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The main contribution of this paper is the introduction of a dynamic logic formalism for

reasoning about information flow in composite quantum systems. This builds on our

previous work on a complete quantum dynamic logic for single systems. Here we extend

that work to a sound (but not necessarily complete) logic for composite systems, which

brings together ideas from the quantum logic tradition with concepts from (dynamic) modal

logic and from quantum computation. This Logic of Quantum Programs (LQP ) is capable of

expressing important features of quantum measurements and unitary evolutions of

multi-partite states, as well as giving logical characterisations to various forms of

entanglement (for example, the Bell states, the GHZ states etc.). We present a finitary syntax,

a relational semantics and a sound proof system for this logic. As applications, we use our

system to give formal correctness proofs for the Teleportation protocol and for a standard

Quantum Secret Sharing protocol; a whole range of other quantum circuits and programs,

including other well-known protocols (for example, superdense coding, entanglement

swapping, logic-gate teleportation etc.), can be similarly verified using our logic.

1. Introduction

As a natural extension of Hoare Logic, Propositional Dynamic Logic (PDL) is an

important tool for the logical study of programs, especially by providing a basis for

program verification. In the context of recent advances in quantum programming, it is

natural to look for a quantum version of PDL, which could play the same role in

proving correctness for quantum programs that classical PDL (and Hoare logic) played

for classical programs.

The search for such a ‘quantum PDL’ has been one of the main objectives of our

previous investigations into the logic of quantum information flow. In a series of

presentations (Baltag 2004; Smets 2004) and papers (Baltag and Smets 2005a; Baltag

and Smets 2004; Baltag and Smets 2005b), we have proposed several logical systems: in

Baltag and Smets (2005a) we focused on single systems1 and presented two equivalent

1 A single system is just an isolated physical system; the possible states of such a system are represented

in quantum mechanics as rays in some Hilbert space. By contrast, a composite (also called compound, or

multi-partite) system is one that we can think of as being composed of two (or more) distinct physical

(sub)systems. The corresponding Hilbert space is the tensor product of each of the spaces associated to the

subsystems. So, in a sense, single systems subsume composite systems (since any tensor product of Hilbert
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complete axiomatisations for a Logic of Quantum Actions, LQA, which allows actions such

as measurements and unitary evolutions, but no entanglements. The completeness result

was obtained with respect to infinite-dimensional classical Hilbert spaces, as models for

single quantum systems. The challenge of providing a similar axiomatisation for compound

systems was taken up in Baltag and Smets (2004), where a first proposal for a logic of

multi-partite quantum systems was sketched.

In this paper we further elaborate, simplify and improve on the work outlined in Baltag

and Smets (2004), and develop a full-fledged Logic of Quantum Programs LQP 1. This

includes:

1. A simple finitary syntax for a modal language, based on a minor variation of classical

PDL, with dynamic modalities corresponding to (weakest preconditions of) quantum

programs.

2. A relational semantics for this logic, in terms of quantum states and quantum actions

over a finite-dimensional Hilbert space.

3. A sound (but not necessarily complete2) proof system, which includes axioms to handle

separation, locality and entanglement.

4. Formal proofs (in our proof system LQP ) of non-trivial computational properties of

compound quantum systems.

5. An analysis (with a formal correctness proof) of the teleportation and quantum secret

sharing protocols.

More generally, the strength of LQP lies in the fact that it can provide fully formal

correctness proofs for a whole class of quantum circuits and protocols, a class that includes

logic-gate teleportation, superdense coding and entanglement swapping, as well as more

complex circuits built using quantum gates and measurements.

The logic introduced here brings together a number of ideas from several fields:

theoretical foundations of quantum mechanics, operational quantum logic, dynamic modal

logic, spatial logic and quantum computation. In the rest of this section we give an overview

of the main concepts underlying the logic LQP .

The first fundamental idea of our approach connects two independent lines of re-

search. The first is the long tradition in the logical-algebraic foundations of quantum

mechanics, which, in particular, has produced various ‘dynamic’ interpretations of quantum

logic (QL) in Daniel (1982; 1989), Faure et al. (1995), Amira et al. (1998), Coecke (2000),

Coecke et al. (2001), Coecke et al. (2004), Coecke and Smets (2005), Coecke and

Stubbe (1999) and Smets (2001; 2005). The second line is the work on modal ‘action’ logics

spaces is just another Hilbert space). However, treating a system as being composite amounts to having a

more detailed complex theory of the system (compared with treating it as a single system) – a theory that

captures the specific features arising from being a composite structure, in addition to the general features of

any physical system. A ‘logic’ for compound systems will thus be a richer logic than one for single systems.
1 But note the difference between our logic LQP and the approach with a similar name in Brunet and

Jorrand (2003): our dynamic logic goes much further in capturing essential properties of quantum systems

and quantum programs, as well as in recovering the ideas of traditional quantum logic (see, for example,

Dalla Chiara and Giuntini (2002), Dalla Chiara et al. (2004) and Goldblatt (1974)).
2 Unlike the case of infinite-dimensional single systems, for which a complete logic was given in Baltag and

Smets (2005a), the problem of finding a complete proof system for the logic LQP is still open.
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in Computer Science, the main example being Dynamic Logic (PDL) and its relatives

(Hoare logic, but also dynamic interpretations of basic modal logics as languages for

‘processes’ or labelled transition systems, for example, Hennessey–Milner logic).

We stress the fact that, until our recent work (Baltag and Smets 2005a), these two

traditions were not only independent, but did not even share a common language. The

use of the word ‘dynamic’ in the QL tradition did not have much in common with

‘dynamic’ logic; QL aimed for an algebraic axiomatisation of quantum systems based on

the non-distributive lattice of ‘quantum properties’, structure obtained by abstracting away

from the lattice of projectors in a Hilbert space H (or, equivalently, the lattice of closed

linear subspaces of H); the goal was to obtain representation theorems for these logical

structures with respect to Hilbert spaces, thus allowing one to claim a ‘rational’, ‘logical’

(or ‘operational’) reconstruction of quantum mechanics1. In this context, the ‘dynamic’

twist as to do with the addition of features belonging to physical dynamics to the standard

(static) QL description:

• First, a ‘dynamic’ interpretation was given to the main structure (the lattice of

properties) and the logical connectives (quantum implication and quantum disjunction)

of QL: in, for example, Smets (2001), Coecke and Smets (2005) and Coecke et al. (2004)

(and partially anticipated in Hardegree (1975; 1979) and Beltrametti and Cassinelli

(1977)) the quantum-logical connectives are interpreted dynamically, as expressing

potential causality (that is, what in computer science is known as weakest preconditions).

• Second, some of the researchers in QL went on to incorporate ‘true’ physical dynamics,

that is, Schrodinger flows (unitary evolutions), into the algebra as operators on the

underlying lattice; the resulting structure is a quantale of ‘quantum actions’, which was

introduced and investigated in Coecke et al. (2001) and Coecke and Stubbe (1999).

In contrast, the modal logician’s (and the computer scientist’s) use of ‘dynamics’ refers to

modelling processes as labelled transition systems (Kripke models), in which the possible

‘actions’ are represented as binary relations between possible states, and the natural

descriptive language is modal, having dynamic modalities to express weakest preconditions

(ensuring given post-conditions after specific actions)2. Thus, the ‘first fundamental idea’ of

our logic, an idea first presented in Baltag (2004) and Smets (2004) and published in Baltag

and Smets (2005a), is to connect these two traditions by giving a quantum (re)interpretation

of Dynamic Logic, in which both (projective) measurements and unitary evolutions are

treated as modal actions, and to use this formalism in order to improve on the known

representation theorems in QL. In this quantum interpretation, the ‘test’ actions ϕ? of

PDL (which are used to capture conditional programs in dynamic logic) are to be read as

‘successful measurements’ of a quantum property ϕ (that is, as projectors in a Hilbert space

over the subspace generated by the set of states satisfying ϕ), while the other basic actions

of PDL are taken to be quantum gates (that is, unitary operators on a Hilbert space).

As shown in Baltag (2004), Smets (2004) and Baltag and Smets (2005a), this immediately

1 This goal was partially realised in Piron (1964) and Piron (1976), and later improved on in Solèr (1995) and

Mayet (1999), and related work.
2 See, for example, Harel et al. (2000) for an introduction to dynamic modalities [π]ψ describing weakest

preconditions ensuring (the satisfaction of some post-condition) ψ after the execution of action π.
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allows us to re-capture in our (Boolean) logic all the power of traditional (non-Boolean)

Quantum Logic: the ‘quantum disjunction’ (expressing superpositions), the ‘quantum

negation’ (the so-called ‘orthocomplement’ ∼ ϕ, which expresses the necessary failure of

a measurement) and the ‘quantum implication’ (the so-called ‘Sasaki hook’ φ
S→ ψ, which

captures causality in quantum measurements) are all expressible using quantum-dynamic

modalities [ϕ?]ψ (which capture weakest preconditions of quantum measurements)1. In other

words, in our logic (unlike other logical approaches to quantum systems), all the non-

classical ‘quantum’ effects are captured using a non-classical ‘logical dynamics’, while keeping

the classical, Boolean structure of the underlying propositional logic of ‘static’ properties.

The second fundamental idea of our approach was originally outlined in Baltag and

Smets (2004), and consists of adding spatial features to dynamic quantum logic in order

to capture relevant properties of multi-partite (that is, compound) quantum systems (for

example, separation, locality and entanglement). For this, we use a finite set N of indices

to denote the most basic ‘parts’ (qubits) of the system, and use sets of indices I ⊆ N to

denote all the (possibly compound) subsystems; we have special propositional constants

1, 0, +, and so on, to express the fact that qubits are in the state |1〉, |0〉, |+〉, and so on;

we use a basic propositional formula �I to express ‘separation2’ (the fact that qubits in

the subsystem I are separated from the rest); and we have a basic program �I , denoting

a non-determined (that is, randomly chosen) local transformation (affecting only the qubits

in the subsystem I). These ingredients are enough to define all the relevant spatial features

we need, and, in particular, to define the notion of (local) component ϕI of a (global)

property ϕ, the notion of (I-)local property I(ϕ) (that is, ϕ is a property of the separated

I-subsystem) and the notion of (I-)local program I(π) (that is, π is a program affecting

only the I-subsystem).

