

Web-based telerobotics
Ken Taylor, Barney Dalton and James Trevelyan
University of Western Australia, Nedlands 6009, W. Australia (Australia)
htttp://telerobot.mech.uwa.edu.au/

SUMMARY
A six axis robot has been connected to the World Wide Web
at http://telerobot.mech.uwa.edu.au/. The robot was made
available on the World Wide Web in September 1994 and
has been through many revisions since that time. The
remote user receives static images of the robot’s work space
and can manipulate wooden blocks.

The implementation and application of this interface to
telerobotics is discussed. Useability and operator behaviour
are investigated through analysis of movement records.
Questions addressed are: What is the level of interest in this
technique and is it a practical interface for telerobotics.

KEYWORDS: Telerobotics; World Wide Web; Useability; Oper-
ator behaviour.

1. A TELEOPERATED INDUSTRIAL ROBOT ON
THE WORLD WIDE WEB
The “web” was designed as a hyper-text distributed
information storage system for technical documentation.
Web data is stored in “pages” which can contain plain text,
formatted text, images, and “fields” which the reader can fill
in to request further information. We use this facility known
as “forms” to extend the concept to the control of a physical
device. It has recently become possible with Java Applets to
do some processing at the remote computer which we
currently use to display a three dimensional model of the
robot’s current pose and which offers great possibilities for
increasing the sophistication of the interface.

In September 1994, we connected an ASEA IRb-6 robot
to the Internet through a Web server so that anyone with
Web access could control the robot. This was replaced in
August 1996 by an ABB IRB 1400 robot and the software
rewritten to work with the new robot and to incorporate

knowledge gained from the first version. It is now in use
71% of the available time by an average of 87 operators a
day.

As far as we are aware, this is the first industrial robot
allowing full 6 degree of freedom movement to be used in
this way. Live Internet cameras are now commonplace and
there are several teleoperable devices including a few
industrial robots,1 operable through web browsers.

The first robot on the web appeared 4 weeks prior to our
robot. Ken Goldberg and Michael Mascha at the University
of Southern California connected a two-link SCARA robot
in a similar manner.2 It could be positioned very simply with
a single click on the workspace map or on an image taken
by a camera mounted on the arm. The interface was
specifically designed to have only two degrees of freedom to
be readily understandable to inexperienced users.

1.1 Robot server
Our robot server consists of a personal computer running a
Web server program under a Windows operating system
(Figure 1).

Four monochrome CCD cameras are connected to a
frame grabber, which collects images of the robot work
space. A serial link provides access to the robot controller.
When an operator using a Web client program such as
Netscape requests information, the server sends a page
containing four images of the robot (from different angles),
an optional three dimensional model, explanatory text, and
a number of information fields. When a movement request
is received, the server interprets the data in the fields and
sends an appropriate movement command to the robot
controller. On completion of the move, the server collects
new images from the cameras and sends a new page with
these images so that the user can see the new state of the
robot.

Fig. 1. The Telerobot system. A computer in Perth interfaces between the robot and a remote machine on the Internet.

Robotica (1999) volume 17, pp. 49–57. Printed in the United Kingdom © 1999 Cambridge University Press

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

1.2 Operator’s controls
The robot control page is intended to provide the user with
enough information about the robot workspace to decide on
the next movement. We allow the user to control the image
quality, specifying size and number of shades of grey or
switching an image off. This provides a trade off between
information content and downloading time. Two of the
images are calibrated allowing control of magnification
(zoom). These images automatically follow the robot
gripper so that the tool centre point will be as close to the
middle of the image as the camera’s field of view will
allow.

When moving to a requested pose the robot performs
vertical movements and horizontal movements sequentially.
If the final position is above the starting point, vertical
movement will be made first. If it is below, the horizontal
movement will be made first.

The user can choose absolute or relative coordinates, and
can also request that the gripper be opened or closed. The
display is intended to be self-explanatory although help
pages are provided.

The work space table has a grid of thick black lines with
100 mm spacing so that users can judge horizontal coor-
dinate values from the camera images.

