow-water equations

W4+V-(L+7°=b)u”) =0, w4 @’ V)u’+Vp’ =0 (2.13)

with initial conditions
7702770+(bl—b0), U —V(bo—i—V( / Br (T dT) at t =0. (2.14)

Moreover, u° satisfies the irrotational condition
rot u® = 0, (2.15)
where rot u is the rotation of a vector u = (u,...,u,)" defined by
rotu = (9ju; — 0;Uj)1<i,j<n-

Here we note that, in the case (19, ¢g) = 0, if we rewrite (2.13) and (2.14) in the
dimensional variables, then we obtain (1.1) and (1.3).
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We proceed to analyse a generalized Rayleigh—Taylor sign condition. It is known
that the well-posedness of the initial-value problem (1.4)—(1.7) for water waves may
be broken unless a generalized Rayleigh-Taylor sign condition —9p/dN = ¢y > 0
on the water surface is satisfied, where p is the pressure and N is the unit outward
normal to the water surface (see, for example, [3]). Wu [24, 25] showed that this
condition always holds for any smooth non-self-intersecting surface in the case of
infinite depth. In the case with variable bottom, Lannes [17] gave a relation between
this condition and the bottom topography. Constantin and Strauss [6] investigated
the pressure of Stokes waves over a flat bottom and also proved that this condition
holds for Stokes waves. We also mention the result of Ebin [8], where a motion close
to a rigid rotation of an incompressible ideal fluid surrounded by a free surface was
considered. It was shown that the corresponding initial-value problem is ill-posed.
In this case, a generalized Rayleigh—Taylor sign is not satisfied. One may think that
the vorticity breaks the condition but, even in the irrotational case, the condition
does not hold in a certain situation. In fact, Iguchi [10] considered an irrotational
circulating flow of an incompressible ideal fluid around a rigid obstacle and showed
that if the circulation is stranger than the gravity, then a generalized Rayleigh—
Taylor sign is not satisfied and the problem is ill-posed. In what follows we will
consider this important condition in the limit (2.11).

In the dimensional variables we have the so-called Bernoulli’s law

1 .
Py + | VxD* + ;(p —po) + 9(xns1 —h) =0 in £02(t), (2.16)

where p is a constant density and py is a constant atmospheric pressure. This
equation is obtained by integrating the conservation of momentum, that is, the
Euler equation

0= p(ve+ (v-Vx)v) + Vxp + pgeni1
1
=pVx (@ + 3Vx9|* + ;(p —po) + 9(Tni1 — h)),

where v = V x @ is the velocity and e, is the unit vector in the vertical direction.
We rescale the pressure p by p = pg + pghp. Putting this and (1.8) into (2.16) and
dropping the tilde in the notation, we obtain

—p =& + 2(|IVD|* + 67 %(0n+19)°) + (Tng1 — 1). (2.17)
Moreover, in the non-dimensional variables, the generalized Rayleigh—Taylor sign
condition can be written in the form a > ¢g > 0, where

a:=—(1486*|Vn|*)" (Ops1p — >V - VD) r ()

= —~(On+1D)|r@)

=1+ {0p11(D¢ + 5(IVP* + 072(8,419)*) H rs)

=14 (On419t + V@ - V0, 11P — (0n1P)AD)| 1), (2.18)
where we used the relation (VQ)|r@) = V(Q|r)) — (0n+1Q)|r) V7, the boundary
condition on the water surface (1.10) and the scaled Laplace equation (1.9).

We now consider the asymptotic behaviour of this function a in the limit (2.11),
so that we can assume 62 = O(g). We note that @ satisfies (1.9), (1.11) and (1.14),
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and that we have (1.12). Therefore, as in the same calculation in the previous
section, we see that

52 52
VO =V¢——pVn— —(1+n=z011)Vfr + 0(57)

and that

52 52 52
On1® = ;ﬁr +8°Vb - <V¢ - ?&V?? - ?(1 +n— b)vﬁr>

52 52
— (21— b) (v : (w - 6@%) - =V vm)
52 §2

=T mn) — (= H))AB, +O(5").
Here, it follows from (2.8) that
1 1/65 2 ) 52
N = gﬁT +0(1) ¢ = o\ B +0(1), Vo, — ;5rvnt =0(1).

Therefore,

(On+1P0)| Py
5\ 52 52 52\
= < ) (1= &*|Vnl*)Brr + EV-@((W— 5@%)) - ( )@W V-

: B
2
+ (L) V- (008 Tn 4 H1 0 07950) + 0

Putting these into (2.18), we obtain
5\ i 1o 52 82
a=1+ g (1 -0 |V77| )ﬁTT—i_Q? Vo — ;BTVTI -VB;

+ (f) V(L7 =0)(V)Brr + 5(1L+1=0)*V6,) +0(8%).  (2.19)

On the other hand, in view of (2.9) and (2.11), we define an approximate solution
(7®, ) in the fast timescale 7 = t/e by

Oz, 1) == no(x) + Bz, 7) — B(x,0), ¢ (x,7):= ¢o(z) + ;U/OT Br(z,7)? d7.

(2.20)
Then, we have, at least formally,

n(z,t) = O (z,t/e) + O(e),  ¢(x,t) = ¢ (x,t/e) + (1)

for (z,t) € R™ x [0,¢]. Taking this and (2.19) into account, we define a function
al® = 40 (z,7) by

a® =2V — 08, V). Vs,
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where (79, $(9)) is the approximate solution defined in (2.20). We note that this
function a(?) is explicitly written out in terms of the initial data (10, ¢0), the bottom
topography 3 and the constant ¢ in the limit (2.11). Then, by (2.19), we see that

et (o () <)o (2
+0< (0)( >+Caﬁrf( f:)) +o(1), (2.22)

where C' > 0 is an arbitrary constant. Therefore, the generalized Rayleigh—Taylor
sign condition is satisfied if the following conditions are fulfilled. The conditions
depend on the relations between § and e.

AsSUMPTION 2.1. There exist constants C,c¢ > 0 such that, for any (z,7) € R™ x
(0,1), the following conditions are satisfied.

1. In the case §/e — 0, no conditions are satisfied;

2. in the case §/e — v, 1 + V26, (x,7) > ¢;

3. in the cases where §/¢ — oo and §?/e — 0, B (z,7) = 0.

4. in the cases where §/¢ — oo and §%/e — o,

Brr(x,7) =0, 1404 0CBr)(x,7) > c.

From a technical point of view, we also impose the following condition.
ASSUMPTION 2.2. For any (x,7) € R™" x (0, 1) the following conditions are satisfied.

1. In the case §/e — v, no conditions are satisfied.

2. In the case §/e = 00, Brrr(z,7) < 0.

The following theorem is one of the main results in this paper and asserts the
existence of the solution to the initial-value problem for the full water-wave problem

with uniform bounds of the solution independent of § and ¢ on the time interval
[0,¢].

THEOREM 2.3. Let My, co >0, 7 > %n, and s > %(n +9). Under assumptions 2.1
and 2.2, there exist constants Cy, o, 0,70 > 0 such that, for any 6 € (0,0¢], € €
(0,0], (170, 60) and b satisfying |6%/= — o] < v, (1.12) and

18T s+9/2 + 18- (T)lsx5 + 1| Brr (Tl s1 + | Brrr (T) 42 < Mo,
IVdolls+3 + lIn0lls+a < Mo, 1 +no(z) —bo(x) = co  for (x,7) € R" x (0,1),

the initial-value problem (1.15), (1.16) has a unique solution (n,¢) = (n°°, ¢%¢) on
< Cy (E +
5+2 s+2

the time interval [0, €] satisfying
1775 (@)l s43 + VO™ ()]l s+2 < Co,

\ e () = (t) (1)~ o (t> E
2 <
1+ %% (x,t) — bz, t) > ico  for (z,t) € R™ x [0,¢],

+ — — 0
e
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where (79, ¢(0)) is the approzimate solution in the fast time variable T = t/e
defined by (2.20).

Once we have obtained this kind of existence theorem for the solution with uni-
form bounds, by combining the existence result obtained in [11] where the case of
a fixed bottom was investigated, we can easily consider the limits §,& — 0 of the
solution (n>¢, ¢>¢).

THEOREM 2.4. Under the same hypothesis as theorem 2.3, there exists a time T > 0
independent of 6 € (0,30] and € € (0,&0] such that the solution (n>¢,¢%<) obtained
in theorem 2.3 can be extended to the time interval [0,T] and satisfies

1<) = 0° (@)l|s—1 + IV **(t) — u®(t)l|s—1 < Cole +18%/c —al) fore <t<T,

where (n°,u®) is a unique solution of the shallow-water equations (2.13) under the

initial conditions (2.14) and u® satisfies the irrotational condition (2.15).

ADN ANN ADD
9 9

AND

3. The operators and

Throughout this and the next sections the time ¢ is arbitrarily fixed, so that £2(¢),
(), X(t), n(x,t) and b(x, t) are simply denoted by 2, I, X, n(x) and b(x), respec-
tively. Introducing an (n + 1) x (n + 1) matrix I5 by

E, 0
I‘“(o 51>7

where FE,, is the n X n unit matrix, we consider the boundary-value problem
Vx -I}Vx¢=0in2, d=¢onl, (Vb,—1)T -I}Vxyd=ponX. (3.1

We note that the first and the third equations in (3.1) with 8 replaced by —e 14, are
nothing but those in (1.9) and (1.11), respectively, and that the second equation
in (3.1) corresponds to (1.14). Under suitable assumptions on n and b, for any
functions ¢ on I' and B on X in some class of functions, there exists a unique
solution @ of the boundary-value problem (3.1).

DEFINITION 3.1. The solution @ will be denoted by (¢, 3)". Using the solution @
we define the linear operators APN = APN(n b §), ANN = ANN(5 b §), APP =
APD(5,b,6) and ANP = AND (5.1, 6) by

ADN(Th ba 6)¢ + ANN(% bv 6)ﬁ = <_V777 1)T : Ic?(VXé)(7 1+ 77())7

ADD (77’ b7 6)¢ + AND (T]v b7 6)ﬂ = qj(a b())7
which are called, respectively, the Dirichlet-to-Neumann (DN) map, the Neumann-
to-Neumann (NN) map, the Dirichlet-to-Dirichlet (DD) map and the Neumann-

to-Dirichlet (ND) map. In what follows, we write ADN = APN(0,0,6), AN =
ANN(0,0,6), APP = APP(0,0,8) and AFP = ANP(0,0,6).

PRrROPOSITION 3.2. We have

D 5 1
AN = Pl n@ipy, AP = L tan@spl), AN = PP = L
0 5 tan (5| |)7 0 |D| tan (5| |)7 0 0 COSh((S‘DD

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

562 T. Iguchi

Proof. In the case (n,b) = 0, the solution of (3.1) can be written explicitly in terms
of Fourier multipliers as

cosh(d|D|zp+1) 0sinh(8|D|(1 — zpt1))

Pemn) = o0 Ot Dleoh@D)

so that we easily obtain the desired expressions. O

PROPOSITION 3.3. The operators APN and ANP are symmetric in L?, and the
adjoint operator of ANN in L? is equal to —APP. That is, for any ¢, € H' and
any B,y € L?, it holds that

(APNp, ) = (¢, APNy),  (ANPB,7) = (8, ANPy),  (ANNG,¢) = (8, APPy).
Proof. Set & := (¢, 3)" and ¥ := (3),7)". By Green’s formula we have

0= / (Vx - I}Vx®W —d(Vx - [3VxW))dX
2

:/ (N - I;Vx®)W — &(N - [;Vx¥))dS
o9

= (APNG+ ANNG, ) — (6, APN + ANNy)
+ (8, APPY + ANPry) — (APPg 4 ANP B, ),
where N is the unit outward normal to the boundary 0f2. By setting (5,v) = 0,

(¢,9) = 0 and (4,7) = 0 in the above equality, we obtain the respective desired
identities. O

Similarly, as a simple application of Green’s formula, we have the following
lemma.

LEMMA 3.4. For any ¢ € H' and 3 € L?, it holds that (APN¢, ¢) = ||L5VX@||2L2(Q)
with @ = (¢,0)" and that (ANP, 3) = HI5VXW||%2(Q) with ¥ = (0, 8)".

In a derivation of the linearized equations for (1.15), we need an explicit formula
of the Fréchet derivatives of the operators APN and ANN with respect to 7. The
Fréchet derivative of APYN was given in [17] and we can generalize the formula as
follows.

THEOREM 3.5. The Fréchet derivatives of APN(n,b,8) and ANN(n, b, §) with respect
to n have the form

Dy APN (1, b,6)[11]¢ + Dy ANN(n, b,6)[17]8 = =67 APN(n,b,6)(Z7) — V - (vi),
where

Z = (14 8*Vn|?) " (APN(1,b,8)¢ + ANN(1,b,8)8 + V- V), 52)
v="VN¢—62ZVn. '

Proof. First, we will give an intuitive derivation of the formula. We take ¢,, 5 €
Cs°(R™) and set @ := (¢, 3)" and ¥ := (¢,0)", namely, & and ¥ are the solutions
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of the following boundary-value problems:
Vx - IVx® =0, Vx - IZVx¥ =0in £,
b= ¢, U =1 onl, (3.3)
(Vb,-1)T - I2Vx® =3, (Vb,—1)T - IZVx¥ =0o0n X.

These solutions depend not only on X but also on 7, so that we also denote these
solutions by @ = &(X) = &(X;n) and ¥ = ¥(X) = ¥(X;n). Here, we note that

y d y
(Dy AP (1,b,6) )6, ) = - (AP (n + hin, b, 0), )| (34)
h=0
By Green’s formula and proposition 3.3, we see that
/ IsVx®  I5VxPdX = (N - IEVx®)WdX
Q an
= (APN¢ + AN, ) + (8, APPy)
= (A%g, ), (3.5)
so that

(APN(n + hij, b,8)¢, )

1+n(z)+hi(zx)
= / (/ IV x®(X;n+ hi) - IsVx¥(X;n + hi) dan) dx.
R™ b(x)

We expand formally the solutions ¢(X;n + h1) and ¥(X;n + h) as
D(X 30 + hif) = D(X5n) + P1(X)h+ O(h?), (3.6)
W (X;n+ hij) = ¥(X;n) + ¥ (X)h + O(h?). '

Then,

d
@(ADN(’” + hﬁ7 ba 6)¢7 w)

= / (L;VX451 IV xW + IsVx® - LsVX!pl) dX
h=0 0

+ / (1Y x® - T5V x )| pij da
— T+ . (3.7)

It follows from the boundary condition on the water surface and the expansion (3.6)
that

d(x) = P(x,1 +n(x) + hij(x);n + hi)
= &(z, 1 +n(x);n)
+ h{(On1®) (2, 1+ n(x); n)i(x) + D1 (z, 1+ n(x))} + O(h?),

which implies that @1|r = —(0,4+19P)| 7. Similarly, we have ¥1|r = —(9p419)| 7).
On the other hand, by taking the trace of the expansion (3.6) on the bottom X' and
using the definition of the DD map APP, we get

APP (1) + hip, b, §)p = APP (1,b, )¢ + hi |5 + O(h?).
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This and proposition 3.3 imply that

0|5 = Dy APP[ijjep = —(D, AN [i])* 9.
Therefore, by Green’s formula we see that
J = —/ (P1(Vx - IIVxW)+ (Vx - [}V xP)¥)dX
(]
+ / (®1(N - IZVxW) + (N - I}V x®)W;)dS
o

== [ (@I (A”0) + (A6 + 4 5) 0,09 )i
= (Dy A (1], 0).

