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SUMMARY
The evaluation of joint velocity, torque, and power capability
of the 8-PSS redundant parallel manipulator is investigated
in this paper. A series of new joint capability indices with
obvious physical meanings are presented. The torque index
used to evaluate the respective joint dynamic capability
of the redundant parallel manipulator is decoupled into
the acceleration, velocity, and gravity term. With these
velocity, torque, and power indices, it is possible to control
the respective joint capability of the redundant parallel
manipulator in different directions. The indices have been
applied to evaluate the joint capability of the redundant
parallel manipulator by simulation. They are general and
can be used for other types of parallel manipulators.

KEYWORDS: Rigid dynamics; Redundant parallel
manipulator; Joint capability; Performance evaluation;
Performance index.

1. Introduction
Performance is necessary to be considered when the
parallel manipulator is developed. The performance index
is fundamental to the performance evaluation. It is still
an open problem.1–3 For the fully parallel manipulator,
there are two basic kinematic criteria: (i) the conditioning
number, which is the ratio of the maximum singular value
to the minimum singular value of the matrix. Gosselin and
Angeles4–5 adopted the condition number of the Jacobian
matrix to evaluate the kinematic performance of the parallel
manipulator and then defined the global conditioning index,6

which can be implemented with a numerical technique.
In order to avoid the unit inconsistency problem when
using the condition number of the Jacobian matrix with
nonhomogeneous physical units in the optimal design and
control,7–9 he derived a new Jacobian matrix and defined
a new condition index10 based on the principle that the
plane is determined by three noncollinear points. The
new conditioning index has been applied to the design of
parallel manipulators.11–13 (ii) The manipulability measures,
the meanings of the manipulability can be interpreted as
a measure of the manipulator capability for executing a
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specific task in a given configuration. Yoshikawa14 defined
the manipulability index as a generalized determinant of
the Jacobian matrix and separated the total manipulability
measure into translational and rotational manipulability.15

Hong and Kim16 defined a new manipulability measure,
which included the total volume of a manipulability ellipsoid
and the condition number of the Jacobian matrix, and
optimized the Eclipse parallel manipulator by maximizing
the manipulability measure. The definition of the above
indices is that regarding all the input joints as one joint space
in mathematics and investigating the mapping between the
task space and the joint space.

The dynamic models are highly nonlinear, which make
it difficult to predict the dynamic performance of the
manipulator. However, the dynamic performance should
be taken into account during the design to provide more
advanced control and trajectory planning for the parallel
manipulator. Borrowing ideas from the definition of the
kinematic performance index, similar dynamic performance
indices have been presented in the literatures.17–27 Ma
and Angeles17–18 introduced the concept of a dynamic
conditioning index, which was defined as the least square
difference between the generalized inertia matrix and an
isotropic matrix. Asada19–20 introduced the generalized
inertia ellipsoid as a tool to measure the capability of
changing end-effector’s velocity in different directions for
a given kinetic energy. Yoshikawa21 extended the concept
of the kinematic manipulability ellipsoid to a dynamic
manipulability ellipsoid for measuring the case of changing
the end-effector’s configuration by a set of joint torques
with a fixed magnitude (2-norm). Huang and coworkers22–23

adopted the maximum singular value of the generalized
inertia matrix or its row vector matrix to evaluate the
dynamic characteristic of the parallel manipulator. The key
at the basis of the definition of the above performance
measures is the generalized inertia matrix, which describes
the mapping between the joint forces/torques and the end-
effector accelerations. The velocity and gravity terms of the
dynamic equations are not included in the rigid dynamic
performance indices.

Redundancy can usually improve the ability and
performance of a parallel manipulator.28–37 It is believed
that redundancy can bring some advantages for parallel
manipulators such as avoiding kinematic singularities,
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Figure 1. Schematic diagram of an 8-PSS redundant parallel manipulator.

increasing workspace, improving dexterity, enlarging load
capability, and so on. Redundant parallel manipulators
are usually overconstrained mechanisms, and the Jacobian
matrix is not a square matrix. This will bring difficulties in the
kinematics and dynamics analysis, especially for the dynamic
performance evaluation. The above performance indices used
for the fully parallel manipulator cannot be applied directly
to the redundant parallel manipulator. In fact, there is little
work on the performance evaluation of the redundant parallel
manipulator.