The third fundamental idea that underlies our approach comes from Coecke (2000;

2004), and was further elaborated in a category-theoretical setting in Abramsky and

Coecke (2005): this is a computational understanding of entanglement, in which an entangled

state is seen as a ‘static’ encoding of a program. Mathematically, this comes from the

simple observation that a tensor product Hi ⊗ Hj of two Hilbert spaces is canonically

isomorphic to the space Hi → Hj of all linear maps between the two spaces. But, as

noted in Coecke (2000; 2004), this isomorphism has a physical meaning: the entangled

state πij , which ‘encodes’ (via the above isomorphism) the linear map π : Hi → Hj , has the

property that any successful measurement of its i-th qubit (resulting in some local output-

state qi) induces a correlative collapse of the j-th qubit, whose local output-state (after the

collapse) is computed by the map π (that is, it is given by π(q)j). So the above isomorphism

captures the correlations between the possible results of potential local measurements (on

the two qubits). We use this idea to define formulas πij that characterise such specifically

1 Indeed, it turns out that a quantum implication φ
S→ ψ is simply equivalent to the weakest precondition

[ϕ?]ψ. In quantum logic, this dynamic view can be traced back to the analysis of the Sasaki hook as a

Stalnaker conditional presented in Hardegree (1975) and Hardegree (1979) and is reflected on in, for example,

Beltrametti and Cassinelli (1977) and Smets (2001).
2 This can be compared with the exogenous quantum logic approach in Mateus and Sernadas (2004), which

makes use of general modal operators to separate subsystems.
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entangled states (by using weakest preconditions to express the potential behaviour under

possible measurements). The fundamental correlation given by the above isomorphism is

then stated as our ‘Entanglement Axiom’, which plays a central role in our system.

This combination of quantum-dynamic and spatial logic is what allows us to give a

logical characterisation of Bell states and of various quantum gates, and to prove from our

axioms highly non-trivial properties of quantum information flow (such as the ‘Teleporta-

tion Property’, the ‘Agreement Property’, the ‘Entanglement Preparation’, ‘Entanglement

Composition’ lemmas etc.).

It is well known that PDL, and its fragment the Hoare Logic, are among the main logical

formalisms used in program verification of classical programs, that is, in checking that a

given (classical) program is correct (in the sense of meeting the required specifications).

It is thus natural to expect our quantum dynamic logic to play a significant role in the

formal verification of quantum programs. In this paper, we partially fulfil this expectation by

giving a fully axiomatic correctness proof for the Teleportation protocol and for a Quantum

Secret Sharing protocol; more details, and similar proofs for other quantum programs

(Logic-Gate Teleportation, Super-Dense Coding, Entanglement Swapping, and so on)

can be found in Akatov (2005). More generally, our logic can be used for the formal

verification of a whole range of quantum programs1, including all the circuits covered by

the ‘entanglement networks’ approach in Coecke (2004).

Finally, we should mention here some of the limitations of our approach, which arise

from our purely qualitative, logic-based view of quantum information. The quantitative

aspects are thus neglected: in our presentation, we follow the operational quantum logic

tradition, as in, for example, Jauch (1968) and Jauch and Piron (1969), by abstracting

away from complex numbers, ‘phases’ and probabilities. As customary in quantum logic,

we identify the ‘states’ of a physical system with rays in a Hilbert space2, rather than

with unitary vectors, and consequently, our programs will be ‘phase-free’. This is a serious

limitation, as phase aspects are important in quantum computation; there are ways

to re-introduce (relative) phases in our approach, but this gives rise to a much more

complicated logic, so we will leave this development for future work. Similarly, although

our dynamic logic cannot express probabilities, but just ‘possibilities’ (via the dynamic

modalities, which capture the system’s potential behaviour under possible actions), there

exist natural extensions of this setting to a probabilistic modal logic. One of our projects is

to work out the full details of this setting and to develop a proof system for probabilistic

LQP .

2. Preliminaries: quantum frames

In this section we organise Hilbert spaces into relational structures, called quantum frames

(also called quantum transition systems in Baltag and Smets (2005a)). We first study the

1 Indeed, one may claim that any quantum circuit in which probabilities do not play an essential role can,

in principle, be verified using our logic (or some trivial extension obtained by adding constants for other

relevant states and logic gates).
2 A ray is a one-dimensional linear subspace.
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quantum frames of single quantum systems, then we consider compound systems, that is,

the quantum frames corresponding to tensor products of Hilbert spaces, which represent

physical systems that can be thought of as being composed of parts (subsystems). In this

latter case we restrict our attention to systems composed of finitely many ‘qubits’.

2.1. Single-system quantum frames

A modal frame is a set of states, together with a family of binary relations between states.

A (generalised) PDL frame is a modal frame (Σ, { S?→}S∈L, {
a→}a∈A), in which the relations

on the set of states Σ are of two types: the first, called tests and denoted by S?, are

labelled with subsets S of Σ, coming from a given family L ⊆ P(Σ) of sets, called testable

properties; the others, called actions, are labelled with action labels a from a given set A.

Given a PDL frame, there exists a standard way to give a semantics to the usual

language of Propositional Dynamic Logic. Classical PDL can be considered as a special

case of such a logic, in which tests are given by classical tests: s
S?→ t if and only if

s = t ∈ S . Observe that classical tests, if executable, do not change the current state.

In the context of quantum systems, a natural idea is to replace classical tests by

‘quantum tests’, given by quantum measurements. Such tests will obviously change the state

of the system. To model them, we introduce a special kind of PDL frame: quantum frames.

The tests are interpreted as projectors in a Hilbert space, while the other basic actions

are given by unitary evolutions. In Baltag and Smets (2005a), we considered PDL with

this non-standard semantics, having essentially the same truth clauses as in the classical

case, but interpreted in quantum frames. What we obtained was a ‘quantum PDL’, in

which the traditional (orthomodular) ‘quantum logic1’ could be embedded as a fragment

(corresponding to the negation-free, test-only part of quantum PDL). In this paper, we

extend the syntax of this logic to deal with subsystems and entanglements.

Recall that a Hilbert space H is a complex vector space with an inner product 〈· | ·〉,
which is complete in the induced metric. The adjoint (or Hermitian conjugate) of a linear

map F : H → H is the unique linear map F† : H → H such that 〈x | F(y)〉 = 〈F†(x) | y〉,
for all x, y ∈ H. For any closed linear subspace W ⊆ H, the projector PW : H → H onto

W is given by PW (u + v) = u, for all u ∈ W, v ∈ W⊥. Projectors are linear, idempotent

(P ◦ P = P ) and self-adjoint (P † = P ). A unitary transformation is a linear map U on H
such that U ◦U† = U† ◦U = id, where id is the identity on H. Unitary operators preserve

inner products.

In quantum mechanics, projectors are used to represent (successful) measurements. A

measurement is in fact a set of projectors (over mutually orthogonal subspaces); but,

whenever a measurement is successfully performed, only one of the projectors is ‘actual-

ised’: the outcome is given by that particular projector. In quantum mechanics, unitary

transformations represent reversible evolutions of a system. In quantum computation, they

correspond to quantum-logical gates.

1 See, for example, Dalla Chiara and Giuntini (2002), Dalla Chiara et al. (2004) and Goldblatt (1974).
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Quantum frames

Given a Hilbert space H, the following steps construct a Quantum (PDL) Frame

Σ(H) := (Σ, { S?→}S∈L, {
U→}U∈U).

1. Let Σ be the set of one dimensional subspaces of H, called the set of states. We denote

a state s = x of H using any of the non-zero vectors x ∈ H that generate it, as a

subspace. Note that any two vectors that differ only in phase (that is, x = λy, with

λ ∈ C with |λ| = 1) will generate the same state x = y ∈ Σ.

2. We call two states s and t in Σ orthogonal, and write s ⊥ t, if every two vectors

x ∈ s, y ∈ t are orthogonal, that is, if ∀x ∈ s, ∀y ∈ t : 〈x | y〉 = 0. Equivalently,

we can state that s ⊥ t iff ∃x ∈ s, y ∈ t with x �= 0, y �= 0 and 〈x | y〉 = 0. We

put S⊥ := {t ∈ Σ | t ⊥ s for all s ∈ S}; and use S = S⊥⊥ := (S⊥)⊥ to denote the

biorthogonal closure of S . In particular, for a singleton {x}, we just write x for {x},
which agrees with the notation x used above to denote the state generated by x.

3. A set of states S ⊆ Σ is called a (quantum) testable property iff it is biorthogonally

closed, that is, if S = S . (Note that S ⊆ S is always the case.) We use L ⊆ P(Σ) to

denote the family of all quantum testable properties. All the other sets S ∈ P(Σ) \ L
are called non-testable properties.

4. There is a natural bijective correspondence between the family L of all testable

properties and the family W of all closed linear subspaces W of H, the bijection being

given by S �→ WS :=
⋃
S . Observe that, under this correspondence, the image of

the biorthogonal closure S of any arbitrary set S ⊆ Σ is the closed linear subspace⋃
S ⊆ H generated by the union

⋃
S of all states in S .

5. For each testable property S ∈ L, there exists a partial map S? on Σ, called a quantum

test. If W = WS =
⋃
S is the corresponding subspace of H, then the quantum test is

the map induced on states by the projector PW onto the subspace W . In other words,

it is given by

S?(x) := PW (x) ∈ Σ , if x �∈ S⊥ ( that is, if PW (x) �= 0)

S?(x) := undefined, otherwise.

We use
S?→⊆ Σ × Σ to denote the binary relation corresponding to the partial map S?

that is given by s
S?→ t if and only if S?(s) = t. So we have a family of binary relations

indexed by the testable properties S ∈ L.

6. For each unitary transformation U on H, consider the corresponding binary relation
U→⊆ Σ×Σ, given by s

U→ t if and only if U(x) = y for some non-zero vectors x ∈ s, y ∈ t.

So we obtain a family of binary relations indexed by the unitary transformations U ∈ U
(where U is the set of unitary transformations on H).

So a quantum frame is just a PDL frame built on top of a given Hilbert space H, by

taking one-dimensional subspaces as ‘states’, projectors as ‘tests’ and unitary evolutions

as ‘actions’. Our notion of ‘state’ in this paper is closely connected to the way quantum

logicians approach quantum systems. As mentioned in the Introduction, this imposes

some limits to our approach – mainly that we will not be able to express phase-related

properties.
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Operators on states, adjoints and generalised tests

To generalise the notation we introduced earlier, observe that every linear operator

F : H → H induces a partial map F : Σ → Σ on states (that is, subspaces), given

by F(x) = F(x), if F(x) �= 0 (and undefined, otherwise). (Note that linearity ensures that

this map on states is well-defined.) In particular, every map F : Σ → Σ obtained in this

way has an adjoint F† : Σ → Σ, defined as the map on states induced by the adjoint

of the linear operator F on H. Observe that, for unitary transformations U, the adjoint

is the inverse: U† = U−1. Also, one can naturally generalise quantum tests to arbitrary,

possibly non-testable properties, S ⊆ Σ, by putting S? := S?. So we identify a test of a

‘non-testable’ property S with the quantum test of its biorthogonal closure. Observe that

S?† = S? (since projectors are self-adjoint).

Measurement (non-orthogonality) relation

For all s, t ∈ Σ, let s → t if and only if s
S?→ t for some property S ∈ L. In other

words, s → t means that one can reach state t by doing some measurement on state s. An

important observation is that the measurement relation is the same as non-orthogonality1:

s → t iff s �⊥ t.

Quantum actions

A quantum action is any relation R ⊆ Σ × Σ that can be written as an arbitrary2 union

R =
⋃
i Fi of linear maps Fi : Σ → Σ. The family of quantum actions forms a complete

lattice (with inclusion), having set-theoretic union R ∪ R′ as supremum. Notice also that

this family is closed under relational composition

R;R′ := {(s, t) ∈ Σ × Σ : ∃w ∈ Σ such that (s, w) ∈ R, (w, t) ∈ R′},

and iteration R∗ :=
⋃
k�0 R

n (where Rn = R;R; · · ·R is a composition of n terms).