On the other hand, in view of the relations (VQ)|r = V(Q|r) — (0n+1Q)|rVn we
get

Ja = / (V(b -V — (67L+1¢)|FV77 -V — (8n+1u7)‘1“vn Vo
+ 6721+ 82| Vn2) (00110041 P)| )7 dar.

These, together with the relations

(On1®P)|r = 62(1 + 62|Vn|?) "L (APNg + ANNB 4V - Vo) = §°Z,
(On+1%)|r = 6% (1 + 8°|Vn|?) "1 (APNy + Vi - V),

yield that

(D, APN[i]6 + Dy ANN[]3, ) = / (V6 Vi — 82 Z(A°Ny + Vi V)i da

n

= —(82APN(Zn) + V - (v0), ),
where we used the symmetric property of APN stated in proposition 3.3. Since the
above equality holds for any ¢ € C§°(R™), we obtain the desired formula.

Next, we will justify the above formal argument. Note that the expansion (3.6)
has no sense because the domains of definition of the left-hand side and the right-
hand side are different. Therefore, we need to give a good definition of @, (X)
and ¥;(X) in order to obtain the formula (3.7). To this end, we use a diffeomor-
phism X = Z(Y;7) from a simple domain 25 := R™ x (0,1) to the water region
2 ={X e R"™Yb(x) < 241 < 1+ n(z)} defined by

zj =y, 1<i<n, Zapr = b(Y) + ynpr(L+0(y) = b(y)).
For any function f = f(X;7) defined in 2, we set f(Y;n) := f(Z(Y;7n);7n), which

is a function in the fixed domain (2o, so that the Fréchet derivative of this function
f(Y';m) with respect to n has a sense. For simplicity, we write f,, = D, f[]. Then,
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we see that

14n(z)+hi(z)
/ (/ f(X;n+h77)dxn+1> dz
n b(x)
/ (/1+W(1)+hﬁ(f€) N

. f(:_l(X;n+h77);n+hﬁ)dxnﬂ)d
b(z
en(e) b
:/ </( : f(E (X;n+hﬁ);77)dzn+1) dx
n b x

1+1]( l?)-‘rhﬁ(l:)
n b

FAEHCX 0+ ) o ) da -+ O(R2)
(z)

This, together with the simple identity

ten@) tha@)
/b() FE (X5 + b)) dzng

(it i) [, e

’ 77) dxn"rl
b(x)
implies that

d 140 (2)+hij(@) (
- J(Xsn+hi) de,
dh Jgn ( /b(z) *

L (e e

——1y. ). Tt -

Here, using integration by parts, we have

) () T
/b(x) mf(” (X7 77>a 77) danrl

e e [T A = bE) o
= i@ = [ 0n HET (Xim)

; 77) dmn+1
:W@f@ﬂ+w@%ﬂ%i/Hmwﬁ@x%wl_M@%&wﬁmeﬁmmy
b(z) L+ mn(z) — b(z)
Therefore, we obtain

dx

d 1+n(z)+hi(z)
4 ( / F(Xsn+ i) dan) a
dh Jrn \ Ji(a)

= f(w,1+n(w);n)ﬁ(x)dx+/ f1(X)d
R 0
where

X, (38)
f1(X) = fn(Efl(X;n)) _ N(z)(xp+1 — b(x))

(3.9)
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Now, for the functions & = ¢(X;n) and ¥ = ¥(X;n) defined by (3.3), we define
&1 and ¥; as in (3.9) and apply the formula (3.8) to the function f(X;n) =
IsVx®(X;n) - IsVx¥(X;n). Then, by a straightforward calculation, we see that

FX) = [5Vx®1(X) - [V xW(X;1) + IV xB(X;n) - IV x ¥ (X),
so that we recover the formula (3.7). Moreover, in view of the relations (-, 1;n) = ¢,
¥(-,1;m) = and ¥(-,0;n) = APP(n,b,6)1, we have
$(, 1) =0,  F(,1)=0,  (-0) = DyAP[if]e.
Therefore, it follows from (3.9) that &1|p = —(0n4+1P)| 7, Y1lr = —(On+1¥)|r7) and
¥ | = D, APP[7]y, and that the previous formal argument is justified. O

THEOREM 3.6. The Fréchet derivatives of APN(n,b,8) and ANN(n, b, §) with respect
to b have the form

DbADN (777 bv 5)[6]¢ + DbANN (773 b7 5)[5]6 = 7ANN (77, b7 5)(V . (wi)))a
where

W= (1+52|Vb|2)1(—ﬁ+Vb~V(ADD¢>+AND5))’} (3.10)

w = V(APP ¢ + ANP3) — $2WVb.
Proof. We will only give an intuitive derivation of the formula. The formal calcu-
lation can be justified as in the proof of the previous theorem. We take ¢, 1,5 €
C§°(R™) and let ¢ and ¥ be the solutions of the boundary-value problems (3.3).
Since we are considering a variation of the maps with respect to b, we denote the
solutions by ¢ = ¢(X) = ¢(X;b) and ¥ = ¥(X) = ¥(X;b) and expand them
formally as

B(X; b+ hb) —@(X;b)+¢1(X)h+O(h2)’} (3.11)

(X;b+ hb) = W(X;b) + ¥ (X)h + O(h?).
Then, in place of (3.7), we have

d .
77, (A% (0, b+ hb, 6), )

h=0

= / (I&VXQH IsVxW + [sVxP - L;VXQQ) dX
2

f/ (I;Vx® - IsVx¥)|sbdx
= J; + Jo. (3.12)

By taking the trace of the expansion (3.11) on the water surface I and using the
boundary condition, we get 1| = ¥1|r = 0. By taking the trace of (3.11) on the
bottom ¥ and using the definition of the map APP, we see that

(AP (1, b+ hb, 6)y)(x)
= W(z,b(x) + hb(z); b + hb)
= (APP (1,0, 8)¢)(2) + h{(Op41%) (2, b(); b)b(z) + W1 (z, b(2)) } + O(h*).
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This and proposition 3.3 imply that ¥;|s = — (D, ANN [B})*?ﬂ — (8n+1y7)\26. There-
fore,

Ji = / (B1(N - I}V xW) + (N - IZV xD)W;)dS
an
= —(DpANN[B)B, ¥) — B(On+1%)|sbda.
Rn
On the other hand, we have

Jr=— [ {V(2[z) - V(¥|g) = (0n+19)|sVb - V(¥|5)
R’VL
— (O 19)| £V - V(D) 4+ 672(1 + 62|VD|*) (04 1¥0p 4 1D) | 5 b daz.
In view of the relations @|x = APP¢ + ANP3, |y, = APP4) and

(On18)|5 = 0%(1 + 82| VB2) " (=B + Vb V(AP + ANP ) = 62,
(Oni1 )] = (1 + 62| VbP) ™ (Vb - V(APPy)),

we see that
(DyAPN[b]¢ + Dy ANN[5] 3, 1))
= —/ (V(APP ¢ + ANP ) . v (APPy) — 62W (Vb - V(APPy)))bdx

= —(AYN(V - (wh)), ),

where we used proposition 3.3. Since the above equality holds for any ¢ € C§°(R"),
we obtain the desired formula. O

THEOREM 3.7. The Fréchet derivatives of APP(n,b,8) and ANP (n, b, §) with respect
to n have the form

Dy APP (0,1, 8)[11)¢ + Dy AN (0, b, 8)[17)3 = 62 APP (n, b,6)(Z7),
where Z is given by (3.2).

Proof. We take ¢, 3,7 € C5°(R"™) and set @ := (¢, 3)" and ¥ := (0,7)". Then, in
place of (3.5), we have

(ANP B ~) = /Q IsVx® - IsVx¥dX. (3.13)

We expand formally the solutions &(X;n + h7) and ¥(X;n + h7) as (3.6). Then,
as in the previous theorems, we see that

(D ANP[7)B, ) = / (@1|r ANy + (APN G + ANNBY | + 1|57y + B | 5) da

+ / (I,Vx® - [,V x )| pij da.
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Here, we have
P1|r = —(On+19)| 1, | r = —(Ont1¥)| i,
b1|5 = DyAPP[ilg + Dy ANP ()5, |5 = (DyANP[i]) ",
so that we obtain
(D APl + Dy ANP[] B, )
= / ((0pn1®) | P ANNy 4 (APNp + ANN3) (0, 10| — (IsV x® - IsV x W) | )7 dx
= —82(APP(Zi)), ).

Since the above equality holds for any v € C§°(R™), we obtain the desired formula.
O

THEOREM 3.8. The Fréchet derivatives of APP(n,b,8) and ANP (n, b, §) with respect
to b have the form

Dy APP (0, b, 8)[b]6 + Dy AP (n, b, 8)[b)3 = 6 Wb — A¥P (1,0, 0)(V - (wb)),
where W and w are given by (3.10).

Proof. We take ¢, 3,7 € C5°(R™) and set @ := (¢, 3)" and ¥ := (0,7)". Then we
have (3.13). We expand formally the solutions &(X;b + hb) and ¥(X;b + hd) as
(3.11). Then, as in the previous theorems, we see that

(DpANP[B]B,7) = /n(¢1|r/1NNV + (APNG + ANV | 1+ &1y + B |5) da

—/ (I;Vx® - IsV x¥)|sbdz.
Here, we have

$i|lr =W|r =0,
D1|x = —(0n119P)|5b + DyAPP B¢ + Dy ANP[B]3,
V|5 = —(0p119)|xb + (D ANP[B])*,

so that we obtain
(DyAPP[b]¢ + Dy ANP[5] 3, )
- /Rn«aw@nm + B(On1®) |5 + (VX P [V x0)[2)bdx
= (3*°Wb — ANP(V - (wh)), 7).

Since the above equality holds for any v € C§°(R™), we obtain the desired formula.
O

In reducing the full nonlinear equations (1.15) to a quasi-linear system of equa-
tions, we also need explicit formulae of second-order Fréchet derivatives of the maps
APN and ANN| which are given in the following theorems.
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THEOREM 3.9. The second-order Fréchet derivatives of
APN(n,b,8) and ANN(n,b,0)
with respect to n have the form
Dy APY (1, b, 6) [ 11216 + Dy ANN (0, b, 6) i1, 7] 3
= 32{APN(1,0,8)((1 + 6%V [*) " (A@)inine)
=V (148 V*) T (Ad) i V) + A(Ziji2)}
+ 61 {APN (1,6, 8) (1 + 8%V*) " (11247 (n, b, 6)(Z1n)
+ i AP (1,0,6)(Z7) + ZVn - V(ihila) — i Z An))
=V (L4 0%V )7 (24PN (0,0, 0)(Zin) + i AN (0, b,6) (Z172)
+ ZVn - V(i) — mieZAn)Vn)},
where Z is given by (3.2).
Proof. 1t follows from theorem 3.5 that
Dy, APN[ii]¢p + Dy ANN[i11] 3
= =52 APN((1 + 62| Vn|?) " H(APNg + ANNB + V- Vi)

—V - {(Vo — 621+ 62|Vn|?) " 1(APNg + ANNG 4V - V¢)V77)77(1}. )
3.14

Taking the Fréchet derivative of (3.14) with respect to 1 once again, we obtain
D APN [y, 2] + D ANN [y, 2] B
= —0" Dy AN [2)(Z i)
— 82 APN{(=26%(1 4 6%|Vn|*) "1 Z(Vn - Vi)
+ (14 0%[Vn?) = (Dy AN [i2] ¢ + Dy AN [112] B + Vi - V) )il }
=V {28 (1 + 0% V)Tt Z(Vn - Vi) Vi
= 0*(1+ 6%|V*) " (Dy APN[if2] 6 + Dy ANN[i12] B + Vi - V)V
ALY

Here, we again use theorem 3.5. Then, a straightforward calculation gives the
desired identity. O

THEOREM 3.10. The second-order Fréchet derivatives of the DN and the NN maps
with respect to n and b have the form

Dy Dy AP (1,0, 8)[1,0]¢p + Dy Dy AN (0, b, 6) 17, b]3
= 624 (1. b,6)V - {b(V (AP (n, b, 6)(Z))
— 0*(1 4 6°|Vb]*) " (Vb - VAPP (1,b,6)(Z1))Vb)}
+82APN (1,6, 0)(77(1 + 82| Vn|*) = ANN (1, b, 6)V - (wb))
= 0°V - ((1 + 6% V) THANT (1, b,6)V - (wb)) V),
where Z and w are given by (3.2) and (3.10), respectively.
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Proof. Taking the Fréchet derivative of (3.14) with respect to b, we obtain

D, Dy APN [, Bl¢p + D, Dy ANN[i7, b]3
= —62Dy APN[B](Z77) — % APN((1 + 62|Vn|>) (D APN[b]¢p + Dy ANN[B]8)71)
=V - {(=02(1 + &%|Vn|?) " (Dp APN[b]¢ + Dy ANN[B] 3) V)i }-

We use theorem 3.6 in the above expression. Then, a straightforward calculation
gives the desired identity. O

4. Some elliptic estimates

In the next section we will give operator norms of the operators APN, ANN  ADD
and ANP in Sobolev spaces. Especially, we will analyze carefully the dependence on
the small parameter J to obtain uniform estimates with respect to §. Since these
operators depend on the unknown function 7, we also have to accurately examine
the dependence on regularity of 7.