This paper investigates the performance evaluation of the
redundant parallel manipulator by computing the respective
joint capability. The joint velocity, torque, and power
capability of the 8-PSS redundant parallel manipulator
are studied by means of a series of new indices with
obvious physical meanings. The paper is organized as
follows. Section 2 describes the 8-PSS redundant parallel
manipulator. In Section 3, the kinematic model and rigid
dynamic model are presented. Then the joint velocity,
torque, and power capabilities are investigated in Section 3.
Simulations and conclusions are given in Sections 4 and 5.

2. System Description
The 8-PSS redundant parallel manipulator is shown in Fig. 1.
It consists of a moving platform and eight sliders. In each
kinematic chain, the moving platform and the slider are
connected via spherical ball bearing joints by a strut of fixed
length. Each slider is driven by DC motor via linear ball
screw. The lead screw of B1, B2, B3, and B4 are vertical to
the ground. The lead screw of B5, B6 and the lead screw of
B7, B8 are parallel with the ground. They are orthogonal to
each other. The vector diagram of the PSS kinematic chain
is shown in Fig. 2.

For the purpose of analysis, the following coordinate sys-
tems are defined: the coordinate system O − xyz is attached
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Figure 2. Vector diagram of a PSS kinematic chain.

to the fixed base, and another moving coordinate frame
O ′ − u′v′w′ is located at the center of mass of the moving
platform. The pose of the moving platform can be described
by a position vector, r , and a rotation matrix, o Ro′ . Let the
rotation matrix be defined by the roll, pitch, and yaw angles,
namely, a rotation of φx about the fixed x axis, followed by
a rotation of φy about the fixed y axis, and a rotation of φz

about the fixed z axis. Thus, the rotation matrix is

o Ro′ = Rot(z, φz) Rot(y, φy) Rot(x, φx), (1)

where sφ denotes the sine of angle φ, while cφ denotes
the cosine of angle φ. The angular velocity of the moving
platform is given by38

ω = [φ̇x φ̇y φ̇z ]T . (2)

The orientation of each kinematic strut with respect to the
fixed base can be described by two Euler angles. As shown
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in Fig. 3, the local coordinate systems of the ith strut can be
thought of as a rotation of φi about the z-axis, resulting in a
coordinate system Ci − x ′

iy
′
iz

′
i followed by another rotation

of ϕi about the rotated y ′
i axis. So the rotation matrix of the

ith strut can be written as

o Ri = Rot(z, φi) Rot(y ′
i , ϕi) =

⎡
⎢⎣cφicϕi −sφi cφisϕi

sφicϕi cφi sφisϕi

−sϕi 0 cϕi

⎤
⎥⎦.

(3)

The unit vector along the strut in the coordinate system O −
xyz is

wi = o Ri
iwi = o Ri

⎡
⎢⎣0

0

1

⎤
⎥⎦ =

⎡
⎢⎣ cφisϕi

sφisϕi

cϕi

⎤
⎥⎦ . (4)

Jx =
[

w1 w2 w3 w4 w5 w6 w7 w8

a1 × w1 a2 × w2 a3 × w3 a4 × w4 a5 × w5 a6 ×w6 a7 × w7 a8 × w8

]T

, (13)

So the Euler angles φi and ϕi can be computed as the
following: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cϕi = wiz,

sϕi =
√

w2
ix + w2

iy, (0 ≤ ϕi < π),

sφi = wiy/sϕi,

cφi = wix/sϕi,

if ϕi = 0, then φi = 0.

(5)

3. Kinematic and Rigid Dynamic Model

3.1. Kinematics
3.1.1. Position analysis. As shown in Fig. 2, the closed-loop
position equation associated with the ith kinematic chain can
be written as follows:

r + ai = liwi + bi + di + qiei i = 1, 2, . . . , 8, (6)

where r , qi , ei , wi , ai , bi , and di denote the vector O O ′, the
joint variable, the unit vector along the lead screw, the unit
vector along strut CiAi , the vector O ′ Ai , the vector O Bi ,
and the vector from the lead screw to the center point of the
joint Ci , respectively.