Quantum actions are a relational (input–output) representation of quantum programs.

Indeed, in our dynamic logic we will interpret (the dynamic modalities for) quantum

programs as (weakest preconditions of) quantum actions.

Weakest precondition, image, strongest post-condition and measurement modalities

For any property T ⊆ Σ and any quantum action R ⊆ Σ × Σ, let

[R]T := {s ∈ Σ : ∀t ∈ Σ(sRt ⇒ t ∈ T )} and 〈R〉T := Σ\([R](Σ\T )).

Similarly, put

R(T ) := {s ∈ Σ : ∃t ∈ T such that tRs}.
We also put R[T ] := R(T ) for the biorthogonal closure of the image. Finally, put

�T := {s ∈ Σ : ∀t(s → t ⇒ t ∈ T )} and �T := Σ\(�(Σ\T )).

1 The non-orthogonality relation has indeed been used to introduce an accessibility relation in the orthoframe

semantics within quantum logic (Goldblatt 1974; Goldblatt 1984).
2 That is, possibly infinite.
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Observe that [R]T expresses the weakest precondition for the ‘program’ R and post-

condition T . In particular, [S?]T expresses the weakest precondition ensuring the

satisfaction of property T in any state after the system passes a quantum test of property

S . Similarly, 〈S?〉T means that one can perform a quantum test of property S on the

current state, ending up in a state having property T . R(T ) is the image of T via R,

which is, in fact, the strongest property (among all properties in P(Σ × Σ)) ensured to hold

after applying program R if a precondition T holds at the input-state. This is the ‘strongest

postcondition’ in an absolute sense. However, the strongest testable postcondition (ensured

to hold after running R if precondition T holds at the input state) is given by R[T ]. �T

means that property T will hold after any measurement (quantum test) performed on the

current state. Finally, �T means that property T is potentially satisfied, in the sense that

one can do some quantum test to reach a state with property T .

Lemma 1. For every property S ⊆ Σ, we have S⊥ = [S?]� = Σ \ �S and S = ��S .

Proposition 1. For every property S ⊆ Σ, if T ∈ L (in other words, is testable), then

�S, S⊥, [S?]T ∈ L (are testable), and, more generally, [R]T ∈ L, for every quantum

relation R. For every state s ∈ Σ, we have {s} ∈ L, that is, ‘states are testable’.

Proposition 2. A property S ⊆ Σ is testable if and only if any of the following equivalent

conditions hold:

• S = S .

• ∃T ∈ Σ such that S = T⊥.

• ∃T ∈ Σ such that S = �T .

Quantum joins

The family L of testable properties is a complete lattice with respect to inclusion, having

as its meet set-intersection S ∩ T , and as its join the biorthogonal closure of set-union

S � T := S ∪ T , called the quantum join of S and T . For any arbitrary property S ⊆ Σ,

we have S =
⊔

{{s} : s ∈ S} =
⋂

{T ∈ L : S ⊆ T }, so the biorthogonal closure of S is

the strongest testable property implied by (the property) S .

Theorem 1. The following properties hold in every quantum frame Σ = Σ(H):

1. Partial functionality

If s
S?→ t and s

S?→ v, then t = v.

2. Trivial tests
�?
→= � and

Σ?→= ∆Σ, where ∆Σ = {(s, s) : s ∈ Σ} is the identity relation on Σ × Σ.

3. Atomicity

States are testable, that is, {s} ∈ L. This is equivalent to requiring that ‘states can be

distinguished by tests’, that is, if s �= t, then ∃P ∈ L : s ⊥ P , t �⊥ P .

4. Adequacy

Testing a true property does not change the state: if s ∈ P , then s
P?→ s.
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5. Repeatability

Any testable property holds after it has been successfully tested: if s
P?→ t, then t ∈ P .

6. Compatibility

If S, T ∈ L are testable and S?;T? = T?; S?, then S?;T? = (S ∩ T )?.

7. Self-adjointness

If s
P?→ w→t, then there exists some element v ∈ Σ such that t

P?→ v→s.

8. Proper superposition

Every two states of a quantum system can be properly superposed into a new state:

∀s, t ∈ Σ∃w ∈ Σ s→w→t.

9. Unitary reversibility and totality

Basic unitary evolutions are total bijective functions, having as adjoint their inverse:

U;U† = U†;U = id

where id is the identity map.

10. Orthogonality preservation

Basic unitary evolutions preserve (non) orthogonality: let s, t, s′, t′ ∈ Σ be such that

s
U→ s′and t

U→ t′; then, s → t iff s′ → t′.

Proofs.

1. Partial functionality follows from the fact that projectors correspond to partially defined

maps in H.

2. Trivial tests follows from the fact that projecting on the empty space yields the empty

space and that projecting on the total space does not change anything.

3. Atomicity follows from the fact that states are nothing but one-dimensional closed

linear subspaces, that is, atoms of the lattice of all closed linear subspaces.

4. Adequacy follows from the fact that for every x ∈ W we have PW (x) = x.

5. Repeatability follows from the fact that PW (x) ∈ W for every x ∈ H.

6. Compatibility follows from the fact that if two projectors commute, that is, PW ◦ PV =

PV ◦ PW , then PW ◦ PV = PW∩V .

7. Self-adjointness follows from the more general Adjointness theorem stated below,

together with the fact that projectors are self-adjoint (that is, S?† = S?).

8. Proper superpositions can be proved by cases:

If s �⊥ t, that is, let s → t, then w = s ⇒ s → s → t.

If s ⊥ t, that is, let s �→ t, then let s = x, t = y with x, y ∈ H. Take the superposition

x + y ∈ H of x and y and note that x + y �= 0 (since x + y = 0 ⇒ x = −y ⇒ s = t,

which contradicts s �⊥ t). Next observe that x �⊥ (x+ y) (Indeed, supposing x ⊥ (x+ y),

we get 〈x | x + y〉 = 0, and then 〈x | x〉 + 〈x | y〉 = 0; but x ⊥ y implies 〈x | x〉 = 0.

So from 〈x | x〉 = 0, we get x = 0, which yields a contradiction). Similarly, we get

y �⊥ (x+ y).

Conditions 9 and 10 are immediate consequences of the definition of a unitary operator.

Note that, as a consequence of the ‘Proper superpositions’ property, the double-box

modality �� coincides with the universal modality, that is, ��S �= � iff S = Σ.
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Theorem 2 (Adjointness). Let F be a quantum map and let s, w, t ∈ Σ be states. If

s
F→ w→t, then there exists some state v ∈ Σ such that t

F†

→ v→s.

Proof. To prove this theorem, we use the definition of adjointness in a Hilbert space:

〈Fx | y〉 = 〈x | F†y〉. From this we get the equivalence 〈Fx | y〉 = 0 iff 〈x, F†y〉 = 0; or,

put another way, Fx ⊥ y iff x ⊥ F†y. Taking the negation of both sides and using the

fact that the measurement relation s→t is the same as non-orthogonality s �⊥ t, we obtain

the equivalence ∃w(x
F→ w → y) iff ∃v(y F†

→ v → x).

This proves the adjointness property. As a consequence, we have the following corol-

laries.

Corollary 1. For every property P ⊆ Σ and every linear map F we have

P ⊆ [F]�〈F†〉�P .

Corollary 2. If F is a quantum map,

F†(s) =
(
[F]s⊥)⊥

.

Proof. Using the fact that the negation of the measurement accessibility relation → is

the orthogonality relation ⊥, we immediately get from the above Adjointness theorem

that

s ⊥ F†(t) iff t ⊥ F(s),

that is,

s ∈ (F†(t))⊥ iff F(s) ∈ t⊥.

From this, we get (F†(t))⊥ = [F]t⊥. Since F† is a map, F†(t) is a (single) state, so it is a

testable property. Hence, we have F†(t) = (F†(t))⊥⊥ = ([F]t⊥)⊥.

This result leads us to the following natural generalisation of the notion of adjoint to

all quantum actions.

Adjoint of a quantum action

For every quantum action R ⊆ Σ × Σ, we define a relation R† ⊆ Σ × Σ by

sR†t iff t ⊥ [R]s⊥,

or, put another way,

R†(s) =
(
[R]s⊥)⊥

.
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Proposition 3. For all quantum actions R,Z ⊆ Σ × Σ, states s, t ∈ Σ and properties S ⊆ Σ,

we have the following:

1. R† is a quantum action.

2. If R = F is a (quantum, that is, linear) map1, then the relational adjoint R† coincides

with the Hermitian adjoint F† (of F as linear map).

3. s ⊥ R†(t) iff t ⊥ R(s).

4. (R;Z)† = Z†;R†.

5. (R ∪ Z)† = R† � Z†.

6. R[S] = ([R†]S⊥)⊥.

2.2. Compound-system quantum frames

In this subsection we extend the quantum frame presented above for single systems

into a quantum frame for compound systems. Let H be a Hilbert space of dimension

2 with basis {|0〉, |1〉}. We fix a natural number n � 2 (although later we will restrict

consideration to the case n � 4), and put N = {1, 2, . . . , n}. Our global state space will

be denoted as before by H, but now we assume it is an n-qubit state, that is, we put

H = Hn := H⊗n = H ⊗H ⊗ ...⊗H (n times) for the tensor product of n copies of H .

An n-qubit quantum frame will be the quantum frame Σ := Σ(H) associated (as in the

previous section) to the Hilbert space H.

Notation

In fact, we consider all the n copies of H as distinct (although isomorphic) and use H (i)

to denote the i-th component of the tensor H⊗n. Also, for any set of indices I ⊆ N, we

put HI = H
⊗

I =
⊗

i∈I H
(i). Note that we have HN = Hn = H. We use εi : H → H (i)

to denote the canonical isomorphism between H and H (i). This notation can be extended

to sets I ⊆ N of indices of length |I | = k by putting εI : H⊗k → HI to be the

canonical isomorphism between these spaces. Similarly, for each set I ⊆ N, we use

µI : HI ⊗ HN\I → H to denote the canonical isomorphism between these two spaces.

For any vector |x〉 ∈ H , we use |x〉
⊗

I =
⊗

i∈I |x〉 to denote the corresponding vector in

HI (obtained by tensoring |I | copies of |x〉 ). Given a set I ⊆ N, we say that a state

s ∈ Σ(H) has its I-qubits in state s′ ∈ Σ(HI ), and write sI = s′, if there exist vectors ψ ∈ s,

ψ′ ∈ HI and ψ′′ ∈ HN\I such that ψ = µI (ψ
′ ⊗ ψ′′). Note that the state sI , if it exists,

is unique (having the above property). We say that the state s is I-separated iff sI exists.

In this case, sI is called the (I-)local component (or local state) of s. In particular, when

I = {i}, the local component si ∈ H{i} = H (i) is called the i-th coordinate of the state s.