1.3 Tasks performed
Some operators just explore the interface and try a few
movements. The more creative operators can manipulate the
blocks on the table to produce towers; see Figure 2 for an
example. Those with a destructive bent push the blocks on
to the floor, which unfortunately means they are not then
available to future operators, until a volunteer passes the lab
and replaces the blocks.

Initially, the task was complicated by conflicts between
users. Many different operators could give different move-
ment commands at the same time without being aware of
each other. Thus, the environment could be changed before
an operator had time to decide on his or her next move. An
allocation system was devised by March 1995 to give a
single user exclusive access. Other users (observers) could
watch progress, but could not gain control until the current
operator had been idle for three minutes.

Interestingly Goldberg’s first robot had an allocation
system but their current Telegarden1 project allows access
by multiple users to increase the system’s availability. They
avoid confusion by allowing users to alter the environment
in such a way that it does not affect tasks performed by
other users.

2. IMPLEMENTATION
This project started with a question: “Why are there so few
robots?” In the late 70’s and early 80’s many people forecast
a boom in robotics with exponential growth in sales. This
has not happened. Instead of the 10’s of millions of robots
forecast, the world robot population is still less than
1,000,000 robots, according to 1995 IFR statistics. It is well
known that most robots work in the automotive industry.

2.1 An ambitious idea
We started to think about the obstacles which robotics must
overcome before the technology can be widely applied.
Several themes emerged:

• Robots are expensive machines, typically costing between
US$30,000 and $80,000.

• Most robots are complex to install and operate. Intensive
training is essential and connection to external devices is
a technically involved task requiring trained installation
engineers.

• Most robots are still programmed by leading them
through the required motion with a teach pendant. This is
time consuming and accuracy is limited. Off-line pro-
gramming requires skills, which are not common among
users, who are normally trained plant technicians. It is not
easy to apply in practice because most robots have large
absolute positioning errors despite excellent repeatability.
It is notable that much of robotics research assumes the
use of off-line programming which is still seldom applied
in industry 20 years after it became technically feasible.

• Even if off-line programming is mastered, it is extremely
difficult to program robots to perform tasks which humans
find trivial such as recognising and selecting objects.

• Robots could be programmed for a wider range of tasks
using computing skills which many people now have
(point and click+limited keyboard use), removing
another obstacle.

• Robotics research has produced a mountain of complex-
ity, with thousands of research papers published each
year. Simple approaches help people to understand the
technical issues, and are more likely to be adopted.

Robotics applications have traditionally required fully
autonomous control which has necessitated solving all of
the problems required to achieve automatic control before a
task can be accomplished. This can be the downfall, as
problems of perception and control are frequently over-
whelming. A supervisory control regime offers the prospect
of solving control problems incrementally. It falls between
the extremes of manual and automatic control. Supervisory
control is defined in Sheridan,3 “in the strictest sense,
supervisory control means that one or more human

Fig. 2. Tower of blocks created by John Willoughby, construction
time was five hours.

Telerobotics50

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

operators are intermittently programming and continually
receiving information from a computer that itself closes an
autonomous control loop through artificial effectors to the
controlled process or task environment”. It has found
negligible application in industrial robotics and is discussed
by Sheridan4 under the heading “The Distinction Between
Teleoperators and Industrial Robots”. He states “There has
been surprisingly little interest in human supervisory control
for industrial robots and the availability of a nearby human
operator has been taken for granted”.

While we were researching these issues, a startling idea
occurred to us: to control a robot using the Web and open
our laboratory to remote population of robot users. In doing
so, we could explore an entirely different approach to robot
programming using telerobotics and supervisory control,
implementing the regime in Figure 3.

It was an ambitious objective. At the time there were no
physical devices controlled from the Web, yet we had a
good robot that was utilised for perhaps 1% of the time at
most, and hence potentially available to other people for the
other 99%.

An important stimulus was the famous Cambridge Coffee
Pot5 which could be observed remotely via the Web. We had
the necessary hardware to “publish” images of our robot on
the Web. Yet linking our DOS-based image collection
software and robot control software with the Web seemed a
daunting task, given that we had no understanding of Web
software and the TCP/IP protocol by which signals are
transmitted along the Internet.