3.1.2. Velocity analysis. Taking the derivative of Eq. (6) with
respect to time yields

q̇iei + ωi × liwi = v + ω × ai , (7)

where ωi and v denote the angular velocity of the strut CiAi

and the linear velocity of the moving platform, respectively.
Taking the dot product of both sides of Eq. (7) with wi

yields

q̇i =
[

wT
i

wT
i ei

(ai × wi)T

wT
i ei

] [
v

ω

]
. (8)

Rewriting Eq. (8) in the matrix form yields

q̇ = J−1
q Jx Ẋ = JẊ, (9)

where

q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7 q̇8 ]T , (10)

Ẋ =
[

v

ω

]
, (11)

Jq

= diag
(
wT

1 e1 wT
2 e2 wT

3 e3 wT
4 e4 wT

5 e5 wT
6 e6 wT

7 e7 wT
8 e8

)
,

(12)

J = J−1
q Jx = [

JT
1 JT

2 JT
3 JT

4 JT
5 JT

6 JT
7 JT

8

]T
,

(14)
where J is the Jacobian matrix, which maps the velocity
vector Ẋ into the joint velocity vector q̇.

3.1.3. Link velocity analysis. The linear velocity of the point
Ai in the coordinate system Ci − xiyizi is

ivAi = q̇i
iei + iωi × li

iwi = iv + iω × i ai . (15)

Since iωT
i

iwi = 0, taking the cross product with iwi on
both sides of Eq. (15), so the angular velocity of the link
is obtained as

iωi = 1

li

(
iwi × ivAi − iwi × q̇i

iei

)
= 1

li

(
S
(
iwi

)
ivAi − S

(
iwi

)
q̇i

iei

)
, (16)
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where

S(iwi) =

⎡
⎢⎣ 0 −iwiz

iwiy

iwiz 0 −iwix

−iwiy
iwix 0

⎤
⎥⎦ . (17)

Substituting Eqs. (8) and (15) into Eq. (16) yields

iωi = 1

li

{ [
S
(
iwi

)
i Ro −S

(
iwi

)
S
(
i ai

)
i Ro

]
− (

iwi × iei

) [ wT
i

wT
i ei

(ai × wi)T

wT
i ei

]}[
v

ω

]
= J iω

[
v

ω

] , (18)

where

S(i ai) =

⎡
⎢⎣ 0 −iaiz

iaiy

iaiz 0 −iaix

−iaiy
iaix 0

⎤
⎥⎦ , (19)

i Ro = o R−1
i = o RT

i . (20)

The velocity of the center of the ith strut in the coordinate
system Ci − xiyizi is

ivi = ivAi − iωi × li

2
iwi . (21)

Substituting Eqs. (8), (15), and (18) into Eq. (21) yields

ivi =
{[

i Ro −S
(
i ai

)
i Ro

] + li

2
S
(
iwi

)
J iω

}[
v

ω

]

= J iv

[
v

ω

]
. (22)

Rewriting the linear and angular velocity of the ith strut in
the matrix form yields[ ivi

iωi

]
=

[
J iv

J iω

] [
v

ω

]
= J ivω

[
v

ω

]
, (23)

where J ivω is the link Jacobian matrix,38 which maps the
velocity of the moving platform in the task space into the
velocity of the ith strut in the coordinate system Ci − xiyizi .

3.1.4. Acceleration analysis. Taking the derivative of Eq. (7)
with respect to time gives

v̇ = q̈iei − ω̇ × ai − ω × (ω × ai) + ω̇i × liwi + ωi

× (ωi × liwi). (24)

Taking the dot product of both sides of Eq. (24) with wi and
simplifying yields

q̈i = 1

wT
i ei

(
wT

i v̇ + (ai × wi)
T ω̇ + wT

i (ω × (ω × ai))

− wT
i (ωi × (ωi × liwi))

)

= JT
i

[
v̇

ω̇

]
+ 1

wT
i ei

((
wT

i ω
)(

aT
i ω

)
− (

wT
i ai

)
(ωT ω) + li |ωi × wi |2

)
. (25)

Rewriting Eq. (25) in the matrix form yields

q̈ = JẌ + V , (26)

where

V = [
V1 V2 V3 V4 V5 V6 V7 V8

]T
, (27)

Vi = 1

wT
i ei

((
wT

i ω
) (

aT
i ω

)−(
wT

i ai

) (
ωT ω

) + li |ωi × wi |2
)
.

(28)

3.1.5. Link acceleration analysis. Taking the derivative of
Eq. (7) with respect to time in the coordinate system Ci −
xiyizi yields

i v̇ = q̈i
iei − iω̇ × i ai − iω × (

iω × i ai

) + iω̇i

× li
iwi + iωi × (

iωi × li
iwi

)
. (29)

Taking the cross product with iwi on both sides of Eq. (29)
yields

iω̇i = 1

li

(
iwi × i v̇ − (

iwi × iei

)
q̈i − iwi × (

i ai × iω̇
)

+ iwi

(
iω × (

iω × i ai

)) − iwi×
(
iωi × (

iωi × iwi

)))
.

