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The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify 
individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression 
(MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous 
outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor 
variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. 
The application of the complete procedure is illustrated by an example with data from an actual study on eating 
disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order 
to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses 
were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. 
Alternatives to the MLR model to set multiple cut-off scores are discussed.
Keywords: cut-off scores, standard-setting, multinomial logistic regression, polytomous logistic regression, proportional odds 
model.

En este artículo, las autoras derivan una ecuación general para calcular múltiples puntos de corte en la puntuación 

total de un test con el fin de clasificar a los individuos en más de dos categorías ordinales. La ecuación se deriva a 

partir del modelo de regresión logística multinomial (RLM), que es una extensión del modelo de regresión logística 

binaria (BLR) para variables de respuesta politómica. Con este procedimiento analítico, los puntos de corte se 

establecen en la puntuación del test (la variable predictora) en la que un individuo tiene la misma probabilidad 

de pertenecer a la categoría j que a la categoría j+1 de una variable de respuesta ordinal. La aplicación del 

procedimiento completo se ilustra a través de un ejemplo con datos de un estudio real sobre trastornos de la 

conducta alimentaria. En este ejemplo se obtienen dos puntos de corte en las puntuaciones del Test de Actitudes 

Alimentarias (EAT-26) para clasificar a los individuos en tres categorías ordinales: asintomático, sintomático o con 

trastorno de la conducta alimentaria. Los diagnósticos se obtuvieron a partir de las respuestas a un autoinforme 

(Q-EDD) en el que se operativizan los criterios del DSM-IV para los trastornos de la conducta alimentaria. Se 

discuten diferentes alternativas al modelo RLM para establecer múltiples puntos de corte.

Palabras clave: puntos de corte, establecimiento de estándares, regresión logística multinomial, regresión logística 

politómica, modelo de odds proporcionales.
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In educational and psychological testing, the item 
responses to a test are usually transformed into a total 
score that is distributed within a range of values (e.g., 
from 0 to 50). In some decision making situations, one 
cut-off score must be established on the total test score 
in order to classify individuals into two categories (e.g., 
whether a psychological disorder is present or absent). In 
clinical settings, this type of problem is frequently solved 
with the construction of Receiver Operating Characteristic 
(ROC) curves. ROC analysis was derived from the theory 
of signal detectability (TSD) which was developed in the 
early 1950s by engineers working on problems of radar and 
sonar detection (Peterson, Birdsall & Fox, 1954; Van Meter 
& Middleton, 1954). ROC curves are used to summarize 
diagnostic performance of a test by plotting true-positive 
rate (sensitivity) versus false-positive rate (1- specificity) 
for each possible cut-off score (threshold). From ROC 
analysis, a cut-off score on a test can be established taking 
into account factors such as disorder prevalence (or base 
rate), and the cost-benefit relation of the various decisions 
(He, Metz, Tsui, Links & Frey, 2006). 

Traditionally, ROC analysis is only used to evaluate 
the performance of binary classification. However, some 
classification tasks involve distinguishing between three 
or more categories and, therefore, multiple cut-off scores 
on a test must be established to assign individuals to one 
of the outcome types. Several authors have proposed 
generalized ROC models to be applied with more than two 
categories or classes (e.g., He et al., 2006; Mossman, 1999; 
Provost & Fawcett, 2001; Scurfield 1996, 1998). These 
multiple-class ROC models extend the basic concepts and 
mathematics of the traditional two-class ROC analysis. For 
a dichotomous diagnostic task, the true identification rates 
(sensitivity and specificity) can be plotted as a ROC curve. 
In multiple-class diagnostic problems, a ROC surface 
describing the true identification rates can be plotted in 
a multi-dimensional space. Consequently, multiple-class 
ROC analysis involves substantial increase in complexity 
compared to the two-class problem. These models are 
in course of development and computational calculus, 
applications and other questions related to these methods 
remain to be solved. As noted by He et al. (2006): “Much 
work remains to be done for multiple-class ROC analysis 
to achieve the level of maturity and utility of two-class 
ROC analysis” (p. 580).