We wanted to use components as generally available and
simple as possible and consequently decided to use a single
PC for image capture, as a robot controller and as a web
server.

2.2 Software
Much of the software we have adapted to this project has
been found to contain errors that would occasionally cause
problems. All of these, which had been tolerable for other
applications have had to be removed to achieve a reliable
system.

Web data is normally static. Therefore to save data
transmission and time, Web browser programs store each
Web page retrieved by a user on the user’s computer. Thus,
if the user wants to return to that page, it is now stored

locally and does not need to be requested again from the
server. An image used for robot control or for monitoring a
changing scene is dynamic. A fresh version needs to be
retrieved from the server each time it is accessed. Therefore
we include a random number in the name of each image
generated to force the browser program into bringing a new
image each time.

The server software we selected was Robert Denny’s6

Win-httpd. On request from a browser a WWW server
launches a CGI script which can be a batch file or
executable which must output an HTML formatted docu-
ment or point to an existing document on disk. The POST
method is used to launch a windows C++ CGI script. CGI
is the protocol for passing data between the WWW server
and the application. A server is uninterested in what the
application does, only looking for an HTML formatted
document as output. In the first version of our software, the
WWW server launched a DOS batch file that started two
DOS executables: the first to control the robot, and the
second to take the pictures. Data was passed between
applications by writing to disk from the first and reading
back the data from the second. The batch file launched one
of two alternative applications for generating the HTML
document. This decision depending on whether the request
had come from a person classified as an operator or
observer, being made by the executable controlling the robot
and passed to the batch file via the exit code. The drawbacks
in this approach were several. Applications running in DOS
under Windows 3.11 receive a fixed proportion of the
processor time regardless of their need to run more slowly
than they otherwise would. Each time a request is made the
full executable has to be loaded from disk. As the system
became more sophisticated, the amount of data that had to
be passed between executables became unwieldy and some
of the functionality had to be repeated in both executables.
With the new robot, three cooperating Windows applica-
tions are used to achieve the desired result. A core CGI
script communicates with an image server that generates the
images, and a robot server that communicates with the
robot. The robot server and image server run continuously
and respond to messages from the controlling CGI script.
This greatly reduces the overhead for running the script as
robot and image initialisation is done at boot time only.

The DOS version of the software was adapted from
software used for various other purposes, a large proportion
of which was then used for the Windows version. The
applications on which it was based worked well but
surprisingly several problems soon became apparent when
they were combined. First, the robot control software
needed several improvements to avoid an indefinite
“hangup” in the serial communication link with the robot.
The communications software had used polling for serial
communications. This was modified to be interrupt driven
as accurate timing was not possible with the multitasking of
the Windows operating system. Secondly, we had to extend
our partial implementation of the robot’s proprietary
communication protocol. Lastly, we discovered a number of
mistakes in our kinematics calculations as remote users
attempted more ambitious tasks.

This reveals a major problem with tolerobotic applica-

Fig. 3. Outline of the supervisory control scheme.

Telerobotics 51

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

tions and that is the difficulty of making them reliable. This
has been a problem for several telerobotic installations that
have appeared briefly on the Web and is considered
important by Goldberg (private correspondence dated 12
Nov., 1996) who believes “design of the interface for
reliability is central to WWW Telerobotics”.

Due to our current hardware set-up we are still running
under Windows 3.11, and consequently have to deal with
the occasional system crash. Running a short program to
toggle two relays (from the array originally installed to
switch alternative cameras to the frame grabber) every thirty
seconds solved this. A PLC monitors this array and re-boots
the computer if the relays stop oscillating, commonly
known as a watchdog timer.

The web server launches the main controller program
with a file containing all the user details. Using a hidden
field in the form the submission is examined to see if it is
from an operator, an observer, or someone who can now
become the operator. In the case of an observer, the response
is simple: the most recent pictures along with the current
operator details are written to an HTML file. If the user is a
new operator then new pictures are taken and the new
controller’s details recorded. If the user is the controller then
the robot is first moved to the required location. This
required location may be specified by values within the
form, or from clicked image point. If it is the latter then a
stereo point must be calculated from the two image points.
Once the robot has finished moving, pictures are taken
centered on the tool end point and an operator page
returned.