(30)
Substituting Eq. (25) into Eq. (30) and simplifying yields

iω̇i = J iω

[
v̇

ω̇

]
+ 1

li
(�1 + �2), (31)

where

�1 = −
(
iwi × iei

)
wT

i ei

((
wT

i ω
)(

aT
i ω

) − (
wT

i ai

)
(ωT ω)

+ li |ωi × wi |2
)
, (32)

�2 = (
iωT

i
i ai

)(
iwi × iωi

) − (iωT iω)
(
iwi × i ai

)
. (33)

Taking the derivative of Eq. (21) with respect to time yields

i v̇i = i v̇Ai − li

2
iω̇i × iwi − iωi ×

(
iωi × li

2
iwi

)
= i v̇ − S

(
i ai

)
iω̇ + S(iω)S(iω)i ai + li

2
S
(
iwi

)
iω̇i

− li

2
S
(
iωi

)
S
(
iωi

)
iwi .

(34)
Substituting Eq. (31) into Eq. (34) and simplifying yields

i v̇i = J iv

[
v̇

ω̇

]
+ S

(
iωi

)
S
(
iωi

)
i ai + 1

2
S
(
iwi

)
(�1 + �2)

− li

2
S
(
iωi

)
S
(
iωi

)
iwi . (35)
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3.2. Rigid dynamics
3.2.1. Applied and inertia wrenches. The resultant of applied
and inertia forces exerted at the center of mass of the moving
platform is

QP =
[

f P

nP

]
=

[
f e + mp g − mpv̇

ne − o Ipω̇ − ω × (o Ipω)

]
, (36)

where f e and ne are the external force and moment
exerted at the center of mass of the moving platform,o Ip =
o Ro′o

′
Ip

o′
Ro is the inertia matrix of the moving platform

taken about the center of mass expressed in the coordinate
system O − xyz and mp is its mass.

The resultant of applied and inertia forces exerted at the
center of mass of the ith strut can be expressed in the
coordinate system Ci − xiyizi as

i Qi =
[ i f i

ini

]
=

[
mi

i Ro g − mi
i v̇i

−i I i
iω̇i − iωi × (i I i

iωi)

]
, (37)

where i I i is the inertia matrix of the ith cylindrical strut
about its respective center of mass expressed in the coordinate
system Ci − xiyizi and mi is its mass.

There is pure translational motion for the slider, so the
resultant of applied and inertia forces exerted at the center of
mass of the slider can be expressed in the coordinate system
O − xyz as

fqi = (mqi g − mqi q̈i)
T ei , (38)

where mqi and q̈i are the mass and the acceleration of the
slider.

There is pure rotation motion for the lead screw, coupler,
and motor rotor, so the resultant of applied and inertia forces
exerted at the screw-coupler-rotor is

Ni = τi − (ILi + ICi + IMi)θ̈i , (39)

where ILi , ICi , and IMi are the rotary inertia of the lead screw,
coupler, and motor rotor, respectively, τi is the input torque
actuated by the motor, θ̈i is the angular acceleration of the
screw-coupler-rotor. The relationship between the lead screw
motion and the slider motion is θ̈i = (

2π
/
pi

)
q̈i . Where pi =

0.05 m−1 is the lead of the linear ball screw.

3.2.2. Equations of motion. According to D’Alembert’s
principle, the principle of virtual work can be extended from
the static to the dynamic case. It can be stated as: The virtual
work of the external forces applied to the system must be zero.

ILCM = diag(ILCM1 ILCM2 ILCM3 ILCM4 ILCM5 ILCM6 ILCM7 ILCM8 ), (50)

For this redundant parallel manipulator, it can be expressed
in the formula:

δxT
p Qp +

8∑
i=1

δi xT
i

i Qi + δ QT f q + δθT N = 0, (40)

where

δq = [
δq1 δq2 δq3 δq4 δq5 δq6 δq7 δq8

]T
,

(41)

δθ = [
δθ1 δθ2 δθ3 δθ4 δθ5 δθ6 δθ7 δθ8

]T
= diag

(
2π

p1

2π

p2

2π

p3

2π

p4

2π

p5

2π

p6

2π

p7

2π

p8

)
= Aδq, (42)

f q = [
fq1 fq2 fq3 fq4 fq5 fq6 fq7 fq8

]T
,

(43)

