
Robotica (2012) volume 30, pp. 1013–1027. © Cambridge University Press 2011
doi:10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots
Hsien-I. Lin†,∗ and C. S. George Lee‡
†Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan
‡School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

(Accepted November 10, 2011. First published online: December 8, 2011)

SUMMARY
Endowing robots with the ability of skill learning enables
them to be versatile and skillful in performing various tasks.
This paper proposes a neuro-fuzzy-based, self-organizing
skill-learning framework, which differs from previous work
in its capability of decomposing a skill by self-categorizing it
into significant stimulus-response units (SRU, a fundamental
unit of our skill representation), and self-organizing learned
skills into a new skill. The proposed neuro-fuzzy-based,
self-organizing skill-learning framework can be realized by
skill decomposition and skill synthesis. Skill decomposition
aims at representing a skill and acquiring it by SRUs,
and is implemented by stages with a five-layer neuro-
fuzzy network with supervised learning, resolution control,
and reinforcement learning to enable robots to identify a
sufficient number of significant SRUs for accomplishing a
given task without extraneous actions. Skill synthesis aims
at organizing a new skill by sequentially planning learned
skills composed of SRUs, and is realized by stages, which
establish common SRUs between two similar skills and self-
organize a new skill from these common SRUs and additional
new SRUs by reinforcement learning. Computer simulations
and experiments with a Pioneer 3-DX mobile robot were
conducted to validate the self-organizing capability of the
proposed skill-learning framework in identifying significant
SRUs from task examples and in common SRUs between
similar skills and learning new skills from learned skills.

KEYWORDS: Self-organizing skill learning; Skill de-
composition; Skill synthesis; Neuro-fuzzy network;
Reinforcement learning.

1. Introduction
Current humanoid robots have been designed to assist
and collaborate with humans in performing various tasks.
Although they can perform specific tasks using pre-designed
programs,1, 2 they are still not as skillful as humans because
they lack the ability to self-organize learned skills in learning
new skills. In psychology, researchers consider that skill
learning is not repeating the actions over and over again but
rather a process resulting in a relatively consistent change in
behaviors. These changes make behaviors possible to serve as
building blocks for skill development, and combining these
building blocks creates new skills for new tasks.3 Thus, skill
learning is considered as a process of acquiring skills to

* Corresponding author. E-mail: sofin@ntut.edu.tw

achieve a given task and utilizing acquired skills to learn a
new skill for accomplishing a new task.

Early robotics research focused on skill acquisition for
manufacturing tasks such as assembly,4 cutting,5 deburring,6

etc. To acquire a skill for each different task, a robot needs to
be re-programmed to learn the skill for it. Thus, a variety
of skill representations and learning algorithms for skill
acquisition were proposed to learn skills for different tasks.
Among these skill representations, these are dichotomized
into non-primitive- and primitive-based representations.

For non-primitive-based representations, these are further
divided into local- and global-approximation methods.
For local-approximation methods, Albus7 proposed the
Cerebellar Model Arithmetic Computer (CMAC) to acquire
robot skills. CMAC is a table-look-up method that reproduces
the relation between sensor inputs and system-command
outputs. Due to some success of CMAC in acquiring skills,
researchers turned their interests to local-approximation
methods for acquiring skills. Radial-basis-function network
(RBFN)8, 9 is another approach that exhibits locality.
Baroglio et al.10 integrated a symbolic interpretation and
RBFN to demonstrate that robots exhibited satisfactory
performance in a “peg-in-a-hole” task. Although local-
approximation methods have shown their success in skill
representation, locality impedes the output performance in
high-dimensional tasks.

In order to improve local-approximation methods in
skill representation, three prevalent global-approximation
methods – multi-layer neural networks, fuzzy logics,
and Hidden Markov models – were engaged to acquire
robot skills. Neural networks are usually trained by a
backpropagation algorithm without specific skill models;
for example, Nechyba and Xu11 proposed a neural-network-
based method to extract strategies of skills from an expert
and provide them to an apprentice; this method was further
applied to a one-to-many learning scheme, which is an
expert to many apprentices. For fuzzy logic, skill-learning
methods are implemented with domain knowledge. Wasik
and Safiotti12 proposed a fuzzy-rule-based control system
to learn robot manipulation. They demonstrated that pick-
and-place tasks could be realized by a set of behaviors
arbitrated by fuzzy rules. Yang et al.13 and Hovland
et al.14 considered that human actions might possess inherent
stochastic property and employed hidden Markov models to
acquire human skills.

For primitive-based skill representations, many robot skill-
learning systems adopted motion primitives,15, 16 perceptual-
motor primitives,17 motor schemas,18 motor programs,19

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1014 Neuro-fuzzy-based skill learning for robots

or behavior-based systems18, 20, 21 to perform various tasks.
These primitives serve as basic units to perform specific tasks.
For example, Speeter15 defined a set of motion primitives of
a Utah/MIT Dextrous Hand, such as open, pinch, rotate,
swing, etc., to perform manipulation tasks. Matarić et al.22

implemented skill imitation through learning behaviors
such as reaching, bouncing, waving, or swinging by
discrete straight lines and continuous oscillatory movements.
For behavior-based systems, skills can be acquired by
constructing a network of behaviors. Behaviors are used
to take account of the relationship between stimuli and
responses and encapsulate detailed actions to represent
motion patterns such as avoiding obstacles, wandering,
reaching, etc. They are usually encoded by reactive
rules20, 23, 24 or mathematical formalism.18, 25, 26

Other than skill acquisition, it is also important to clearly
address how new skills are conceived from learned skills.
Not surprisingly, researchers employed machine-learning
techniques to learn new skills from learned skills. They
assumed a new skill could be learned by “black-box”
primitives because there is no skill representation described
for “black-box” primitives, and there is also no need to
worry about how the new skill is represented by the
skill representation of “black-box” primitives. One of the
prevalent methods for learning new skills by using “black-
box” primitives is to plan them in a sequence. However, in a
real-world situation, incomplete knowledge of tasks impedes
the determination of the sequential order of “black-box”
primitives. To solve this problem, reinforcement learning
is often adopted.27, 28 Later, to learn skills for complex
tasks by “black-box” primitives, hierarchical reinforcement
learning approaches were introduced. Among these learning
approaches, Sutton’s option formalism,29 Parr and Russell’s
hierarchies of abstract machines (HAMs) approach,30 and
Dietterich’s MAXQ framework31 are the most notable ones.

Although previous skill learning approaches have
demonstrated some success in skill acquisition, it is not
easy for them to reuse their skill representations and
learning algorithms to learn new skills. For non-primitive-
based methods, they do not have good modularity and
reusability of learned skills for learning new skills because
their skill representations are designed to learn particular
skills. On the other hand, primitive-based methods have good
modularity and reusability in learning new skills, but they
are designed manually and take much domain knowledge to
design primitives that may not be autonomously adjustable
to various situations of a task. In addition, even though
the “black-box” representation is used to demonstrate
its modularity and reusability across problems, it lacks
the description of detailed stimuli–actions relationship
encapsulated in the primitives. Thus, it is still difficult to
use the “black-box” representation to realize skill learning in
a robot system.

By integrating the advantages of non-primitive- and
primitive-based methods of skill representation, this paper
proposes a neuro-fuzzy-based, self-organizing skill-learning
framework to obtain modularity and autonomy of skill
representation in a coherent manner. The proposed
framework is distinguished by its capability of self-
categorizing skills into significant stimulus-response units

(SRUs) and self-organizing learned skills composed of
SRUs into new skills; it provides robots with the ability
of skill learning from task examples instead of manually
designed skills. The term, self-organizing, loosely means that
a robot can develop a new skill from learned skills without
human intervention. The proposed neuro-fuzzy-based, self-
organizing skill-learning framework can be realized into
two phases – skill decomposition and skill synthesis. Skill
decomposition aims at representing and acquiring skill by
SRUs. Skill synthesis aims at self-organizing a new skill by
sequentially planning learned skills composed of SRUs. In
this regard, learned skills represented by SRUs can be self-
organized for learning new skills.

A stimulus-response unit, defined as a mapping from
the domain of perceptual stimuli to the domain of action
responses, is the building block used in our proposed
skill-decomposition and skill-synthesis framework. For
particular experiments, stimuli are the sensor input variables
and responses are the action output variables. They are
appropriately chosen to characterize a skill. The domain
of stimuli is defined as the set of independent sensor input
variables of a skill. The domain of responses is defined as
the set of independent action output variables of a skill.

This paper is organized as follows. In Section 2, the
proposed neuro-fuzzy-based, self-organizing skill-learning
framework is described. In Section 3, skill decomposition
is introduced, and a neuro-fuzzy network with supervised
learning is proposed to represent a skill and categorize it
into SRUs. Then resolution control is introduced and utilized
to prune unnecessary SRUs. The reinforcement learning is
proposed to verify the sufficiency of the SRUs obtained
from resolution control for accomplishing a given task.
In Section 4, skill synthesis is introduced, and common
SRUs from similar skills are determined and verified. In
addition, self-organizing a new skill from learned skills with
reinforcement learning is introduced. In Section 5, computer
simulations and experiments on a Pioneer 3-DX mobile
robot to validate the performance of the proposed neuro-
fuzzy-based, self-organizing skill-learning framework are
discussed, and conclusions are summarized in Section 6.