The robot server program receives requests in the form of
Cartesian coordinates, spin and tilt. The spin and tilt are
converted to a quaternion representation and are passed to
the robot controller over the network. The program on the
robot controller is then initialised with this new target pose.
The robot server program waits for the robot to finish and
indicates to the calling process whether the move was
successful. Similarly the image server receives requests for
images of a certain size and sub-rectangle of the image
plane; the image is grabbed and saved in GIF format. Figure

4 shows a schematic diagram of the hardware and software
components.

2.3 Robot
The ABB robot consists of a 6-axis manipulator with a
controller which can accept remote commands through a
serial communication link (RS232, 9600 baud) using the
SLIP protocol. A proprietary windows DLL allows high
level communication with the robot. Among the available
commands are:

(i) Read current status and robot position in Cartesian
workspace coordinates

(ii) Control robot operating mode (standby – operate)
(iii) Start/stop programs stored in the controller mem-

ory.
To make a move, a target position variable is changed in the
controller, a program is then invoked with this target
position. The controller program first checks to see if the
gripper is changing state, and if so changes a digital I/O line
connected to the pneumatic valves of the gripper system.
The robot move is then split into two parts. A vertical move
with no reorientation, and a horizontal move with reorienta-
tion. If the required position is above the current one, then
the vertical move is performed first; otherwise, the hor-
izontal move is executed first. This helps to reduce
collisions with other blocks, and reduces the number of
moves an operator has to specify to achieve a given
objective – a fundamental goal of this research.

Our robot control software incorporates automatic com-
pensation for errors in the kinematic model of the
manipulator. Model data is read from a data file. The
program calculates the joint angles, which are required to
attain the specified pose, using the calibrated kinematic
model. Then it calculates a Cartesian position and quatern-
ion which, when sent to the robot’s controller, will result in
those joint angles being attained, and hence the required
pose.

The program restricts robot movements to the space
above the table with the blocks placed on it. Movements
below the table surface are not allowed. The orientation of

Fig. 4. Details of the Telerobot system. For each web request a CGI script is launched which then communicates with the robot and
camera servers.

Telerobotics52

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

the tool is also restricted within an inverted cone with a 45
degree base angle.

2.4 Operator interface
The design and layout of the interface has been revised
many times in response to observation of the difficulties
users are having.

As an example, the robot could initially be positioned
with only relative coordinates. After introducing the choice
of relative or absolute coordinates, it immediately became
apparent that most users preferred specifying absolute
movements so that was made the default. This preference
can be seen in Table I, which shows operators’ movement
requests during the period when three methods of moving
the robot were available and the default was move
absolute.

During May 95 an image was added showing six wire
frame models of the robot from different viewing angles.
This contained a lot of information though the images were
only 4.5 kilobytes in size. A click in the wire frame image
would cause the robot to move to the position clicked. A
single click will provide only two parameters where three
are required to define a position in space and three more to
additionally specify the orientation. Therefore, orientation
and the third component were maintained. For example x
and y may be altered but z will remain constant. Surpris-
ingly this was not a popular method of controlling the robot
as Table I shows, only 6% of movement requests were made
this way. It was so disliked that in 42% of operator requests
the option to switch off this image was selected (Table II).

This feature was not included when the software was
rewritten. The facility is now provided by a Java applet
which may be rotated to any viewing angle and which
requires only the joint angles to be sent across the network
after each move.