In educational settings, a total test score is also 
frequently used to classify individuals into more than 
two groups (e.g., basic, proficient, advanced). Within this 
context, several methods to establish multiple cut-offs 
on the total test score have been proposed (for a review, 
see Cizek & Bunch, 2007). The computed cut-off scores 
depend on the particular standard setting method used. In 
the holistic methods, the calculation of cut-off scores is 
based on the relationship between the examinee papers 
(test scores) and the ratings they receive by one or more 

judges who render a single (holistic) verdict for each work 
sample. For example, in the Analytic Judgment method 
(Plake & Hambleton, 2001) individuals classified into a 
particular category are subdivided into borderline groups, 
and mean test scores are determined for each of these 
borderline groups. Cut-off scores are then computed as the 
midpoint between two adjacent borderline group means. 
For example, the cut-off score distinguishing “basic” from 

“proficient”, was obtained by averaging the test scores 
of individuals classified into the “high-basic” and “low-
proficient” borderline categories. Similarly, one might 
simply calculate the mean (or median) of the test scores 
for each category group, and then calculate the midpoint 
between two adjacent category means to derive a cut-off 
score (Cizek, Bunch & Koons, 2004). 

In the Body of Work method (see Kingston, Kahl, 
Sweeney & Bay, 2001, pp. 230-231), binary logistic 
regression is used to calculate multiple cut-off scores 
based on the final round of ratings. Binary logistic 
regression (BLR) is a statistical method used to predict 
the probability of success based on an item of information 
(e.g., a test score). To establish a cut-off score, the primary 
goal is to identify the test score at which the likelihood of 
success is equal to the likelihood of failure (p = .50). Once 
the parameters of the BLR model have been estimated, the 
cut-off score can be directly computed as ba− , where 
a  is the intercept, and b  is the regression coefficient.

In the context of the Body of Work method, separate 
BLR models are applied by defining success as being 
assigned to category “j or higher”. For example, with 
three categories (e.g., basic, proficient, advanced), two 
separate logistic regression models would be fitted to 
the data to predict success. In one case, success would 
be defined as being assigned to category “proficient or 
advanced”, and in another it would be defined as being 
assigned to category “advanced”. Thus, in this analytical 
procedure, multiple cut-off scores are calculated by 
fitting separate BLR models corresponding to the 
sequential partitioning of the data. However, it is possible 
to calculate all cut-off scores simultaneously through an 
ordinal logistic regression model, e.g., the proportional 
odds (PO) model (Cizek & Bunch, 2007). The goal of the 
PO model is to estimate the odds of being “at or above” 
a given category across all consecutive cumulative splits 
to the data (O’Connell, 2006). 

By using either a PO model or a BLR model in the 
Body of Work method, cut-off scores are established at the 
test score at which the probability of being “at or above” 
category j is the same as the probability of being “below” 
category j. It is useful to think of these cut-off scores as 
marking the consecutive points at which an individual 
might be predicted into a category equal or greater than j. 
Nevertheless, multiple cut-off scores can be better defined 
as the test scores at which an individual is as likely to be in 
category j  as in category 1+j . Following this definition, 
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the aim of this study is to derive an equation that allows us 
to obtain multiple cut-off scores at intersection of adjacent 
category distributions. This equation will be derived from 
the multinomial logistic regression model.

Multinomial logistic regression

The multinomial logistic regression (MLR) model, is 
also referred to as the polytomous logistic regression model. 
Details of the statistical theory underlying the MLR model 
can be found in several sources, for example, Agresti 
(2002), Hosmer and Lemeshow (2000), and Kleinbaum 
and Klein (2002). A description of the MLR model with an 
application using the SAS system can be found in Allison 
(1999), and Stokes, Davis and Koch (2000).