2. Proposed Neuro-Fuzzy-Based, Self-Organizing
Skill-Learning Framework
The proposed self-organizing skill-learning framework is
shown in Fig. 1, which can be conveniently realized in two
phases – skill decomposition and skill synthesis. From a
robot-control architecture point of view, skill decomposition
is to acquire a skill and decompose it into SRUs that deal
with the mapping between stimuli and responses in the
low-level control; skill synthesis is to sequentially plan
learned skills that are composed of SRUs for accomplishing
a task in the high-level planning.

Skill decomposition. In the first phase, skill decomposition
acquires a skill from a human and decomposes it into a
number of significant SRUs, and this process is realized
in three stages. In the second phase, skill synthesis learns
new skills by synthesizing acquired skills that are composed
of SRUs, and this process is realized in two stages. In the

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1015

Fig. 1. (Colour online) The proposed neuro-fuzzy-based, self-organizing skill-learning framework. Solid line: skill decomposition; dashed
line: skill synthesis.

first stage of skill decomposition, a five-layer, neuro-fuzzy
network acquires a skill and categorizes it into a number
of initial SRUs that capture the behavioral patterns of the
skill as demonstrated by a human. Mathematically, each
SRU is regarded as a fuzzy rule in the neuro-fuzzy network.
By using human demonstration data, supervised learning
is performed to tune the parameters of the neuro-fuzzy
network for generating the same skill as done by a human.
Since some of these initial SRUs may be unnecessary due
to extraneous actions demonstrated by a human, resolution
control is proposed to prune unnecessary SRUs and generate
a sufficient number of significant SRUs in the second
stage. In the third stage, reinforcement learning with an
adaptive-heuristic-critic algorithm is utilized to validate the
sufficiency of significant SRUs for accomplishing the given
task. If not, their behaviors are autonomously adjusted in the
reinforcement-learning stage until the task is accomplished
within an acceptable number of trials.

In skill decomposition, there are merits of representing a
skill by a neuro-fuzzy network. First, a neuro-fuzzy network-
based skill representation provides low-level, connectionist-
learning capability and high-level, fuzzy IF-THEN-rule
thinking. Thus, skills as represented by SRUs can be
easily learned and adjusted by using a neuro-fuzzy-
based supervised learning from task examples. Second, the
connectionist structure of a neuro-fuzzy network-based skill
representation provides a mechanism for different types
of learning (e.g., supervised and reinforcement learning)
because connections in a neuro-fuzzy network can propagate
and memorize signals. Thus, the benefits of supervised and
reinforcement learning can be appropriately combined and
realized in a neuro-fuzzy network-based skill representation.
Third, after a skill has been learned, its fuzzy rules can be
extracted and expressed explicitly from the SRUs of a neuro-
fuzzy network.

Resolution control in skill decomposition aims to
determine the number of significant SRUs from the initial
SRUs categorized from a neuro-fuzzy network. These
significant SRUs enhance generality rather than fidelity of
the initial SRUs. Thus, some extraneous actions caused by
unnecessary SRUs can be removed. Resolution control is
achieved by decreasing the resolution of perceptual stimuli
of SRUs and averaging out their corresponding action
responses. In other words, resolution control ensures the
situations excited by similar perceptual stimuli have their
average action responses. By doing this, the number of
SRUs decreases. Even though the reduced number of SRUs
sacrifice the fidelity of the initial SRUs, they obtain the

generality of the initial SRUs by simplifying the underlying
mapping from the domain of perceptual stimuli to the domain
of action responses for accomplishing a given task.

Once resolution control generates candidates of the
significant SRUs, the reinforcement learning in skill
decomposition validates them for accomplishing the
given task. By using a binary critic, the reinforcement
learning adjusts the actions of SRUs by tuning their
membership functions of perceptual stimuli and action
responses. The learning process continues until the given
task is accomplished. In skill decomposition, the curse of
dimensionality of the reinforcement learning is eased by
using the SRUs as learned by the supervised learning in a
neuro-fuzzy network.

Skill Synthesis. In the second phase, skill synthesis aims to
learn new skills for new tasks by synthesizing the acquired
skills composed of SRUs and is realized in two stages. In
the first stage, common SRUs between two similar skills
are determined. The common SRUs can also be utilized
to keep the pool of SRUs to a minimum. In the second
stage, it focuses on self-organizing new skills for new tasks
by utilizing learned skills composed of SRUs and creating
new SRUs if necessary, and validating the sufficiency of
the self-organized new skills by reinforcement learning. The
reinforcement learning in skill synthesis adopts a Q-learning
algorithm instead of the adaptive-heuristic-critic algorithm
used in skill decomposition.

The purpose of determining common SRUs in skill
synthesis is to measure the similarity between two skills
and keep the pool of SRUs to a minimum. Since a skill
is composed of significant SRUs, and each significant SRU
is represented by a fuzzy rule, it is possible to determine
the similarity between two skills by developing a similarity
measure to measure the similarity of the fuzzy rules of
SRUs. The success of determining common SRUs provides a
quantitative similarity measure between skills and keeps the
pool of significant common SRUs to a minimum.

Skill synthesis attempts to learn new skills by self-
organizing learned skills, and creating new SRUs if a robot
has difficulties in some situations to accomplish a given task
by using learned skills. Since a task can be decomposed and
represented by a sequence of subtasks, and each subtask can
be accomplished by a learned skill, then learning a new skill
can be done by planning the execution sequence of learned
skills for a new task. To learn the sequential planning in skill
synthesis, we adopt a Q-learning algorithm because it is more
effective than the adaptive-heuristic-critic algorithm used

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1016 Neuro-fuzzy-based skill learning for robots

Fig. 2. Skill representation is realized by a five-layer neuro-
fuzzy network (S: perceptual stimulus; R: action response; SRU:
stimulus-response unit).

in skill decomposition. Other than the sequential planning
of learned skills, action responses of learned skills are
performed concurrently because a skill is composed of SRUs
that are concurrently executed. Thus, in skill synthesis,
new skills are learned by a means of both sequential and
concurrent executions of action responses of SRUs.

3. Skill Decomposition Phase

3.1. Neuro-fuzzy-based skill representation with supervised
learning
Researchers in psychology3, 32, 33 and engineering34–36 have
defined skill from different perspectives. The consensus from
the previous literature is that a skill is an ability to accomplish
a task. To make a skill implementable, we define that a skill
is a stimulus–response mapping from the domain of stimuli
to the domain of responses and can be represented by a set of
SRUs. Here, the proposed skill representation is for learning
motor skills instead of arbitrary ones. Thus, we propose to
mathematically represent a skill as a fuzzy-rule-based system
that is expressed as

Rule = {Rule1, Rule2, . . . , Rulei , . . . , Rulen},
Rulei : IF(S1 is Ts1 and · · · and Sk is Tsk and · · · and Sp is

Tsp), THEN (R1 is Tr1 and · · · and Rk is Trk and · · · and
Rq is Trq),

where Rulei is the ith fuzzy rule, Tsk is a fuzzy set of Sk

(a perceptual stimulus), Trk is a fuzzy set of Rk (an action
response), and p and q are the numbers of perceptual stimuli
and action responses, respectively.

This fuzzy-rule-based system can be realized by a five-
layer, neuro-fuzzy network (see Fig. 2).37, 38 Each SRU is
mathematically regarded as a fuzzy rule in the neuro-fuzzy
network. We shall describe the functions of the nodes in each
of five layers to note their representation of a skill. The details
of the net input and activation function of nodes in each layer
are described in detail in Lin and Lee’s book.38

Layer 1: Nodes in this layer represent perceptual stimuli.
Layer 2: Each node in this layer represents a fuzzy set

belonging to a perceptual stimulus. Each stimulus has links

with the nodes representing its fuzzy sets. The membership
functions of the fuzzy sets are bell-shaped functions with
two parameters: mean and variance. The number of nodes
belonging to a perceptual stimulus is decided by either prior
experience or by a self-adaptive algorithm.39

Layer 3: The links of the nodes in this layer perform
precondition matching of fuzzy-logic rules. The node in this
layer performs a fuzzy AND operation on its incoming links.

Layer 4: This layer is composed of fuzzy sets representing
its action responses. Similarly, the number of fuzzy sets
belonging to an action response is also determined by either
prior experience or a self-adaptive algorithm. The links in this
layer perform postcondition matching of fuzzy-logic rules.
The nodes in this layer perform a fuzzy OR operation on its
incoming links.

Layer 5: There are two kinds of nodes in this layer.
First kind of nodes (with down-up arrow) are the output
of defuzzifiers that defuzzify the fuzzy sets in layer 4.
Another kind of nodes (with up-down arrow) provide the
channel to fuzzify each action response from task examples
for supervised learning of the neuro-fuzzy network. When
the training is done, these nodes will be removed from the
network.

When a skill is represented by a neuro-fuzzy network, a
skill is learned by training the neuro-fuzzy network from
task examples. The training process is mainly divided into
four steps: (1) Partitioning the perceptual-stimulus space
and the action–response space from task examples; (2)
construction of an initial network structure; (3) optimization
of the network structure; and (4) optimization of the network
parameters. From steps (1) to (3), a self-organized learning
scheme is developed to construct a neuro-fuzzy network
structure. Step (1) initializes membership functions of fuzzy
sets in layers 2 and 4 of the network; step (2) matches the
precondition in layer 2 and postcondition in layer 4; step (3)
eliminates and combines some of the initial fuzzy rules to
optimize the structure; and step (4), which is implemented as
a supervised learning scheme, is used to optimally adjust the
parameters of the membership functions for desired outputs.
The details can be found in ref. [38].