In order to give such estimates, we need appropriate estimates of the solution @
of the boundary-value problem (3.1). In this section we prepare elliptic estimates
of the solution, noting in particular the dependence of § and the regularity of 7.
To this end, it would be convenient to transform the problem (3.1) on the water
region {2 into a problem on a simple domain (25 := R™ x (0,1) by using an appro-
priate diffeomorphism © = (01,...,0,,,60,11): 2y — §2, which is conformal in the
tangential and the normal directions on the boundary in some sense. As in [11], we
define such a diffeomorphism as follows. We take functions 6 = (01,...,60,,60,4+1)
satisfying the conditions

0;(z,0) = 0;(x,1) =0,
n+19 (x,0) = —0;b(z), Opt16,(x,1) =—-0;n(z) for 1< j<n,
nt1(2,0) = b(x), On+1(2, 1) = n(x),
n+19n+1(xv ) n+19n+1($7 1) =0,

0
0
4.1
. (41)
0
and define the diffeomorphism © by
QJ(X) =X, + (529](X) for 1 <j g n, 9n+1(X) = Tnp+1 + 0n+1(X) (42)

We set @ := $ o0 O and
-1 —1\T
e () () () )
The matrix P has the property

P(z,O)_(; ?) P(x,l)_<; (1)> (4.4)

which means that the diffeomorphism © is conformal in the tangential and the
normal directions on the boundary, so that the Neumann boundary condition on
the bottom is transformed into the Neumann condition again with a very simple
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normal vector N = (0,...,0,—1)T. Therefore, the boundary-value problem (3.1) is
transformed into

Vx - IsPI;Vx® = 0 in £2, & =¢on Iy, —0720,1P = B on Xy, (4.5)
where Iy and Xy are upper and lower boundaries of £29. Moreover, it holds that
APN(1,b,8)p + ANN(1,6,8) 3 = 672 (D11 @) (-, 1),
APP (1,b,8)¢ + ANP(1,b,8)3 = &(-,0). }

We will impose the following conditions on the water surface and the bottom.

(4.6)

ASSUMPTION 4.1.
(Ay) There exists a C'-diffeomorphism ©: 0y — (2 satisfying (4.1), (4.2) and the

conditions
06
det a—X(X) >c>0 and |Vx0(X) <M for X € (.
(As2)
IVxO(, 2ni1)llg < M for 0 < xpqq < 1
(As)
||Jq+1/2VX0HL2(QO) < M.
(A4)

IV x (D010 B ) s + 1542V x (D 01, B) | 2220
< M(Jillssr + blls+1) for 0 < anys <1, 5€R,
and 6 depends linearly on (7, b).

The construction of a diffeomorphism © satisfying the above conditions was given
in [11]. More precisely, we have the following proposition.

PROPOSITION 4.2. Letr > %n, c1, My > 0 and suppose that n,b € H'" satisfy the
conditions

Inllier + [bller <My, T+n(z) —b(z) 21 forz e R™

Then, there exists a constant 61 = §1(My,c1,7) > 0 such that, for any 6 € (0,61],
we can construct a diffeornorphism © satisfying the conditions in (Ay). Moreover,
for any s € R and k € N, we have

|75V x 01| 2 (20)

sup (|0 11605 w1 s
0<1n+1<1

Crllnlls41/2 + 1blls+1/2),
Co(|nlls+x + 1Bl s4),

NN

(4.7)

where C1 = Ci(c1) > 0 and Cy = Ca(c1,k) > 0. In the case where n and b also
depend on the time t, for any |l € N, we have

1T 500|220y < Co (1000 a1 /2 + [0 [s1/2),
4,
sup (05 1000, 2nsrs Dlls < CollO(O) s + 1O s, (4.8)

0<zyr 1<l
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We proceed to give elliptic estimates for (4.5) in Sobolev spaces. Although stan-
dard theory for elliptic equations could provide an estimate of the solution, such an
estimate depends strongly on the parameter § and it does not give a uniform bound
of the solution with respect to small §. Therefore, we will perform an estimation
of the solution with particular care on the dependence of the parameter é and on
regularity of 1. The following six lemmas were slight modifications of those given
in [11].

LEMMA 4.3. Under assumption (A1), there exists a constant C = C(M,c) > 1
independent of § such that we have

CHIsVxP|l 20 < ||16VX4~5||L2(90) < COLVxP|r2(0)
where ® = P 0 O.

LEMMA 4.4. Under assumption (A1), there exists a constant C = C(M,c) > 1
independent of § such that, for any ¢ € H*, we have

CTHIAT™)V29lI> < (APNg, ¢) < OlI(AFT) 24,

LEMMA 4.5. Let r > in. There exists a constant C = C(r) > 0 independent of §
such that we have

I[(A5™) 2, alull < ClIVall flull, — I(AF™)?, alull- < C|[Vall,ull.-
LEMMA 4.6. For any s € R, we have

1(AT™)2¢|s < min{[|[ V|, 62| p]|s11/2},
IVolls < v2(1+ 8) [ (AFN) /20| s510-

LEMMA 4.7. For any s € R and r > %n, there exists a constant C = C(s,r) > 0
independent of § such that we have

I(AT™Y2(@0)lls < CUIBIAIAT™) 20 s + 1011 (ATN) 2]
+ (AT 2l + (AT 281 11]s)-

LEMMA 4.8. For any s € R and r > %n, there exists a constant C = C(s,r) > 0
independent of § such that we have

1(AF™) 2172, 9]V | < CUIVY e (AT 205 + IV 1(AT™) 2Bl -41)-
LEMMA 4.9. For any function @ defined on 2y, we have
1(AB™) 28, 0)[| < 115V x Bl 2(20) -
Proof. We take ¢ € HY arbitrarily and set

. cosh(8|D|(1 — x,41))

V(- Tnt1) = cosh(4| DY) v

which is a solution of the boundary-value problem

Vx - I2Vx¥ =0 in §2, On1¥ =0 on I, U =1 on X.
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Then, it holds that —6~28,,1%(-,0) = APN4. By Green’s formula, we see that

= ‘/ O(N - I3V V) dS’
o

_ ‘ / IV x® - [sV 50 dX‘
0

<ALV x| 12 20 [(ATN) "2 IS5V x W || 122
= IV x (AT™)2®) || L2 (0) 1],

which gives [APNG(-,0)|| < ||L;VX((AODN)1/243)||L2(QO). If we replace (APN)Y/2@ by
@ in this inequality, then we obtain the desired estimate. O

As a preliminary step, we will consider the boundary-value problem

Vx - IsPIsVx® =V -IsF + f in (2, & =0 on FO,} (49)

—0728,11P = B+ (APN)Y/2~ on X,
where the matrix P is given by (4.3).

LEMMA 4.10. Under assumption (Ay), there exists a constant C = C(M,c) > 0
independent of § such that the solution @ of (4.9) with F,,+1(-,0) = 0 satisfies

5V x Bl 2 (020) < CUIE I 12(20) + 197" Fll2(320) + SNIBI + 171

Proof. Taking the inner product of the first equation in (4.9) with & and using
Green’s formula and the boundary conditions, we see that

CHIsV xP| 12 (02) g/ PIsVx® - IsVx®dX
o

— [ (P 139xd - fB)AX + [ (B4 (ABN) )0 do
20

n

<2200l sV x| r2(20) + 1771 Fll 22 20) 1 TP | 12 (620)
+ 18IS, 0] + [V (ATN) 29 (-, 0)].

Here, we easily get

o nll = [ @b a:

<OV XD 12(04),

17D 22 (20) < 19l L2(020) + IVl L2(020) < (6 + D5V x| 12(025)-

Therefore, by applying lemma 4.9 to the last term in the above estimate, we obtain
the desired estimate. O

LEMMA 4.11. Let s > in+ 1. Under assumptions (A1) and (As) with ¢ = s, there
exists a constant C = C(M,¢,s) > 0 independent of 6 such that the solution @ of
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(4.9) with Fy,11(-,0) = 0 satisfies
17° 15V x D) 22 (20) < CUT*Fllz2ao) + 157" fllzz(0) + 81B81s + I71ls)-
Proof. Tt is easy to see that J*® satisfies
Vx - IsPIsVxJ°® =V - Is(J'F — [J*, PlIsVx®) + J°f in £,
J® =0 on Iy,
—0720, 1 5P = J B + (ADN)V/2 75y on X,
and that N - [J®, P]I;Vx® = 0 on 082 thanks to (4.4). Therefore, by lemma 4.10,
we obtain
17° 15V x D 12(20) < CUIT*Fll2(00) + 7%, PIsVx D20
T fllz2 () + 0118l + I171s)-

The second term on the right-hand side can be evaluated by a commutator estimate
I[7%, alul| < C||Valls—1|lu||s—1, an interpolation inequality ||u|ls—1 < €llu|| + Ce||u]|
for € > 0, and lemma 4.10, so that we obtain the desired estimate. O

LEMMA 4.12. Let s > 3n. Under assumptions (A1) and (Az) with ¢ = s+ 1, there
exists a constant C = C(M,¢c,s) > 0 independent of  such that the solution ® of
(4.9) with Fy,11(-,0) = 0 satisfies
17°(AG™) 2 15 x B | 2 02
< C(T* (AT 2 F | 1200y + 177 (AT Y2 Fll 22 (620
181l + ATyl + 1F 2220y + 17 Fllzzcany + 7). (4.10)
Proof. Tt is easy to see that (AFN)Y/2® satisfies

Vx - IsPI;Vx (ADPN)/26
= Vx - I5((APN)YV2E — [(APN)Y2 P15V x @) + (ADN)Y2 £ in 0,
(APNYY/26 — 0 on I,
—67 2001 (ATN) V2B = (AT)2(B + (ATN)!/27) on 5,

and that N - [(ADN)/2 P]I;Vx® = 0 on 862 thanks to (4.4). Therefore, by
lemma 4.11, we obtain

[T (AP Y215V x| 12 (02
< C(IT (AT Y2 F | p2 ) + 175 [(ATN) 2, PIIsV x P 12( )
+ 17 AT Y2 Fll 20 + 181s + 1(ATN)21)-

Here, an interpolation inequality and lemma 4.6 imply that

lulls < €llVaulls-1/2 + Cellull < 2€ll(AFN)?ulls + Cellul.
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Thanks to this and lemma 4.5, the second term on the right-hand side of the above
estimate can be evaluated as

17 1(AG™)Y2, PV x|l 120
< [T AN IV x| 12 (29) + CellIsV x P 122
These estimates, together with lemma 4.10 give the desired estimate. O

LEMMA 4.13. For any s € R, the solution @ of (4.9) with F41(-,0) = F,1(-,1) =
v = 0 satisfies

0210419, 1)l < [[T5(AF™) 2 PIsV x D 12 (12
+ (AT Y2 F |20y + 17 Flp220) + 18-
Proof. We take ¢ € HY arbitrarily and define ¥ by

- cosh(é|D|zy41)

V(- Tntr1) = Wﬂ%

which is a solution of the boundary-value problem
Vx - I2Vx¥ =0 in £2, W =1 on I, On1¥ =0 on X,

so that we have || (APN)"Y2I,V x| 12(0y) = || and @] 12(0,) < [|#]|. By Green’s
formula, we see that

/ JSPIsV x® - 5V x ¥ dX
20

= —/ (JS(VX-15F+f))¢7dX+/ (N - J*IsPI;V x &)W dS
20 9820

:/ (JEF - IsVxW — (JS )W) dX + (672T°0,01D(-, 1), ) + (JB, ADPp).
2

Therefore, by propositions 3.2 and 3.3, we obtain
(67200 119(-,1), )]

= ‘ / (J3(ADNV2(PIsV x D — F) - (ADN) V259 x W 4 (J° f)¥) dX
20
+ (JEANB, )

< (12 (AT PPV x Bl 12() + 197 (AT) 2 F | 22
+ 177 fllz2 0y + 1Bl

which gives the desired estimate. O

LEMMA 4.14. Let s > 3n. Under assumptions (A1) and (Az) with ¢ = s+ 1, there
exists a constant C = C(M,¢,s) > 0 independent of § such that the solution @ of
(4.9) with f =0 and Fy11(+,0) = Fy11(-, 1) = v = 0 satisfies

07 2)10n118(, Dlls < CUIT* (AT 2 Fll2(0) + IF 252 + 115]s).
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Proof. By lemma 4.7 we have
172 (AGN) 2 PIsV x D[ 1202
< C(|T* (AP 215V x B r2 () + 1T sV x Dl 12 (24 )-
This and lemmas 4.11-4.13 give the desired estimate. O
Now we give estimates of the solution of the boundary-value problem (4.5).

PROPOSITION 4.15. Under (Ay), there exists a constant C = C(M,c) > 0 indepen-
dent of 0 such that the solution @ of (4.5) satisfies

15V x| 22(00) < CUIATN) 2] + 61|81

Proof. We set @, := (¢,0)", &5 := (~O,ﬂ)~h, @1~:: 106 and Py := Py 0 6. Then,
the solution can be decomposed as @ = & + P5. By lemma 4.10, we have

15V x P2 L2y < CO18].
It follows from lemmas 4.3, 3.4 and 4.4 that
IV x 1| 22(020) < CIIsV x D1 |20y = C(APN ¢, )Y/ < C||(APN)29).
Therefore, we obtain the desired estimate. O

PROPOSITION 4.16. Let s > in+ 1. Under assumptions (A1) and (As) with ¢ = s,
there exists a constant C' = C(M, ¢, s) > 0 independent of § such that the solution

@ of (4.5) satisfies
17° 15V x D 12 (20) < CUATN)20]ls +81]15)- (4.11)
Proof. Set &, := (J*¢,0)" and @, := P, 0 O. Then, we have
Vx - IsPIsVx(J°® — &) = —Vx - I5[J°, P|IsVx® in 2,
(J*d —B,) =0 on I,
0720, 1 (J5D — D) = T3 on X.
Therefore, by lemma 4.10, we obtain
15V x (J°@ = B,) | 1200y < CUII*, PUsV xBl|2(0) + 81151l5)
< | S IV x| 12(a0) + Ce(I 15V x Bl 12(00) + 5115l )-

(4.12)
On the other hand, by proposition 4.15, we have
15V xBall12(00) < CIHARY) 26,
These estimates, together with proposition 4.15, yield the desired estimate. O

PROPOSITION 4.17. Let s > in + 1. Under assumptions (A1) and (As) with q¢ =
s+ 1, there exists a constant C' = C(M,c,s) > 0 independent of 6 such that the
solution @ of (4.5) satisfies

175 (AF™) 215V x Bl 2 (20) < CUATN@lls + 1(4A5™) 2 lls + [181])-

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

A mathematical analysis of tsunami generation 577
Proof. Set @1 := ((APN)1/2¢,0)" and & := &, 0 @. Then, we have
Vx - IsPIVx (APN)2® — &1) = —Vx - I[(APN)Y2, PII;Vx® in £,
((A(])DN)IM@—@D =0 on Iy,
—0720, 1 (ADNY2P — 1) = (ADN)L/23 on Y.
Therefore, by lemmas 4.11 and 4.5, we obtain
17215V x ((AG™) /2@ — 1) || 2(020) < T [(AT™)V2, PV xB| 12002 + 18]])
S CUI° LV x| L2 (52 + IIBs)-
On the other hand, it follows from proposition 4.16 that
17° 15V x D1 | 22y < CIIATY 05
These estimates, together with proposition 4.16, yield the desired estimate. O

We proceed to give an L*-estimate of V x® in order to obtain a correct order of
¢ and the estimate under a weaker hypothesis on the water surface and the bottom.
As shown in [11], the matrix P has the form

p_ (14 Opt10n11)En + 62 P11 0p12
opty (14 Ong10nr1) "t + 62paa

where Pi1, p12 and pos are nxn, 1 xn and 1x 1 matrices whose elements are rational
functions of Vx6# and whose denominators are positive definite under assump-
tion (A7). Moreover, pio can be written in the form pip = p?Q + 62P1o, where
each element of pis is also a rational function of V x6 and

Py = —(1 4+ 0ns10n41) (Ons1(01, .., 0)" + (14 01 100n11)VOni1).  (4.13)
We note that it follows from (4.4) that
p12(z,0) = p12(z,1) = 0, po2(x,0) = paa(z,1) = 0. (4.14)
Using this notation we can rewrite the first equation in (4.5) as

an+1((6_2(1 + 8n+19n+1)_1 +p22)8n+1g13)
=-V- (((1 + 8n-&-len-ﬁ—l)E‘n + 62P11)V9§)
— V- (P120p119) — Ont1 (P12 - V).