We also added software to allow users to leave comments,
a couple being:

Man this thing is incredible!!! After 5 minutes I felt trembles
10 minutes later perspiration dripped from me oooops . . . 3
hours later and I’ve got no chance of finishing that
assignment!!!!! But the funny thing is I don’t care, moving

these bricks, dropping them on the floor, picking them up,
woooooooooo I feel like a two year old all over again!!!
GREAT STUFF! – Randall Fletcher (Fletch) 20 March
1995
Crude but has vast possibilities. – Chris Layne bclayne@
erols.com 28 August 1996
This was really interesting. I’m going to let my kids try it
next time! Much better than watching t.v. for them. Thank
You! – Pam woods@galstar.com 30 November 1996

In December ’94 we allowed the use of Euler angles (roll,
pitch and yaw) for specifying wrist orientations. This
proved to be very confusing, users had little experience of
these terms and found them hard to visualise. In September
1996, we changed this to spin and tilt (Figure 5). Spin is
defined as rotation about the Z-Axis of the table and Tilt the
angle that the gripper makes with the table’s Z-Axis. Spin is
used to get the jaws of the gripper parallel with the length of
a block.

This is much simpler to understand and constrains the
orientation of the gripper jaws to two degrees of freedom.
The effect of this is to ensure that a line drawn through the
gripper end points is always in the same plane as the surface
of the table, which is ideal for block manipulation. This
aspect of the interface no longer draws criticism.

2.5 Imaging
Initially there was a single camera to provide feedback and
users had great difficulties with perceiving depth. This was
improved by arranging lighting to throw shadows from the
blocks on the grid. A second camera was added in January
’95 mounted orthogonally to the first and this provided a
much better view of the workspace. However, it requires
some thought to interpret a scene viewed this way. Currently
four cameras are positioned as shown in Figure 6 and we are
investigating user preferences.

A camera mounted on the sixth axis has also been tried,
but was removed due to the highly restrictive effect on the
robot’s workspace. Placing cameras on the robot is a trade

Table I. Operator preference in move requests.

Move Number Percentage

Relative 3217 11
Absolute 24711 83
Clicking Image 1874 6

Total 29802 100

Table II.

Primary Secondary Wire
Image Image Frame

Primary Image 0.2 0.1 0.5
Secondary Image 1 3
Wire Frame 39

Fig. 5. Images showing gripper orientations for different values of
Spin and Tilt. Note that the jaws of the gripper are always parallel
to the plane of the table.

Telerobotics 53

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

off between being close to the end effector and restricting
the workspace. The correct placement of cameras has
proved to be a contentious issue, most camera positions
seem to elicit both praise and criticism from users.

The two fixed cameras are calibrated with respect to the
robot’s workspace so that image coordinates can be related
to robot coordinates. This enables some intelligent process-
ing on the images, such as; knowing the robot tool position
a software pan-tilt and zoom can be performed to give the
user a close up view of the end effector. This is of particular
importance as it is essential to keep the image size as small
as possible while still supplying the information the user
needs. Calibration of the camera also enables 3-D points to
be specified by the user clicking a point in each of the
images, allowing point and click movement of the robot.

The cameras feed images to a Data Translation Quickcap-
ture frame grabber. The video signal from different cameras
is switched to the frame grabber with reed relays controlled
from a PC brand, model PC-36 digital I/O board. The
grabber grabs an image of 7683 512 pixels, depending on
user options some sub rectable (software pan and tilt see
above) of this is extracted and resized before being saved in
GIF format. For the uncalibrated images, a central 5123 512
rectangle is used. We have used several versions of GIF
coding software and currently use a version by Huseby.7

4. ROBOT USAGE
Data collected on robot usage allows us to determine how
the robot is being used. It has driven the interface
development as it can be quickly seen whether the robot is
being used as anticipated and what troubles users are
having. It offers considerable advantages over most tele-
robotic studies, which are based on very small data sets.
However there is no control over the tasks users perform
hence it is difficult to study task competencies.

4.1 Data acquisition
All visitors since 21 October 1994 to the robot are recorded.
Currently records are lost only rarely but earlier records are
much less complete, with perhaps 50% lost in the early
months. The details recorded are:

• Internet Address of Visitor.
• Date and Time of request.
• Item requested.

• Commands to robot.
• Image Specifications.

Initially the web server logs were relied on to record this
information but for increased flexibility and ease of data
analysis logging is now done within the telerobot applica-
tion. Visitors are identified by Internet address. Some
Internet addresses are allocated dynamically so the same
person visiting on separate occasions can show up as more
than one person.