After a neuro-fuzzy network is trained by task examples
via supervised learning, the SRUs represented by fuzzy rules
are self-categorized from the neuro-fuzzy network. Figure 3
shows a SRU from a learned neuro-fuzzy network. It also
shows that a SRU physically means a mapping from the do-
main of perceptual stimuli to the domain of action responses
and is mathematically modeled as a fuzzy rule. SRUs do not
provide timing information; instead, they are reactive based
on the activation of stimuli. Skill outputs are generated by a
network in Fig. 2 constructed by SRUs, but there is no conflict
among SRUs’ outputs because each SRU is activated by a
near exclusive range in the input space of stimuli.

3.2. Resolution control
After initial SRUs have been self-categorized by supervised
learning, resolution control is employed to prune unnecessary
SRUs, resulting in a small number of significant SRUs. The
idea of resolution control is illustrated in Figs. 4(a)–(d).
Figures 4(a) and (b) show four SRUs A, B, C, and D, and
each of these has two perceptual stimuli, S1 and S2, and two

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1017

Fig. 3. Representation of a SRU extracted from a neuro-fuzzy
network (S: perceptual stimulus; SRU: stimulus to response unit;
R: action response).

Fig. 4. Concept of resolution reduction of SRUs. (a) and (b) Six
SRUs, A,B,C,D,A′, and C ′, each of which has two perceptual
stimuli, S1 and S2, and two action responses, R1 and R2. (c) Merging
membership functions of perceptual stimuli of SRUs A and B, and
C and D. (d) Merging membership functions of action responses
of SRUs A and B, and C and D.

corresponding action responses, R1 and R2. In Fig. 4(a),
SRUs A and B are close by a distance measure in the
perceptual space, and so are SRUs C and D in Fig. 4(b).
By resolution control, SRUs A and B, and C and D can be
combined into SRUs A′ and C ′ by merging their respective
fuzzy sets.40 The mean and variance of the merged fuzzy set
A′ from fuzzy sets A and B are expressed as

mA′ = mA + mB

2
,

σA′ = |mA − mB |
2

+ max(σA, σB), (1)

where (mA, σA), (mB, σB), and (mA′, σA′) are the means
and variances of fuzzy sets A, B, and A′, respectively. The

membership function of fuzzy set A′ in Eq. (1) is bell-shaped
because its mean and variance will be adjusted in the neuro-
fuzzy network in the reinforcement-learning stage of skill
decomposition.

From Fig. 4(c), A′ (in dash line) covers a larger domain in
the perceptual space, but A′ loses some detailed perceptual
information that has been described by A and B; so does
C ′. Thus, the resolution of perceptual stimuli of A′ is lower
than the original resolution provided by A and B, and so
is the resolution of SRU C ′. Meanwhile, extraneous actions
generated from unnecessary SRUs are averaged out with
other significant SRUs by the process of resolution control.

In our proposed framework, we construct a resolution
binary tree (RBT) in order to generate a small number of
significant SRUs. The concept of RBT is to establish a lookup
table that describes means and variances of the membership
functions of the fuzzy sets belonging to perceptual stimuli
and action responses for each significant SRU. The advantage
of this RBT is that the number of SRUs quickly decreases by
half, and eventually to a small number of significant SRUs.
The procedure of building a RBT is described by the RBT
algorithm.

RBT algorithm: Given the initial SRUs from a learned
neuro-fuzzy network, the RBT algorithm generates the
reduced number of significant SRUs by grouping closest
SRUs whose locations are measured in the perceptual-stimuli
space. The RBT algorithm consists of two procedures –
a top-down (steps T1–T8) and a bottom-up (steps T9–
T11) procedures. In the top-down procedure, the algorithm
recursively classifies each cluster into two sub-clusters until
the number of SRUs in a sub-cluster is one. If the number
of initial SRUs is odd, then one cluster has one more SRU
than the other. The clustering algorithm is implemented by
a K-means method by measuring the Euclidean distance
(distance between the means of the fuzzy sets belonging
to the same perceptual stimulus of two SRUs), and it ends up
with generating a binary tree where each leaf node represents
a SRU. From steps T1 to T5, K-means method is applied to
clustering SRUs. Steps T6 and T7 keep the number of SRUs
in cluster(2) greater or equal than the number of SRUs in
cluster(1) by reassigning the closest SRUs in one cluster to
the other cluster. In step T8, it repeats to split each node of
the tree into two child nodes with an equal number of SRUs
through steps T1 and T7 until the leave nodes of the tree are
created with one or zero SRU.

After the binary tree of SRUs is constructed, step T9 starts
to build a new tree in which nodes are the candidates of
significant SRUs at the bottom layer of the binary tree.
Step T10 merges the two SRUs from the child nodes into
a new SRU in their parent node. If a node’s neighboring node
(defined as having the same parent node) at the bottom layer
is a dummy node (defined as representing no SRU), there
is no merging to be performed with its neighboring node.
Step T11 repeats step T10 from the bottom to the top of
the binary tree. Thus, in every layer of the tree, it denotes a
reduced number of SRUs.

T1. [Determination of two initial centers.] Randomly
choose SRUi and SRUj from SRU1 to SRUn as
cluster(1)center and cluster(2)center, respectively. Also,

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1018 Neuro-fuzzy-based skill learning for robots

|cluster(1)| ← 0 and |cluster(2)| ← 0, where | · | is
the count of number of SRUs in the cluster.

T2. [Cluster indication for SRUs.]
cSRUk

← argminw={1,2}‖SRUk − cluster(w)center‖ and
|cluster(cSRUk

)| ← |cluster(cSRUk
)| + 1 for 1 ≤ k ≤ n,

where cSRUk
is the cluster of SRUk and ‖ · ‖ is the

Euclidean distance from SRUi to SRUj and is defined
as√∑p

k=1(MeanSRUi

k − Mean
SRUj

k)2, where p is the

number of stimuli, and MeanSRUi

k and Mean
SRUj

k denote
the means of the fuzzy set of stimulus k belonging to
SRUi and SRUj , respectively.

T3. [Center update.] Calculate cluster(1)center and
cluster(2)center by averaging the means of stimuli of
the SRUs in cluster(1) and cluster(2).

T4. [Error calculation of cluster.]
E ← ∑

w={1,2}
∑ ‖SRUk − cluster(w)center‖

∀SRUk ∈ cluster(w).
T5. [Check error convergence.] IF |Ecurrent − Eprevious | ≤

τ1 and |Ecurrent| ≤ τ2, where τ1 and τ2 are design
thresholds, THEN continues, ELSE go to step T2.

T6. [Size difference of cluster.] �N ← |cluster(1)| −
|cluster(2)|.

T7. [Cluster re-indication for SRUs.] IF �N ≥ 0, THEN
assign ceil(�N/2) number of SRU from cluster(1)
to cluster(2), which is closest (the shortest Euclidean
distance) to any SRU ∈ cluster(2), ELSE assign
floor(�N/2) number of SRU from cluster(2) to
cluster(1), which is closest to any SRU ∈ cluster(1).

T8. [Repeat clustering.] Designate cluster(1) and
cluster(2) as parent nodes in the binary tree. Repeat
steps T1 to T7 for each parent node, resulting in
two child nodes until leave nodes are created where
|cluster(w)| = 1 or 0 for w = 1, 2.

T9. [Initialization for generating significant SRUs.] Start
at the bottom layer of the tree.

T10. [Merging of child nodes.] IF either of the two child
nodes belonging to the same parent node is dummy
(|cluster(w)| = 0), THEN assign the SRU in the non-
dummy node as the new SRU in the parent node ELSE
merge the two SRUs from the child nodes into the new
SRU in the parent node.

T11. [Repeat merging.] Repeat step T10 until the top layer
of the tree is reached.

END RBT Algorithm.

Figure 5(a) shows the top-down procedure of building a RBT,
and the number of initial SRUs is 15. Since 15 is odd, the
number of one cluster is one more than the other, and they
are 8 and 7. By repeating steps T1–T8 of the RBT algorithm,
the number of SRU is one down to the bottom. Also, there
is a dummy node at the bottom. Since each node represents
a SRU, the initial number of SRUs is between 2p and 2p+1,
where p is a non-negative integer and the number at the
bottom is 2p+1, where p = 3 and p + 2 are the numbers
of layers of the RBT. In Fig. 5(b), it illustrates how the RBT
algorithm generates a reduced number of SRUs by merging

Fig. 5. (a) Top-down procedure. (b) Bottom-up procedure.

neighboring nodes from the bottom layer to the top layer of
a RBT. When the layer is up by one, the number of SRUs
decreases by half.