Integrating this with respect to x,+1 and using (4.1), (4.14) and a boundary con-
dition in (4.5), we see that

(1 + Ons10ni1) " 4 0%pa2)0p 1@

Tn41 ~
=50 - 52/ V- (14 0y 10ny1)En + 62Py1)VO) day gy
0

Trt1 5 5
— 52/ AV (p128n+14'>) dl‘n_;_l — 52])12 -Vo. (415)
0
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We also have )

Vo=V — V0,1 P dxp s (4.16)

Tn41

COROLLARY 4.18. Let s > +n + 1. Under assumptions (A1) and (As) with ¢ = s,
there exists a constant C = C(M,c, s) > 0 independent of 6 such that the solution
D of (4.5) with ¢ = 0 satisfies

17°0n 119l 2(c20) + 17° 7 VBl 2(20) < CO°|Blls-

Proof. 1t follows from proposition 4.16 that ||Jsan+1é||L2(_QO) < 62||B]|s- This and
(4.16) show that

1757 VBl (20) < N1T°0n1Bll L2 (020) < 61615
The proof is complete. O

COROLLARY 4.19. Let s > in + 1. Under assumptions (A1) and (As) with ¢ = s,
there exists a constant C = C(M,c, s) > 0 independent of 6 such that the solution
d of (4.5) with =0 satisfies

175V | 12(020) < CII(ATT)?9 s,
17° 7 01 12(00) < CO*(I(AGTN) 20 5.

Proof. The first estimate comes directly from proposition 4.16. It follows from (4.15)
that [|J* 10,119 12(0y) < CO?||J*V x P 2(g)- This and proposition 4.16 give the
second estimate. The proof is complete. O

PROPOSITION 4.20. Let r > in. Under assumptions (A1) and (Az) with g =r+1,
there exists a constant C = C(M,c,r) > 0 independent of 6 such that the solution
@ of (4.5) satisfies

IVl (20) < CUNVSr + (AT 261 + 821 Bllrr1),
100118l < (20) < CE (AT 201+ [1Bllr41)-

Proof. Note that the assumptions imply the uniform boundedness of Pi1, pao, P12
and their first derivatives with respect to z. It follows from (4.16) and the Sobolev
inequality that

V| o (20) < CUIVSIl + 01T L5V x B 12 (02

which, together with proposition 4.16, implies the first estimate of the proposition.
Similarly, it follows from (4.15) that

041Dl oo (29) < CE* (1Bl + 1T IV x Dl 12 (20) + IVl Lo (24))

which, together with the first estimate, proposition 4.16 and lemma 4.6, gives the
second estimate. The proof is complete. O

COROLLARY 4.21. Let s > 1(n+3). Under assumptions (A1)~(As) withq = s — 3,

there exists a constant C' = C(M,e,s) > 0 independent of 6 such that the solution
D of (4.5) satisfies (4.11).
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Proof. The proof is the same as that of proposition 4.16, except that the first term
on the right-hand side of (4.12) is evaluated as

I[J*, PIsV x| 12(20)
S C(IVPl oo o) |75 5V x P 12 (20) + 17° Pl 2 (20) 115V x Pl Lo (20))
< €||JSI§VX¢HL2(QO) + CE(HICSVXQ)HLQ(QO) + ”I(SVX@”LDO(QO))-

Here, the last term can be evaluated by proposition 4.20 and lemma 4.6. The proof
is complete. O

The solution @ of the boundary-value problem (4.5) depends on (n,b) through
the matrix coefficient P. Here, we will give estimates of Fréchet derivatives of the
solution ¢ with respect to (1, b).

PROPOSITION 4.22. Let s > $n+1 and m € N. Under assumptions (A1)—(A4) with
q = s, there exists a constant C' = C(M,c,s,m) > 0 independent of § such that the
solution ® of (4.5) satisfies
1T IV x (D ®[ij1, - - - ]| 22 (20)
< Clinllstasz - limllssa/2(1(AT) 26 ]l + 6118s)-

A similar estimate holds for the Fréchet derivatives with respect to b.

Proof. We only show the estimate in the case m = 1, and the general case can be
proved in the same way. For simplicity, we write @, = D, @[] and P, = D, P[7].
Taking the Fréchet derivative of (4.5), we obtain

Vx - IsPIsVx®, = —Vx - IsP,IsVx® in 2,

&, =0 on Iy,
—5_28n+1d~5n =0 on Xy.
Therefore, by lemmas 4.11 and 4.6 and propositions 4.16 and 4.20, we see that
17515V x Py | 22 (20)
< O\ PyLsV x| 12(0)
< C(1Pyll oo (o) 17 IsV x Pl 2(020) + 1T Pyl £2(00) 11V x P ¢ (25) )
< Olllls41/2(1(A5™) 28|15 + 8118]1),

which gives the desired estimate. O

COROLLARY 4.23. Let s > in+1 and m € N. Under assumptions (A1)—(Ay4) with
q = s, there exists a constant C = C(M,c, s,m) > 0 independent of § such that the
solution @ of (4.5) with ¢ =0 satisfies

15011 (D5 Bl - s ]| 22 (520) + [17° 7V (D3 Dl - - 1)) | L2(20)
<C&lMmllssrsz - Nimllssa/2lBls-

A similar estimate holds for the Fréchet derivatives with respect to b.
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Proof. The estimate of the first term comes directly from proposition 4.22. On the
other hand, it follows from (4.16) that

1
VD,T(P = — V@nHDZL@dan,

Tn+1

which, together with the estimate of the first term, gives an estimate of the second
term. The proof is complete. O

COROLLARY 4.24. Let s > in and m € N. Under assumptions (A1)—(A4) with

q = s+ 1, there exists a constant C = C(M,c,s,m) > 0 independent of § such that
the solution @ of (4.5) with 8 = 0 satisfies
1B (DBl ) a2y + 17 (DB 222
< C|linllsyaz - limllsrssall(A™) 20 41

A similar estimate holds for the Fréchet derivatives with respect to b.

Proof. We only show the estimate in the case m = 1. For simplicity, we write
@, = D, ®[n]. By taking the Fréchet derivative of (4.15), we see that
175 0n41Bn | 22 (520)
< O (|T7° 1 x @yl 2 (520) + 1757V x (D) | 22 62 1V X D £2x (120
+ ”VX(Dﬂe[ﬁ])HLOC(QO)||JS+1VXQ:)HL2(QO))
< CO[ll o432l (A5™) 251,

where we used propositions 4.16, 4.20 and 4.22 and lemma 4.6. On the other hand,
by (4.16), it holds that

1
Vq;;n = */ V&H_lén dl‘n+17

nt1
so that

1757 By | 2 (20) < 1°On 1Byl 2 (c20) -
These estimates imply the desired estimate. O

5. Estimates of the operators

The following four propositions on the DN map APN = APN(5,b,§) were given
in [11].

PROPOSITION 5.1. Let s > in+1. Under assumptions (A1) and (As) with q = s+1,
there exists a constant C = C(M,c,s) > 0 independent of 6 such that we have
[APNg|| s < C(IADNG||s + [|[(ARN)26||5). In particular, it holds that

1A% 6]ls < C7 ||+
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PROPOSITION 5.2. Let s > %n + 2. In addition to assumptions (A1) and (Asz)
with ¢ = s, we assume that ||(n,b)||s+1 < M. Then, there exists a constant C =
C(M,c,s) > 0 independent of 0 such that we have

14PN ells < o2 (AT™) 205112

PROPOSITION 5.3. Let s > in. Under assumptions (A1)~(As) with g = s+ 32, there
exists a constant C = C(M, ¢, s) > 0 independent of § such that we have

[APNG + V- (1 + 1= b) Vo)« < CE*(I(AT)* ¢l 543 + | VO]ls)-
PROPOSITION 5.4. It holds that |(APN¢, )| < \/(APN@, @)/ (APN, ).

PROPOSITION 5.5. Under assumption (A1), there exists a constant C = C(M,c) >
0 independent of § such that we have ||[APNg||_; < C||V|.

Proof. Set @ := (¢,0)" and @ :=P06O. Then, & satisfies (4.5) with § = 0 and
0720,,19(-,1) = APN¢. Therefore, it follows from lemmas 4.13 and 4.6 that

14PN 1 < |7 HAGT) 2 PLV x Bl 12(0) < |PLsV x Dl 12(00) < C[V,
where we also used lemmas 4.3, 3.4 and 4.4. The proof is complete. O
Now we give commutator estimates for the DN map APN.

PROPOSITION 5.6. Let 7 > in. Under assumptions (A1) and (Ay) with ¢ =r +1,
there exists a constant C = C(M,c,r) > 0 independent of § such that we have
IV, APN]g|| -1 < C[[Vo]|.

Proof. Set @ := (¢,0)", &; := (0;¢,0)", & := P06 and $; := P; 0 ©. Then, it holds

that
Vx - IsPIsVx(8;9 — &;) = —Vx - I5(0;P)IsV x in £,
(0,0 — ;) =0, 07 20,,1(0:P — P;) = [0;,APN]p  on I,
—0720,41(8;9 — &;) =0 on Y.
(5.1)

Therefore, it follows from lemmas 4.13 and 4.6 that
105, APN)@|| -1 < [T HAGN) P PIsV x (9, — @4) | 12 (20)
+[|TTHAGN) 20, P) 15V x D 12 (62
< C(sVx(8; — éi)”LZ(QO) + ||15Vx€1~5||L2(90))-
On the other hand, by lemma 4.10, we have
115V x (9:® = ®4) || 2020y < Cll(OiP) L5V x| 12(20) < C L5V x| 2 (120) -

Hence, we obtain ||[9;, APN]¢||_; < C||I5VX€§||L2(QO) < C||Vo|l, where we also used
lemmas 4.3, 3.4 and 4.4. The proof is complete. O

PROPOSITION 5.7. Let r > in. Under assumptions (A1) and (Ay) with ¢ =r +1,
there erists a constant C = C(M,c,r) > 0 independent of § such that we have
I[APN, a]¢]|—1 < C|[Vallr42]1¢].
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Proof. Set @ :=(¢,0)", A:=(a,0)", &, := (a0,0)", $:=PoO, A:=A0O and
P, := D, 006. Then it holds that

Vx - IsPIsVx (P, Aqﬁ) —2PIsVxA-IsVx® in (2,
(P, — AD) = 020,41 (Dy — AD) = [ADN al¢ — pAPNa  on I,
-0 8n+1(45 - Aqv)) on 20.

Therefore, it follows from lemmas 4.13 and 4.6 that

|[APN, a]¢ — pAPNal|
< (AP YV2PIV x (B — AD)||12(02) + 2| PLsVx A - IsV x| 12 (020)
< C(HJL;VX(SZ:)Q - Aé)||L2(QO) + HLSVXA . L;VX95||L2(QD)).

Here, by lemma 4.10, we have
115V x (D0 — AD)||12(020) < CIIsVx A - IsV x®P| 12(20)-
Moreover, it also holds that
Vx - IsPIsVxJ(Dy — AP) = —Vx - I5[J, P)IsV x (P, — AD)
—2JPIsVxA-IsVx® in 2,
J(q%a - fl@) =0 on Iy,
—5_28n+1J(<i5a — 121413) =0 on Xy,
so that lemma 4.10 gives
1715V x (@0 — AD)[| L2(c2y)
< C(|[J, PIsV x (Pq — AD) | 12(00) + |PIsVx A - IV x D[ 12(02,))
< C(IsVx (o — AD) | 12(00) + IV x A IV xB| £2(020))-
Hence, we obtain

I[APY, alg|| < |94 Nal| + C|ILVx A 15V x D 12 ()
< CUIBlIAN allr + 11V x All oo (20) | 15V x @1l 22 (625))
<

ClIVallrt2lll,

where we used propositions 5.1 and 4.20 and lemmas 4.3, 3.4, 4.4 and 4.6. Since
the adjoint operator of [APN a] in L? is equal to —[APN, a], the above estimate,
together with the standard duality argument, shows the desired estimate. O

ADN

The following three propositions on the DN map were given in [11].

PROPOSITION 5.8. Let s > in+1. Under assumptions (A1) and (As) with g = s+1,
there exists a constant C = C(M,c,s) > 0 independent of § such that we have
I17%, APN]gl| < Cl|(AF™) 2.

PROPOSITION 5.9. Let r > %n Under assumption (A1), there exists a constant

C =C(M,c,r) > 0 independent of § such that we have
[([06, APN]9, 9)] < Cll (8, bt )[4 (AP &, ).
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PROPOSITION 5.10. Let 7 > in. Under assumption (A1) and |[(n,b)|r42 < M,

there erists a constant C = C(M,c,r) > 0 independent of § such that we have
[(APN¢, v - V)| < Cfv]|r+1(APN, ¢).

We now give estimates for the other operators.

