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This paper focuses on recollements and silting theory in triangulated categories. It
consists of two main parts. In the first part a criterion for a recollement of
triangulated subcategories to lift to a torsion torsion-free triple (TTF triple) of
ambient triangulated categories with coproducts is proved. As a consequence, lifting
of TTF triples is possible for recollements of stable categories of repetitive algebras
or self-injective finite length algebras and recollements of bounded derived categories
of separated Noetherian schemes. When, in addition, the outer subcategories in the
recollement are derived categories of small linear categories the conditions from the
criterion are sufficient to lift the recollement to a recollement of ambient
triangulated categories up to equivalence. In the second part we use these results to
study the problem of constructing silting sets in the central category of a
recollement generating the t-structure glued from the silting t-structures in the outer
categories. In the case of a recollement of bounded derived categories of Artin
algebras we provide an explicit construction for gluing classical silting objects.
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1. Introduction

Recollements of triangulated categories were introduced by Beilinson, Bernstein and
Deligne [10] as a tool to get information about the derived category of sheaves over
a topological space X from the corresponding derived categories for an open subset
U ⊆ X and its complement F = X \ U . In the general abstract picture, when there
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exists a recollement (Y ≡ D ≡ X ) of triangulated categories

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

, (1.1)

the properties of D, X and Y are closely related (for unexplained terminology see
§ 2) and the sequence (Y ≡ D ≡ X ) can be thought of as a short exact sequence of
triangulated categories. In representation theory of finite dimensional algebras, a lot
of homological invariants can be glued with respect to a recollement. For instance,
given a recollement of (bounded) derived categories of finite dimensional algebras
A, B and C over a field, Hochschild and cyclic homology and cohomology of A,
B and C, as well as, K-theory, are related by long exact sequences [20,25,31,
44,56,58,60]. Furthermore, global dimension, Cartan determinants and finitistic
dimensions of A, B and C are related [5,17,22,30,51].

Another topic closely related to the structure of triangulated categories is silting
theory. Silting theory is a new and dynamically developing topic in representa-
tion theory, it studies a special type of generators of triangulated categories, which
have very nice properties but are sufficiently widespread. Silting and more gener-
ally partial silting objects in the bounded homotopy category Kb(proj-A) of finitely
generated projective modules over a finite dimensional algebra A were introduced
in [29] and further developed in [1] as a completion of tilting objects under muta-
tion. These objects parametrize bounded t-structures in Db(mod-A) whose heart is
a length category and bounded co-t-structures in Kb(proj-A) (see [32] and [27]),
they also correspond to derived equivalences from A to a non-positive dg alge-
bra. The notion was extended to the unbounded setting first in [59] and [6], for
unbounded derived categories of algebras, and later in [50] and [47] for arbitrary
triangulated categories with coproducts. Concepts like complete exceptional collec-
tions or sequences in Algebraic Geometry can be interpreted as silting sets in the
derived category of a scheme (see [47, § 8]). The main feature of these generalized
silting sets is that they naturally define a t-structure in the ambient triangulated
category whose heart is, in many situations, a module category (see [47, § 4]).
One of the results of the development of silting theory in the unbounded setting is
the introduction of silting modules in [6], which have turned out to be very use-
ful to classify homological ring epimorphisms and universal localizations (see [7]
and [36]).

Traditionally, for the study of homological properties of a variety X over a field
(or a Noetherian scheme of finite type) or a finite dimensional algebra A the
bounded derived category of coherent sheaves Db(X) := Db(coh(X)) or the bounded
derived category Db(mod-A) of finitely generated A-modules are considered. There-
fore, a lot of studies are concentrated on recollements of bounded derived categories
and silting objects in the homotopy category of finitely generated projectives.
However, the study of the structure of the unbounded derived categories is some-
times easier, since a rich arsenal of techniques of compactly generated triangulated
categories with products and coproducts becomes available. The generation of rec-
ollements and t-structures also becomes more accessible at the unbounded level.
Hence it is natural to look for conditions under which recollements of triangulated
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categories at the ’bounded’ level lift to recollements at the ‘unbounded’ level. This
is the first goal of this paper. The motivation for this stems from [5], where the
authors show that recollements of bounded derived categories of finite dimensional
algebras lift up to equivalence to corresponding recollements of the unbounded
derived categories, which, in addition, can be extended upwards and downwards
to ladders of recollements of height three. We wanted to know to what extent
this relies on the context of finite dimensional algebras and to what extent this
is a general phenomenon occurring in triangulated categories. As it will become
apparent through the paper, our results are applicable to other areas of Mathemat-
ics, especially to Algebraic Geometry. In our general framework it turns out that
lifting torsion torsion-free (TTF) triples can be guaranteed under quite general
assumptions, whereas lifting of recollements is more subtle (see § 3).