4.2 Numbers of users
In the 95 days between 11 September 1996 and 15
December 1996, 8260 people operated the robot. This
excludes those who could not gain control because others
were using it. It was in use 71% of the available time and the
periods for which it remained unused rarely exceeded 10
minutes (Figure 7).

4.3 Requests in a session
Defining a session to be at least two requests to the robot
from a single site less than 4 minutes apart; a comparison of
34,000 sessions for the first telerobot and 5,650 for the new
telerobot, Figure 8 reveals a greater interest by operators in
the newer telerobot. This excludes operators who gained
control of the robot but did not make any further requests.
To complete a simple block stacking task requires at least 10
requests to the robot. Previously only 2.5% of operators
made more than 10 requests to the robot in a session and this
has now increased 10 times to 24% of all operators.

4.4 Response times
The operator controls the robot by providing a goal and
receiving a response. The robot receives a goal, attempts to
achieve the goal and reports back to the operator on the
result. This methodology is necessary to conform to the
client server model of the World Wide Web but is also
consistent with the supervisory control model. It eliminates
control instabilities, which would otherwise be associated
with long and variable delays in the control loop, by
performing all the time critical control locally. Regardless of
the sophistication of the control process the test task of
stacking blocks can never be performed by the robot at the
same rate as a human due to it’s limited dexterity. Within
this constraint the speed at which task can be performed
depends on the:

Fig. 6. Camera and table layout.

Fig. 7. Graph showing usage of the robot, idle time is usually less
than 20 minutes.

Telerobotics54

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

• Sophistication of the goal that is provided to the robot.
• Local processing time.
• Movement time.
• Transmission time.
• Operator decision making time.

As sophistication of the goal given to the robot is increased,
the number of actions performed between each feedback
step increases, eliminating two components; feedback time
and operator decision making time, leading to a more
efficient system.

Based on 53,000 requests to the old telerobot and 58,000
requests to the new telerobot the distribution of intervals
between requests is shown in Figure 9. Across a local
ethernet connection, the minimum time per robot request
was measured at 17 seconds with the old telerobot and at 13
seconds with the new telerobot. This would account for four
of the 7 seconds in the difference in median time between
moves.

Robot movement speed is limited to a slow 100
millimetres a second. This is to limit the inertia of the arm
and eliminate the risk of damage when the gripper is
brought down on a solid object. This does mean movement
time can be up to 6 seconds, for a movement from one side
of the table to the other.

4.5 Imaging preferences
To modify image properties the old telerobot required
checking a button on the robot control page labelled
“Change Image”. After submission, the page returned
allows the user to select three aspects of the image quality;
size, resolution and number of shades of grey. The current
interface layout includes the image controls in a drop down
combo box at the base of the main controller page.

The defaults were; 16 shades of grey, 2563 256 pixels,
full resolution. The resolution control is no longer offered.
Image properties can now be controlled for each image and
the defaults are currently 100 by 100 pixels and 16 shades
of grey. A sample of 30,800 requests revealed 94% accepted
all of the image defaults for the old telerobot. However,
looking at the greyscale selections in Figure 10 based on a
sample size of 267,000 and 30,800 for the old telerobot it
can be seen there is currently a far greater enthusiasm for
alternative settings.

4.6 Useability and operator behaviour
The popularity of the telerobot, shown by the 71% usage
statistic, and enthusiastic operator comments provides
conclusive evidence of the high level of interest in World
Wide Web telerobotics. However, useability is more prob-

Fig. 8. Graph showing number of moves made in a session for different users.

Fig. 9. Graph of time betwen robot move requests for both the old and new telerobot.

Telerobotics 55

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

lematic and difficult to quantify. Many of the statistics
presented indicate the importance of the interface design,
the importance of providing the correct feedback, the strong
influence that interface design has on operator behaviour
and the difficulty in predicting the effect of any particular
change on that behaviour.