PROPOSITION 5.11. Let s > in. Under assumptions (A1) and (Az) with ¢ = s+1,
there exists a constant C = C(M,c,s) > 0 independent of 6 such that we have
IANNB][s < C1Bls-

Proof. Set & := (0,8)" and @ := P 0 O. Then, ¢ satisfies (4.5) with ¢ = 0 and
6720,,19(-,1) = ANN3. Therefore, lemma 4.14 gives the desired estimate. O

LEMMA 5.12. For any function ® defined on 2y, we have
16, 0)[| < [[(AGP) 215V xBl| 2(0) + 1|45 B, )]
Proof. We take v € HY arbitrarily and set

. § sinh(6|D](1 — zp41))
W . =
(s Tn+1) D cosh (8| D|) 7

which is a solution of the boundary-value problem
VX-I(?VX@:Oin 02, U =0 on I, —5_28n+1u:/:'yon 2o,

so that we have
1(AFP) 215V x| 2(2) = V-

By Green’s formula, we see that

(B(0),7) + (B(-, 1), AN+ = /6 BN BB s

= [ Vx-(PI2Vx¥W)dX
20

_ / I;Vx® - I5Vx dX.
20

This, together with proposition 3.3, implies that
[(B(-,0),7)]
< [1AFPBC DI+ 1A 2 15V x B 12 0 1(AFD) T2 15V x| 2 12
= ([IAEP(, V)| + (A2 L5V x Bl 12(020) ]
This gives the desired estimate. O

PROPOSITION 5.13. Let s > $(n+5). Under assumptions (A1)—(As) with g = s—1,
there exists a constant C = C(M,c,s) > 0 independent of 6 such that we have
IVAPPG|lo1 < C|[V|ls-1 and [|APP]s < Cl1¢]s-
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Proof. Set @ :=(¢,0)" and @ := o0 O. Then,  satisfies (4.5) with § = 0 and
&(-,0) = APP . Therefore, by lemma 5.12 and proposition 3.2, we see that
10: APP @]l s—1 < (|75 H(AGP) 215V x 0:@| 12 (2) + 11462 0|51
<262\ I 32 IV x 0i®| p2 (29 + [10i 51
Here, we also set @; := (9;¢,0)" and @; .= @; 0 O. Then, (5.1) holds. Therefore, by
lemma 4.11, we see that
HJS—S/QLSVX(a,é _ QNS’)HLQ(.QO
< O\ =32(0:P) IV xD|| 1212

O~ 20:Pl| 2 (0) 115V xBll o0 (020) + 0P| o (020) 17572 15V xB | 12 (12

ClIVolls—a/2s

where we used propositions 4.16 and 4.20 and lemma 4.6. Moreover, we also obtain

<
<

§Y2||T 3PV x Byl 2 ) < COMP((AGN)V20i0]s—372 < C[0i]|s—1-

These estimates give the first estimate. A similar argument gives the second esti-
mate. O

PROPOSITION 5.14. Let s > in+2. Under assumptions (A1) and (Ay) with q = s,
there exists a constant C = C(M,c,s) > 0 independent of § such that we have
IANPB]s < C min{d?(|B]s, 8| Blls-1}-

Proof. Set & := (0,8)" and & := ® 0 O. Then, ¢ satisfies (4.5) with ¢ = 0 and
&(-,0) = ANP3. Therefore, by lemma 5.12 and propositions 3.2 and 4.16, we see
that

1P Blls < [lT°(AGP) 21V x Bl 2y < 81T L5V x Pl () < O8Il

On the other hand, it follows from lemma 5.12 and propositions 3.2, 4.15, and 4.17,
we see that

AP B < N1T°(465°) 215V x|l 122

< (| HDUATP) P IV x D p2 () + 1(ANP) 2LV XD 12(04))
< CS(|| T HATN) 2 ISV x| 120y + 115V x| 22 (20))

< C6|Bls-1,

where we used the relation |D| = §2AFN. These two estimates give the desired
estimate. O

2AOND

The next two propositions are mathematically rigorous versions of the formal
expansion (2.7).

PROPOSITION 5.15. Let s > in — 1. Under assumptions (A1) and (As) with q¢ =
s + 2, there exists a constant C = C(M,c,s) > 0 independent of § such that we
have [ ANNG + Bl, < C828]]+2.
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Proof. Set @ := (0, 3)" and @ := & 0 ©. Then, & satisfies (4.15) and
ANNB = 6729,19(-, 1),

so that we have
1
ANNg=_p_-V. / (14 0p4100n41)VP + P120p 1P + 0° P11 VD) A1, (5.2)
0

where we used (4.1) and (4.14). This and corollary 4.18 give the desired estimate.
O

PROPOSITION 5.16. Let s > in — 2. Under assumptions (A1) and (Ay) with ¢ =
s+ 4, there exists a constant C = C(M,c,s) > 0 independent of 0 such that we
have

IAYNB + B+ 6V - (141 = b)(Vn)B + 5(1 +n = b)*VB)|ls < C6Y|Bls+a-
Proof. Set @ := (0,3)" and & := & 0 O. It follows from (4.15) that
O 1® + 62(1 + Ony10n11)B
= —0%*(1 4+ 0ni10n11)

X {10223n+1iS +pi2- VP

Tp41 - - ~
+V- / (14 0n110n41)VP + p1205 119 + 62 P11 VD) dzpy i1 }7
0
(5.3)
so that
[7°F2 (O 41@ + 6% (1 + Ong10n11)B) | 22(20) < COP T T3V XD 12(030)-
In view of the relation
- Tnt1 -
)] + 52(33n+1 + 9n+1 —-1- n)ﬂ = / (8n+1® + 52(1 + 8n+10n+1)6) dl‘n+1, (54)
1
we obtain
177 (D + 6 (241 + Onr = 1= 0)B)|[12(020) < COF TV x| 120
Therefore, by corollary 4.18 we obtain
[TV x (@ + 6% (ng1 + Ontr — L= 0)B) | 2(20) < C6*1Bls44- (5.5)
On the other hand, by (4.1) and (4.13) we see that

1
/ {14 0041004 1)V((1 + 0 = Tn1 — On1)B) — Plo(1 + Opi10n41) 8} dapia
0

1
- / D1 {(nsr + 0ny 1)V ((1+0)B)
— 2(@pg1 + 0ng1)?VB+ (01,...,0,) T B} dzpys

=(L+n-0b)(Vn)B+ 5(14+n—0b)>Vp.
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Therefore, we can rewrite (5.2) as
AN =—f =V (L+7=b)(Vn)B+ 3(1+n-b)°VA)

1
2V [ Bradunid+ PuVE) dos
0

1
-V / {1+ 00100 11) V(@ + 6% (@41 + b1 — 1 — 1))
0

+ P20 11(P + 6 (@ny1 + Onr — 1 — 1))} dwnga.
(5.6)

This, together with corollary 4.18 and (5.5), gives the desired estimate. O

Next, we will give estimates of Fréchet derivatives. The following two propositions
on the DN map APN = APN(5) b, §) were given in [11].

PROPOSITION 5.17. Let s > 4n and m € N. Under assumptions (A1), (Az) and
(Ay) with ¢ = s+ 1, there exists a constant C = C(M, ¢, s,m) > 0 independent of
0 such that we have

1D APN (i, i)l < Cllallsaaya = Wimllsra/all(ATT) 26 o
A similar estimate holds for the Fréchet derivative of APN with respect to b.

PROPOSITION 5.18. Let s > 2(n+ 1) and m € N. Under assumptions (A1), (Asz)
and (A4) with ¢ = s+ é, there exists a constant C = C(M, ¢, s, m) > 0 independent
of § such that we have

1D AN [, i)l < CO™2 il = i llo 1 (AT 2Bl 41/2-
A similar estimate holds for the Fréchet derivative of APN with respect to b.

In the next proposition we will modify the estimate in proposition 5.17. Specifi-
cally, we improve the norm of (7, ...,7y,) and the hypothesis on the regularity of
the water surface and the bottom.

PROPOSITION 5.19. Let s > $n+2 and m € N. Under assumptions (A1)~(A4) with
q=s+% and |nlls41+|bllss3/2 < M, there exists a constant C = C(M, ¢, s,m) > 0
independent of § such that we have

1D APN g, i) 6l s < Cllit 1 - = 1im |54 [1(AGT) 2l o1
A similar estimate holds for the Fréchet derivative of APN with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1. It is sufficient to
evaluate || D, APN[ij]¢||s—1 and ||V(D, APN[5]¢)||s—1. By proposition 5.17 we have

Dy APN [l 51 < Cllill a2l (AT 2]
Let T}Z be a translation operator with respect to the jth spatial variable, that is,

(T}zu)(z) = U(Il, sy Lj—1, L5 + h7xj+1a v ,In).
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Then, it is easy to see that T} APN (5, b,8) = APN(T/n, T/b,6)T] and that
;AN ¢ = APY0;¢ + Dy APN (9]¢ + Dy AN [0;0]9.
Therefore, we see that
0;(Dy APN[if)¢) = Dy (9,4 9)11]
= Dy(DyAPN [9m9)[17] + Dy Dy APN [, 030 + Dy AN [i7]0;9.
Here, by proposition 5.17 we have
1Dy Dy APN[i7, 05016l —1 < Clitllss1/2010;bll 541201 (AT) 26,
1Dy AP (7106 ls—1 < C8°|lilll 5121105 (AT™) 2 -

It follows from theorem 3.5 that

Dy APT[9m¢ = =62 APN((1 + 6%|Vn|*)TH(APY ¢ + Vi - V) (9;m))
=V A{(Vo =81+ 6°|Vn|*) "1 (AN 6 + Vi - V) V) (95m)},
so that
Dy (Dy APN (0] ) [7]
= —82 Dy APN[) (1 + 82V [*) " (APNg + Vi - V) (9;m))
= 82 APR{(1+ 6% Vn|*) T (APNG + Vi - V) (971)
+ (L4 6% Vn|?) "1 (D AP + Vi) - V) (95m)
= 20%(1+ 6%|Vn|*) (V- Vi) (AP ¢ + Vi - V) (95m) }
= V- {(Vo = 6°(1 + 6*| V) "H (AP ¢ + Vi - Vo) Vi) (9;)
= 82 (1+ 8|Vn*) TN (Dy APN )¢ + Vi - V) (9;m) Vi
— 821+ 0%|Vn|*) " (APN + Vi - V) (9m) Vi
+284 (1 + 8%[Vn|*) "2 (V- Vi) (APN ¢ + Vi - V) (95m) Vi)
Therefore, by propositions 5.18, 5.1, and 5.2 and lemma 4.6, we see that
1Dy (Dy AT 05 ) ) lls—1 < CLUtlls+1 (1 APN s + [V ls) + 8[| Dy APV ] 6]}
< Clitlls+1 I(AT™) 20l o412,

so that we obtain ||V (D, APN[7]¢)||s—1 < C|7]|s11 ]| (APN)/2¢|| 511, where we used
propositions 5.17 and 5.1 and lemma 4.6. Hence, we obtain the desired estimate. [

We proceed to give estimates of the Fréchet derivatives of the NN map ANN =
ANN (0, b, 5).

PROPOSITION 5.20. Let s > 1(n+1) and m € N. Under assumptions (A1)~(A4)
with ¢ = s+ 1, there exists a constant C=C(M,c,s,m) > 0 independent of 0 such
that we have

1Dy AN g1 i) Bl < OOV il - [l 18]l 12

A similar estimate holds for the Fréchet derivative of ANN with respect to b.

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

588 T. Iguchi

Proof. We only show the estimate in the case m = 1, and the general case can be
proved in the same way. Set @ := (0, 8)" and & := & o ©. Then, & satisfies (4.5) with
¢ = 0 and 6720,19(-,1) = ANNS. For simplicity, we write Al,;INﬂ = D, ANN[7)3,
&, = D,P[1] and P, = D, P[]. Taking the Fréchet derivative of (4.5) with respect
to n, we obtain

Vx - IsPI;Vx®, = —Vx - IsP,IsVx® in 2,

B, =0, 0 20p1Py=A"p on Iy,

—5_26n+1€1~577 =0 on Xj.

Therefore, by lemmas 4.14 and 4.6, we obtain

[AYNBlls < CUIT*(AT™) 2Py 15V x Bl 12 2) + 1Py 15V x @ 12 (020)
< OV T 2P IV X B 12 (02 - (5.7)

Here, as in the proof of proposition 4.22, we have

| T2 P15V x @ 12(00) < COllitll sl Blls41/2-
These estimates give the desired estimate. O

As a corollary of this proposition, we can obtain the estimate for the NN map
ANN in proposition 5.11 under a weaker hypothesis on the water surface and the
bottom.

COROLLARY 5.21. Let s > 1(n+3). In addition to assumptions (A1) ~(A4) with q =
s, we assume that ||(n,b)||s+1 < M. Then, there exists a constant C = C(M, ¢, s) >
0 independent of & such that we have ||ANNg||s < C|F]|s-

Proof. 1t is sufficient to evaluate |[ANNg[,_; and [|[VANNB||;_1. We have from
proposition 5.11 that [|[ANN3|s_1 < C||8]|s—1. Let T be a translation operator
with respect to the jth spatial variable. Then, it is easy to see that

T ANN (1, b,8) = ANN(TUn, T} b, )T
and that
9;ANN B = ANN9, 3 + D, ANN[9;n] 8 + DyANN[9;0]3. (5.8)
Hence, by propositions 5.11 and 5.20 we get
IVANNBlls—1 < CUIVBs=1 + (Y1, VO)[s[18]l5-1/2) < ClIBIls-

Therefore, we obtain the desired estimate. O

PROPOSITION 5.22. Let s > in and m € N. Under assumptions (A1)~(A4) with

q = s+ 1, there exists a constant C = C(M, ¢, s,m) > 0 independent of 6 such that
we have

1D AN iy, b Bl < COllinllssayz - im | s3/211Blls41-

A similar estimate holds for the Fréchet derivative of ANN with respect to b.
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Proof. For simplicity, we only show the estimate in the case m = 1 and use the same
notation as in the proof of proposition 5.20. It follows from (5.7) and lemma 4.6

that
[ANNBs < Ol T PyIsV x®| 120y
S C(IT* Pyl r2(00) sV x Dl oo (020
+ 1Pyl Lo (o) 17T IV x @l 12(00))-
This, together with propositions 4.16 and 4.20, gives the desired estimate. O

PROPOSITION 5.23. Let s > gn—1 and m € N. Under assumptions (A1)~(A4) with
q = s+ 2, there exists a constant C = C(M, ¢, s,m) > 0 independent of 6 such that
we have

ID7 AN [, - - b Blls < CO [l llsss/2 - libmllsv5 7211 Bllsv2-

ANN

A similar estimate holds for the Fréchet derivative of with respect to b.

Proof. For simplicity, we only show the estimate in the case where m = 1 and
use the same notation as in the proof of proposition 5.20. By taking the Fréchet
derivative of (5.2), we see that

1Dy AN [a7) 3]s
< C(II*FV x Pyl 2(20) + IV x (D)) | oo (20) 1° 1V 5Bl 212 )
< O8[17]| 545211 s+2,
where we used corollaries 4.18 and 4.23. The proof is complete. O

In the next proposition we will modify the estimate in the above proposition.
Specifically, we improve the norm of (7,...,7,,) and the hypothesis on the regu-
larity of the water surface and the bottom.

PROPOSITION 5.24. Let s > $n+2 and m € N. Under assumptions (A1)~(A4) with
q=s+1 and ||n|[ss2+|blls45/2 < M, there exists a constant C = C(M, c,s,m) >0
independent of § such that we have

IDR AN i1, 7] Blls < 2|l llstz - 7mlls2| Bllsr2-

ANN

A similar estimate holds for the Fréchet derivative of with respect to b.