Since t-structures can be glued via a recollement (see [10]) another natural ques-
tion is the following: given a recollement (1.1) of triangulated categories and silting
sets TX and TY in X and Y, is it possible to construct a silting set T in D corre-
sponding to the glued t-structure? This problem was studied in the context of tilting
objects in [4] under some restrictions and in the context of gluing with respect to
co-t-structures in [35]. The second goal of this paper is to show that the process of
gluing t-structures allows to construct partial silting sets in the central category of
a recollement out of partial silting sets in its outer categories.

The paper is organized as follows. In § 2 we introduce most of the concepts and
terminology used throughout the paper. In § 3 we study lifting of recollements and
the associated TTF triples. In particular we prove a criterion for a recollement
(Y ≡ D ≡ X ) of thick subcategories of compactly generated triangulated categories
Ŷ, D̂ and X̂ to lift to a TTF triple in D̂ under the assumption that the subcategories
Y,D,X contain the respective subcategories of compact objects (see theorem 3.3).
As a consequence of this theorem lifting of TTF triples is possible for several types
of recollements, such as recollements of stable categories of repetitive algebras or
self-injective finite length algebras or recollements of bounded derived categories of
separated Noetherian schemes (see example 3.6). However, lifting of the recollement
is more delicate and the answer to the following question seems to be unknown.

Question. Does the lifting of the TTF triple corresponding to the recollement
(Y ≡ D ≡ X ) imply the lifting of this recollement to a recollement (Ŷ ≡ D̂ ≡ X̂ ) at
least up to equivalence?

It seems to be related to the problem of constructing a triangulated equivalence
D̂

∼=−→ Ê , having a triangulated equivalence D̂c
∼=−→ Êc, for compactly generated

triangulated categories D̂ and Ê . Due to results of Rickard (see [52] and [53]) and
Keller [24], such a construction is possible (even though it may not be the lift of the
equivalence D̂c

∼=−→ Êc) when one of the categories D̂ or Ê is the derived category
of an algebra or, more generally, a small K-category. This is the reason for the
following consequence of theorem 3.14.

Theorem. Let B and C be small K-linear categories, viewed as dg categories
concentrated in zero degree, let A be a dg category, and suppose that there is a rec-
ollement (D�

† (B) ≡ D�
† (A) ≡ D�

† (C)), where � ∈ {∅,+,−, b} and † ∈ {∅, f l} (here fl
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means ‘finite length’) and all the subcategories contain the respective subcategories
of compact objects.

If the functors j!, j
∗, i∗, i∗ preserve compact objects, the given recollement lifts up

to equivalence to a recollement (D(B) ≡ D(A) ≡ D(C)), which is the upper part of
a ladder of recollements of height two.

In certain circumstances, one can guarantee that the functors preserve compact
objects. For example, this holds in the situation of a recollement Y ≡ D ≡ X of
homologically non-positive homologically finite length dg algebras A, B and C.
This allows us to generalize some of the results from [5] (see proposition 3.19).

In § 4 we define partial silting sets and objects in arbitrary triangulated categories,
give some examples, and study when partial silting sets are uniquely determined by
the associated t-structure. In § 5 we revise the connection between the construction
of (pre)envelopes, t-structures and co-t-structures. It is seen, in particular, that the
bijection between silting objects and bounded co-t-structures of [1,32,38] extends
to any small triangulated category with split idempotents, more generally, one can
consider one-sided bounded co-t-structures in the bijection (see proposition 5.9).
The study of envelopes is later used in the last section to give an explicit construc-
tion of a classical silting object glued with respect to a recollement of bounded
derived categories of finite length algebras.

In § 6 is devoted to the construction of partial silting sets in arbitrary triangulated
categories by gluing t-structures via recollements. Our results on gluing partial
silting sets are based on a technical criterion (theorem 6.3), which allows to glue
partial silting sets TX and TY in triangulated categories X and Y with respect to
a recollement (Y ≡ D ≡ X ). Conditions of theorem 6.3 are easier to check when
TX and TY consist of compact objects and some of the functors in the recollement
preserve compact objects. We refer the reader to a more general theorem 6.10,
which has the following consequence. Note that when A, B and C are finite length
algebras the corollary can be applied, replacing Db

fl(−) by the equivalent category
Db(mod−).