We will further use |+〉 to denote the vector |0〉 + |1〉, and, similarly, |−〉 to denote

|0〉 − |1〉. For the states generated by the vectors in a two dimensional Hilbert space

we introduce the following abbreviations: + := |+〉, − := |−〉 , 0 := | 0〉 , 1 := | 1〉.
In order to refer to the state corresponding to a pair of qubits, we similarly delete the

Dirac notation, for example, 00 := |00〉 = |0〉 ⊗ |0〉. The Bell states will be abbreviated as

1 We identify a map F : Σ → Σ with its graph F ⊆ Σ × Σ, that is, quantum maps are special cases of quantum

relations, which happen to be partial functions. So R = F means that the two sides are equal, as relations.
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follows: β00 := |00〉 + |11〉 , β01 := |01〉 + |10〉, β10 := |00〉 − |11〉 , β11 = |01〉 − |10〉 and

γ := |00〉 + |01〉 + |11〉 + |10〉.
The following two results are well known.

Proposition 4. Let H (i) and H (j) be two Hilbert spaces. There exists a bijective correspond-

ence ψ between the linear maps F : H (i) → H (j) and the states of H (i)⊗H (j). For fixed bases

{ε(i)α }α and {ε(j)β }β of these spaces, the correspondence ψ maps the linear function F , given

by F(| x〉) = Σαβ mαβ 〈ε(i)α | x〉.ε(j)β for all | x〉 ∈ H (i), to the state ψ(F) := Σαβ mαβ .ε
(i)
α ⊗ ε

(j)
β .

Proposition 5. Let H = H⊗n and W = {x ⊗ |0〉⊗(n−1) : x ∈ H} be given. Any linear map

F : H → H induces a linear map F(1) : H → H in a canonical manner: it is defined as

the unique map on H satisfying F(1)(x) = PW ◦ F(x ⊗ |0〉⊗(n−1)). Conversely, any linear

map G : H → H can be represented as G = F(1) for some linear map F : H → H.

Notation

The above results allow us to specify a compound state in H (i) ⊗H (j) via some linear map

F on H. Indeed, if F : H → H is any such linear map, let F(1) : H → H be the map in

the above proposition; this induces a corresponding map F
(ij)
(1) : H (i) → H (j), by putting

F
(ij)
(1) := εj ◦ F(1) ◦ ε−1

i , where εi is the canonical isomorphism introduced above (between

H and the i-th component H (i) of H⊗n ). Then we use F (ij) to denote the state

F (ij) := ψ(F (ij)
(1) )

given by the above mentioned bijective correspondence ψ between H (i) → H (j) and

H (i) ⊗H (j). The following result is also known from the literature.

Proposition 6. Let F : H → H be a linear map. Then the state F (ij) is ‘entangled according

to F ’; that is, if F(1)(|x〉) = |y〉 and the state of a 2-qubit system is F (ij) ∈ H (i) ⊗H (j), then

any measurement of qubit i resulting in a state xi collapses the qubit j to state yj .

In our axiomatic proof system, we will take (a syntactic counterpart of) this result as

our central axiom, the ‘Entanglement Axiom’.

Notation

The notation F (ij) can be further extended to define a property (set of states) Fij ⊆ Σ =

Σ(H) by defining it as the set of all states having the {i, j}-qubits in the state F (ij):

Fij = {s ∈ Σ : s{i,j} = F (ij)}
= {µ{i,j}(ψ ⊗ ψ′) : ψ ∈ F (ij), ψ

′ ∈ HN\{i,j}} ⊆ Σ

where µ{i,j} is, as above, the canonical isomorphism between H{i,j} ⊗ HN\{i,j}. In other

words, Fij is simply the property of an n-qubit compound state having its i-th and j-th

qubits (separated from the others, and) in a state that is ‘entangled according to F ’.

Local properties and separation

Given a set I ⊆ N, a property S ⊆ Σ is I-local if it corresponds to a property of

the subsystem formed by the qubits in I; in other words, if there exists some property
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S ′ ⊆ Σ(HI ) such that

S = {s ∈ Σ : sI ∈ S ′},
or, more explicitly, S = {µI (φ⊗ ψ) : φ ∈ S ′, ψ ∈ HN\I}. An example is the property Fij ,

which is {i, j}-local. For any I ⊆ N, the family of I-local properties forms a complete

lattice (with inclusion) in which the join is given by union S ∪T , the atoms correspond to

local states, and the greatest element is the property

�Σ
I := {s ∈ Σ : s is I − separated} =

⋃
{S ⊆ Σ : S is I − local}

that defines separation: a state s is I-separated iff s ∈ �Σ
I . But note that the family of

I-local properties is not closed under complementation.

Local maps

Given I ⊆ N, a linear map F : H → H is I-local if it ‘affects only the qubits in I ’; in

other words, if there exists a map G : HI → HI such that

F ◦ µI (φ⊗ ψ) = µI (G(φ) ⊗ ψ).

A map F : Σ → Σ is I-local if it is the map induced on Σ by an I-local linear map on H.

Examples are: all the tests SI? of testable I-local properties SI ; logic gates that affect only

the qubits in I , that is, (maps on Σ induced by) unitary transformations UI : H → H
such that for all ψ ∈ HI , ψ

′ ∈ HN\I , we have UI ◦ µI (ψ ⊗ ψ′) = µI (U(ψ) ⊗ ψ′) for some

U : HI → HI . The family of I-local maps is closed under composition.

Local actions

An I-local action is a quantum action R ⊆ Σ×Σ that can be written as an arbitrary1 union

of I-local maps. The family of I-local actions forms a complete lattice (with inclusion), in

which the join is given by union R ∪ R′, and the greatest element is the action

�Σ×Σ
I :=

⋃
{F : Σ → Σ : F is an I-local map.

Lemma 2 (Teleportation property). If s is an i-separated state having its i-th qubit si in

the state x ∈ H , then after doing two successive bipartite measurements Gjk? followed by

Fij?, the k-th qubit (k-th component) of the output-state is
(
Fij? ◦ Gjk?(s)

)
k

= G(1) ◦ F(1)(x).

Lemma 3 (Entanglement Composition Lemma). The main lemma given in Coecke (2004)

states (in our notation) that, given a quadruple of distinct indices i, j, k, l, and letting

F,G,H,U, V : H → H be single-qubit linear maps (that is, 1-local transformations), we

have

Gjk? ◦ Vk ◦Uj (Fij ∩Hkl) ⊆ (H ◦U† ◦ G ◦ V ◦ F)il .

Coecke (2004) and Abramsky and Coecke (2005) use these last two lemmas as the main

tool in explaining teleportation, quantum gate teleportation and many other quantum

1 That is, possibly infinite.
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protocols. We will use this work in our logical treatment of such protocols by formally

proving (syntactic correspondents of) these lemmas in our axiomatic proof system and

then using them to analyse teleportation and quantum secret sharing.

Observe that in the above Lemma 3, the order in which the operations Uj and Vk are

applied is in fact irrelevant. This is a consequence of the following important property of

local transformations.

Proposition 7 (Compatibility of local transformations affecting different sets of qubits). If

I ∩ J = �, F is an I-local map and G is a J-local map, we have

F ◦ G = G ◦ F.

Another important property of local maps (on states) is given by the following

proposition.

Proposition 8 (Agreement Property). Let F,G : Σ → Σ be two I-local maps on states,

having the same domain1: dom(F) = dom(G). Then their output-states agree on all non-I

qubits, that is, for all s ∈ Σ,

F(s)N\I = G(s)N\I

whenever both sides of the identity exist (that is, whenever both F(s) and G(s) are

I-separated).

Dynamic characterisations of main unitary transformations

It is well known that a linear operator on a vector space in a given Hilbert space is

uniquely determined by the values it takes on the vectors of an (orthonormal) basis. An

important observation is that this fact is no longer ‘literally true’ when we move to ‘states’

as one-dimensional subspaces instead of vectors. The reason is that ‘phase’-aspects (or, in

particular, the signs ‘+’ and ‘−’) are not ‘state’ properties in our setting. In other words,

two vectors that differ only in phase, that is, x = λy where λ is a complex number with

| λ |= 1, belong to the same subspaces, so they correspond to the same state x = y.

Example 1 (Counterexample). Consider a 2-dimensional Hilbert space in which we use

|0〉 and |1〉 to denote the basis vectors. A transformation I is given by I(α|0〉 + β|1〉) =

α|0〉 + β|1〉; and a transformation J is given by J(α|0〉 + β|1〉) = α|0〉 − β|1〉. Although

I and J induce different operators on states, these operators map the basis states to the

same images:

I(0) = I(|0〉) = 0 = J(|0〉) = J(0) ,

I(1) = I(| 1〉) = 1 = − | 1〉 = J(| 1〉) = J(1).

1 The domain of a map is defined by dom(F) = {s ∈ Σ : F(s) is defined }. If F ′ is the corresponding linear map

on H, this means that dom(F) = {ψ : F ′(ψ) �= 0}.
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But, of course, we do distinguish the subspaces generated by different superpositions:

I(+) = | 0〉+ | 1〉 = + �= − = | 0〉− | 1〉 = J(+).

Proposition 9. A linear operator on the state space Σ(H1) of a 2-dimensional Hilbert

space is uniquely determined by its images on the states: | 0〉, | 1〉, |+〉.

Corollary 3. A linear operator on the state space Σ(Hn) of the space Hn is uniquely

determined by its images on the states:

{|x〉1 ⊗ ...⊗ |x〉n : |x〉i ∈ {|1〉i, |0〉i, |+〉i}}.

In the definition of a quantum frame given above, we introduced the set U as the set

of unitary transformations for single systems. For compound systems the set U will be

extended with the kind of operators that are active on compound systems. Following the

quantum computation literature, we take U = {X,Z,H, CNOT , ...} where X,Z and H

are defined by the following table:

X

Z

H

0 1 +

1 0 +

0 1 -

+ - 0

The transformation CNOT is given by the table:

00 01 0+ 11 10 1+ +0 +1 ++

CNOT 00 01 0+ 10 11 1+ β00 β01 γ

3. The logic LQP

3.1. Syntax of LQP

To build up the language of LQP , we are given the following: a natural number n, for

which we put N = {1, 2, . . . , n}; a set Q of propositional variables; a set C of propositional

constants; and a set U of program constants, denoting basic programs, to be interpreted as

quantum gates. Each program constant U ∈ U comes with an index I , which is a sequence

of distinct indices in N: the index gives us the set of qubits on which the quantum gate

U is active – when we want to make the index explicit, we write, for example, UI for an

I-local quantum gate. In particular, for every i, j � n, we are given some special program

constants CNOTij , Xi, Hi, Zi, . . . ∈ U. Similarly, we are given two special propositional

constants 1,+ ∈ C, the first denoting the separated state |1〉⊗n = |1〉 ⊗ |1〉 · · · ⊗ |1〉 and the

second denoting the separated state |+〉⊗n = |+〉 ⊗ |+〉 · · · ⊗ |+〉. The syntax of LQP is an

extension of the classical syntax for PDL, with a set of propositional formulas and a set

of programs, defined by mutual induction:

ϕ ::= �I | p | c | ¬ϕ | ϕ ∧ ϕ | [π]ϕ

π ::= �I | ϕ? | U | π† | π ∪ π | π; π
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Here, we take I to denote sequences of distinct indices in N = {1, 2, . . . , n}. The sentence

�I expresses I-separation: it is true iff the qubits in I form a separated subsystem. So

�I denotes the greatest element �Σ
I of the lattice of I-local properties. In particular, the

sentence �N will denote the ‘always true’ proposition (verum, usually denoted �), that is,

the ‘top’ of the lattice of all properties1. The constructs ¬ϕ and ϕ ∧ ϕ denote classical

negation and conjunction, while the construct given by dynamic modalities [π]ϕ denotes

the weakest precondition that ensures that property ϕ will hold after running program π.