Proof. For simplicity, we only show the estimate in the case m = 1. It is sufficient to
evaluate | D, ANN[7]B||s—1 and |V (D, ANN[7]B)|/s—1. By proposition 5.23 we have

1Dy ANV Bl s -1 < C8*[lills45/211Blls+1-

In view of (5.8), we see that

0;(Dy AN [7]B) = Dy (0,47 B) 7]
= Dy(Dy AN [0 B)117) + Dy Dy AN [17, 0;0)3 + Dy ANN[17]0; 5.
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Here, by proposition 5.23, we have

1Dy DoAY [17, 03818l s—1 < CO®|[i]ll53/21105b 53 /211 Blls+1
and || Dy ANN[710; 8| s—1 < C02|||| 5432110 8]l s+1- It follows from theorem 3.5 that

Dy ANN[9m) 3 = =6 APN((1 4 8|V [?) = (8;m) ANN B)
+ 0V - ((1+ 6%Vn?) " (@m) (AN B) V),
so that
Dy (Dy ANN (8] 8) 1]
= =" Dy APN[)((1+ 82[Vn?) =1 (9;m) AN B)

— 2APN{(1 4 8*|Vn[?) M (9 AN B + (8;7) Dy ANV 1) B)
—26%(1 4 8°|Vn|*) (Vi - Vip) (9;m) ANN B}

+ 02V {1+ 8 Vnl?) T (05) AN B + (9m) Dy AN 3] B) Vi

—26%(1 4 82|Vn*) (Vi - Vij)(9;m) (ANN B) Vi
+ (148 |Vn[?) = (9m) (AN B) Vi

Therefore, by propositions 5.17, 5.1 and 5.22, lemma 4.6 and corollary 5.21, we see
that

1Dy (D AT 0] B) ]l 51 < C(O |77l 542l AN Bl 1 + 61| Dy ANV 7))
< O8]l s+211Bll s+

so that we get |[V(D,ANN[7]B)]ls—1 < C6?||7l|s4+2Blls+2. Hence, we obtain the
desired estimate. O

As a corollary of this proposition, we can obtain the estimate for the NN map
ANN in proposition 5.15 under a weaker hypothesis on the water surface and the
bottom.

COROLLARY 5.25. Let s > In + 3. In addition to assumptions (A1)—(A4) with
q = s+ 1, we assume that ||(n,b)||s+2 < M. Then, there exists a constant C' =
C(M,c,s) > 0 independent of § such that we have ||[ANNB + B||s < C62||B]|s42-

<
Proof. Tt is sufficient to evaluate || ANN 3+ 3||s—1 and ||V (ANN3+3)||s—1. By propo-
sition 5.15 we have ||[ANN3 + 8]|s—1 < C6?||B||s+1. Moreover, by (5.8) and proposi-
tions 5.15 and 5.24, we get
10;(ANNB + B) |51
<N AN0; B+ 0;Blls—1 + | Dy AN Dm] Bl -1 + | Dy AT [9;8]3]] 51
< C8([10;8)s+1 + 195m, 00) s 411 Blls+1)-

Therefore, we obtain the desired estimate. O
We end this section by giving expansions of Fréchet derivatives of the maps APN
and ANN with estimates of error terms.
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PROPOSITION 5.26. Let s > %n — 1. Under assumptions (A1)—(Ay) with ¢ = s+ 3,
there exists a constant C = C(M, ¢, s) > 0 independent of § such that we have

1Dy APN[i)g + Dy APN B + ¥ - (17 = ) V)l < O (1, D) | 7/2 Ml (AFT) 255

Proof. We only show the estimate for Dn/lDi\I . The estimate for Dy APN can be
proved in the same way. Set @ := (¢,0)" and @ := @ 0 ©. Then, we have (4.5) with
B =0 and, in place of (5.2),

APNG +V - (1 41— b)Ve)
1 1
=V- / {(1 + 8n+19n+1)V/ an+1@(', Z) dz — p128n+1@ — 52P11V¢} dl’n+1.
0 Tn+4+1

For simplicity, we write an = Dné[ﬁ]. Taking the Fréchet derivative of the above
equation with respect to 7, we obtain

1D, AN [l + ¥ - (1Y ) s
< C(|T° 200 11Py || 12(020) + 2T VD, || 22 (20))
+ Clliflls42 (175200419 12 (20) + 61T V| 12(20))
< O8] sqr 2l (ATN) 2B 513,

where we used corollaries 4.19 and 4.24. The proof is complete. O

PROPOSITION 5.27. Let s > %n — 1. Under assumptions (A1)—(A4) with ¢ = s+4,
there exists a constant C = C(M, ¢, s) > 0 independent of § such that we have
1D, ANN[1] 3 + Dy ANN[B] 3
+ 62V (L4 = b) (V) B+ (7 = D)(V)B + (1 +n = b)(5 — B)V )]s
< O6M[(2,0) | s9/21Blsa-

Proof. We only show the estimate for D,,AN~N. The estimate for Db4NN can be
proved in the same way. We set @ := (0, 8)", & := 0O and &, := D, ®[j]. Taking
the Fréchet derivative of (5.6) with respect to 7, we obtain
Dy ARN]B + 62V - (1 + 1 = b) (V)8 + (Vi) B + (L +1 = b)iV ) s
S O V x Pyl 20y + 17°T VX (D 4 6% (Dybnia[1] — 1)6) | L2(24))
+ COlllls+2(8 [TV x P L2 ()
+ [TV X (D + 8% (@1 + Onrr — L= 1)B) | L2(2))-

Here, taking the Fréchet derivative of (5.3) and (5.4) with respect to 7, we see that

||Js+1vX(g§n + 52(Dn9n+1[77] - ﬁ)ﬁ)HLZ(Qo)
< CE(| T3V xBy || L2(ay) + [llsrall T2V x Bl 2(2y))-

By the above estimates, (5.5) and corollaries 4.18 and 4.23, we obtain the desired
estimate. O
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6. Reduction to a quasi-linear system

In this section we reduce full nonlinear equations (1.15) to a quasi-linear system of
equations. Suppose that (1, ¢) is a solution of (1.15). In view of theorem 3.5, we
define Z and v by

Z = (14 68*|Vn|?) (AP (1,b,8)¢ — e ANN(n,b,0) 8, + Vi - V), 61)
v="V¢—6ZVn. '

By the same way as in [11], we differentiate the second equation in (1.15) with
respect to x; and obtain

iy + Oim +v - (VO — 62ZNVin) — 62 Z0;(APN¢p — e 1ANN B ) = 0.
Differentiating this with respect to x; and xj, we see that
Oijkdt + Oijin
+ - {V@qub — 62(ZV8ijk77 + (aij)Vam + (6]‘Z)V8kﬂ] + (8kZ)V8ijn)}
+ (0jv) - {VOrip — 62(ZN0in + (0x Z2)VOin)}
+ (Ogv) - {V0;j¢ — 62(ZN0im + (0, Z)VIin)} + (0;v) - (VO — 82 ZNV ;)
— 82{(0;2)0ki (APN ¢ — e L ANNB) + (01, 2)0;; (APN g — e~ 1 ANNB)
+ (0,1 2)0i(APN§ — e LANNB ) 4+ 20,4, (APNp — L ANNB )Y = 0.

Here, by the definition (6.1) of Z and v we have APN¢ — e 1 ANNG = 7 — v . Vn.
Therefore,

i (APNG — e P ANNB ) = 04 Z — v - VOn
— (Okiv) - Vi — (Ogv) - VO — (O3v) - VO,

so that
(6¢jk¢ — 52287;jk77)t +v- V(é)”kqb — 52zaijk77) + (1 + (522,5 + 52’[) . VZ)&)”W
= 0%((0;2)(00i Z) + (0n2)(03;2) + (2:2) (931 Z)) + 15",
where

P = —(00) - (VO — 82 ZV Din)
- (8;4;) . (V81J¢ - §2ZV8ijn) - (Bjkv) . (V&Zgb - (52ZV(9277)
= 8{(9;2)((Oiv) - Vg + (9yv) - VOgn)
+ (0 2)((9i5v) - Vi + (9pv) - VOjn) + (91 2)(95v) - V).

Now, we write u = (1,b) and denote by APN and ANN the nth Fréchet derivative of
the DN map APN and NN map ANN with respect to u, respectively. Then, it holds
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that
aijk(ADN¢ _ E_lANNﬁ-,—)
= APN0 500 — e AN B + APV [Oijnule — e AN D] B
+ ATN [0:u] 90 + ATV [05u]Okid + AT [0)u)Dij 0
— 571(A11\IN [(%ju}@km + ATN[ajkuwiﬂT + AII\IN [8k¢u]8j67)
+ AQDN[aijU, 8ku}¢ + AQDN [ajkm Blu]qﬁ + AQDN[akZ’LL7 afu](ﬁ
— e Y (AYNBsju, O] By + AN (055w, D] By + ANN[Opsu, DjulBr) + fi7F,

where
ik — e Y ANN[Ou) 05 By + ANN[0ju]Oi By + ANN[Oku)D;; 57)
+ A?N[&Ju]akgf) + A?N [@ku]&qb -+ A?N[a]ﬂu]ajgﬁ
+ APN[Oyu, 05ulOk ¢ + AN [Dju, Opu) 0 + ADN [Oyu, D;u)0; ¢
— e (AN By, Djul Ok By + AN [Dju, Opu)0i By + AT [Bu, D053,
+ ADN[Bu, Dju, Dyuld — e~ AYN[D;u, Dju, O] By
Here, by theorem 3.5, we obtain
ADNaijk<Z5 + APN[aijku]d) — e 1AMN [0;j1u] Br
= APN(0yjrep — 0 Z0;50m) — V - (vdijum) + F2F,
e AN, u)0k By = —e 152 APN(ANNO,B,)0im) + fF,
where
% = Dy APN[9;5b) ¢ — £ Dy ANN[054b) ;.
b = e APN (1 + 62V )Y Il (0im) (ANN Ok 5, )
+ 7182V - (14 62 |Vn?) 71 (8im) (ANN Ok B, ) V) + e~ Dy ANN[0;6]01. 3, -
By theorems 3.5, 3.6, 3.9 and 3.10, we see that
APN (9,050 + ASN [, ju, Dyl — e ANN [0, 5u, Ol B, = 2,
where
ik — D, Dy APN [0y, 9;;b¢ — e~ D,y Dy ANN [0, ;6] 3,
=+ DgADN[&jb, 8kb]¢ — 571D£/1NN [al'jb, 8kb}ﬂ7 + A?N[aku](ﬁwgb — 52Z61j77)
+ 82 APN((1 4 8% |Vnl*) = (0km) (Dim) Ag) + 62V - ((93;m) ZV D)
— 0°V - ((1+ 8*|Vn*) = (9xn) (9i5m) (Ad) V)
+ 64 APN{(1 + 62|V ?) 1 (94m)
x (APN(Z0kn) + ZVn - Voen — (0km)V - (ZVn))}
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=0 {1+ 8| Vn[?) " (9m)
x (APN(Z0n) + ZVn - NV on — (Okn)V - (ZV))Vn}
— 0ZAPN((1 4 6% |Vnl?) =1 (0im) (Do AP (0D — e~ Dy ANN[040] 5;))
+ 02V - (14 8*|Vnl*) = (95m) (Dp APN[0kb] ¢ — e~ Dy ANN [01.] B,) V).

Therefore, it holds that
Dy (APN ¢ — e T ANNBL) = APN (8,50 — 62 Z0ij5m) — v - Vijin
= Ly e 0B + 17, (6.2)
where L¥* is a linear operator depending on (n,b,d,e~!3,) defined by
L% = et 82 APN((ANNO) B2)Diyi + (ANNO57)0;117 + (ANN0; B, ) Opan)
and
= 7R — e AN 0By + OigiBr) — (V- 0)Dijun
S N g
Hence, introducing new functions (;;z and 15, by
Cijk = Oijkm, Vijk = Oijud — 62 Z0j1m, (6.3)

we obtain the following quasi-linear system of equations:

OeCijrk +v - Viijk — ADN'l/Jijk + Liky = 57181‘]']@/67- + flijk,} (6.4)
b + v - Vibigk + aCije = e Lo + f27F, .
where a, f;j * and g;j F are given by
a=1+62Z+6v-VZ (6.5)

and
G [ {0, 2)0(7 — = 2) + (057 — = 51)= 0,
+ (06 2)0i5(Z — 7' B7) + (04(Z — 7 B-))e 10358,
+(0:2)0(Z — 71 B.) + (0:(Z — 71 B3,))e L 01 8-},
95" = e7162((0;8-)(01iBr) + (OkBr) (835 57) + (8:3, ) (DsxBr)).-

REMARK 6.1. The functions Z and v in (6.1) are related to the velocity potential
@ by 6*°Z = (0p+19)|r) and v = (V®)| @), so that the function a in (6.5) can be
written in terms of the pressure p in (2.17) as

a=—(1+8|Vn*) " (0ns1p — 6°Vn - VD)l r)-

Thus, the generalized Rayleigh—Taylor sign condition ensures the positivity of this
function a.
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We proceed to give some estimates of the coefficients v and a, and the remainder
terms f; = (f7%) and f, = (f27%). In the following we will use the notation d¢ =
(9;0), ¢ = (9i59), ¢ = (Oijnd), I°¢ — 62 Z9°n = (I — °Zijm) and

E = |nllss + [V@llsra + [[(ATT)/? (00 — 8220 )],
and we will let dy := 01(M7, 1,5+ 1) be the constant occurring proposition 4.2.

LEMMA 6.2. Let s > %n + 3, My,c1 > 0 and suppose that

1Mlls+2 + IVOllsr1 < My, [blls4s + (18- lls+5 < M, (6.6)
14+n(x)—b(x) 2c1 forx e R™ '

Then, there exists a constant C = C(My,c1,8) > 0 such that, for any § € (0, 9]
and € € (0,1] satisfying =162 < My, we have
1fills < C(E 414 82| Z]|s42)-

Proof. By proposition 4.2, for any ¢ € (0, 62] we can construct a diffeomorphism ©
satisfying assumptions (A1)—(A4) with ¢ = s+ 1 and a constant M independent of
6. Therefore, we can directly evaluate f5 and fg by propositions 5.1, 5.17 and 5.24,
lemma 4.6 and corollary 5.21, so that

1(f5: fo)lls < ClInlls+s + [Vollst1 +1).

We can rewrite f4 symbolically as

fa = —e 1 (BAN[0u]0? B, + 345N [Ou, 0u)0B, + AFN[Ou, du, du)B;)
+ 3ADPN[0%u)0p + 3ADN[0u, Ou]d¢p + ADN[Ou, Ou, du)o,
so that we have
Ofs = —e 1 (3AN[0u)0? B, + 3AN[0%u]0% 6,
+ 6A5N[Ou, 0u)0? B, + 6 AN [0%u, du]0B,
+ 4A5N[Ou, Ou, Ou)dB, + 3AFN[0%u, Ou, Ou) 3,
+ AYN[Ou, Ou, du, Ou)B;)
+ 3APN[9%20)9%p + 3APN[03u]0g + 3ADN[0%u, du)dp
+ O(3ADN[Ou, du]0¢ + ADN[Ou, du, du]).
Therefore, by propositions 5.19 and 5.24 and lemma 4.6, we obtain
[ falls < [ falls—1 + [V falls—1 < C(nlls43 + VP12 + 1).