The MLR model is a straightforward extension of 
the binary logistic regression model for dichotomous 
outcomes, to accommodate polytomous outcome 
variables (i.e., outcome variables with more than two 
ordinal or nominal categories). In the MLR model, one 
of the categories of the outcome variable is designated as 
the reference category, and each of the other categories 
is compared with this baseline. The choice of reference 
category can be arbitrary, often the last or the first one, 
and is at the discretion of the researcher. Changing the 
reference category does not change the form of the model, 
but it does change the values and interpretation of the 
parameter estimates in the model (Kleinbaum & Klein, 
2002).

Let Y be a polytomous outcome variable with J 
categories, and let X (the test score) be the predictor 
variable. With only one predictor variable, the univariate 
MLR model represents the conditional probabilities of 
each outcome category ( jyY = ) given the value of the 
predictor variable ( x ) (Ananth & Kleinbaum, 1997, p. 
1327):
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where ja are the unknown intercept parameters, and 
jb  are the unknown regression coefficients corresponding 

to X. The parameters corresponding to the reference 
category are equal to zero. For example, if the first 
category ( 1yY = ) has been designated as the reference 
category, then 01 =a  and 01 =b . 

The unknown parameters are estimated by 
unconditional maximum likelihood (ML). The joint 
probability for the likelihood function is the product of 

all individual subject probabilities, assuming outcomes 
are independent. The resulting parameter estimates are 
consistent, asymptotically normal, and asymptotically 
efficient. 

Once the parameters of the MLR model have been 
estimated, we can predict the probability of each outcome 
category,  )|(ˆ xyYP j= , which must sum to 1, for a 
given value of the predictor variable. It is then possible to 
estimate the outcome category (Ŷ ) by simply assigning 
each individual (with a given x value) to the category with 
the highest probability. 

The MLR model is frequently expressed in logit form. 
Assuming the first category as the reference category, the  
univariate model has the following representation:
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Exponentiating the regression coefficient, )exp( jb , 
will result in the odds ratio comparing ( jyY = ) with        
( 1yY = ) for a unit increase in x . Notice that the 
regression coefficient ( jb ) is allowed to vary with j . 
This property implies that, unlike the proportional odds 
model, the MLR model does not assume the restricted 
condition of proportionality in the log-odds ratio.  

Equation to set multiple cut-off scores

A cut-off score can be defined as the test score at which 
an individual is as likely to be in category j  as in category

1+j . Therefore, a cut-off score may be defined formally 
as the jx  value satisfying

)|()|( 1 jjjj xyYPxyYP +===          

1,,2,1 −= Jj L        (3)      

Note that with more than two outcome categories these 
probabilities are not necessarily equal to .50.  Replacing 
the previous expression with Equation (1), we get
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Multiplying both terms of the above equation by
( )∑ =

+J
h hh x

1
exp ba , yields

( ) ( )jjjjjj xx 11expexp ++ +=+ baba
    

(5)

And, solving for jx , the value of the cut-off score can 
be obtained as
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where ja  and jb  are the parameters of the MLR model. 
Note that for a dichotomous outcome Y (usually coded as 
0 and 1), the MLR and binary logistic regression models 
reduce to the same model. Thus, the only cut-off score of 
the binary logistic regression model can be calculated as: 

)()( 12211 bbaa −−=x , where 01 =a  and 01 =b  (if 
the first category of the outcome, 01 =y , is designated 
as the reference category), and, 2a  and 2b  are the 
parameters corresponding to the second category of the 
outcome ( 12 =y ). 

Example

An example to illustrate the complete application of 
the procedure to set two cut-off scores on a test is given. 
Basically, the applied procedure involves the following 

steps: (1) draw a representative sample of individuals 
from the population of test takers; (2) obtain a continuous 
test score (X), and an ordinal criterium score (Y) for each 
individual; (3) fit MLR model-data, performing goodness-
of-fit tests; (4) substitute the parameter estimates of the 
MLR model into Equation (6) to obtain the cut-off scores; 
(5) assess the correspondence between observed and 
predicted categories, included in the classification table, 
by obtaining different indices of predictive efficiency.