3.3. Reinforcement learning
After the supervised learning, the structure and parameters
of the neuro-fuzzy network (see Fig. 2) have been learned,
and the resolution control generates a small number of
significant SRUs. In the third stage, reinforcement learning
is introduced to test and validate whether these significant
SRUs are sufficient for accomplishing the task. Thus,
the reinforcement-learning stage has two main functions:
providing a process for validating the suitability of small
number of significant SRUs, and providing a learning
mechanism for adjusting the parameters of these SRUs,
resulting in the changed behavioral patterns of SRUs to
accomplish the task.

In the reinforcement-learning stage, a skill is represented
by significant SRUs, and an adaptive-heuristic-critic
algorithm is adopted to adjust the behaviors of SRUs to
achieve the goal of the given task. Figure 6 shows a neuro-
fuzzy network with reinforcement learning. The neuro-fuzzy
network organizes SRUs by using two major subnets, i.e.,
critic and action subnets.

The purpose of the critic and action subnets is to
obtain appropriate behaviors of SRUs for accomplishing a
given task. The SRUs in the action subnet provide well-
structured, multi-step actions rather than single-step actions
in a conventional reinforcement approach because a SRU is
mathematically modeled as a fuzzy rule that can be used
to generate actions for many states in the state space. On
the other hand, the critic subnet provides the parameter
learning for tuning behaviors of SRUs because a critic is

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1019

Fig. 6. (Colour online) A neuro-fuzzy network in the reinforcement-
learning stage.

an indication showing the goal achievement for the task,
and it strongly drives and shapes the learning process and
the results of reinforcement learning. With well-structured
actions and parameter learning, the skill-learning time in the
reinforcement-learning stage is dramatically reduced. For
the critic subnet, it consists of critic, critic prediction, and
critic-prediction error. The critic is a binary signal providing
success or failure for the outcome of the performance. The
critic prediction, p(t), is to predict the critic signal in order
to choose a better action from the action subnet at time step
(t − 1). In other words, the predicted critic can help the action
subnet to perform a more efficient random search, since
reinforcement learning is an exploitation-and-exploration
process. The critic-prediction error is used to calculate the
error between the predicted and actual critics, and update the
parameters of critic prediction in the critic subnet and SRUs
in the action subnet.

For the action subnet, it consists of SRUs, stochastic
exploration, and mean-and-variance adjustments of fuzzy
sets. SRUs function as initial action templates and are
identified from task examples in the supervised-learning
stage. The outputs of SRUs are wired together to produce
the network’s outputs. Thus, the network’s outputs are
generated on the basis of exploiting SRUs. In addition,
stochastic exploration is added at the network’s output to
assist the reinforcement-learning stage in exploring a near
optimal solution. Meanwhile, a critic-prediction error is fed
back to adjust the behaviors of SRUs to generate a correct
predicted critic through changing the means and variances
of the membership functions of fuzzy sets. These changes in
membership functions are performed by backpropagation of
the critic signal until the task is achieved. In our mobile-robot
experiments, we set 100 trials as the upper limit of the number
of trials to judge whether the robot achieves the given task
or not. This upper limit can be adjusted – depending on how
quickly we expect the robot to accomplish a task. Although a
small upper limit can be used to quickly judge whether a robot
succeeds or fails a task, it may cause the robot to easily fail
the task. Thus, an adequate upper limit of the number of trials

Fig. 7. Proposed approach of determining common SRUs between
two skills A and B.

is necessary. The updating rules and detailed calculations of
the adaptive-heuristic-critic algorithm can be found in refs.
[38, 41] .

4. Skill Synthesis Phase
Skill synthesis targets learning new skills for a new task
by self-organizing learned skills. We employ a two-stage
procedure to self-organize learned skills into a new skill –
determining common SRUs and self-organizing new skills
from learned skills.

4.1. Determining common SRUs
The purpose of determining common SRUs between similar
skills is to keep the pool of SRUs to a minimum. When a robot
has learned skills for similar tasks, it is desirable to find their
common SRUs. Hence, the robot can use less resources for
storing similar skills. Determining common SRUs between
two similar skills is to identify the maximum number of
common SRUs that can be used in achieving their tasks by
measuring the “similarity” between SRUs. Since SRUs are
represented by fuzzy rules, similarity between SRUs can be
measured by a similarity measure of fuzzy rules.40, 42 Figure 7
shows the flow chart of the proposed approach that identifies
the two most similar SRUs between two skills by setting
a high threshold value for the similarity measure of SRUs,
merges them into a merged SRU by statistically averaging
their membership functions, replaces these two similar SRUs
with the merged one, and then verifies the two skills with the
merged SRU by reinforcement learning. The reinforcement
learning, using the same neuro-fuzzy network structure in the

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1020 Neuro-fuzzy-based skill learning for robots

skill decomposition, verifies whether the two skills with the
merged SRU can succeed the two original tasks as measured
by a task achievement rate. If it is successful, then the
merged SRU becomes a common SRU for the two skills. The
approach will then repeat the above procedure and find the
next two most similar SRUs by lowering the threshold value
of the similarity measure of the two SRUs until the maximum
number of common SRUs can be found. A task achievement
rate is defined as the ratio of the number of successful tests
to the number of total tests, where a successful test is defined
as when the robot can accomplish a given task within an
acceptable number of trials. We selected 100 tests as the
number of total tests for the simulations and 20 tests for
the mobile robot experiments, and similarly we selected 100
trials as the acceptable number of trials for the simulations
and 20 trials for the mobile robot experiments. It is possible
that a more complex task may need more trials.

In order to develop a similarity measure between two
SRUs, we employ the similarity of rule premise (SRP)
and similarity of rule consequent (SRC)43 to calculate this
measure. For example, two fuzzy rules, Rulei and Rulej , are
represented as

Rulei : IF(S1 is T i
s1 and · · · and Sk is T i

sk and · · · and Sp

is T i
sp), THEN (R1 is T i

r1 and · · · and Rk is T i
rk and · · ·

and Rq is iTrq), and Rulej : IF(S1 is T
j

s1 and · · · and Sk is
T

j

sk and · · · and Sp is T
j
sp), THEN (R1 is T

j

r1 and · · · and
Rk is T

j

rk and · · · and Rq is jTrq), where T i
sk and T

j

sk are
fuzzy sets of Sk of a perceptual stimulus, T i

rk and T
j

rk are
fuzzy sets of Rk of an action response, and p and q are
the numbers of perceptual stimuli and action responses,
respectively. The SRP and SRC between these two fuzzy
rules are respectively defined as

SRP (i, j) = p
min
k=1

Sset

(
T i

sk, T
j

sk

)
, (2)

and SRC(i, j) = q
min
k=1

Sset

(
Ri

rk, R
j

rk

)
, (3)

where SRP (i, j) is the SRP between Rulei and Rulej ,
SRC(i, j) is the SRC between Rulei and Rulej , and
Sset (T i

sk, T
j

sk) is the similarity measure between two fuzzy sets
T i

sk and T
j

sk . In Eqs. (2) and (3), assuming the membership
functions of all fuzzy sets are bell-shaped, the similarity
measure between two fuzzy sets is defined as

Sset (A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

σA

√
π + σB

√
π − |A ∩ B| , (4)

where |A ∩ B| and |A ∪ B| are the cardinality of intersection
and union of fuzzy sets A and B, respectively, and |A ∩ B|
is calculated as in ref. [38]. The areas of the bell-shaped
function of the fuzzy sets A and B are σA

√
π and σB

√
π ,

respectively.44 Then, the similarity measure of two fuzzy
rules is defined as

Srule(i, j) = min(SRP (i, j), SRC(i, j)), (5)

where Srule(i, j), 0 ≤ Srule(i, j) ≤ 1, is the similarity
measure between two fuzzy rules, Rulei and Rulej . In Eq. (5),

Fig. 8. Illustration of self-organizing a new skill for a new task.

the degree of equality of two fuzzy rules is defined by taking
the minimum operation of SRP and SRC. Thus, fewer pairs
of similar SRUs can be found by having a high threshold
value of Srule. On the contrary, more pairs of similar SRUs
can be found when the threshold value of Srule is lowered.

4.2. Self-organizing new skills with reinforcement learning
In skill synthesis, a new skill is learned by acquired skills
composed of SRUs. However, it is possible that the robot
may have difficulties in accomplishing a new task in some
situations only using the learned skills. Hence, synthesizing
a new skill from the learned skills may not be able to
complete the new task, and additional new SRUs that are
different from the learned skills must be learned to assist
the robot in synthesizing the new skill. Thus, learned skills
and additional new SRUs will be self-organized into a new
skill for a new task. Once a new skill is self-organized, the
reinforcement learning with a Q-learning algorithm will be
utilized to validate whether the self-organized new skill can
be used to accomplish the new task or not. Figure 8 shows the
proposed skill-synthesis framework that integrates the high-
level planning and low-level implementation from perceptual
stimuli to action responses by SRUs. The critic in Fig. 8
shows whether the new skill fails the task or not, and it
also guides the planner how to determine the sequence of
learned skills for execution and when to create new SRUs
for accomplishing the task. This integration of high-level
planning and low-level implementation is a salient feature of
the proposed skill-synthesis framework.

In order to save the learning effort by planning a sequence
of learned skills for execution, we propose a self-organizing-
skill (SOS) algorithm to sequentially plan learned skills
composed of SRUs and create new SRUs, if necessary, into
a new skill, and then validate the self-organized new skill by
the reinforcement learning with a Q-learning algorithm.