Concerning f7, by proposition 5.19 and lemma 4.6, we see that
[ AN [Oku] (D550 — 82 Z0ijm) s
< CNAT)V2(8ij¢ — 8°Z0im) 541
< C(I(ATN) V2V (0536 — 52 Z0im) s + [V (Di6 — 5> ZDim) )
< C([(ATN) V2 (V0,56 — 6° 2N i) s + 8 ((V 2)Dy1l| -1
+[Vollss2 + 8% Z0mlls41)-
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Here, it holds that

*(V2)inlls41r < CO*(IVZ |51l 0igmlls—1 + IV Z]|s— 1|03l s41)

<
< CP(|1 2542 + 1 Z1slInlls+3)-

Similarly, we have 62||Z0;;n||s+1 < C8?(| Z]|s41 + | Z]|s]|nlls+3). Moreover, by the
definition (6.1) of Z, propositions 5.1 and 5.11, lemma 4.6 and corollary 5.25, we
have || Z—e713;||s < C(|[V¢||s+1+1), which also yields that §?|| Z||s < C(||[V|s+1+
1). Hence, we obtain

IAPN [0) (9356 — 82 Z0m)l|s < C(E + 1+ 6%(| Z]s42).

The other terms in f; can be evaluated by propositions 5.2, 5.17 and 5.24 and
lemma 4.6. For example, by proposition 5.2 and lemma 4.6, we have

SHIAPR (1 + 8 [Vn|*) = (@um) APT (ZOkn) s

< C8[(9ym) APN(Z0kn) |54
C*([|ijnlls 41 [ AP (ZOkn) || s—1 + 14PN (ZOkn) || s41)
CO*([[nlls+3l Z0knlls + 1 Z0kn]|s42)

Cllnlls+s + 6*1Z s+2),

/

INCININ

and by proposition 5.17 we have

| Dy APN [04b] |51 < | Do APN[0kB]V |5 + || Do APN [V O] 6| s
+ || Dy Dy APN [V, 0109 || + || Do APN [01b] 6|l
< C(Inllsts + [IVOls12)-

Hence, we obtain
Hf?”s < C(E +1+ 62||Z||s+2)'

These estimates, together with corollary 5.25, give the desired estimate. O
PROPOSITION 6.3. Let s > %(n +7), Mi,¢1 > 0 and suppose the conditions in
(6.6) to hold. Then, there exists a constant C' = C(My,c1,s) > 0 such that, for any
5 € (0,05] and e € (0,1] satisfying e 162 < My, we have

1Z = &7 Brllssz + SI(AT™)V2(Z — 7167 [ls42

<CE+1),
0542 + |(AT™) 20|52 < C

E.

Proof. Note that we have the diffeomorphism © satisfying assumptions (A;)—(A4)
with ¢ = s+ 1 and the estimate ||Z — e~ 16, ||s + 0% Z]|s < C(|Vs41 + 1). In
order to evaluate higher derivatives of Z — 71 3;,, we will derive an expression of a
derivative of Z. Differentiating the identity

(1402 Vn|>)Z = APNp — T ANNB 1 Vi . Vo
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and using (6.2) and the definition (6.1) of v, we see that
(14 0%Vn|*)0ijnZ = (APN + V- V) (Oijrd — 62 Z0ij5m) — L7*n + e~ 0iu -
—0%(2Z(V0m - VOjxn + Vo - Vg + Vg - Vijn)
+(0:2)05|V0|* + (8;2)0s |V + (06 2)035 V|
+ (91 2) 0| Vnl* + (0riZ) 051V [* + (8i;2)0k | V]
+VO;n-VOrd+VOon-VoLip+ Vo V0o
+VO0pn-VOip + Vo -VOjp 4+ Vo;;n- Voro
+82(Vn - VZ2)dn + f7F.
Therefore, by propositions 5.1 and 5.11, lemmas 4.6, 4.7 and 6.2 and an interpolation
inequality, we obtain

10:1(Z = €787 51 + 8| (AF™)2035(Z — €7 B )Is-1
S OB +1+81(ATN) 2 Z 511+ 62| fills-1/2)
S OB +1+8)(AFN) 2 Z 511 + 6112l 13/2)
< e(|(AT)YAZ — 7' Br)llsv2 + 1Z — 7' Brllsy2) + Ce(E +1)

for any € > 0. This gives the desired estimates for Z — e~!f3;, so that we also
have 62| Z |12 + 62[|(APN)/2Z || 412 < C(E + 1). Since v = V¢ — 622V, we easily
obtain ||v]|s+2 < CE. Moreover, by lemma 4.7, it holds that
I(A8™) 2070 )| < I(AFN)Y2(8% — 6°Z0% )|«
+ 82 (I(AF™) V(92 2) (0m)) I + 20I(AF™) 2 ((92)(8*m))Is)
< E+C8(|(ATN) 2 Z 542 + 1 Z ]|z + 1 ZsInlls3).

Therefore, we obtain the desired estimate for v. O

PROPOSITION 6.4. Let s > %(n +7), Mi,c1 > 0 and suppose the conditions in
(6.6) to hold. Then there exists a constant C = C(Mjy, c1,8) > 0 such that, for any

5 € (0,65] and e € (0,1] satisfying e~16> < My, we have
Ifills SCE+TD), (AT 2 folls < Ce16(E +1).

Proof. The estimate for f; is a direct consequence of lemma 6.2 and proposition 6.3.
It follows from lemmas 4.6 and 4.7 and proposition 6.3 that ||(AFN)Y/2f3]|s < CE.
This and proposition 6.3 give the desired estimate for fs. O

PROPOSITION 6.5. Let s > 1(n+7) and My, c; > 0. In addition to the conditions
in (6.6) we assume that ||Brr|ls+1 < My and ||(ne, ¢¢)|ls < Miet. Then, there
exists a constant C' = C(My,c1,s) > 0 such that, for any § € (0,92] and € € (0,1]
satisfying e =102 < My, the function a defined by (6.5) satisfies

la=1ls-2 <Ceh fla=1llssr S CETHE +1) + (e, 68) [l s42)-

Proof. In view of proposition 6.3 we have ||v||s + 62| Z||s < C, ||v]|ss+2 < CE and
82(|Z]|s42 < C(E + 1). Differentiating the identity

(14 02|Vn)?)Z = APN¢ — e ANNG_ 4 V- Vo
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we have
(1+82|Vn|®)Z, = —26%(Vn - V) Z + APN¢, — e 2ANNg
+ AlDN [Ut]¢ — 871A11\IN [ut}/@']— + Vn . V¢t + Vm . V(;S (67)

Therefore, by propositions 5.1, 5.11, 5.19 and 5.23 and lemma 4.6, we see that
62| Zy]|s—1 < Ce™! and that

3 Zells1 < O*(IV Zells + 11 Zells) < Ce™ (B + 1) + | (mes d1)lls+2)-
Since a — 1 = 6%v - VZ + §2Z,;, we obtain the desired estimates. O

The next proposition ensures the positivity of the function a, namely, the gener-
alized Rayleigh—Taylor sign condition. We let 63 = 01 (M7, ¢1, 7 +4) be the constant
occurring in proposition 4.2.

PROPOSITION 6.6. Let r > %n, My, c1 > 0 and suppose that

1B llrt0/2 + 1Brrllrsa + 1Brrrllr2 + 10, 0)lr+5 + [V Rllris < M,

m(t) — e s (2) V(d’t(t) - % <i>25r (i)Q)

IMeellr45/2 + Ve llryr <
1+ n(z,t) — bz, t) = c1.

"

r+9/2 r+3

(6.8)
Then, there exists a constant C = C(My,c1,r) > 0 such that, for any 6 € (0, d3]
and € € (0,1] satisfying e =162 < My, the function a defined by (6.5) satisfies

a(t) - (1 + (§)2<1 ~ PVn(H))5rr (t) T oa® (’f))

<C<8+

T
2

— — 0
9

), (6.9)

t
<Ce™' foro<t<e,

Gy (t) - 6_3625777' (E)

where a®) is the function defined by (2.21). Particularly, if we assume additionally
assumptions 2.1 and 2.2, then there exist small constants €g,vy > 0 such that we
have

r

le<a(z,t) < Ce, ay(z,t) < Ce™!

as long as 0 < € < g and |6%/e — o] < Y.

Proof. Note that under our hypothesis we have the diffeomorphism © satisfying
assumptions (A;1)—(A4) with ¢ = r + 4 and that we have 9Fb = e %% and

o= Q)]+ [P0 )] .=+ 12-+0)

— — 0
g
1) lrr9/2 + IV e (B) |3 < Ce™t for 0 <t <e,
(6.10)
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where (79, ¢(9)) is the approximate solution defined by (2.20). By the definition
of a, we have a; = 6%(Zy +v-VZ; +v; - VZ). In the same way as in the proof of
the previous proposition, we easily obtain
PN Zlrsr + ol C and - 8[| Zefl4r + [[oeflr41 < O
Differentiating the identity
(14 6%|Vn|*)Z = APNg — e ANNB, 4+ V- Vo,

we have

(1+ 8 |Vn*)(Ze — e Brer)
= —46%(Vn - V) Zy — 263 (Vn - Ve + [V |2) Z — €262 Vn|? Brrr
+ APNGy — e (ANNB s+ Brrr) + AN [uge] ¢ — €7 AT [uge] B-
+ 24PN [wg) ¢y — 262 ANN[wy] Brr 4 ADN [ug, ug)p — e ATN [ug, ug) By
+Vn - Vou + Vi - Vo + 2V - Vi,

which, together with propositions 5.1, 5.17 and 5.23, implies that
62||Ztt - 5_36‘FTTHT < 05_1~

Therefore, we obtain the second estimate in (6.9). To show the first estimate, we
first note that

1Z - '8, l-<C and ||Z; — e 2Br|l < Ce™t.
In view of (6.7), we can rewrite Z; as Z;, = Zt(o) + Zt(l), where
1
P2 =20 =V (140 )T6)+ V0 Vo-+ 21 - PITa)5,
6 1 2
+ V(A =b)(Vn)Br + 31 +1 - 0)7Vr)
AN 5 5
= (€> (1 - 52|V77|2)6TT + ? (vd) - €6TV77> : vﬂ'r
32\
# (L) V- (=0T + H0 - 0295,0)
82 V(= DV 1) + - b))
52
+ V(e —be) - Vo+ V- V(g — 26%7) — 2;@% -V (0 — by)

+ 20 (= b (T, + (141 = BV (e~ btm)}
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and
2D = —82|Vn* (2, — £ Brr) — 263 (V- V) (Z — 7' B)
+{APNg + V- (1 +1 = b)V)} + {ATN [ued + V - (1 — b:) V) }
- 572{ANN67’T + ﬁT‘r + 52V : ((1 + n—= b)(vn)ﬁﬂ' + %(1 + n—- b)QVﬂTT)}
— e AT [ By + *V - (141 — b) (V) Br
+ (e = b)) (V) Br + (1 +n = b)(ne — b)) V) }
Here, by hypothesis, we have
[me = bellrsa <My and  [[V(¢e — 56°67)|lrga < M.

By propositions 5.3, 5.16, 5.26 and 5.27, we also have ||Zt(1)|\r < C. On the other
hand, we can rewrite 6%v - VZ as

52

PoVZ=— (w—fﬂfvn) V407 (”'WZ—&*%) ~

—E(Z—ElﬂT)VT]'VﬁT).

Therefore, we can obtain |la — (1 + (6/€)%(1 — 62|V1|?)Brr + a?)||, < C62, where
52 52 52

0® =27 <V¢—€ﬁrvn) Vit DV (BT + (1 BV,

In view of this, (2.21) and (6.10), we easily get ||a(®) — oa(D|,. < C(e + |62/ — ).
These show the second estimate in (6.9). The last assertion of the proposition follows
directly from (6.9) and the Sobolev inequality. The proof is complete. O

7. Proof of the main theorems

In this section we first consider a linear system of equations and give an energy
estimate for the solution. Then, applying the estimate to the quasi-linear system of
equations (6.4), we will derive a uniform estimate of the solution (1, ¢) with respect
to small § and e.

Now we consider the following system of linear equations:

OCijk +v - Viijr — APNopip + Ly = e 10001 + fr, Cijk = 8ijk77a} (1)
b + v - Vebik + aije = e 1gd" + 27,
where a, v = (v1,...,0,)%, fi = (fi""), f2 = (f5’*) are given functions of z and

t and may depend on § and e, whereas g; and ga = (g5 k) are given functions of
r and 7 = t/e, APN = APN(5) b, §) is the DN map, and L¥* are linear operators
defined by

L% = APN(pdijn + pidjrn + piOkin),
where p = (p1,...,pn) are given functions of z and ¢ and may depend on § and e.
The above system in the case where p = 0 and (g1, ¢2) = 0 was investigated in [11].

REMARK 7.1. Tt follows from proposition 5.1 that || L% 7|y < C6Y|p|lss1|nllss3,
so we can regard L%y in (7.1) as a lower-order term and put it into the right-
hand side if we fix the parameter 6. However, in order to derive a uniform estimate
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of the solution with respect to small §, we have to use the estimate ||L¥*n], <
C||plls+2|mlls+4, so that L¥*n cannot be regarded as a lower-order term. Note that
the norm ||n||s14 in the last estimate is optimal because APN converges a second-
order differential operator as § goes to zero. This is the reason why we have to treat
L%y as one of the principal terms.

PROPOSITION 7.2. Let r > in. In addition to assumptions (A1) and (As) with
q=r1+1, we assume that

1,02 < M, ([0 b)llrn < Me™ ollrr <M, pllrss < M, 72
M~ <a(z,t) < Me™,  ay(x,t) < Me™t,  ||Va|,io < Me™t. .

Then, there exists a constant C = C(M,¢,r) > 0 independent of 6 and € such that,
for any smooth solution (n,(, ) of (7.1), we have

IS + [1(A5™) 2 (1)

< CeCf/f{nn(mni AR 2 0) 2
t/e 2
n ( [ taola+ <A0DN>1/2gz<r>||>dr>

+ [ (ORGP + 1) + < ABN) D17 ) at ).