In this example, the aim of the study is to set two 
cut-off scores on the EAT-26 (Garner, Olmsted, Bohr & 
Garfinkel, 1982), which is the short version of the Eating 
Attitudes Test (EAT-40; Garner & Garfinkel, 1979) adapted 
into Spanish by Castro, Toro, Salamero & Guimera (1991). 
Psychometric properties of this test have also been studied 
in different Spanish female samples (Rivas, Bersabé, 
Jiménez & Berrocal, in press). The EAT-26 total score 
(X) ranges from 0 to 78. On the other hand, the outcome 
(Y) has three ordered categories: (1) individuals without 
symptoms of an eating disorder (ED) (asymptomatics); 
(2) individuals presenting some symptoms but not a full 
ED (symptomatics); and, (3) individuals with an eating 
disorder (ED). These three groups were formed by the 
responses to the Spanish version of the Questionnaire for 
Eating Disorder Diagnoses (Q-EDD; Mintz, O´Halloran, 
Mulholland & Schneider, 1997) developed by Rivas, 
Bersabé & Castro (2001). The Q-EDD is a self-report 
that operationalises DSM-IV criteria for eating disorders 
(American Psychiatric Association, 1994). The sample of 
participants comprised 778 females aged 12 to 21 from 
different high schools in Malaga (Spain). Although the 
results may be informative in the field of eating disorders, 
the main purpose of the example is to explain the proposed 
procedure. 

Statistical software

The MLR model was fitted using the multinom function 
in nnet package (Venables & Ripley, 2002) included 
in R environment (R Development Core Team, 2008). 
Multinom function fits multinomial log-linear models 
via neural networks. R is a language and environment for 
statistical computing and graphics (Venables, Smith & R 
Development Core, 2004). R has at least three compelling 
advantages: it is free software as part of the GNU Project; 
it runs on multiple platforms (e.g., Windows, Unix and 
Macintosh); and combines many of the most useful 
statistical programs into one integrated environment 
(Revelle, 2007).

Many other statistical packages include a procedure to 
carry out multinomial logistic regression: e.g., NOMREG 
procedure included in SPSS (2006) or PROC CATMOD 
included in SAS (2000), to cite but a few of the widely 
used software packages.

Asymptomatic Symptomatic Eating Disorder
Q-EDD diagnosis
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Figure 1. Box plot of EAT-26 total scores in the different groups.
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Results

Prior to fitting the MLR model, it is convenient to make 
a descriptive analysis in order to show the relationship 
between the test scores and the outcome categories. For this 
purpose, females were classified into one of the following 
groups: Asymptomatic ( 525=N ), Symptomatic 
( 217=N ), or Full Eating Disorder (N = 36), according 
to the responses on the Q-EDD. In each group, the 
distribution of the total test scores (EAT-26) is represented 
by a box plot (Figure 1). The EAT-26 scores show an 
increasing trend over the three diagnostic groups, from the 

lowest scores (asymptomatic group) to the highest (eating 
disorder group). Therefore, it would seem that the three 
diagnostic categories can be ordered as a function of the 
total test scores.

In this study, the outcome variable (Y) is the diagnosis 
obtained from responses to the Q-EDD, with three ordinal 
levels (coded 1 for asymptomatic, 2 for symptomatic, and 
3 for eating disorder). The only predictor variable (X) is 
the test (EAT-26) score. These two variables were analyzed 
running a MLR model. The goodness-of-fit of the model 
was assessed by comparing its residual deviance  
( 1056.7022 =−= mm LLD ) with the residual deviance of 

Table 1
Parameter estimates: Results of fit of multinomial logistic regression model

Outcome
Category a Parameter Estimate SE Wald statistic

Symptomatic 2a -1.592 .123 -12.954

2b .080 .010 8.037

Eating Disorder 3a -4.257 .303 -14.029

3b .127 .014 9.282

Figure 2. Predicted conditional probabilities of being in each category given the test score.

a Reference category : Asymptomatic ( and 01 =b ) 01 =a
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the null model ( 1188.409 2 00 =−= LLD ), which includes 
only the intercepts. The deviance is a measure of 
how poorly the model reproduces the observed data. 
The likelihood ratio test ( 131.70710 =−= DDG ,
 df = 2, 001.<p ) compares these two deviances. The null 
hypothesis is rejected, indicating a statistically significant 
decrease in the deviance when the predictor (X) is included 
in the model. This means that the model fits the data better 
than the null model, in terms of correspondence between 
observed and predicted conditional probabilities. The 
reduction in deviance can be expressed through the 
likelihood ratio 111.)/(1 0

2 =−= DDR mL . For this 
model, the inclusion of the predictor in the model reduces 
the deviance of the null model by approximately 11%. 