Figure 9 illustrates how SOS algorithm works. The task is
to ask a robot to go from the start state (leftmost black grid)
to the end state (rightmost black grid). Each grid in Fig. 9
denotes the resolution of the input space of perceptual stimuli.
Different learned skills composed of SRUs can be performed
on each grid that is in the set of possible initial perceptual
states of these learned skills. A middle black grid denotes the

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1021

Fig. 9. (Colour online) Illustration of the proposed SOS algorithm.
Leftmost black grid: starting state; rightmost black grid: end state;
middle black grid: singular situation.

Fig. 10. Flow chart of the proposed self-organizing-skill (SOS)
algorithm.

situation that the robot always fails the task using all existing
learned skills more than an acceptable number of trials. SOS
algorithm applies steps S1–S5 and S6–S10 to the robot when
it travels to the gray (normal situations) and middle black
(singular situations) grids, respectively. A singular situation
s is detected by step S5 when n(s)current > n(s)accept, where
n(s)current is the current number of trials at the state s, and
naccept is an acceptable number of trials for steps S1–S5.
Eventually, the robot can find a path (dashed trajectory) to
go from the start state to the end state.

SOS algorithm: Given skills acquired by the proposed
skill-decomposition framework, the SOS algorithm sequen-
tially plans them and creates new SRUs for accomplishing a
new task. It is implemented by two nested Q-learning loops
(steps S1–S5 and S6–S10). Figure 10 shows the flow chart
of the proposed SOS algorithm. The left box, including steps
S1–S5, is the outer loop for determining a sequence of learned
skills for execution; the right box, including steps S6–S10, is
the inner loop for creating new SRUs. Steps S1–S4 initialize
and update the Q-value. Step S5 checks whether the robot
succeeds the task within an acceptable number of trials. If
not, the algorithm proceeds to step S6 to create new SRUs
to resolve the task difficulties that cannot be done by the

existing learned skills. New SRU candidates are created
with different actions by uniformly allocating their fuzzy sets
of action responses. Step S8 chooses a new SRU candidate
using the best Q-value and executes it to resolve the difficult
situation of the task, which is similar to the task done by
step S3 in the outer loop. Step S10 evaluates whether a
robot passes the difficult condition within another acceptable
number of trials. If yes, new SRUs are denoted as N(s, a).
Afterwards, the outer loop takes over the flow control of
the SOS algorithm and continues to explore the following
sequence of the learned skills for execution until the robot
completes the task.

S1. [Determination of state and action spaces, S and M ,
and initialization of Q-values for learned skills.] S

← the perceptual state space of SRUs; M ← the set
of learned skills. Initialize Q values, Q(s, m), with a
small positive numbers, where s ∈ S and m ∈ M .

S2. [Initialization of state.] s ← the initial state of the task.
It is an element in the set of possible initial perceptual
states of the learned skill, I .

S3. [Selection and execution of a learned skill.] m ←
choose a learned skill from M according to s by using
the policy derived from Q, where s is in the I of m.
Then, take action of m, observe next state s ′, and get
reward r , where s ′ is the state in which another learned
skill m′ in M is taken.

S4. [Update Q-value and current state.] Q(s, m) ← (1 −
α)Q(s, m) + α[r + γmaxm′Q(s ′, m′) − Q(s, m)],
where m′ is the learned skill associated with s ′, α is
a learning-rate parameter, and γ is a discount-rate
parameter; then set s ← s ′.

S5. [Evaluation.] IF s is the state of accomplishing the
task, THEN go to S12, ELSEIF s does not fail the task,
THEN go to S3, ELSEIF (n(s)current ← n(s)current +
1) < naccept, THEN go to S2, ELSE snew ← s and go
to S6 for creating new SRUs.

S6. [Determination of action space of new SRU candidates
and initialization of Q-values of new SRU candidates.]
Given an adjustable number Ni for each action
response, 1 ≤ i ≤ q, where q is the number of action
responses. Partition each action response into Ni equal
parts and select the center of each partition as the
mean of the fuzzy set of an action response belonging
to a new SRU candidate, aj . The variance of the
new SRU candidate is (mi − mk)/2, where mk is
the nearest mean of another fuzzy set belonging to
the same action response. The combination of all
action responses partitioned from q action responses
results in different new SRU candidates, aj , and the
action space of the new SRU candidates for the task,

Anew ← {aj }
∏i=q

i=1 Ni

j=1 . After the action space of new
SRU candidates is determined, initialize Qnew(s, a)
arbitrarily, where s ∈ S and a ∈ Anew.

S7. [Initialization of state.] s ← snew.
S8. [Selection and execution of new SRU candidates.] a

← choose an action from Anew according to s by using
the policy derived from Qnew. Then, take action of a,
observe next state s ′, and get reward r , where s ′ is the

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1022 Neuro-fuzzy-based skill learning for robots

next state in which another new SRU, or a SRU of a
learned skill is taken.

S9. [Update Q-value and current state of new SRU
candidates.] Qnew(s, a) ← (1 − β)Qnew(s, a) + β[r +
δ maxa′ Qnew(s ′, a′) − Qnew(s, a)], where a′ is the
action taken in s ′, β is a learning-rate parameter, and
δ is a discount-rate parameter; then set s ← s ′.

S10. [Evaluation of new SRU candidates.] IF s does not
fail the task and s is in the I of a learned skill, THEN
record the actions from snew to s as the set of new
SRUs, N(s, a) and go to S3, ELSEIF s does not fail
the task and s is not in the I of a learned skill, THEN go
to S8, ELSEIF (n(s)new

current ← n(s)new
current + 1) < nnew

accept,
THEN go to S7, ELSE go to S11, where n(s)new

current is the
current number of trials for creating new SRUs at the
state s, and nnew

accept is an acceptable number of trials for
creating new SRUs.

S11. [Termination of self-organizing a new skill.] A new
skill cannot be self-organized by the created SRU
candidates. Exit.

S12. [End of self-organizing a new skill.] The policy of
Q(s, m) is the new skill, and N(s, a) is the set of new
SRUs for the task. Exit.

END SOS Algorithm.

5. Computer Simulations and Experimental Work
In the simulations and experiments, we validated the
proposed framework by some traveling skills of mobile
robot. Although some previous work had good results in
mobile robot navigation,45, 46 the purpose of the experiments
focused on how to learn a new skill from the obtained
simple skills. Computer simulations and experiments using
the player/stage mobile robot control software and an
ActivMedia Pioneer 3-DX mobile robot were conducted to
validate the performance of the proposed neuro-fuzzy-based,
self-organizing skill-learning framework.

5.1. Experiment 1: Hallway-passing skill
In this example, we implemented a simple rule for the robot
to pass a hallway – when the robot approaches a wall, it will
turn toward the other side to avoid bumping into the wall. If
a neuro-fuzzy network with supervised learning is utilized to
learn the action patterns of the autonomous robot, it will result
in a zig-zag fashion of passing the hallway because the neuro-
fuzzy network will learn the trajectory faithfully. However,
passing a hallway in a zig-zag fashion is not the skill that we
would like the robot to learn; thus, we employed the proposed
three-stage skill decomposition to learn the hallway-passing
skill utilizing SRUs and discover a sufficient number of SRUs
to pass the hallway without moving in a zig-zag fashion.

We first used a five-layer, neuro-fuzzy network with
supervised learning to capture the action patterns from task
examples and categorize them into initial SRUs. Figure 11(a)
shows a task example of passing the hallway utilizing the
simple rule. The training data were collected by a SICK LMS-
200 laser ranger equipped on the Pioneer P3-DX mobile
robot. The hallway in our simulation is a hallway of the
ground floor of the EE building at Purdue University. The

Fig. 11. (Colour online) Skill of passing a hallway. (a) Task example.
(b) and (c) Training results from the neuro-fuzzy network with an
initial robot orientation of 30o and 60o, respectively, with respect
to the upright.

Fig. 12. (Colour online) Skill of passing a hallway with different
numbers of SRUs when the initial angle of robot orientation is 30o:
(a) 128; (b) 64; (c) 32; (d) 16; (e) 8 SRUs. Similarly, when the
initial angle of robot orientation is 60o: (f) 128; (g) 64; (h) 32; (i)
16; (j) 8 SRUs.

training data for the neuro-fuzzy network comprised four
sensory inputs: minimum distance from the right-hand wall,
minimum distance from the left-hand wall, the center-most
distance from obstacles, and its current orientation, and two
actuator outputs: turning angle and speed. The sampling rate
was 10 Hz. We set the number of membership functions to 5
for each perceptual stimulus and 10 for each action response
to generate 124 initial SRUs. Figures 11(b) and (c) show the
training results from the neuro-fuzzy network.

With the initial 124 SRUs, resolution control constructed a
RBT. At the bottom layer of the tree, there are 128 nodes
(SRUs) with 4 “dummy nodes” because 26 < 124 < 27.
After resolution control, Figs. 12(a)–(e) show the simulation
results of different resolutions of SRUs when the angle
of initial robot orientation was 30o . In Fig. 12(a), when
the resolution is 128 (the highest), the result was similar
to Fig. 11(b). Other resolutions of SRUs are shown in
Figs. 12(b)–(e). When the number of SRUs was reduced to
less than 128, the mobile robot could pass the hallway with
less zig-zag actions. It came out with a more straight-line
hallway passing skill to achieve the goal. However, Fig. 12(e)
shows that when the number of SRUs was 8, the robot could
not pass the hallway in the first trial. Also, Figs. 12(g)–(j)
show that when the number of SRUs was less than 128 and
the initial angle of robot orientation was 60o , the robot still
could not pass the hallway in the first trial. With these failures,
the reinforcement learning was used to adjust the behaviors
from these small numbers of SRUs.