The new telerobot performs the same tasks as the
previous one. From an operator’s perspective the differences
are that of response time (up to 4 seconds faster) and that the
interface has changed in a number of ways as previously
described. These changes have led to a dramatic increase in
the number of moves per session, which appears to be
mainly due to the operator’s preference for the current
interface layout and feedback supplied. The influence of
interface layout on operator behaviour can be seen in the
willingness to vary the greyscale settings which has
changed from 6% of all requests to 24% of all requests.
While the developments in the interface design have been
overwhelmingly positive it is very much a trial and error
process that has seen some failures. The introduction of the
wire frame model and the ability to move the robot by
clicking on it was an attempt to provide a more visual
interface. Contrary to expectations it did not appeal to
operators (nearly a third of all operators switched the feature
off entirely).

5. APPLICATIONS
Telerobotics has, until now, been an expensive technology.
Therefore, it has only been used where environmental
conditions make human operations extremely hazardous,
such as nuclear reactors, underwater, and space applica-
tions. Normal economic consideration seldom apply in
these instances.

As far as we are aware, “remote” telerobotic experiments
have used high bandwidth communication links, typically
with real-time video, and high bandwidth control and
sensing links. In early 1993, the space robot technology
experiment ROTEX flew on the space shuttle Columbia.
The project is described in a paper by Hirzinger et al.8

which also mentions a number of similar projects. Those
being; a space station mobile servicing centre being built by
the Canadian space agency, NASA’s Flight Telerobotic
Servicer project (significantly cut back due to cost over-

runs), Japan’s space station Remote Manipulator System
(JEM-RMS) and the Japanese ETS-VII project which is
another experimental space telerobotic servicer.

Our research has demonstrated that telerobotics is
feasible with low and variable communication bandwidth,
using cheap additions to a rapidly expanding network
infrastructure. The difference being that this relies on
supervisory control concepts, as opposed to continuous
feedback. The robot must have a local control loop with
some degree of autonomy, which executes user commands.
The degree of local control can depend on the application,
and there is no reason why many of the techniques
developed for fully automatic robots could not be used with
limited autonomy in this context. For example, direct vision
feedback from a gripper-mounted camera could be used to
guide the robot in the final phase of grasping an object,
without the need for user intervention.

Having accepted certain bandwidth restrictions, in order
to reduce the cost and allow the user to be further removed
from the robot, we can propose new classes of applications
for telerobotics where the motivation is economic or even
entertainment.

5.1 Robotics training
Many research and educational institutions cannot afford to
purchase industrial robots, partly because they are idle for
much of the time. Therefore, they rely increasingly on
simulation packages. When we demonstrated this technol-
ogy to a class of students in Toronto, several of the students
thought that the image they saw was virtual reality and not
the real robot! This technique may provide more effective
access to a real robot for students from remote sites.

5.2 Space
The ROTEX experiment demonstrated the potential utility
of robots in space for construction and repair operations but
at considerable cost, particularly in communication band-
width and ground support facilities. Space facilities may
one day require numerous robots performing construction or
repair tasks. This technology shows how such robots could
be controlled using modest ground and communication
facilities.

Fig. 10. Percentage of users changing greyscale preferences for the old and new systems.

Telerobotics56

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

Rather than a single robot being controlled from a
lavishly equipped ground station, and occupying all the
available communication bandwidth for stereovision feed-
back, we propose a distributed network of operator
terminals located at the contractors responsible for the many
different components of a space project. Each terminal can
be configured to control one or more robots operating at
slow speed requiring, perhaps, only intermittent monitoring.
This may be a more economic alternative for many
projects.

5.3 Entertainment
We have no doubt that the major incentive for most of our
users has been curiosity and entertainment. The first robot
demonstrated on the Web, just a few days before our own,
was based entirely on entertainment. Using a model robot,
users were invited to “blast” foam balls with a compressed
air jet to discover clues and solve a mystery.

Therefore, entertainment providers may find this a
profitable alternative technology. Imagine, for example,
exploring part of a mid-ocean trench, all from the comfort
of your home as a diversion on a cold winter evening.
Exploration of a remote environment is the goal of
Mechanical Gaze9 which allows users to interact with
museum exhibits. There is currently a telescope available on
the Web – another entertainment possibility.