On the program side: �I denotes the trivial I-local action �Σ×Σ
I , which acts on any

given I-separated state by keeping the N \ Isubsystem unchanged, while changing the I

subsystem to any randomly picked I system. In other words, �I is the union of all I-local

actions. The meaning of quantum test ϕ?, adjoint π†, union π ∪ π and composition π; π

is given by the corresponding operations on quantum actions.

Notice that we did not include iteration (Kleene star) among our program constructs:

this is only because we do not need it for any of the applications in this paper. Indeed, most

quantum programming does not involve while-loops; but (as pointed in our Section 6)

one can, of course, add iteration to our logic, if needed.

Abbreviations in LQP

We can enrich our basic language by introducing various abbreviations. In particular,

we define the classical disjunction and classical implication in the usual way, that is,

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ. As in classical logic, we can introduce a

propositional constant falsum ⊥N := ¬�N for the ‘always false’ sentence (usually denoted

⊥). In non-ambiguous contexts, we sometimes skip the subscript N, and simply write

� and ⊥ for �N and ⊥N . We define the classical dual of [π]ϕ in the usual way as

〈π〉ϕ := ¬[π]¬ϕ ; the measurement modalities � and � used in the quantum logic

literature can be defined in LQP by putting �ϕ := 〈ϕ?〉�N and �ϕ := ¬�¬ϕ. The

orthocomplement is defined as ∼ ϕ := �¬ϕ, or, equivalently, as ∼ ϕ := [ϕ?]⊥N . Using the

orthocomplement, we define a binary operation for quantum join ϕ � ψ :=∼ (∼ ϕ∧ ∼ ψ).

This expresses superpositions: ϕ � ψ is true at any state that is a superposition of states

satisfying ϕ or ψ.

We also introduce some notions and notation for programs: we call a program π

deterministic if π is constructed without the use of non-deterministic choice ∪ or of the

non-deterministic program �I . Also, we put

flipij := CNOTij;CNOTji;CNOTij

for the program that (given any {i, j}-separated input state) permutes the ith and jth

components. Finally, we put

id := �N?

for the identity map.

1 Note also the distinction between the constant 1i (characterising the qubit |1〉i) and the constant �i (denoting

the property of being i-separated).
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Order, equivalence, orthogonality, I-equivalence, testability, locality, separation

We can internalise the logical equivalence, being weaker than, and I-equivalence relations

between formulas, the locality and testability, and the notion of I-component by defining

the following properties of formulas:

ϕ � ψ := ��(ϕ → ψ)

ϕ = ψ := ��(ϕ ↔ ψ)

ϕ ⊥ ψ := ϕ �∼ ψ

T (ϕ) := ∼∼ ϕ � ϕ

ϕI := �I ∧ 〈�N\I〉ϕ
ϕ =I ψ := ϕ � �I ∧ ψ � �I ∧ ϕI = ψI
I(ϕ) := ϕ = ϕI .

Recall from Section 2.1 that the double-box modality coincides with the universal

modality: so, indeed, ϕ � ψ means that ϕ is logically weaker than ψ, while ϕ = ψ

means the formulas are equivalent. We read T (ϕ) as saying that ‘ϕ is testable’, and I(ϕ)

as ‘ϕ is I-local’. We read ϕI as ‘the I-component of ϕ’: a state satisfies this sentence iff

(it is I-separated and) its I-subsystem is (a subsystem of some state) satisfying ϕ. For

I = {i}, we write ϕi := ϕI . We read ϕ =I ψ as ‘ϕ is I-equivalent to ψ’: the meaning is

that both ϕ and ψ are I-separated and have the same I-component. Finally, we say that ϕ

is I-separated iff ϕ � �I .

Note that it obviously follows from these definitions that every I-component ϕI is I-local.

Special local states

We can introduce some more propositional constants (which will denote special local

states), by putting 0i :=∼ 1i and −i :=∼ +i.

Image and strongest post-condition

We define the strongest testable post-condition π[ϕ] ensured by (applying a program) π on

(any state satisfying a given precondition) ϕ, by putting

π[ϕ] := ∼ [π†] ∼ ϕ.

If ϕ is assumed to be testable and π is deterministic, the strongest postcondition π[ϕ]

coincides with the image π(ϕ) of ϕ via π. The definition of the image of a testable property

via a program π(ϕ) can be extended to all programs that are finite unions of deterministic

programs, by putting, for all testable formulas φ: π(φ) = π[φ] if π is deterministic, and

(π ∪ π′)(φ) = π(φ) ∨ π′(φ) otherwise.

Note the contrast with classical PDL: unlike the classical version, our quantum PDL (as

considered above, that is, without program converse1) has enough expressive power to define

strongest post-conditions (and, in a restricted context, images) using weakest preconditions!

1 There also exists a version of PDL with a program converse operator π
, such that the accessibility relation

for the converse π
 is defined as the converse of the accessibility relation for π. It is obvious that this stronger

logic can express the strongest post-condition of a program π using the existential dynamic modalities, since

π(ϕ) = 〈π
〉ϕ.
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The reason is that, in some context, the notion of adjoint can replace the notion of

converse. But note that converse itself is not expressible in our logic. This is a good thing

since the converse of a quantum action has no physical meaning (except in the case of

reversible, unitary evolutions), while the adjoint is physically meaningful.

Notation

For any sequence I ⊆ N of indices and any vector�c = (c(i))i∈I ∈ {0, 1,+}|I |, we set

�cI :=
∧
i∈I
c(i)i.

The unary maps induced by a program

In our syntax we want to capture the construction F(1), by which a linear map F on H⊗n

was used to describe a unary map F(1) on H . For this, we put 0i! := 0i? ∪ (1i?;Xi), and

0I! := 0i1 !; 0i2 !; · · · ; 0ik !, where I = (i1, i2, . . . , ik). This maps any qubit in I to 0. Similarly,

we put 0I? := (0i1 ∧ 0i2 ∧ · · · ∧ 0ik )?. Finally, we define

π(i) := 0N\{i}!; π; 0N\{i}?

This is the map we need (which encodes a single qubit transformation). In fact, we shall

only use π(1) in the rest of this paper. We also want to consider the Hi → Hj-version of

the transformation π(1), so we put

πij := flip1i; π(1); flip1j

Local programs

We would like to isolate local programs, that is, the ones that ‘affect only the qubits in a

given set I ⊆ N’. For this, we define a formula I(π) meaning ‘program π is I-local’:

I(π) :=
∧

�c,�d,�d′

(
�dN\I =N\I π(�cI ∧�dN\I ) =I π(�cI ∧ �d′

N\I )
)

where the conjunction is taken over all�c ∈ {0, 1,+}|I | and all �d, �d′ ∈ {0, 1,+}n−|I |.

Note that this definition is a simple formal translation of the semantic clauses that

express the fact that program π acts ‘locally’ (affecting only the I-subsystem, and in a way

that depends only on the I-subsystem of the input state) on the states of the form�c (with

c ∈ {0, 1,+}). One of our axioms below (‘Determinacy of deterministic programs’) means

that this clause is enough to ensure that program π acts locally on all (I-separated) states.

Entanglement according to π

To describe states that are ‘entangled according to π’, we introduce the formula

πij := �ij ∧
∧

c∈{0,1,+}

(
[ci?](πij(ci))j ∧ (∼ ci → πij(ci) = ⊥)

)
.

Then, as a consequence, we will have the following obvious validity:

ci?(πij) =j πij(ci)

for every ci ∈ {0i, 1i.+i}.
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Again, note that the identity in this definition is a formal translation of the semantic

clause defining ‘entanglement according to an action’, but only for the particular case of

local states of the form ci (with c ∈ {1, 0,+}). And again, one of our axioms below (the

‘Entanglement Axiom’) ensures that the above identity holds (not only for the elements

ci, but) for all i-local states (that is, all testable i-local properties).

3.2. Semantics of LQP

An LQP -model is a multi-partite quantum frame Σ = Σ(H) based on an n-dimensional

Hilbert space H, together with a valuation function, mapping each propositional variable

p into a set of states || p ||⊆ Σ . We will use the valuation map to give an interpretation

|| ϕ || ⊆ Σ to all our formulas in terms of quantum properties of our multi-partite frame,

that is, sets of states in Σ. At the same time, we give an interpretation || π || ⊆ Σ × Σ to all

our programs, in terms of quantum actions. The two interpretations are defined by mutual

recursion.

Interpretation of programs

|| �I || := �Σ×Σ
I || ϕ? || := || ϕ ||?

|| U || := U || π† || := || π ||†
|| π1 ∪ π2 || := || π1 || ∪ || π2 || || π1; π2 || := || π2 ||; || π1 ||

The interpretation || π || allows us to extend the notation
π→ to all programs, by putting

s
π→ t iff (s, t) ∈ || π ||.

Interpretation of formulas

We extend the valuation || p || from propositional variables to all formulas, by putting for

the others:

|| 1 || = |1〉⊗n || + || = |+〉⊗n

|| ϕ ∧ ψ || = || ϕ || ∩ || ψ || || ¬ϕ || = Σ\ || ϕ ||
|| [π]ϕ || = [ || π || ] || ϕ || || �I || = �Σ

I

Proposition 10. The interpretation of any testable formula is a testable property. The

interpretation of an I-local formula (or I-local deterministic program) is an I-local

property (or I-local linear map on states).

Lemma 4.

||∼ ϕ || = || ϕ ||⊥

|| [ϕ?]ψ || = [|| ϕ ||?] || ψ ||
|| �ϕ || = � || ϕ ||

|| ϕ || = ||∼∼ ϕ ||

Proposition 11. The following are equivalent, for every formula ϕ:

1. || ϕ || is testable (that is, T (ϕ) is valid).

2. ϕ is semantically equivalent to ∼∼ ϕ.
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3. ϕ is semantically equivalent to some formula �ψ.

4. ϕ is equivalent to some formula ∼ ψ.

Proposition 12. For deterministic programs π, the interpretation of the construct πij is the

property of ‘being entangled according to (the linear map denoted by) π’. More precisely,

for deterministic π, we have

|| πij ||= || π ||ij
where we use the notation Fij introduced (for any linear map F) after Proposition 6 of

Section 2.2.

4. Proof theory for LQP

4.1. Axioms for single systems

First, we admit all the axioms and rules of classical PDL, except for the ones concerning

tests ϕ? and Kleene star1 π∗. In particular, we have the following rules and axioms.