The adjustment process tuned the behaviors of the hallway-
passing skill on the basis of SRUs. Figure 6 shows how the

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1023

Fig. 13. (Colour online) The adjustment of the behaviors of 8
SRUs. When the initial angle of robot orientation is 30o, results
from computer simulations: (a) Trial 1 before the reinforcement
learning, (b) Trial 2 after the reinforcement learning; experimental
results: (e) Trial 1, (f) Trial 2. Similarly, when the initial angle of
robot orientation is 60o, simulation results: (c) Trial 1, (d) Trial 3;
experimental results: (g) Trial 1, (h) Trial 3.

Fig. 14. (Colour online) (a)–(d) and (e)–(h) are simulation and
experimental results, respectively, with 8 SRUs when the initial
angle of robot orientation is: −30o ((a) & (e)), −45o((b) & (f)),
−60o((c) & (g)), and 45o ((d) & (h)).

critic r adjusts the means and variances of the fuzzy sets
belonging to perceptual stimuli and action responses. The
critic is given 0 at each time step when the robot does not fail
the task, or −1 when it fails the task. Figures 13(a)–(b) and
(e)–(f) show the reinforcement learning that took two trials
to complete the task by adjusting the action outputs of the
SRUs when the number of SRUs was 8 and the initial angle of
robot orientation was 30o. It shows that the hallway-passing
task was accomplished using the fuzzy rule system (SRUs)
that was adjusted a bit in two trials. When the initial angle of
robot orientation was 60o, Figs. 13(c)–(d) and (g)–(h) show
the reinforcement learning that took 3 trials to complete the
task. In 100 of continuous tests with αr

m = 0.3, αr
σ = 0.3,

αs
m = 0.3, αs

σ = 0.3, ω = 0.1, γ = 0.95, β = 0.1, and λ =
0.8, it took 8.21 and 12.12 trials on the average and 1.31
and 1.73 trials on the variance for 8 SRUs in a test to finish
the task when the initial angle of robot orientation was 30o

and 60o, respectively. Other testing results for −30o, −45o,
−60o, and 45o of robot orientation are shown in Fig. 14.
Table I shows the parameters of the fuzzy rule of each SRU
whose structure is shown Fig. 3. In Table I, the mean and
variance have been normalized by real data and the mean of
action response 1 in the parenthesis indicates the turn rate of
the robot.

In this example, we set the upper limit of 100 trials in
the reinforcement learning for distinguishing whether the

Ta
bl

e
I.

E
ig

ht
co

rr
es

po
nd

in
g

fu
zz

y
ru

le
s

to
8

SR
U

s
(m

:m
ea

n
an

d
σ

:v
ar

ia
nc

e)
.

In
pu

ts
tim

ul
i

A
ct

io
n

re
sp

on
se

s

Pe
rc

ep
tu

al
Pe

rc
ep

tu
al

Pe
rc

ep
tu

al
Pe

rc
ep

tu
al

A
ct

io
n

A
ct

io
n

St
im

ul
us

1
St

im
ul

us
2

St
im

ul
us

3
St

im
ul

us
4

R
es

po
ns

e
1

R
es

po
ns

e
2

m
1

σ
1

m
2

σ
2

m
3

σ
3

m
4

σ
4

m
1

σ
1

m
2

σ
2

SR
U

0
.3

07
,1

35
.1

62
,9

40
.3

23
,9

17
.1

97
,8

59
.1

17
,6

23
.0

80
,5

43
.8

97
,2

70
.0

59
,2

10
.5

63
,6

63
(.

00
2)

.1
55

,0
65

.4
35

,6
34

.3
39

,5
45

SR
U

1
.6

06
,1

63
.1

21
,9

02
.2

27
,4

96
.2

01
,5

34
.3

34
,5

90
.2

30
,3

38
.8

78
,9

78
.0

73
,3

09
.4

59
,9

94
(–

0.
09

4)
.1

19
,4

15
.4

27
,2

82
.3

32
,5

54
SR

U
2

.0
87

,8
23

.0
76

,0
26

.8
65

,1
35

.1
16

,8
21

.3
55

,0
33

.1
84

,1
14

.8
87

,5
69

.0
76

,6
98

.6
92

,3
44

(0
.1

62
)

.1
11

,0
96

.2
18

,1
76

.3
18

,7
63

SR
U

3
.1

97
,0

88
.1

43
,5

67
.6

91
,7

45
.1

72
,2

83
.1

16
,5

80
.0

72
,0

50
.8

92
,9

74
.0

57
,9

09
.6

08
,6

86
(0

.0
7)

.1
02

,0
01

.4
67

,5
80

.3
16

,8
34

SR
U

4
.1

53
,8

89
.1

01
,0

69
.8

28
,4

47
.1

28
,7

12
.3

01
,6

62
.1

53
,5

98
.1

59
,0

73
.2

34
,0

07
.6

06
,1

90
(0

.0
67

)
.1

04
,9

41
.4

31
,7

94
.2

86
,5

74
SR

U
5

.2
71

,9
23

.1
99

,7
64

.5
15

,9
20

.1
71

,4
00

.1
35

,6
41

.0
91

,3
33

.7
66

,5
23

.0
55

,9
85

.5
80

,5
54

(0
.0

39
)

.0
82

,0
78

.5
52

,6
45

.2
67

,4
80

SR
U

6
.3

94
,7

51
.2

21
,6

80
.1

72
,1

22
.1

45
,8

54
.0

89
,8

08
.0

69
,7

26
.0

76
,1

09
.0

43
,2

37
.1

43
,2

57
(–

0.
44

2)
.1

63
,4

82
.0

21
,1

21
.0

64
,0

24
SR

U
7

.4
70

,2
41

.1
54

,6
95

.4
89

,1
09

.2
02

,6
74

.2
04

,5
62

.1
44

,3
88

.0
77

,4
60

.0
48

,8
98

.4
07

,9
07

(–
0.

15
1)

.0
10

,0
11

.9
06

,5
88

.5
44

,3
57

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1024 Neuro-fuzzy-based skill learning for robots

Fig. 15. (Colour online) Number of activated SRUs by summing up
forward orientations (dashed line: 128; dotted line: 32; solid line:
8 SRUs). The number of activated SRUs is not highest at ±1 since
the zig-zag motion (extraneous motion) is removed by resolution
control.

resolution of SRUs is successful or not in completing the
task. If the number of trials is under 100 and the task is
completed, then the resolution of SRUs succeeds the task;
otherwise it fails the task. As for using 4 or 2 SRUs, both
could not pass the hallway within the limit of 100 trials.
Thus, 4 or 2 SRUs are not sufficient for accomplishing the
task. From the results of this example, having 8 SRUs is
sufficient and appropriate for the robot to learn the skill of
passing the hallway.

Since having 8 SRUs is sufficient for accomplishing the
hallway passing task, we can interpret these 8 SRUs as
fuzzy rules that can be extracted from the final neuro-fuzzy
network. Figure 15 shows the number of SRUs activated
at a specific position with a 10o increment between −90o

and 90o, where the x-axis represents the normalized position
(from −1 to 1: from right to left) of the robot in the hallway.
In Fig. 15, when the number of SRUs is 128, there are more
SRUs activated near the walls (the normalized x position is
between −0.4 and −0.7, and 0.2 and 0.7) than the middle of
the hallway (the normalized x position is between −0.3 and
0.1). After resolution control, 128 SRUs are reduced to 32
and 8 SRUs. Figure 15 also shows the number of activated
SRUs with 32 and 8 SRUs. Apparently, the activated number
of SRUs near the wall dropped dramatically when 128 SRUs
were reduced to 8 SRUs. This result indicated that resolution
control pruned unnecessary SRUs that induced extraneous
actions moving near the walls. When the number of SRUs
was pruned to 8, Fig. 15 shows its uniform-like distribution
of activated number of SRUs for accomplishing the task.

5.2. Experiment 2: Determining common SRUs between the
skills of traveling around an ellipse and a circle
In the second experiment, we want to identify the existence of
common SRUs between two similar skills. We first manually
controlled the P3-DX robot to perform two different skills,
separately traveling around an ellipse and a circle in the

Fig. 16. (Colour online) (a) and (b): Training data of traveling
around an ellipse and a circle, respectively. (c) Traveling around
an ellipse by utilizing 16 sufficient SRUs. (d) Traveling around a
circle by utilizing 8 sufficient SRUs. (e)–(f) and (g)–(h): Simulation
and experimental results of traveling around an ellipse and a circle,
respectively. (e) and (g): Utilizing 16 sufficient SRUs to travel
another small ellipse. (f) and (h): Utilizing 8 sufficient SRUs to
travel another small circle.

simulation using player/stage. The training data from the
simulation were obtained by recording the sensor inputs and
actuator outputs (same as those in experiment 1) and shown in
Figs. 16(a) and (b). Then, the robot acquired these two skills
and identified 16 and 8 significant SRUs for traveling around
the ellipse and the circle, respectively, by our proposed
skill decomposition. These two skills were demonstrated in
the simulation shown in Figs. 16(c) and (d) by using their
respective numbers of significant SRUs. In addition, these
two numbers of significant SRUs were tested for different
sizes of ellipse and circle in the simulation as well as on
the P3-DX mobile robot. Figures 16(e)–(f) and (g)–(h) show
their simulation and experimental results of traveling around
a smaller ellipse and circle, respectively. These results show
that these two skills learned by their significant SRUs are
general to a different size of ellipse and circle, respectively.