Proof. First, we will consider the case where (g1, g2) = 0 and n]t—o = 0, so that we
also have (|;—o = 0. Let (1, ¢, ) be a smooth solution of (7.1) and define an energy
function E(t) by

E(t) = (ag(t),¢ (1)) + (APN(t), (1))
Then it holds that

iE(t) = (¢, Q) + 2(a¢, &) + ([0r, APN]p, 00) + 2(APN, 4y)

dt
= (ae¢,¢) + ((V - (av))¢, Q) + 2(al, f1) — 2(a, Ln)
+ ([0, APN], ) — 2(APNY, v - V) + 2(APNY, fo). (7.3)

Here, by the definition we have

(a¢, Ln) = Y {(adyrn, AN (prdiym))
v + (adyjrn, APY (pi0jm)) + (adijen, AP (p;Okim)) }-
By proposition 3.3 and using integration by parts, we see that
2(adyjkn, APN (pr0ijn))
= —(03jn, (Ora) APN (p0yjm) + a0k, APN](prdijn)
+ aAPN((Orpr)Dijn) + [a, APN](prdijin) + [APY, pel(adijan)),
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so that

2|(adyun, AP (prign))|
< /(AN (0ka)diym). (D5a)0igm) (APN (piiym). prdign)
+ lladsy 3 1105 APN)(pidiym) | -1
1/ (APN (aiym), adsym)/ (APN (0kpe)Ds51m), (Dipi) i)
+ 110i5ml1 (fa, APN(prdizrn)l| -1 + 1A, pr)(adijin)|| 1)
< C(IVallrgz + llal o) pll-slnll.

where we used propositions 5.4, 5.6 and 5.7 and lemmas 4.4 and 4.6. The other
terms on the right-hand side of (7.3) can be evaluated by propositions 5.9, 5.10 and
5.4 and lemma 4.4, so that we obtain

%E(t) < Ce B + O (LAMIZ + [InON) + ll(48™) 2 f2(0)]1%).

This, together with Gronwall’s inequality and the relations
IS + 1A 20 (@) < CE(),  E(0) < C|[(AFN)24(0)|,
gives
IS + (AT 2>
< e { gy o)
t g ~ ~, ~, ~
X/O e LA DNZ + In@)I) +6(A5N)1/2f2(t)ll2)dt}-
(7.4)

Next we will consider the general case. Let (7, (, %) be a smooth solution of (7.1)
and define (@, ¢©) and (7, ) by

t/e
7O (z,t) := n(x,0) + / g1(z,7)dr, Ci(;),g = 9ijm™®
0
and 7 :=1n — 1, ¢ := ¢ — ¢ Then, it holds that

NCijk +v - Viijr — APNop i, + LiF = flijk, Cijk = Oijuil,
Oetiji + v - Vbigk + alijp, = fF,
and 7|9 = 0, where

. - 0 iy ik —1 ijk ijk Y
P = 0 e - DO, = g g~ ad).
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Therefore, applying the estimate obtained in the previous case, we obtain

IO + (AR 24(0) |2
< CeCt/E{||<AoDN>1/2w<o>2

+ [ RGN + IR + (AP 2D i)
0

It is easy to see that

B t/e
ICOI < [[K@OI + lIn(0) ]l +/0 lg2(7)lls d7
and

e AW + 17 1%) + ll(AT™) Y2 fa ()12

< C?{E_l(lfl(lﬁ)l2 + @)1 + ()3 + ell(A™) 2 £2(0)?

fet (/ ool + ||<A5’N>“292<””)dT)2}'

To summarize the above estimates, we obtain the desired estimate. O

Let (1, ¢) be the solution of (1.15) and (1.16) and set
E6) = [In()|2 1 + VOB |34z + |(AFN)/2(2°(t) — 6220 n(1))I2,

where Z is determined by (6.1). Suppose that the solution (7, ¢) satisfies
EW <Ny I0)lssa+ [T6(0)s1 < Mo, .
1+n(x,t)—b(x,t)>%c0 forzr e R, 0<t<e, 0<6<dp, .

where positive constants N1, No and dy will be determined later. Then, by propo-
sition 4.1, there exists a constant 61 = d1(Mp, N, g, s) independent of N such
that, for any § € (0, 1], we can construct a diffeomorphism O satisfying assump-
tions (A1)—(A4) with r = s + 1 and a constant M independent of § and Ny but
depending on Ns. Set §p := min{dq, d2,03}, where d2,03 > 0 are the constants
occurring in propositions 6.3-6.6. In the following we simply write the constants
depending only on (Mg, N1, co, s) and (Mg, Na, g, s) by C1 and Cs, respectively. It
follows from (1.15) that

m—e '8y =(Z—e'B:) 4+ 6°|Vn|*Z — V-V,

2
o= 5(2) 8 = 0= V0P 4 JOUVIPZ 4 (2 4 (2 - ),
(7

6)
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By proposition 5.1, lemma 4.6 and corollary 5.25 we obtain ||Z — e, (s < C2, so

T e 0

1
2
e ()]s + o (B)]]s <

C2a

Moreover, it holds that

e = APV gy + AN [ur] — e T2 AN Brr — e LAY N [ug] B,

bt = 82 Znuy — iy — (Vo — 6°ZVn) - (Vo — 6°ZVny),
which, together with the previous estimates, propositions 5.1, 5.19, 5.11 and 5.20
and lemma 4.6, easily yields that |9 (t)||s—1 + [|¢#(t)]|s—1 < Cae~2. Therefore,
by propositions 6.5 and 6.6, there exist small constants €g,v9 > 0 such that the
function a defined by (6.5) satisfies [|[Va(t)|[s—2 < Coe™!, 3¢ < a(z,t) < Coe™! and
at(z,t) < Cee™! as long as 0 < € < &g and |62/ — o] < 0. It is easy to see that
(v(t),p(t)|ls < Cq, where p = e 7162ANN(V3,). Hence, we have checked all of the
conditions in proposition 7.2.

Now, introducing new variables ¢ = ((;jx) and ¢ = (%) by (6.3), we obtain the
quasi-linear system of equations (6.4). Applying the operator J® to the equations
n (6.4), we have

Q(T*Cigte +v - V(I Qg = APN(T*9)iji + LV (T*n) = e 0y (J°B) + i ”k’}

B ()i +v - V(I*Y)iji + a(T*iji = € (T g2) 7 + f37F,
(777)
where

FIR = 02 178 = [T, 0] - VGigk + [T°, APN [z
= [7°, APN)(pr@ijn + pidjkn + p;Orin)
— APN(1J%, prl@ign + [J°, pilOsen + [T°, ;1 0kin),
% = 01 = 0 0] Ve — %l
Here, it follows from propositions 5.1 and 5.8 and lemmas 4.6 and 4.8 that
171D < Ca(E@®) + No@)ls + IpE) 52 + 1 F1(D)]s)5
[(AT™)Y2 B ()] < Co(E(t) + o(®)ls+1 + I Va®)]ls + (A2 fa()]])-

By propositions 6.3-6.5, we can evaluate the right-hand sides of the above estimates
except the term ||p||s42. Since p = e~ 1§2ANN(V3,), we have

Ojkpi = & 87 (AN By + AN [0ku)0i; B + ATN[0;u)Oki By
+ AN05)0; 8, + AXN[0ju, Oyu) 03, ),

so that, by propositions 5.11 and 5.20, we can also evaluate ||p||s+2 and obtain that

e AP + ell(AF™) V2 F ()] < Ca(e™'E()? + 1),

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

A mathematical analysis of tsunami generation 605

Therefore, applying the basic energy estimate in proposition 7.2 to (7.7), we obtain

ICEIZ + 1(A™) 2 ()12 < Cs +f/€ 2dt for 0<t <

It is easy to see that

IV®)llss2 < Vo) |ls41 + IV (@76(t) = 8228 n(t))]ls—1 + 6*(1Z8°n(t) s
< Ca(L+1(AG™) 2 @)l s—1/2 + ICD)Is)-

By the above two estimates, we have

E(t)? 02—5-7/5 2dt for 0<t <

so that Gronwall’s inequality gives
Et)<Cy for0<t<e. (7.8)

On the other hand, in view of (7.6) and proposition 6.3, we have
< Chy.

ne(t) — e (2) + || eelt) - ;<§)267 (2)2 542

s+2 ‘
Let (7(©), ¢(©)) be the approximate solution defined by (2.20). Then, we see that

o= @], o0 -()

< /Ot (‘ m(t) —e ' B, (i)

s+2

o)~ 251

) aF
542

542 ‘

) for 0 <t <e. (7.9)
In particular, we obtain

[n()lls+2 + V@) Is41

< Orgagl(\\n(o (Dllst2 + 1V (7)l[s41) + Ca(e +18%/e —a])  (7.10)

for 0 < t < e. Moreover, we see that

1+ ﬂ(ffat) - b($,t)

= co—

t
nt(f) - 5_1/3'r<
0

2 Cco — Olt 2 Co — 016 for S t < E. (711)
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In view of (7.8), (7.10) and (7.11), we define the constants Ny, Na, g9 and 7o by

Ny =2 max ([0 (1) [ss2 + V6O (D)lls1),  Nio= Co,

g0 = (2C1) ' min{co, No}, 70 := (2C1) "' Na.

Then, we see that the estimates in (7.5) hold. Therefore, by (7.9), we obtain the
error estimate. The proof of theorem 2.3 is complete.
We proceed to prove theorem 2.4. By theorem 2.3, we have

172 @)llsss + 96 (@) 2 < Co,
L+ (2,6) = bi(z) > jeo for z € R"
and
[n°%(2) = 0@ Wllssz + 1V6°%() = VO (1) |41 < Cole +18°/2 = o). (7.12)

Since b(z,t) = by (x) for t > ¢, the results in [11] imply that the solution (7%, $>°)
obtained in theorem 2.3 can be extended to a time interval [0,7] independent of
d € (0,60] and € € (0,0] and satisfies

7€ (#) = (Dlls—1 + VO™ (1) = u (1)1 < €07, (7.13)
17 @)z + V65Ol <€ fore<t<tf

where (n°,uf) € C([-T,T]; H**?) is a unique solution of the shallow-water equa-
tions

Ny + V- ((14+n°—b)u") =0, uj + (u® - V)u+Vn® =0
under the initial conditions n° = n%¢(-,¢), u = V¢?(-,¢) at t = ¢, and satisfies
(= (), u® () ls2 + [|(nf (@), ug ())ls42 < € for =T <t<T.
In particular, we have
I7°(e) =17 (0)lls41 + llu”(e) — u(0)[ls42 < Ce. (7.14)

Now, let (7%, u%) be the unique solution to the initial-value problem for the shallow-
water equations (2.13) and (2.14). Since 7(°) (1) = ,°(0) and V(¥ (1) = u°(0), equa-
tion (7.12) implies that

1177 () = n°(0) 42 + lu(€) = u®(0) |51 < Cole +[8%/e — al),
which, together with (7.14), yields that
1177(0) = 1°(0) |51 + [[u=(0) = u®(0)[[s+1 < Cle + (8% /2 — o).

Since (7%, u®) and (n°, u°) satisfy the same shallow-water equations and their initial
data satisfy the above estimate, we obtain

=) = 1’ O lls+1 + u(t) = w’(O)ls41 < Cle +16%/e —o]) for =T <t<T,

which, together with (7.13), yields the desired estimate. The proof of theorem 2.4
is complete.

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

A mathematical analysis of tsunami generation 607

Acknowledgements

Part of this work was done in March 2009 when I was visiting Université Paris
Sud, thanks to the ‘professeur invité’ programme. I would like to thank Professor
Jean-Claude Saut and the Département de Mathématiques d’Orsay for their kind
hospitality. I would also like to thank Professor Atusi Tani for invitations to par-
ticipate in the Workshop on Tsunami in 2006 and the Workshop on Destruction in
2007. These provided the motivation for me to begin this research. I would also like
to thank Professor Taro Kakinuma for fruitful discussions.

References

1 G. B. Airy. Tides and waves. In Encyclopaedia metropolitana, vol. 3 (1845), 241-396.
B. Alvarez-Samaniego and D. Lannes. Large time existence for 3D water-waves and asymp-
totics. Invent. Math. 171 (2008), 485-541.

3 J. T. Beale, T. Y. Hou and J. S. Lowengrub. Growth rates for the linearized motion of fluid
interfaces away from equilibrium. Commun. Pure Appl. Math. 46 (1993), 1269-1301.

4 A. Constantin. On the relevance of soliton theory to tsunami modelling. Wave Motion 46
(2009), 420-426.

5 A. Constantin and R. S. Johnson. Modelling tsunamis. J. Phys. A 39 (2006), 215-217.

6 A. Constantin and W. Strauss. Pressure beneath a Stokes wave. Commun. Pure Appl.
Math. 63 (2010), 533-557.

7 W. Craig. Surface water waves and tsunamis. J. Dynam. Diff. Eqns 18 (2006), 525-549.

8 D. G. Ebin. The equations of motion of a perfect fluid with free boundary are not well
posed. Commun. PDEs 12 (1987), 1175-1201.

9 K. O. Friedrichs. On the derivation of the shallow water theory. Appendix to: “The formu-
lation of breakers and bores”, J. J. Stoker. Commun. Pure Appl. Math. 1 (1948), 1-87.

10 T. Iguchi. On the irrotational flow of incompressible ideal fluid in a circular domain with
free surface. Publ. RIMS 34 (1998), 525-565.

11 T. Iguchi. A shallow water approximation for water waves. J. Math. Kyoto Univ. 49 (2009),

13-55.

12 T. Kano. Une théorie trois-dimensionnelle des ondes de surface de I’eau et le développement
de Friedrichs. J. Math. Kyoto Univ. 26 (1986), 101-175.

13 T. Kano and T. Nishida. Sur les ondes de surface de ’eau avec une justification mathé-
matique des équations des ondes en eau peu profonde. J. Math. Kyoto Univ. 19 (1979),
335-370.

14 T. Kano and T. Nishida. Water waves and Friedrichs expansion. In Recent topics in nonlin-
ear PDE, North-Holland Mathamatics Studies 98, pp. 39-57 (Amsterdam: North-Holland,
1984).

15 M. Lakshmanan. Integrable nonlinear wave equations and possible connections to tsunami
dynamics. In Tsunami and nonlinear waves, pp. 31-49 (Springer, 2007).

16 H. Lamb. Hydrodynamics, 6th edn (Cambridge University Press, 1994).

17 D. Lannes. Well-posedness of the water-waves equations. J. Am. Math. Soc. 18 (2005),
605-654.

18 Y. A. Li. A shallow-water approximation to the full water wave problem. Commun. Pure
Appl. Math. 59 (2006), 1225-1285.

19 L. V. Ovsjannikov. To the shallow water theory foundation. Arch. Mech. 26 (1974), 407—
422.

20 L. V. Ovsjannikov. Cauchy problem in a scale of Banach spaces and its application to
the shallow water theory justification. In Applications of methods of functional analysis to
problems in mechanics, Lecture Notes in Mathamatics 503, pp. 426-437 (Springer, 1976).

21 H. Segur. Waves in shallow water, with emphasis on the tsunami of 2004. In Tsunami and
nonlinear waves, ed. A. Kundu, pp. 3-29 (Springer, 2007).

22 J. J. Stoker. Water waves: the mathematical theory with application (Wiley/Interscience,
1992).

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

608 T. Iguchi
23 R. Stuhlmeier. KdV theory and the Chilean tsunami of 1960. Discrete Contin. Dynam.

Syst. B12 (2009), 623-632.

24 S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent.
Math. 130 (1997), 39-72.

25 S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am.
Math. Soc. 12 (1999), 445-495.

(Issued 10 June 2011)

https://doi.org/10.1017/50308210509001279 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001279