Substitution Rule. From � Θ infer � Θ[p/ϕ]

And the ‘normality’ conditions for the dynamic modalities [π]:

Kripke Axiom. � [π](p → q) → ([π]p → [π]q)

Necessitation Rule. From � p infer � [π]p

Considering �p, we introduce the following axioms:

Test Generalisation Rule. If the variable q does not occur in ϕ or ψ, then,

from � ϕ → [q?]ψ infer � ϕ → �ψ

Testability Axiom. � �p → [q?]p

Testability can be stated in its dual form by means of 〈q?〉p → �p or, equivalently, as

〈q?〉p → 〈p?〉�. This dual formulation of Testability allows us to give a straightforward

interpretation: if the property associated with p can be actualised by a measurement

(yielding an output state satisfying p), we can directly test the property p (by doing a

measurement for p). The Test Generalisation Rule encodes the fact that � is a universal

quantifier over all possible measurements.

Other LQP -axioms are:

Partial Functionality. � ¬[p?]q → [p?]¬q
Adequacy. � p ∧ q → 〈p?〉q
Repeatability. � T (p) → [p?]p

Proper Superpositions. � 〈π〉��p → [π′]p

1 We skip the axioms for iteration, π∗, only because we chose not to include this construct in our logic.

However, if one adds π∗ to our syntax, the usual PDL axioms for iteration are still sound, so they can be

added to the proof system.
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Unitary Functionality. � ¬[U]q ↔ [U]¬q
Unitary Bijectivity 1. � p ↔ [U;U†]p

Unitary Bijectivity 2. � p ↔ [U†;U]p

Adjointness. � p → [π]�〈π†〉�p

Proposition 13. Testability is closed under conjunctions, weakest preconditions;

�-sentences, orthocomplements and strongest postconditions are testable:

• � T (p) ∧ T (q) → T (p ∧ q)
• � T (p) → T ([π]p)

• � T (�p)

• � T (∼ p)

• � T (π[p])

A formula ϕ is called testable if the theorem

� T (ϕ)

is provable in our system. Observe that this notion is proof-theoretic. However, the above

proposition gives us the following purely syntactical way to check testability:

Corollary. Any formula of the form �ϕ, ∼ ϕ or �, or that can be obtained from these

formulas using only conjunctions ϕ ∧ ψ and weakest preconditions [π]ϕ, is testable.

Proposition 14 (Quantum logic, weak modularity or quantum modus ponens). All the

axioms and rules of traditional quantum logic are satisfied by our testable formulas. In

particular, from our axioms one can prove ‘quantum modus ponens1’ ϕ∧[ϕ?]ψ � ψ. In its

turn, this rule is equivalent to the condition known in quantum logic as weak modularity,

which is stated as follows: ϕ ∧ (∼ ϕ � (ϕ ∧ ψ)) � ψ.

Theorem 3 (Soundness and completeness). All the other axioms above are sound.

Moreover, if we eliminate from the syntax of our logic all the special constants (both

propositional constants �I , 1 and +, and program constants �I , CNOT , X, H , Z , and

so on), then there exists a complete proof system for (single-system) Hilbert spaces, which

includes the above axioms2.

The proof of this theorem is given in our paper Baltag and Smets (2005a), and is

based on an extension of (Mayet’s version (Mayet 1999) of) Solèr’s Theorem (Solèr

1995), which is itself an extension of Piron’s Representation Theorem for Piron lattices

(Piron 1964; 1976; Amemiya and Araki 1967).

Proposition 15. The formula π[ϕ] expresses the strongest testable postcondition ensured by

executing program π on any state satisfying (precondition) ϕ. In other words, for every

1 This explains why the weakest precondition [ϕ?]ψ has been taken as the basic implicational connective in

traditional quantum logic, under the name of the ‘Sasaki hook’ and denoted by ϕ
S→ ψ.

2 In addition, the system includes two more axioms of a rather technical nature, namely Piron’s ‘Covering Law’

(Piron 1976) and ‘Mayet’s Condition’ (Mayet 1999). See Baltag and Smets (2005a) for details.
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testable ψ, we have

π[ϕ] � ψ iff ϕ � [π]ψ

Proposition 16 (Adjointness Theorem). For all testable formulas ϕ,ψ, we have

ϕ ⊥ π[ψ] iff π†[ϕ] ⊥ ψ

4.2. Axioms for compound systems

Separation Axioms. Every state is N-separated; if a state is both I-separated and

J-separated, then it is also N \ I-separated, I ∪ J-separated and I ∩ J-separated:

� �N

and

� �I ∧ �J → �N\I ∧ �I∪J ∧ �I∩J

Axioms for the trivial I-local program. The program �I is the weakest I-local program;

that is,

� I(π) → 〈π〉p � 〈�I〉p

and

� I(�I )

As an immediate consequence, we obtain the following corollary.

Corollary 4. The formula �I is the weakest I-local property; that is,

� I(�I )

and

� I(p) → p � �I

Proof. By the definition of I-locality I(π) of a program, it is easy to see that the identity

program id is I-local for every I . Applying the first part of the above axiom (for �I ), we

obtain �I = 〈id〉�I � 〈�I〉�I , from which we deduce that �I = �I ∧ 〈�I〉�I . Applying

the definition of ϕI , we conclude that �I = (�I )I , and thus (by the definition of I-locality

I(ϕ) of a sentence) we derive I(�I ). The second part of the corollary follows trivially from

the definition of I(p).

Syntactically, we define an ‘I-local state’ to be any sentence ϕ such that

� I(ϕ) ∧ ϕ �= ⊥ ∧ (I(p) ∧ ⊥ �= p � ϕ → p = ϕ)

for some p not occurring in ϕ. In other words, these are propositions that can be proved

to be atoms of the lattice of (consistent) I-local properties.
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Local States Axiom. Testable local properties are ‘local states’ (in the above sense, that

is, atomic local properties): if I �= N,

� T (p) ∧ I(p) ∧ I(q) ∧ ⊥ �= q � p → q = p

Basic-State Testability Axiom. Our basic properties ci, πij are testable and local (for the

appropriate subsystem). More precisely, if i, j ∈ N, c ∈ {0, 1,+,−} and π is a deterministic

program, then

� T (ci) ∧ I(cI ) ∧ T (πij) ∧ {i, j}(πij)
As an immediate consequence of the last two axioms, all constants of the form�cI (with

�c ∈ {0, 1,+,−}|I |)) are (testable) I-local states; similarly, if π is deterministic, then πij is a

(testable) {i, j}-local state.

The following corollary is another immediate consequence.

Corollary 5. ∼ �I = ⊥

Proof. By the Adequacy axiom, we have 1I ∧ �N � 〈1I?〉�N . But �N is the ‘always

true’ sentence, so we have ¬〈0I?〉�N = [0I?]⊥N =∼ 0I = 1I = 1i ∧ �N � 〈1I?〉�N .

From this, we get �N = (〈0I?〉�N ∨ 〈1I?〉�N). By Adequacy again, we always have

�N � 〈0I?〉0I � 〈0I?〉�I (since 0I is I-local, so 0I � �I ) and, similarly, �N � 〈1I?〉�I .

Putting these three together, we deduce �N � (〈0I?〉�I ∨ 〈1I?〉�I ). But by the Testability

axiom (in its dual form), we have 〈0I?〉�I � ��I and, similarly, 〈1I?〉�I � ��I . Hence we

have �N � (��I ∨ ��I ) = ��I = 〈�I?〉�N , and thus ∼ �I = [�I?]⊥N = ¬〈�I?〉�N �
¬�N = ⊥N = ⊥.

To capture the fact that the lattice of local properties is atomistic, we accept the

following inference rule.

Local Atomicity Rule. Local properties are unions of testable local properties (that is,

of local states): if I �= N and the variable p does not occur in ϕ, ψ or θ, then

from � ψ ∧ T (pI ) ∧ pI � ϕ → pI � θ

infer � ψ ∧ I(ϕ) → ϕ � θ

As a consequence of the above axioms and rules, we obtain the following corollary.

Corollary. For I �= N, every local state is testable. In other words, if I �= N and p does

not occur in ϕ, then from

� I(ϕ) ∧ ϕ �= ⊥ ∧ (I(p) ∧ ⊥ �= p � ϕ → p = ϕ)

we can infer

� T (ϕ)

The following axioms state that +i and −i are proper superpositions of 0i and 1i.

Proper Superposition Axioms. � +i → �0i ∧ �1i and � −i → �0i ∧ �1i.

The next axiom expresses the above-mentioned property of linear operators on H of

being uniquely determined by their values on all the states |x〉1 ⊗ · · · |x〉n, with |x〉i ∈
{|0〉i, |1〉i, |+〉i}.
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Determinacy Axiom of Deterministic Programs. For deterministic programs π, π′,

�
∧

�c∈{0,1,+}n

(
π(�cN) = π′(�cN) → π(p) = π′(p)

)

The next axiom is the central axiom of our system, capturing the computational essence

of entanglement as a syntactic counterpart of Proposition 6 of Section 2.

Entanglement Axiom. If π is deterministic and i �= j, then

� T (pi) → pi?(πij) =j πij(pi)

Before presenting our next axioms, we note some consequences of the previous ones.

First, as for testability, we can define a proof-theoretic notion of locality. A formula ϕ is

I-local if � I(ϕ) is a theorem; similarly, a program π is I-local if � I(π) is a theorem.

Proposition 17. Any formula of the form ϕI is always I-local. Any formula of the form

πij is {i, j}-local. If ϕ and ψ are I-local formulas and π is an I-local program, then ϕ∨ψ,

ϕ∧ ¬ψ and ϕ∧ [π]ψ are I-local. If ϕ is I-local and ψ is J-local, then ϕ∧ψ is I ∪ J-local.

Proposition 18. If ϕ is a testable I-local formula, then ϕ? is an I-local program. �I is

I-local. If π and π′ are I-local, then π ∪ π′ and π; π′ are I-local.

Proposition 19. Local programs act locally. In other words,

� I(π) ∧ p =I q → p =N\I π(p) =I π(q)

Proposition 20. Systems composed of identical parts are identical:

� p =I q ∧ p =J q → p =I∪J q

Proposition 21. � pI ⊥ q ↔ pI ⊥ qI

Proposition 22 (Dual Local Atomicity Rule). If I �= N, ϕ and θ are I-separated, and p

does not occur in ϕ,ψ or θ, then, from

� ψ ∧ T (pI ) ∧ pI ⊥ ϕ → pI ⊥ θ

infer

� ψ ∧ T (ϕI ) ∧ T (θI ) → ϕ =I θ

Proof. Using the fact that pI ⊥ q ↔ pI ⊥ qI and the I-locality of pI , we can rewrite the

assumption as

� ψ ∧ T (pI ) ∧ pi � (�I∧ ∼ ϕI ) → pI � (�I∧ ∼ θI )

Now assume ψ ∧ T (ϕI ) ∧ T (θI ). Then the formula �I∧ ∼ ϕI = �I ∧ ¬(�I ∧ [ϕI?]⊥) is

I-local (since ϕI is testable I-local, so ϕI? is an I-local program, we have �I ∧ [ϕI?]⊥
is I-local) and, similarly, �I∧ ∼ θI is I-local. So we can apply the Local Atomicity

Rule to get (�I∧ ∼ ϕI ) � (�I∧ ∼ θI ). Applying orthocomplementation, we have

∼ (�I∧ ∼ θI ) �∼ (�I∧ ∼ ϕI ). From this we get

θI = ∼∼ θI = ⊥� ∼∼ θI = ∼ �I� ∼∼ θI = ∼ (�I∧ ∼ θI )

� ∼ (�I∧ ∼ ϕI ) = ∼ �I� ∼∼ ϕI = ⊥ � ϕI =ϕI
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However, by the Local States Axiom, this then implies that θI = ϕI (since both are

testable I-local with I �= N, and thus they are local states). Since both θI and ϕI are

I-separated, it follows that θ =I ϕ.