N = [
N1 N2 N3 N4 N5 N6 N7 N8

]T
. (44)

In Eq. (40), the resultant of the applied and inertia forces i Qi

and its corresponding virtual displacement δi xi are expressed
in the coordinate system Ci − xiyizi . From Eq. (23), the
relationship between the above virtual displacement δi xi and
the virtual displacement δxp is determined by

δi xT
i = δxT

p JT
ivω. (45)

The relationship between the virtual displacement δ Q and
δxp is

δ QT = δxT
p JT . (46)

Substituting Eqs. (42), (45), and (46) into Eq. (40) yields

δxT
p Qp+

8∑
i=1

δxT
p JT

ivω
i Qi + δxT

p JT f q + δxT
p JT AT N = 0.

(47)
Since Eq. (47) is always valid for any δxp, it must follow
that

Qp +
8∑

i=1

JT
ivω

i Qi + JT f q + JT AT N = 0. (48)

Eq. (48) can be written as

JT AT τ = JT AT ILCM θ̈ − Qp −
8∑

i=1

JT
ivω

i Qi − JT f ,

(49)
where

ILCMi = ILi + ICi + IMi. (51)

There are eight unknown quantities in the six linear consistent
equations. So the solution is infinite. The most common
strategy to solve this kind of problem is by minimizing the
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Euclidian norm of the actuating torque vector:

τ = −A−T ( JT )+
(

Qp +
8∑

i=1

JT
ivω

i Qi + JT f q

)
+ ILCM θ̈

= −A−T ( JT )+
(

Qp +
8∑

i=1

JT
ivω

i Qi + JT f q

)
+ ILCM Aq̈.

(52)
The physical significance of the above equation is that among
the possible actuating torque vectors, the optimum solution
is that with minimum norm and least quadratic sum. The
J+ is the Moore–Penrose inverse of the Jacobian matrix.
Substituting Eqs. (36)–(39) into Eq. (52) yields

τ = −A−T ( JT )+
[

f e

ne

]
− A−T ( JT )+

{[
mp g

0

]
+

8∑
i=1

JT
ivω

[
mi

i Ro g

0

]

+ JT [(mq1 g)T e1 (mq2 g)T e2 (mq3 g)T e3 (mq4 g)T e4 (mq5 g)T e5 (mq6 g)T e6 (mq7 g)T e7 (mq8 g)T e8 ]T
}

+ A−T ( JT )+
{[

mpv̇
o Ipω̇

]
+

8∑
i=1

JT
ivω

[
mi

i v̇i

i I i
iω̇i

]

+ JT [mq1q̈1 mq2q̈2 mq3q̈3 mq4q̈4 mq5q̈5 mq6q̈6 mq7q̈7 mq8q̈8 ] + ILCM Aq̈

}

+ A−T ( JT )+
{[

0
ω × (o Ipω)

]
+

8∑
i=1

JT
ivω

[
0

iωi × (i I i
iωi)

]}
,

(53)

where 0 = [0 0 0 ]T .

4. Joint Capability Evaluation

4.1. Joint velocity capability
The relationship between the input angular velocity of the
motor rotor and the velocity of the moving platform is

θ̇ = Aq̇ = AJ Ẋ = J θ Ẋ

= [ J θ1 J θ2 J θ3 J θ4 J θ5 J θ6 ]

[
v

ω

]
, (54)

where θ̇ is the angular velocity of the motor rotor, J θ is the
matrix, which maps the velocity of the moving platform into
the angular velocity of the motor rotor, J θj is the column
vector component of the matrix J θ .

When the moving platform translates along or rotates about
the x, y,and z axes in the unit velocity, the input angular
velocity of the motor rotor is

θ̇ j = J θχ j = J θj , (j = 1, 2, . . . , 6), (55)

where

χ1 = [1 0 0 0 0 0 ]T , (56a)

χ2 = [0 1 0 0 0 0 ]T , (56b)

χ3 = [0 0 1 0 0 0 ]T , (56c)

χ4 = [0 0 0 1 0 0 ]T , (56d)

χ5 = [0 0 0 0 1 0 ]T , (56e)

χ6 = [0 0 0 0 0 1 ]T (56f)

are used to represent the unit linear and angular velocity of the
moving platform when it translates along or rotates about the
x, y, and z axes. They will also later be used to represent the
unit linear and angular acceleration of the moving platform

when it translates along or rotates about the x, y and z

axes.
For the ith input joint (i = 1, 2, . . . , 8)

θ̇iχj
=

[
0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
8−i

]
J θj = J θij (57)

is the input angular velocity of the ith joint when the unit
velocity of the moving platform is χ j .