5.4 Remote manufacturing
Remote manufacturing is an exciting possibility that has
been recently taken up by a team from University of
California, Berkeley who refer to their project as Cyber-
cut.10 A designer could prepare a design on a computer and
without leaving the screen control the equipment to
manufacture it. The product is then couriered to the
customer. The technique is suitable for sharing machinery
where the cost of ownership may make it’s use impractical
for a single person or organisation but where the cost is not
prohibitive when spread across a large user base.

6. CONCLUSION
We consider the demonstration of the concept a great
success and continue to refine and explore the limits of it’s
capabilities. These are rapidly expanding as the facilities
afforded by the World Wide Web expand. The rate at which
they occur is astounding. Two years ago browsers were
quite crude, they are now sophisticated and allow manipula-
tion of three dimensional images and support local
processing through Java applets. The use of local processing
provides opportunities for more sophisticated interfaces
based on simulation which we are exploring. While we do
not offer the capabilities of the most expensive telerobotic
installations associated with space applications, we have
achieved a lot of the functionality with a fraction of the
resources. Remotely operated robots may one day out-
number the more conventional robots we see today, because
we have shown that our existing communication networks

can make a real robot accessible to a large number of
users.

The interest generated in both our installation and
Goldberg’s2 has been remarkable. There is no doubt that
curiosity and entertainment has provided a strong incentive
for tens of thousands of users to access our system. This
suggests that robotics could become a popular entertainment
medium in the future. As well, the possibility of making
expensive machine tools available to artisans at low cost
presents considerable opportunities.

Most, if not all the technology is available to pursue these
opportunities now.

Acknowledgements
Thanks are due to Peter Murphy for adapting our image
collection software to generate GIF images used by the
Web. Hing Wong wrote many elements of the robot control
software. Troy Phillips made many vital improvements to
our robot control software. He made use of interrupts so that
serial communication routines would work in the context of
the Windows operating system. He also improved the
accuracy and robustness of transformations between homo-
geneous coordinate frames and the quaternion scheme used
by the ASEA robot controller. Bradley Saracik implemented
the allocation scheme to guarantee a single user control
without requiring a user to “sign off” before others could
have a turn. Shalini Cooray and Dan Macey had the
misfortune to be thrown into windows programming writing
the first port to Windows 3.11.

References
1. Internet robots can be seen at http://www.usc.edu/dept/

garden/ and http://vive.cs.berkeley.edu/capek/
2. K. Goldberg, M. Mascha, S. Genter, N. Rothenberg, C. Sutter

and J. Wiegley, “Desktop Teleoperation via the World Wide
Web” Proc. IEEE International Conference on Robotics and
Automation, Nagoya, JAPAN (May 19–26, 1995) pp. 654–
659.

3. T.B. Sheridan, “Human Supervisory Control of Robot Sys-
tems” Proc. IEEE Conference, International Conference of
Robotics Automation, San Francisco (Apr. 7–10, 1986)
pp. 808–812.

4. T.B. Sheridan, Telerobotics, Automation and Human Supervi-
sory Control (MIT Press, Cambridge, Mass., 1992).

5. The Cambridge Coffee Pot located at web address: http:/
/www.cl.cam.ac.uk/

6. R. Denny, (1995). Robert Denny’s Win-httpd World Wide
Web Server at web address: http://www.city.net/win-httpd/

7. Sverre H. Huseby, “C” source code obtained from Internet.
sverrehu@ifi.uio.no, Bjoelsengt. 17, N-0468 Oslo, Norway.

8. G. Hirzinger, B. Brunner, J. Dietrich and J. Heindl, “Sensor
based space robotics- ROTEX and its telerobotic features”
IEEE Transactions on Robotics and Automation 9, No. 5,
649–663 (1993).

9. Eric Paulos and John Canny “A World Wide Web Telerobotic
Remote Environment Browser” Fourth International World
Wide Web Conference Boston, Massachusetts, USA (Dec.
11–14, 1995): Mechanical Gaze - http://vive.cs.berkeley.edu/
capek/

10. Cybercut – Remote Manufacturing at http://kingkong.
me.berkeley.edu/cybercut/

Telerobotics 57

https://doi.org/10.1017/S0263574799000752 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799000752