Theorem 4 (Compatibility of Programs Affecting Different Qubits). If I ∩ J = � and

π, π′ are deterministic, then

� I(π) ∧ J(π′) → π; π′(p) = π′; π(p)

Proof. This is an immediate application of the Determinacy Axiom above. By that

axiom, it is enough to show the required identity for all p of the form p = �cN , with

�c ∈ {0, 1,+}n. Using the fact that I ∪ (N \ (I ∪ J)) ⊆ N \ J and J ∪ (N \ (I ∪ J)) ⊆ N \ I
(since I ∩ J = �) and Proposition 19 (saying that local programs ‘act locally’), we can

easily show that

(π; π′)(�cN) =N\(I∪J) cN =N\(I∪J) (π′; π)(�cN)

(π; π′)(�cN) =I π(�cN) =I (π′; π)(�cN)

and

(π; π′)(�cN) =J π′(�cN) =J (π′; π)(�cN)

Using Proposition 20, we put these together to conclude that

(π; π′)(�cN) =I∪J∪(N\(I∪J)) (π′; π)(�cN);

that is, that

(π; π′)(�cN) = (π′; π)(�cN)

Proposition 23 (Dual Entanglement). If π is deterministic and i �= j, then

� T (qj) → qj?(πij) =i π
†
ij(qj)

Proof. Assume T (qj) and we need to show that qj?(πij) =i π
†
ij(qj). It is easy to see

that both sides are i-separated (that is, � �i), and also that both (qj?(πij))i and (π†
ij(qj))i

are testable (since they are local states), so we are in the conditions of the Dual Local

Atomicity Rule (Proposition 22) above. By that Proposition, to prove the above identity,

it is enough to show that

� T (pi) ∧ pi ⊥ π
†
ij(qj) → pi ⊥ qj?(πij)

To show this, let pi be such that T (pi) and pi ⊥ π
†
ij(qj). By the Adjointness Theorem,

we then have πij(pi) ⊥ qj , and thus qj?(πij(pi)) = ⊥. By the previous Proposition (on the

Compatibility of Programs on Different Qubits), we have

pi?(qj?(πij)) = (pi?; qj?)(πij)

= (qj?; pi?)(πij)

= qj?(pi?(πij))

= qj?(πij(pi))

= ⊥
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(where we have used the Entanglement Axiom). So we get pi ⊥ qj?(πij). (Thus, using the

Dual Local Atomicity Rule, the desired conclusion follows).

Proposition 24 (Entanglement Preparation Lemma).

� πij(pi) ⊥ qj → πij ⊥ (pi ∧ qj)

Proof. From the hypothesis, we get qj ⊥ (πij(pi))j , and thus (pi ∧ qj) ⊥ (πij(pi))j , from

which it follows that (pi ∧ qj) ⊥ [pi?](πij(pi))j (using the fact that pi?(pi ∧ qj) = pi ∧ qj , by

Adequacy). On the other hand, we have πij � [pi?](πij(pi))j (since pi?(πij) � (pi?(πij))j =

(πij(pi))j , by the Entanglement Axiom), so we get (pi ∧ qj) ⊥ πij .

Theorem 5 (Teleportation Property). If i, j, k are distinct indices, then

� (σjk?; πij?)(pi) =k (πij; σjk)(pi)

Proof. By the same argument as above, it is enough to prove

� T (qk) ∧ qk ⊥ (πij; σjk)(pi) → qk ⊥ (σjk?; πij?)(pi)

To show this, let qk be such that T (qk) and qk ⊥ (πij; σjk)(pi). Then qk ⊥ σjk(πij(pi)), and, by

the Adjointness Theorem, we have σ†
jk(qk) ⊥ πij(pi). By Dual Entanglement, it follows that

qk?(σjk) ⊥ πij(pi). By the Entanglement Preparation Lemma, we have πij ⊥ (qk?(σjk) ∧ pi).
Hence we get

qk?
(
(σjk?; πij?)(pi)

)
= qk?

(
πij?(σjk?(pi))

)

= πij?
(
qk?(σjk?(pi))

)

=ijk πij?(qk?(σjk) ∧ pi)
= ⊥

(where we have used Theorem 4 on the Compatibility of Programs on Different Qubits).

So we get qk ⊥ (σjk?; πij?)(pi), as desired.

Corollary 6. If i, j, k are distinct,

� πij?(pi ∧ σjk) =k (πij; σjk)(pi)

Proof. By the Repeatability Axiom, we have σjk?(pi) � σjk . Assuming σjk?(pi) �= ⊥, we

get σjk?(pi) =jk σjk (since σjk is testable and {j, k}-local, and hence it is a local state) and

also that σjk?(pi) =i pi (since ‘local programs act locally’, by Proposition 19). Thus, we get

σjk?(pi) =ijk pi ∧ σjk . Applying the {i, j} local program πij , we get

πij?(pi ∧ σjk) =ijk πij?(σjk?(pi))

= (σjk?; πij?)(pi)

=k (πij; σjk)(pi)

from which we get the desired conclusion.

By a refinement of the proof of Teleportation Property, we can prove the following

proof-theoretic version of Lemma 3 in Section 2.2.
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Proposition 25 (Entanglement Composition Lemma). For distinct indices i, j, k, l, programs

π, π′, π′′ and local {1}-programs σ1, ρ1, we have

� πij ∧ π′
kl → [σj; ρk; π′′

jk?](π; σ1; π′′; ρ†
1; π

′)il

The domain dom(ϕ) of a map π is defined as dom(π) :=< π > �.

Theorem 6 (Agreement Property). If two I-local maps π, π′ have the same domain and

they separate the input-state, then their output states agree on all non-I qubits: that is, if

I ∩ J = �, then for all deterministic programs π, π′ we have

� T (p) ∧ I(π) ∧ I(π′) ∧ dom(π) = dom(π′) ∧ π(p) � �I ∧ π′(p) � �I → π(p) =N\I π
′(p)

Proof. Put ψ := T (p) ∧ I(π) ∧ I(π′) ∧ dom(π) = dom(π′) ∧ π(p) � �I ∧ π′(p) � �I ,

and assume that ψ is true. By definition, π(p) is testable (since π is deterministic, so

π(p) = π[p] =∼ [π†] ∼ p, and every sentence of the form ∼ ψ is testable), and the

same is true for π′(p). So we can use the Dual Local Atomicity Rule to prove the above

identity. Now let qN\I be such that T (qN\I ) and qN\I ⊥ π(p). Then (π; qN\I?)(p) = ⊥.

By the Compatibility of Programs on Different Qubits, we get (qN\I?; π)(p) = ⊥, that

is, p � [qN\I ][π]⊥ = [qN\I ]¬z〈π〉� = [qN\I ]¬dom(π). But dom(π) = dom(π′), so p �
[qN\I ]¬dom(π′) = [qN\I ][π

′]⊥, that is, (qN\I?; π
′)(p) = ⊥. Working now in reverse, we again

apply the Compatibility of Programs on Different Qubits, obtaining (π′; qN\I?)(p) = ⊥,

that is, qN\I ⊥ π′(p). So we have proved that

� ψ ∧ T (qN\I ) ∧ qN\I ⊥ π(p) → qN\I ⊥ π′(p)

By now applying the Dual Local Atomicity Rule, we get

� ψ → π(p) =N\I π
′(p)

which is, the desired conclusion.

Characteristic formulas

In order to formulate our next axioms (which deal with special logic gates), we now give

some characteristic formulas for binary states, considering two qubits indexed by i and j.

States Characteristic Formulas

|00〉ij = |0〉i ⊗ |0〉j 〈0i?〉0j ∧ [1i?] ⊥

Bell states:

βi,jxy = |0〉i ⊗ |y〉j + (−1)x|1〉i ⊗ |ỹ〉j 〈0i?〉yj ∧ 〈1i?〉ỹj ∧ 〈+i?〉(−)xj
with 0̃ = 1 and 1̃ = 0 , x, y ∈ {0, 1} where (−)x = − if x = 1

and (−)x = + if x = 0

γi,j = β
i,j
00 + β

i,j
01 =

|00〉ij + |01〉ij + |10〉ij + |11〉ij 〈0i?〉 +j ∧〈1i?〉 +j ∧〈+i?〉+j
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Locality Axiom for Quantum Gates. Our special quantum gates are local, affecting only

the specified qubits:

� {i}(Xi) ∧ {i}(Zi) ∧ {i}(Hi) ∧ {i, j}(CNOTij)

In addition to this, we require the following axioms for X,Z,H .

Characteristic Axioms for Quantum Gates X and Z .

� 0i → [Xi]1i � 1i → [Xi]0i � +i → [Xi]+i

� 0i → [Zi]0i � 1i → [Zi]1i � +i → [Zi]−i

� 0i → [Hi]+i � 1i → [Hi]−i � +i → [Hi]0i

Notation (Bell formulas)

For x, y ∈ {0, 1} and distinct indices i, j ∈ N, we make the abbreviations βijxy := (Zx
1 ;Xy

1 )ij ,

and refer to these expressions as ‘the Bell formulas’.

Proposition 26. The Bell states βi,jxy are characterised by the logic Bell formulas βijxy . In

other words, a state satisfies one of these formulas iff it coincides with the corresponding

Bell state.