So,

θ̇i max = max
([∣∣J θi1

∣∣ , ∣∣J θi2

∣∣ , · · · ∣∣J θi6

∣∣])
= max

([∣∣θ̇iχ1

∣∣, ∣∣θ̇iχ2

∣∣, · · · ∣∣θ̇iχ6

∣∣]) (58)

is the maximum input angular velocity of the ith joint when
the velocity of the moving platform is unit. It is taken as the
performance index to evaluate the ith joint velocity capability
of the redundant parallel manipulator.

4.2. Joint rigid dynamic capability
4.2.1. Joint torque capability. Substituting Eqs. (23), (31),
and (35) into Eq. (53) and simplifying, the inverse
dynamic model of the redundant parallel manipulator is
achieved

τ = M(X)Ẍ + V (X, Ẋ) + g(X) − A−T J−T

[
f e

ne

]
= τ a + τ v + τ g + τ e,

(59)
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where

M(X) = A−T ( JT )+
([

mp E3
o Ip

]
+

8∑
i=1

JT
ivmi J iv +

8∑
i=1

JT
iω

i I i J iω

)

+ A−T diag(mq1 mq2 mq3 mq4 mq5 mq6 mq7 mq8 ) J + AI LCM J

= [M1 M2 M3 M4 M5 M6 ] (60)

is the generalized inertia matrix of the redundant parallel
manipulator, which maps the acceleration of the moving
platform into the actuating torques. E3 denotes the unit
matrix of order three. V (X, Ẋ) and g(X) are the velocity
term and the gravity term of the inverse dynamic equations,
respectively.

When the acceleration and the velocity of the moving
platform are the unit vector along χ , the actuating torques
caused by the respective acceleration, velocity, and gravity
term are

τ aχj
= M(X)χ j = Mj , j = 1, 2, . . . , 6. (61)

τ vχj
= V (X, Ẋ)

∣∣∣Ẋ=χ j , j=1,2,...,6 , (62)

τ g = g(X). (63)

For the ith input joint

τiaχj
=

[
0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
8−i

]
Mj = M ij , (64)

τivχj
=

[
0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
8−i

]
τ vχj

, (65)

τig =
[

0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0︸ ︷︷ ︸
8−i

]
τ g, (66)

so,

τia max = max([|M i1| , |M i2| , . . . , |M i6| ])

= max
([∣∣τiaχ1

∣∣ , ∣∣τiaχ2

∣∣ , . . . ,
∣∣τiaχ6

∣∣]) , (67)

τiv max = max
([∣∣τivχ1

∣∣ , ∣∣τivaχ2

∣∣ , . . . ,
∣∣τivaχ6

∣∣]) , (68)

τig max = ∣∣τig

∣∣ (69)

are the maximum actuating torques of the ith joint caused by
the respective acceleration, velocity, and gravity term.

Thus

τi max = τia max + τiv max + τig max (70)

is the maximum actuating torque of the ith joint when the
acceleration and the velocity of the moving platform are unit.
It is taken as the performance index to evaluate the ith joint
torque capability of the redundant parallel manipulator.

4.2.2. Joint power capability. When the acceleration and the
velocity of the moving platform are the unit vector along
χ1, χ2, . . . , χ6, the power of the ith input joint is

Piχj
= θ̇iχj

τiaχkvχj g, (71)

where

τiaχkvχj g = τiaχk
+ τivχj

+ τig, 1 ≤ k, j ≤ 6, (72)

so

Pi max

= max
([∣∣θ̇iχ1τiavχ1g

∣∣ , ∣∣θ̇iχ2τiavχ2g

∣∣ , . . . ,
∣∣θ̇iχ6τiavχ6g

∣∣ ]) ,

(73)

where

τiavχj g = τia max + ∣∣τivχj

∣∣ + τig max. (74)

Pi max is the maximum power of the ith joint when the
acceleration and the velocity of the moving platform are
unit. It is taken as the performance index to evaluate the ith
joint power capability of the redundant parallel manipulator.