We applied a similarity measure to these two different sets
of SRUs of the two skills to determine their common SRUs.
The threshold value of the similarity measure was given by
Srule as defined in Eq. (5). Initially, we set a high threshold
value of Srule to determine a fewer number of common SRUs
between them. Then, we decreased Srule to determine more
common SRUs. These two skills have no common SRU when
Srule > 0.4. However, when Srule was decreased from 0.4
to 0.38, 0.27, and 0.05, the number of common SRUs was
increased from 0 to 1, 4, and 8, respectively. We verified these
numbers of common SRUs in the simulation and on the P3-
DX mobile robot, and they all had a task achievement rate
of one after the reinforcement learning. A task achievement
rate has been defined in Section 3. Thus, it shows that the
robot can perform each of these two skills to achieve their
tasks by sharing these 8 common SRUs. Figure 17 shows
the simulation and experimental results by utilizing these 8
common SRUs and 8 additional SRUs (i.e., 16 SRUs) for
traveling around an ellipse, and using these 8 common SRUs
for traveling around a circle.

The 8 common SRUs are the shared fuzzy rules for
accomplishing both skills of traveling around an ellipse and
a circle. Since a neuro-fuzzy network is isomorphic to a
fuzzy logic control system,38 we can easily interpret these 8
fuzzy rules from the trained neuro-fuzzy network as follows:

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1025

Fig. 17. (Colour online) Results of traveling around an ellipse
and a circle with the 8 common SRUs, respectively. (a) and (b):
Simulation. (c) and (d): Experiment.

SRU1): IF the robot is heading “very fairly” close to the
ellipse or circle and its orientation is around 150o, THEN
it will turn left “fairly” (orientation was 0owhen the robot
headed upright and counted clockwise); SRU2): IF the robot
is heading “slightly” far from the ellipse or circle and its
orientation is around 170o, THEN it will turn right “fairly”;
SRU3): IF the robot is heading “fairly” close to the ellipse
or circle and its orientation is around 170o, THEN it will
turn right “very slightly”; SRU4): IF the robot is heading
“slightly” far from the ellipse or circle and its orientation is
around 60o, THEN it will turn right “slightly”; SRU5): IF the
robot is heading “slightly” close to the ellipse or circle and its
orientation is around 90o, THEN it will turn right “slightly”;
SRU6): IF the robot is heading “straight” and its orientation
is around 280o, THEN it will turn right “slightly”; SRU7): IF
the robot is heading “fairly” far from the ellipse or circle and
its orientation is around 60o, THEN it will turn right “fairly”;
SRU8): IF the robot is heading “fairly” far from the ellipse
or circle and its orientation is around 320o, THEN it will turn
right “fairly”. One of the salient features of using a neuro-
fuzzy network to represent a learned skill is its ability to
extract the fuzzy rules from the trained neuro-fuzzy network.

5.3. Experiment 3: Hallway-passing skill to avoid a
circle-like obstacle
In this experiment, we want the robot to self-organize a new
skill by utilizing learned skills from previous experiments.
Here the new skill is to pass a hallway with a circle-like
obstacle present, and the learned skills are the hallway-
passing skill and the circle-traveling skill in the previous
experiments. For both skills, they were represented by two
different 8 significant SRUs identified in these experiments.

In order to self-organize a new skill from the learned skills
in the proposed SOS algorithm, the state and action spaces of
the new skill are represented and encoded by the significant
SRUs of all the learned skills. After the state and action spaces

Fig. 18. (Colour online) Simulation results of the skill of passing a
hallway when there is a circle-like obstacle and make a right turn.

Fig. 19. (Colour online) Experimental results of the skill of passing
a hallway when there is a circle-like obstacle. (a) Trial 1. (b) Trial
2. (c) Trial 3. (d) Trial 4. (e) Trial 5. (f) Trial 12. (g) Trial 13. (h)
Trial 34.

were represented, the SOS algorithm was initiated with α =
0.5 and γ = 0.5, and at each state, if no failure happened, r =
0; otherwise r = −100. Simulation results (see Fig. 18) show
that the robot could not pass the hallway in the beginning
when there was a circle-like obstacle, and after 10 trials on
the average, the new skill was self-organized and the robot
was able to pass the hallway by utilizing the learned skills of
hallway-passing and traveling around a circle. However, the
robot bumped against the wall at the end of the hallway after
10 trials because it was in a singular situation of the hallway-
passing skill when the robot orientation was perpendicular
to the wall. Thus, the SOS algorithm entered into steps S6–
S10 to create new SRUs for accomplishing the task (this
situation has not been ever learned in experiments 1 and 2).
In step S6, Ni was 4 for each of the two action responses –
robot motor speed and turn rate. Thus, there were 16 actions
of the new SRU candidates in Anew. In Fig. 18, the new
SRUs were created and learned to make a right turn to avoid
bumping against the wall between trials 10 and 26 by the
SOS algorithm. After trial 26, the robot entered the possible
initial state of the hallway-passing skill. Thus, step S3 of the
SOS algorithm made the robot continue to pass the hallway
by utilizing the skill of passing a hallway. The experimental
results are shown in Fig. 19. The robot took 35 trials on the
average and 3.4 trials on the variance to pass the hallway.

In our experiments, we demonstrated a new skill (passing
a hallway with a circle-like obstacle) that was self-organized
from the previous learned skills (hallway-passing and circle-
traveling skills), and each learned skill was represented by

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

1026 Neuro-fuzzy-based skill learning for robots

perceptual stimuli (distance to the wall and obstacle) and
action responses (motor speed and turning angle). However,
in the previous work, they did not perform such a robot task
that was self-organized from learned skills. Also, the SRUs
were all self-categorized by neuro-fuzzy networks in our
experiments instead of manually designed in the previous
work. We utilized SRUs to compare relationship between
two similar skills (traveling around a circle and traveling
around an ellipse) and determine the common SRUs among
them. Compared with the previous work, our experiments
demonstrated how to keep the pool of SRUs to a minimum
by investigating similarity between two skills. Last, the
SRUs in our experiments show the advantage over the
manually designed primitives in the previous work because
the action patterns of the former ones were adjustable through
reinforcement learning for accomplishing the tasks but the
later ones were fixed during the execution of tasks.

In our experiments, since the computational complexity
was mainly caused by Q-learning, it exponentially increased
with the number of states of Q-learning. The states
were described by SRUs with respect to the perceptual
stimuli and action responses. Thus, more SRUs resulted in
more computational complexity. To ease the computational
complexity, resolution control reduced the initial 124 SRUs
to only 8 SRUs in Experiment 1. In Experiment 2, skill
synthesis took 16 SRUs instead of 24 SRUs for traveling
around a circle and an ellipse. Last, we utilized the current
SRUs and few new SRUs to accomplish the new task in
Experiment 3.

6. Conclusions
In this paper, we have presented a neuro-fuzzy-based,
self-organizing skill-learning framework, consisting of skill
decomposition and skill synthesis, to acquire and decompose
a skill into a small number of significant SRUs for
accomplishing a given task, and self-organize learned skills
into a new skill for a new task.

The salient feature of the proposed neuro-fuzzy-based,
self-organizing skill-learning framework is its capability
of learning a skill by self-categorizing it into significant
SRUs and learning a new skill for a new task from learned
skills composed of SRUs without human intervention. In
this framework, SRUs, realized by fuzzy rules in a neuro-
fuzzy network, serve as the fundamental units in skill
decomposition and skill synthesis. With the capability of
SRUs in abstracting the mapping between perceptual stimuli
and action responses, SRUs make it possible to learn new
skills from previously learned skills.

The potential limitation of the proposed framework
is that a skill represented by SRUs may not have
satisfactory performance on the task involving state-
dependent executions. Since the structure of SRU is
feedforward, using SRUs to represent a skill does not
sufficiently exhibit temporal behaviors. Thus, a potential
solution to enhance the current framework is to use a
feedback structure for SRUs such as recurrent networks.
Because of the directed cycle of a recurrent network, a skill
represented by a recurrent network has the internal memory
to process state-dependent execution.

Extensive computer simulations and experiments on
a Pioneer P3-DX mobile robot have validated the
self-organizing capability of the proposed skill-learning
framework. In the first experiment of a hallway-passing
skill, the robot avoided learning the zig-zag actions from
the demonstration data. In the second experiment, the results
showed how a skill of traveling around an ellipse was
transferred to a skill of traveling around a circle by sharing
their common SRUs. In the last experiment, a new skill was
self-organized from the hallway-passing and circle-traveling
skills to pass a hallway with the presence of a circle-like
obstacle. Future work involves the extension of the proposed
framework to humanoid robots.