Proof. It is enough to check that the formulas βijxy imply the corresponding characteristic

formulas in the above table. For this, we use the Entanglement Axiom and the following

(easily checked) theorems:

� 01 ↔< Zx
1 ;Xy

1 > y1

� 11 ↔< Zx
1 ;Xy

1 > ỹ1

� +1 →< Zx
1 ;Xy

1 > (−)x1

Generalised Bell formulas, GHZ States. As shown by the first author’s student Dmitri

Akatov in his Master’s thesis (Akatov 2005), the above dynamic-logical characterisation

of Bell states can be recursively extended to the so-called generalised (k-qubit) Bell states

(which form an orthonormal basis for the k-qubit space), for all k � n. Here, we only

mention a special case, that of the so-called GHZ state (after Greenberg, Horne and

Zeilinger):

β
i,j,k
000 = | 000〉ijk+ | 111〉ijk

This state, of a special significance for various quantum protocols, can be characterised

by the formula

β
ijk
000 := 〈0i?〉(0j ∧ 0k) ∧ 〈1i?〉(1j ∧ 1k) ∧ 〈+i?〉βjk00

From this, it is obvious that we have +i?(β
ijk
000) =jk β

jk
00; but one can easily check that we

also have −i?(β
ijk
000) =jk β

jk
10. Using the notation (−)z introduced above for z = 0, 1 (putting

(−)z := − if z = 1 and (−)z := + if z = 0), we can summarise this as

(−)zi ?(β
ijk
000) =jk β

jk
z0

https://doi.org/10.1017/S0960129506005299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005299


A. Baltag and S. Smets 520

Characteristic Axioms for CNOT . With the above notation, we put

� 0i ∧ cj → [CNOTij]cj � 1i ∧ 0j → [CNOTij]1j
� 1i ∧ 1j → [CNOTij]0j � 1i ∧ +j → [CNOTij]+j

� +i ∧ 0j → [CNOTij]β
ij
00 � +i ∧ 1j → [CNOTij]β

ij
01

� +i ∧ +j → [CNOTij]γ
ij

where γij = 〈0i?〉 +j ∧〈1i?〉 +j ∧〈+i?〉+j

Proposition 27. For all x, y ∈ {0, 1},

� (Hi;CNOTi,j)(xi ∧ yj) = βijxy

Corollary 7. If i, j, k are all distinct,

� (CNOTij;Hj; (xi ∧ yj)?)(p) =k β
ij
xy?(p)

Proof. From the above Proposition and from H† = H , CNOT † = CNOT , we get

(CNOTi,j;Hi)(β
ij
xy) = xi ∧ yi, and thus

dom(CNOTi,j;Hi) = 〈CNOTij;Hi; (xi ∧ yj)?〉�
= 〈βijxy?〉�
= dom(βijxy?)

The conclusion then follows from this, together with the Agreement Property.

Theorem 7. All the above axioms and rules are sound for (quantum frames associated to)

n-dimensional Hilbert spaces of the form H⊗n, where H is any two-dimensional Hilbert

space.

The problem of obtaining a complete proof system for this logic is still open1.

5. Applications: correctness of quantum programs

As applications to our logic, one can provide formal correctness proofs for a whole

range of quantum programs; one could claim that all quantum circuits and protocols

in which probabilities do not play an essential role can, in principle, be verified using

our logic, or some trivial extension of this logic (obtained by introducing more basic

constants for other relevant states and programs). In particular, all the quantum programs

covered by the ‘entanglement networks’ approach in Coecke (2004) can be treated in this

logic. In his Master’s thesis (Akatov 2005), D. Akatov has applied our logic to the

verification of various other protocols, for example, superdense coding, quantum secret

sharing, entanglement swapping, logic gate teleportation, circuits for parallel computation

1 However, we have strong reasons to believe the above system is not complete. At least one other sound

interesting axiom (of particular significance to quantum computing) has been proposed by the first author’s

student D.Akatov in his Master’s thesis (Akatov 2005). This is the ‘Determinacy of States’ axiom, which

captures the converse of our Entanglement axiom: any entangled state is ‘entangled according to some

quantum program’ π (that is, it is of the form πij ); we chose not to include it here, as we have not used it in

this paper.
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of (sequential) compositions of programs using Bell base measurements. The proofs are

modular, using as ingredients the main lemmas proved above: the Compatibility Theorem,

the Teleportation Property, the Entanglement Composition Lemma and the Agreement

Property. For simplicity, we will only consider two basic examples here: quantum

teleportation and quantum secret sharing.

Quantum teleportation

Following Nielsen and Chuang (2000), quantum teleportation is the name of a technique

that makes it possible to ‘teleport’ (that is, move) a quantum state between two agents,

even in the absence of a quantum communication channel1 linking the sender and the

recipient. We are working in H ⊗H ⊗H , with H being the two-dimensional (qubit) space,

so n = 3. There are two agents, Alice and Bob, separated in space, each having one qubit

of an entangled EPR pair, represented by β2,3
00 ∈ H (2) ⊗ H (3). In addition to her part of

the EPR pair, Alice has another qubit 1, in an unknown state q1. (Note that q1 is a

testable 1-local property, since it is a 1-local state.) Alice wants to ‘teleport’ this unknown

qubit to Bob, that is, to execute a program that will output a state satisfying id13(q1).

To do this, she entangles the qubit q1 with her part q2 of the EPR pair, by performing

first a CNOT1,2 gate on the two qubits and then a Hadamard transformation H1 on the

first component. Then Alice measures her qubits in the standard basis, thus destroying

the entanglement, so that Bob’s qubit is left in a separated state q3. Though this state is

unknown, the results of Alice’s measurements indicate the actions that Bob will have to

perform in order to transfer his qubit from state q3 into the state id13(q1) (corresponding

to the initial qubit Alice had before the protocol). It is thus enough for Alice to send

Bob two classical bits encoding the result x1 of the first measurement and the result y2 of

the second measurement. To achieve ‘teleportation’, Bob will have to apply the X-gate y

times, then apply the Z gate x times.

In our syntax, the quantum program described here is

π =
⋃

x,y∈{0,1}

CNOT12;H1; (x1 ∧ y2)?;X
y
3 ;Zx

3

and the validity expressing the correctness of teleportation is

� π(q1 ∧ β23
00 ) =3 id13(q1)

To show this, observe that by applying the above Corollary to Proposition 27, in which

we take i = 1, j = 2, k = 3, we get that the validity above (to be proved) is equivalent to

� (β12
xy?;X

y
3 ;Zx

3 )(q1 ∧ β23
00 ) =3 id13(q1)

Replacing the logical Bell formulas with their definitions βijxy := (Zx
1 ;Xy

1 )ij , we obtain the

following equivalent validity:

� ((Zx
1 ;Xy

1 )12?;X
y
3 ;Zx

3 )(q1 ∧ id23) =3 id13(q1) ,

1 However, note that a classical communication channel is required!
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where id = Z0
1 ;X0

1 is the identity. This last validity follows from applying the (corollary of)

the Teleportation Property and the validity Zx
1 ;Xy

1 ;Xy
1 ;Zx

1 = id (due to X−1 = X,Z−1 =

Z).

Quantum secret sharing

As described in Gruska (1999), this protocol realises the splitting of quantum information

into a given number m of ‘shares’ (among m agents), such that the original information

(the ‘secret’) can be recovered only by pooling together the information in all the shares.

The protocol uses GHZ states in a similar way to teleportation. We consider here the

case m = 3 as an example: suppose Alice, Bob and Charles share a GHZ triple state β2,3,4
000

(each ‘having’ one of the three entangled qubits, in increasing order: for example, Alice

has qubit 2, and so on). In addition, Alice has another qubit 1, in an unknown state q.

To split this information q1 into three shares, Alice measures her two qubits 1 and 2 in

the Bell basis, obtaining two bits x, y (corresponding to which of the four Bell states β12
xy

she obtained). After that, Bob measures his qubit 2 in the dual basis {+,−}, obtaining

another bit |−〉z (with z ∈ {0, 1})1. Finally, Charles is given qubit 4, which is now in one

of 8 possible states ψ(x,y,z)
4 (depending on the results obtained by Alice and Bob).

To recover the original ‘secret’ q from his qubit ψ(x,y,z)
4 , Charles can now apply a local

unitary transformation Zz
4 ;Xy

4 ;Zx
4 . But notice that for this, he needs to know x, y and z,

that is, the three agents have to share their information in order to recover q.

The quantum program described here is

π =
⋃

x,y∈{0,1}

β12
xy?; (−)z3?;Z

z
4 ;Xy

4 ;Zx
4

To prove correctness, we need to show

� π(q1 ∧ β234
000 ) =4 id14(q1)

To show this, we use Compatibility and the 3-locality of (−)z3 to compute

(β12
xy?; (−)z3?;Z

z
4 ;Xy

4 ;Zx
4 )(q1 ∧ β234

000 ) = ((−)z3; β
12
xy?;Z

z
4 ;Xy

4 ;Zx
4 )(q1 ∧ β234

000 )

= (Zz
4 ;Xy

4 ;Zx
4 )(β12

xy?(q1 ∧ (−)z3?(β
234
000 )))

But recall that

(−)z3?(β
234
000 ) =24 β

24
z0 =24 Z

z
1 24 ,

so we have

π(q1 ∧ β234
000 ) =24 (Zz

4 ;Xy
4 ;Zx

4 )(β12
xy?(q1 ∧ (Zz

1 )24))

= Zz
4 ;Xy

4 ;Zx
4 )((Zx

1 ;Xy
1 )12?(q1 ∧ (Zz

1 )24))

1 Here we use for vectors a similar notation to the notation (−)z introduced for states in the previous section,

that is, |−〉z := |−〉 for z = 0, and |−〉z := |+〉 for z = 1.
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Applying the (Corollary of) the Teleportation Property, we get

π(q1 ∧ β234
000 ) =4 (Zz

4 ;Xy
4 ;Zx

4 )((((Zx
1 ;Xy

1 ))12; (Zz
1 )24)(q1))

= (Zz
1 ;Xy

1 ;Zx
1 )14((Z

x
1 ;Xy

1 ;Zz
1 )14(q1))

= (Zx
1 ;Xy

1 ;Zz
1 ;Zz

1 ;Xy
1 ;Zx

1 )14(q1)

= id14(q1)

Note: This proof can be easily generalised to the case of an m-share split (among m

agents) of the secret. See Akatov (2005) for details.

6. Conclusions and future work

We have presented here a dynamic logic for compound quantum systems, capable of

expressing and proving highly non-trivial features of quantum information flow, such as

entanglement and teleportation, properties of local transformations, separation, Bell states,

and so on. The logic is Boolean, but has modalities capturing the non-classical logical

dynamics of quantum systems; in addition, it has spatial features, allowing us to express

properties of subsystems of a compound quantum system. The logic comes with a simple

relational semantics, in terms of quantum states and quantum actions in a Hilbert space.

We have presented a sound proof system, which can be used to prove many interesting

properties of quantum information, including formal correctness proofs for a whole range

of quantum protocols (we have treated teleportation and quantum secret sharing here,

but there are also many others to be considered, such as superdense coding, entanglement

swapping and logic-gate teleportation).

However, a number of open problems remain. While in Baltag and Smets (2005a)

we sketched a completeness result for the quantum dynamic logic of single-system

quantum frames, no corresponding completeness result is known for compound systems.

So the completeness problem for the logic LQP presented in this paper is still open.

In this paper we have not included iteration (Kleene star) π∗ among our operations on

programs, since it was not needed in our simple quantum programming applications. But

one can, of course, add iteration and consider the resulting logic, which would be useful

in applications to quantum programs involving while-loops. The usual PDL axioms for

Kleene star are sound, but, again, completeness remains an open problem.

Another problem, which is of great importance for quantum computation, is extending

our setting to deal with the quantitative aspects of quantum information (in particular,

with notions like phase and probability). Our aim in this paper was to develop a logic to

reason about qualitative quantum information flow, so we have ignored the probabilistic

aspects of quantum systems. There are natural ways to extend our setting, using quantum

versions of probabilistic modal logic, and we plan to investigate them in future work.
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