4.3. General case
When the maximum translational motion of the moving
platform along x, y, and z axes and the maximum
rotational motion about x, y, and z axes are given as
ηk k=1,2,...,6 m/s2(rad/s2) and λj j=1,2,...,6 m/s(rad/s) in the
task space, these indices to evaluate the ith input joint
capability are

θ̇i max = max
([∣∣λ1θ̇iχ1

∣∣ , ∣∣λ2θ̇iχ2

∣∣ , . . . , ∣∣λ6θ̇iχ6

∣∣]) , (75)

τi max = max
(∣∣ηkτiaχk

∣∣ + λ2
j

∣∣τivχj

∣∣ + τig max
)
, (76)

Pi max

= max
([∣∣λ1θ̇iχ1τiavχ1g

∣∣, ∣∣λ2θ̇iχ2τiavχ2g

∣∣ ,. . ., ∣∣λ6θ̇iχ6τiavχ6g

∣∣]),
(77)

where

τiavχj g = ηkτia max + λ2
j

∣∣τivχj

∣∣ + τig max. (78)

The redundant parallel manipulator has better performance
when these indices above are smaller.

In order to evaluate the ith input joint capability of
the redundant parallel manipulator in different directions
with different instantaneous velocity and acceleration, these
indices are adopted as

θ̇iλj χj
= ∣∣λj θ̇iχj

∣∣ , (79)

τiaηkχkvλj χj g = ∣∣ηkτiaχk

∣∣ + λ2
j

∣∣τivχj

∣∣ + ∣∣τig

∣∣ , (80)

Piaηkχkvλj χj g = ∣∣λj θ̇iχj
τiaηkχkvλj χj g

∣∣ . (81)
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Table I. The parameters of the base platform (m).

1 2 3 4 5 6 7 8

xBi

yBi

zBi

0.400000
−0.400000

0.000000

0.400000
0.400000
0.000000

−0.400000
0.400000
0.000000

−0.400000
−0.400000

0.000000

0.400000
−2.000000

1.500000

−0.400000
−2.000000

1.500000

−2.000000
−0.400000

1.500000

−2.000000
0.400000
1.500000

Table II. The parameters of the moving platform, which are measured in the coordinate frame O ′ − u′v′w′ (m).

1 2 3 4 5 6 7 8

xAi

yAi

zAi

0.400000
−0.400000
−0.166000

0.400000
0.400000

−0.166000

−0.400000
0.400000

−0.166000

−0.400000
−0.400000
−0.166000

0.400000
−0.681000
−0.037500

−0.400000
−0.681000
−0.037500

−0.681000
−0.400000
−0.037500

−0.681000
0.400000

−0.037500

Table III. The length of the strut CiAi(m).

1 2 3 4 5 6 7 8

li 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

It is the input velocity, torque, and power of the respective
actuated joint required for producing (1) a maximum
linear and angular acceleration ηk m/s2(rad/s2); and (2) a
maximum linear and angular velocity λj m/s(rad/s) of the
moving platform. In order to control the respective joint
capability of the redundant parallel manipulator in different
directions, these indices can also be used for the constraint
function in the dynamic optimum design.

If the maximum translational motion and the maximum
rotational motion of the moving platform are assigned as
vmax, ωmax, v̇max, and ω̇max, the ith input joint capability
indices are

θ̇i max = max
(
λ
∣∣θ̇iχj

∣∣) , j = 1, 2, . . . , 6,

j = 1, 2, 3, λ = vmax,

j = 4, 5, 6, λ = ωmax,

(82)

τi max = max
(∣∣ητiaχk

∣∣ + λ2
∣∣τivχj

∣∣ + τig max
)
,

j, k = 1, 2, . . . , 6,

j, k = 1, 2, 3, η = v̇max, λ = vmax,

j, k = 4, 5, 6, η = ω̇max, λ = ωmax,

(83)

Pi max = max
(∣∣λθ̇iχj

τiaηχkvλχj g

∣∣) , j, k = 1, 2, . . . , 6,

j, k = 1, 2, 3, η = v̇max, λ = vmax,

j, k = 4, 5, 6, η = ω̇max, λ = ωmax,

(84)

where

τiaηχkvλχj g = ητia max + λ2
∣∣τivχj

∣∣ + τig max,

j, k = 1, 2, . . . , 6,

j, k = 1, 2, 3, η = v̇max, λ = vmax,

j, k = 4, 5, 6, η = ω̇max, λ = ωmax.