The parameter estimates of the MLR model are given in 
Table 1. For 1y  (the reference category), the model given in 
Equation (1) represents the conditional probability of being 
in the asymptomatic category, given the test score (x):

( ) ( ) expexp 1
1 )|(

3322
1 xx

xyYP
baba ++++

==  (7)   

For 2y , the model gives the conditional probability of 
being in the symptomatic category:

( )
( ) ( ) expexp 1

exp)|(
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xxyYP
baba
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+
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And, for 3y , the model gives the conditional probability 
of being in the eating disorder category:
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Figure 2 shows three curves with the estimated 
conditional probabilities for each diagnostic category, 

)|(ˆ xyYP j= . As can be seen, the higher the test scores, 
the lower the probability of being in the asymptomatic 
category and, conversely, the higher the probability of 
having a full eating disorder. 

In Figure 2, the two cut-off points are represented 
graphically as the test score corresponding to the 
intersection of the adjacent curves (1 with 2, and 2 with 3), 
i.e., the test score ( jx ) at which an individual is as likely 
to be in category j  as in category 1+j , for 2,1=j . These 
cut-off scores can be obtained by applying Equation (6) to 
these data: 

 x1 = − α2 / β2 = 20.003      

23

32
2 bb

aa
−
−

=x =  56.635

Given the obtained value for the first cut-off 
score, and applying Equation 1, it can be shown that 
the estimated conditional probability of being in the 

“asymptomatic” category is equal to the estimated 
probability of being in the “symptomatic” category: 

459.0)|(ˆ)|(ˆ
1211 ==== xyYPxyYP . Similarly, 

it can be shown that the estimated probability of 
being in the  “symptomatic” category is equal to the 
probability of being in the “eating disorder” category 
given the obtained value for the second cut-off score: 

487.0)|(ˆ)|(ˆ
2322 ==== xyYPxyYP . This proves 

that the obtained cut-off scores have been clearly established 
at intersection of adjacent distributions.  

Based on the obtained cut-off scores, the asymptomatic 
category ( 1ˆ =Y ) is estimated for the test scores (x) within 
the 0-20 interval; the symptomatic category ( 2ˆ =Y ), for 
the x values from 21 to 56; and the eating-disordered 
category ( 3ˆ =Y ), for x values from 57 to 78. Table 2 shows 
the results of the classification, comparing the Q-EDD 
diagnoses (observed outcome category, Y) with those 
estimated as a function of the EAT-26 scores (predicted 
outcome category, Ŷ ). In this example, the overall 
accuracy rate was 70.18%. In the asymptomatic group, 
the EAT-26 correctly classified 95.8 % of individuals, and 
4.2% were erroneously classified as symptomatic. In the 
symptomatic group, 19.8% of individuals were correctly 
classified from the test score; 78.8% were erroneously 

 Predicted category

  TotalObserved category 
(Q-EDD diagnosis)

0 ≤ x ≤ 20
Asymptomatic

21 ≤ x ≤ 56
Symptomatic

57 ≤ x ≤ 78
Eating disorder

Asymptomatic 503 22 0 525
Symptomatic 171 43 3 217
Eating Disorder 18 18 0 36
Total 692 83 3 778

Table 2
Classification table
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classified as asymptomatic; and 1.4% as eating disorder. 
In the eating disordered group, none of the individuals was 
correctly diagnosed, 50% were erroneously classified as 
asymptomatic, and 50% as symptomatic.  