Acknowledgments
This work was supported in part by the National Science
Foundation under Grants IIS-0427260 and IIS-0916807.
Any opinion, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

References
1. D. N. Nenchev and A. Nishio, “Ankle and hip strategies for

balance recovery of a biped subjected to an impact,” Robotica
26, 643–653 (2008).

2. T. Kanda, H. Ishiguro, M. Imai, T. Ono and K. Mase, “A
Constructive Approach for Developing Interactive Humanoid
Robots,” In: Proceedings of the IEEE/RSJ International
Conference on Intelligent and Robotic Systems, Lausanne,
Switzerland (2002) pp. 1265–1270.

3. P. Tomporowski, The Psychology of Skill: A Life-Span
Approach (Praeger, Westport, CT, 2003).

4. H. Mosemann and F. Wahl, “Automatic decomposition of
planned assembly sequences into skill primitives,” IEEE Trans.
Robot. Autom. 17, 709–718 (2001).

5. T. Shibata, T. Abe, K. Tanie and M. Nose, “Motion
Planning of a Redundant Manipulator Based on Criteria of
Skilled Operators,” In: Proceedings of the IEEE International
Conference Systems, Man and Cybernetics, Vancouver, BC,
Canada (1995) pp. 3730–3735.

6. G. M. Bonea and M. A. Elbestawi, “Robotic force control for
deburring using an active end effector,” Robotica 7, 303–308
(1989).

7. J. Albus, “A new approach to manipulator control: The
cerebellar model articulation controller (CMAC),” Trans.
ASME J. Dynamic Syst. Meas. Contr. 63, 220–227 (1975).

8. T. Poggio and F. Girosi, “Networks for approximation and
learning,” Proc. IEEE, 78(9):1481–1497 (1990).

9. M. D. Buhmann, Radial Basis Functions: Theory and
Implementations (Cambridge University Press, Cambridge,
UK, 2003).

10. C. Baroglio, G. Attilio, M. Kaiser, M. Nuttin and R. Piola,
“Learning controllers for industrial robots,” Mach. Learn. 23,
221–249 (1996).

11. M. Nechyba and Y. Xu, “Human Skill Transfer: Neural
Networks as Learners and Teachers,” In: Proceedings of the
IEEE/RSJ International Conference Intelligent Robots and
Systems, Vancouver, BC, Canada (1995) pp. 314–319.

12. Z. Wasik and A. Safiotti, “A Fuzzy Behavior-Based Control
System for Manipulation,” In: Proceedings of the IEEE/RSJ
International Conference Intelligent and Robotics Systems,
Lausanne,Switzerland(2002) pp. 1596–1601.

13. J. Yang, Y. Xu and C. S. Chen, “Human action learning via
hidden Markov model,” IEEE Trans. Syst. Man Cybern. A 27,
34–44 (1997).

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

Neuro-fuzzy-based skill learning for robots 1027

14. G. Hovland, P. Sikka and B. McCarragher, “Skill Acquisition
from Human Demonstration Using a Hidden Markov Model,”
In: Proceedings of the IEEE International Conference on
Robotics and Automation, Minneapolis, MN (1996) pp. 2706–
2711.

15. T. Speeter, “Primitive-Based Control of the Utah/MIT
Dextrous Hand,” In: Proceedings of the IEEE International
Conference on Robotics Automation, Sacramento, CA (1991)
pp. 866–877.

16. G. Milighetti, H. B. Kuntze, C. W. Frey, B. Diestel-Feddersen
and J. Balzer, “On a Primitive Skill-Based Supervisory
Robot Control Architecture,” In: Proceedings of International
Conference on Advanced Robotics, Seattle, WA (2005)
pp. 141–147.

17. M. Matarić, “Behavior-based control: Examples from
navigation, learning, and group behavior,” J. Exp. Theor. Artif.
Intell. 9, 323–336 (1997).

18. R. Arkin, “Motor Schema Based Navigation for a Mobile
Robot: An Approach to Programming by Behavior,” In:
Proceedings of the IEEE International Conference on Robotics
and Automation, Raleigh, NC (1987) pp. 264–271.

19. M. Arbib, “Perceptual structures and distributed motor
control,” In: Handbook of Physiology – The Nervous System
II: Motor Control (V. B. Brooks, ed.) (American Physiological
Society, Bethesda MD, 1981)pp. 1449–1480.

20. R. Brooks, “A robust layered control system for a mobile
robot,” IEEE J. Robot. Autom. 2, 14–23 (1986).

21. A. H. Purnamadjaja and R. A. Russell, “Pheromone
communication in a robot swarm: Necrophoric bee behaviour
and its replication,” Robotica 23, 731–742 (2005).

22. M. Matarić, V. Zordan and Z. Mason, “Movement Control
Methods for Complex, Dynamically Simulated Agents:
Adonis Dances the Macarena,” In: Proceedings of the
2nd International Conference Autonomous Agents, Stuttgart,
Germany (1998) pp. 317–324.

23. J. Connell and P. Viola, “Cooperative Control of a Semi-
Autonomous Mobile Robot,” In: Proceedings of the IEEE
International Conference on Robotics and Automation,
Cincinnati, OH (1990) pp. 1118–1121.

24. A. Martineza, E. Tunstela and M. Jamshidi, “Fuzzy logic based
collision avoidance for a mobile robot,” Robotica 12, 521–527
(1994).

25. M. Slack, Situationally Driven Local Navigation for
Mobile Robots, JPL Publication 90-17 (California Institute
of Technology, Jet Propulsion Lab., Pasadena, CA,
1990).

26. C. Connolly, “Applications of Harmonic Functions to
Robotics,” In: Proceedings of the IEEE International
Symposium on Intelligent Control, Vancouver, British
Columbia (1992) pp. 498–502.

27. S. Singh, “Transfer of learning by composing solutions
of elemental sequential tasks,” Mach. Learn. 8, 323–339
(1992).

28. S. Singh, “Reinforcement Learning with a Hierarchy of
Abstract Models,” In: Proceedings of the 10th Nat. Conference

Artificial Intelligence (AAAI Press, San Jose, CA, 1992)
pp. 202–207.

29. R. Sutton, D. Precup and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning,” Artif. Intell. 112, 181–211 (1999).

30. R. Parr and S. Russell, “Reinforcement learning with
hierarchies of machines,” In: Advances in Neural Information
Processing Systems 10 (MIT Press, Cambridge, MA, 1998).

31. T. Dietterich, “Hierarchical reinforcement learning with
the MAXQ value function decomposition,” J. Artif. Intell.
Research 13, 227–303 (2000).

32. P. M. Fitts and M. I. Posner, Human Performance
(Brooks/Cole, Belmont, CA, 1967).

33. R. Proctor and A. Dutta, Skill Acquisition and Human
Performance (Sage, London, 1995).

34. S. Schaal, “Is imitation learning the route to humanoid robots?”
Trends Cogn. Sci. 3, 233–242 (1999).

35. G. S. Dordevic, M. Rasic, D. Kostic and V. Potkonjak,
“Representation of robot motion control skill,” IEEE Trans.
Syst. Man Cybern. C 30, 219–238 (2000).

36. M. N. Nicolescu and M. J. Matarić, “Natural Methods for Robot
Task Learning: Instructive Demonstrations, Generalization and
Practice,” In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multi-Agent Systems,
New York, NY, USA (2003) pp. 241–248.

37. C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic
control and decision system,” IEEE Trans. Comput. 40, 1320–
1336 (1991).

38. C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-
Fuzzy Synergism to Intelligent Systems (Prentice-Hall, Upper
Saddle River, NJ, 1996).

39. J. S. Wang and C. S. G. Lee, “Self-adaptive neuro-fuzzy
inference systems for classification applications,” IEEE Trans.
Fuzzy Syst. 10, 790–802 (2002).

40. M. Setnes, R. Babuška, U. Kaymak and H. van Nauta Lemke,
“Similarity measures in fuzzy rule base simplification,” IEEE
Trans. Syst. Man Cybern. B 28, 376–386 (1998).

41. A. Barto, R. Sutton and C. Anderson, “Neuron-like adaptive
elements that can solve difficult learning control problems,”
IEEE Trans. Syst. Man Cybern. 13, 834–846 (1983).

42. C. S. G. Lee and C. T. Lin, “Supervised and Unsupervised
Learning with Fuzzy Similarity for Neural-Network-Based
Fuzzy Logic Control Systems,” In: Proceedings of the IEEE
International Conference Systems, Man and Cybernetics
(1992) pp. 688–693.

43. Y. Jin, W. Von Seelen and B. Sendhoff, “On generating FC3

fuzzy rule systems from data using evolution strategies,” IEEE
Trans. Syst. Man Cybern. B 29, 829–845 (1999).

44. A. Papoulis and S. U. Pillai, Probability, Random Variables and
Stochastic Processes (McGraw-Hill, Columbus, OH, 2001).

45. D. Janglova, “Neural networks in mobile robot motion,” Int. J.
Adv. Robot. Syst. 1, 15–23 (2004).

46. Z. Anmin and S. X. Yang, “Neurofuzzy-based approach to
mobile robot navigation in unknown environments,” IEEE
Trans. Syst. Man Cybern. C, 37610–621 (2007).

https://doi.org/10.1017/S026357471100124X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471100124X