(85)

5. Simulation
In this section, the joint capability evaluation of the 8-PSS
redundant parallel manipulator is investigated by simulation.

Table IV. The mass parameters of the manipulator (kg).

1 2 3 4 5 6 7 8

mi 20 20 20 20 20 20 20 20
mqi 50 50 50 50 50 50 50 50

The parameters of the manipulator used for the simulation
are given in Tables I–IV.

The mass of the moving platform is mp = 200 kg. The
inertia parameters used in the simulation are given as

o′
Ip =

⎡
⎢⎣17.333 0 0

0 17.333 0

0 0 33.333

⎤
⎥⎦ kg · m2,

i I i =

⎡
⎢⎣1.279 0 0

0 1.279 0

0 0 0.005

⎤
⎥⎦ kg · m2,

ILi = 10.5 × 10−4 kg · m2, ICi + IMi = 248 × 10−4 kg · m2.
Other parameters used in the simulation are given as
di = 0.244 m and z0 = 1.744 m.

The indices to evaluate the joint capability of the redundant
parallel manipulator are computed when the pose of the
moving platform are φx = φy = φz = 0 and z = z0. The
desired maximum acceleration and velocity of the moving
platform are

η1 = 6, η2 = 6, η3 = 9 (m/s2)

η4 = 3, η5 = 3, η6 = 2 (rad/s2)

and

λ1 = 4, λ2 = 4, λ3 = 6 (m/s)

λ4 = 2, λ5 = 2, λ6 = 3 (rad/s).

The indices of the joint velocity capability are shown in
Table V.
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Table V. The indices of the joint velocity capability in the investigated workspace (rad/s).

1 2 3 4 5 6 7 8

θ̇i max 753.9822 753.9822 753.9822 753.9822 502.6548 502.6548 502.6548 502.6548

In this simulation, it is shown from Table V that
(1) the velocity capability of the ith joint is constant
in the investigated workspace when the pose of the
moving platform are φx = φy = φz = 0 and z = z0. (2)
The velocity capabilities of the joint i(i = 1, 2, . . . , 4)
are equal to each other and the velocity capabilities of
the joint i(i = 5, 6, . . . , 8) are also equal due to the
symmetrical characteristics of the 8-PSS redundant parallel
manipulator. (3) The joint i(i = 5, 6, . . . , 8) have better
velocity capabilities than those of the joint i(i = 1, 2, . . . , 4).

The distributions of the joint dynamic capability are
shown in Figs 4 and 5. It is shown that the joint i(i =
1, 2, . . . , 4) have better torque capabilities than those of the
joint i(i = 5, 6, . . . , 8) while have worse power capabilities
than those of the joint i(i = 5, 6, . . . , 8) in this simulation.
It is shown that the eight input joints of the 8-PSS redundant
parallel manipulator have different dynamic capabilities
such as torque and power capabilities with respect to
the configuration in the investigated workspace. Therefore,
different kinds of motor can be equipped for the actuating
joint of the prototype in order to reduce the cost.

6. Conclusions
This paper investigates the joint velocity, torque, and power
capability of the 8-PSS redundant parallel manipulator by
simulation. The conclusions are drawn as follows.

(1) A series of new indices with obvious physical meanings
have been presented to evaluate the respective joint
velocity, torque, and power capability of the redundant
parallel manipulator. The torque index used to evaluate
the respective joint dynamic capability of the redundant
parallel manipulator is decoupled into the acceleration,
velocity, and gravity term.

(2) The joint capability of the redundant parallel manipulator
is evaluated by the velocity, torque, and power indices,
so it is possible to control the respective joint capability
of the redundant parallel manipulator by means of the
dynamic optimum design.

(3) The results shown in the simulation demonstrate
that the joint i(i = 1, 2, . . . , 4) have better velocity
and torque capabilities than those of the joint i(i =
5, 6, . . . , 8) while have worse power capabilities than
those of the joint i(i = 5, 6, . . . , 8). For the 8-PSS
redundant parallel manipulators, the eight input joints
have different dynamic capabilities such as torque and
power capabilities with respect to the configuration in
the investigated workspace.

Future investigation will study the dynamic optimum
design of the redundant parallel manipulator by adopting
the presented indices. However, these related issues will be
addressed by separate papers.

Figure 4. The distributions of the joint torque capability τi max.
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Figure 5. The distributions of the joint power capability Pi max.
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