Other indices of predictive efficiency assess the 
correspondence between observed and predicted 
categories included in the classification table. Some of 
them can be used with polytomous outcome variables 
(for a review, see Menard, 1995). These include pλ , also 
called adjusted count R2, which is defined (Long, 1997; 
Menard, 2000) as  )()(1 modennfn iip −−−= ∑λ , where n  
is the sample size,  iif  is the number of cases for 
which the predicted value is equal to the observed value, 
and moden  is the observed number of cases in the 
modal category of the dependent variable (maximum  
row marginal). In this example (Table 2), 

083.2532321 =−=pλ , which means that predicting 
outcome category using the MLR model, decreases the 
initial prediction error by 8.3%. However, this reduction 
of the initial prediction error is not statistically significant, 
as indicated by the normal approximation to the binomial 
test ( 607.1=d  054.=p ). Initial prediction error is 
defined as the expected errors of the null model (without 
the predictor). For this index, the null prediction model 
uses the mode of the dependent variable as the predicted 
value for all cases. 

Another index of predictive efficiency is pτ
 which is defined (Menard, 2000) as 
 ]/)([)(1 ∑∑ −−−= nfnffn iiiipτ , where if  is the 
observed frequency for category i . For the 
actual classification table, 358.535.3612321 =−=pτ  
showing that initial classification error is reduced by 
approximately 36% using the MLR model. This 
reduction of the initial classification error is statistically 
significant, as indicated by the normal approximation to 
the binomial test ( 607.1=d , 054.=p ). Initial 
classification error is defined as the expected errors of 
the null model (without the predictor). For this index, 
the null model requires that cases must be classified into 
distinct categories adjusted to the observed marginal 
distribution of the dependent variable (base rates). 

Hosmer and Lemeshow (2000) point out that model 
fit in terms of correspondence between observed and 
estimated probabilities (e.g. likelihood ratio test) is 
often more reliable and meaningful than assessment 
of fit based on classification. They suggest that 
classification statistics be used as an adjunct to other 
measures, rather than a sole indicator of quality of the 
model. Indeed, a well fitted model in terms of residual 
deviance may not necessarily lead to high predictive 
efficiency rates (i.e., classification rates), as shown in 
the present example.

Discussion

A general equation to compute multiple cut-off scores 
on a test has been derived from the MLR model. From 
this analytical procedure, a cut-off score has been defined 
as the test score at which an individual is as likely to 
be in category j  as in category 1+j . In other words, a 
cut-off score can be defined as the abscissa (test score) 
corresponding to the intersection of adjacent category 
distributions.

Following this definition, multiple cut-off scores 
can also be obtained by fitting separate binary logistic 
regression (BLR) models for each pair of adjacent 
categories. For example, with three categories (e.g., 
asymptomatic, symptomatic, eating disorder), two separate 
BLR models would be fitted to the data to predict success. 
In one case, success would be defined as being assigned 
to “symptomatic” category (versus “asymptomatic”), and 
in another it would be defined as being assigned to “eating 
disorder” category (versus “symptomatic”). 

Using separate BLR models yields the same number 
of parameters as those obtained by using a MLR model 
(e.g., two intercepts and two slopes for a three-category 
outcome). However, the likelihood function for the 
MLR model utilizes the data involving all categories of 
the outcome variable in a single function. In contrast, 
the likelihood function for a BLR model uses the data 
involving only two categories of the outcome variable. 
That is, different likelihood functions are used when fitting 
each dichotomous model separately than when fitting a 
MLR model that considers all categories simultaneously. 
Consequently, both the estimation of the parameters and 
the estimation of the variances of the parameter estimates 
may differ when comparing the results from fitting 
separate dichotomous models to the results from the MLR 
model (Kleinbaum & Klein, 2002).

Another option to obtain multiple cut-off scores at 
intersection of adjacent distributions is to use an ordinal 
logistic regression model, e.g., the proportional odds 
(PO) model (Bersabé, Rivas & Berrocal, 2009). There 
are certain advantages to be obtained through the fitting 
of a PO model, as well as certain caveats to keep in mind. 
The PO model summarizes the relationship between the 
ordinal outcome and the independent variable with only 
one beta parameter ( b ), implying that the model assumes 
that the effect of X  on Y is the same regardless of the 
category of the outcome variable ( j). This assumption 
of the model is called the proportional odds assumption, 
and hence the name proportional odds model (McCullagh, 
1980). The PO model provides a parsimonious regression 
model for ordinal response variables. However, only if the 
assumption of proportional odds is tenable should the PO 
model be applied (Bender & Grouven, 1998). 
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In contrast, the MLR model does not assume the 
proportional odds condition. In the MLR model (unlike 
the PO model), the regression coefficient ( jb ) depends 
on j, implying that the model does not assume that the 
effect of X  on Y is the same regardless of j (Ananth 
& Kleinbaum, 1997).  In this sense, the MLR model is 
less restrictive than the PO model, and it can be applied 
whether the proportional odds assumption is satisfied or 
not.    

In an educational context, other methods involving a 
lower level of statistical complexity have been proposed 
to calculate multiple cut-off scores. For example, in the 
Analytic Judgment method (Plake & Hambleton, 2001) 
individuals classified into a particular category are 
subdivided into borderline groups, and cut-off scores are 
simply computed as the midpoint between two adjacent 
borderline group means. Because extreme scores may 
unduly influence a mean, the median may be used 
instead. This approach has the advantage of being fairly 
straightforward. It is easy to explain to the public and 
also to calculate (i.e., only simple means -or medians- of 
test scores assigned to borderline categories are needed). 
However, this method has the weakness that it does not 
use all the available data, sacrificing information present 
in the test scores for non-boundary categories. 

Another option is to simply calculate the mean (or 
median) of the test scores for each complete category 
group (i.e., individuals classified into a particular category 
are not subdivided into borderline groups), and then to 
calculate the midpoint between two adjacent category 
means to derive a cut-off score (Cizek, Bunch & Koons, 
2004). This option has appeal in that it uses all the 
available information. Similarly, the MLR model does not 
need to sacrifice any data from the sample of participants. 
However, the sophistication of the MLR analysis requires 
access to statistical software and a level of statistical 
training that may challenge some practitioners. It is 
definitely more difficult to explain MLR model fitting to 
the public than would be simple averages. 

In any case, multinomial logistic regression provides 
a sound statistical model whose goodness-of-fit can be 
assessed in terms of residual deviance, which allows 
for the statistical comparison of different models. In 
contrast, methods based on simple measures of central 
tendency can only assess cut-off point efficiency in terms 
of  the correspondence between observed and predicted 
categories included in the classification table, which is 
often less reliable and meaningful (Hosmer & Lemeshow, 
2000). Furthermore, MLR model should yield more 
accurate cut-off points than methods based on a midpoint 
between two means (or medians), especially when the 
rates by category groups are very different. 

A limitation of the MLR model to establish multiple 
cut-off scores is that, unlike ROC models, it does not take 

into account the proportion of the outcome categories at the 
population level (base rate). For this reason, the proposed 
methodology should only be used with randomly sampled 
data that resemble the base rate from the corresponding 
population.  

Furthermore, in the suggested procedure, the costs of 
different classification errors are assumed to be equal. In 
contrast, in some of the proposed three-class ROC models 
(e.g., He et al., 2006), the individuals can be classified by 
making the decision that provided the maximal expected 
utility of incorrect decisions relative to the other two. 
Nevertheless, when there are more than two outcome 
categories, it is extremely difficult to provide realistic 
assessments of the relative costs of the different kinds of 
misclassification.

In conclusion, the MLR model provides a joint 
model that can be used to compute multiple cut-offs 
on a continuous test score, at intersection of adjacent 
distributions. The proposed methodology is recommended 
whenever the data represent a random sample from the 
corresponding population, and the relative costs of incorrect 
decisions are assumed to be equal. Additional research is 
needed to compare results using alternative procedures. It 
would contribute to drawing a firmer conclusion regarding 
comparability of the different analytical approaches.
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