Corollary (see corollary 6.12, 6.13). Let A, B and C be homologically finite length
dg algebras, the first of which is homologically non-positive. Let (Db

fl(B) ≡ Db
fl(A) ≡

Db
fl(C)) be a recollement, let TC and TB be silting objects in Dc(C) and Dc(B),

respectively, with the associated t-structures (X�0,X�0) and (Y�0,Y�0). There
exists a triangle T̃B −→ i∗(TB) −→ UTB

[1] +−→ in Dc(A) such that UTB
∈ j!(X�0)

and T̃B ∈ ⊥j!(X�0)[1]. In particular T = j!(TC) ⊕ T̃B is a silting object in Dc(A),
uniquely determined up to add-equivalence, which generates the glued t-structure
(D�0,D�0) in Db

fl(A).

We finish the paper, comparing our results on gluing silting objects in the par-
ticular context of finite dimensional algebras over a field with the results of [35].
As mentioned before, our methods provide an explicit inductive construction of the
glued silting object in this case, we illustrate how to apply this explicit inductive
construction with an example.
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2. Preliminaries

All categories considered in this paper are K-categories over some commutative
ring K and all functors are assumed to be K-linear. Unless explicitly said other-
wise, the categories which appear will be either triangulated K-categories with split
idempotents or their subcategories, and all of them are assumed to have Hom-sets.
All subcategories will be full and closed under isomorphisms. Coproducts and prod-
ucts are always small (i.e. set-indexed). The expression ‘D has coproducts (resp.
products)’ will mean that D has arbitrary set-indexed coproducts (resp. products).
When S ⊂ Ob(D) is a class of objects, we shall denote by addA(S) (resp. AddA(S))
the subcategory of D consisting of the objects which are direct summands of finite
(resp. arbitrary) coproducts of objects in S.

Let D be a triangulated category, we will denote by [1] : D −→ D the suspension
functor, [k] will denote the k-th power of [1], for each integer k. (Distinguished)
triangles in D will be denoted by X −→ Y −→ Z

+−→. A triangulated functor F :
D1 −→ D2 between triangulated categories is an additive functor together with a
natural isomorphism F ◦ [1] 
 [1] ◦ F , which sends triangles to triangles. For more
details on triangulated categories see [40].

Let D be a triangulated category and let S be a class of objects in D. We are
going to use the following subcategories of D:

S⊥ = {X ∈ D | HomD(S,X) = 0 for any S ∈ S}
⊥S = {X ∈ D | HomD(X,S) = 0 for any S ∈ S}

for an integer n and ∗ standing for � n, � n, > n, < n or k ∈ Z

S⊥∗ = {X ∈ D | HomD(S,X[k]) = 0 for any S ∈ S and k ∈ Z satisfying ∗}
⊥∗S = {X ∈ D | HomD(X,S[k]) = 0 for any S ∈ S and k ∈ Z satisfying ∗}.

Given two subcategories X and Y of a triangulated category D, we will denote
by X � Y the subcategory of D consisting of the objects M which fit into a triangle
X −→ M −→ Y

+−→, where X ∈ X and Y ∈ Y. Due to the octahedral axiom, the
operation � is associative, so for a family of subcategories (Xi)1�i�n the subcate-
gory X1 � X2 � · · · � Xn is well-defined (see [10]). A subcategory X is closed under
extensions when X � X ⊆ X .

Given a triangulated category D, a subcategory E will be called a suspended
(resp. strongly suspended) subcategory if E [1] ⊆ E and E is closed under extensions
(resp. extensions and direct summands). If E is strongly suspended and E = E [1], we
will say that E is a thick subcategory. When D has coproducts, a triangulated sub-
category closed under taking arbitrary coproducts is called a localizing subcategory.
Note that such a subcategory is always thick by [40, proposition 1.6.8]. Clearly,
there are dual concepts of a (strongly) cosuspended subcategory and a colocaliz-
ing subcategory, while that of a thick subcategory is self-dual. Given a class S of
objects of D, we will denote by suspD(S) (resp. thickD(S)) the smallest strongly
suspended (resp. thick) subcategory of D containing S. When D has coproducts, we
will let SuspD(S) and LocD(S) be the smallest (strongly) suspended subcategory
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closed under taking coproducts and the smallest localizing subcategory containing
S, respectively.

2.1. Torsion pairs, t-structures and co-t-structures

A pair of subcategories (X ,Y) in D is a torsion pair if

• X and Y are closed under direct summands;

• HomD(X,Y ) = 0, for all X ∈ X and Y ∈ Y;

• D = X � Y.

A t-structure in D is a pair (D�0,D�0) such that (D�0,D�0[−1]) is a torsion
pair and D�0[1] ⊆ D�0. A co-t-structure or a weight structure is a pair (D�0,D�0)
such that (D�0[−1],D�0) is a torsion pair and D�0[−1] ⊆ D�0. Adopting the ter-
minology used for t-structures, given a torsion pair (X ,Y), we will call X and Y
the aisle and the co-aisle of the torsion pair. Note that the aisle of a torsion pair
(X ,Y) is suspended (resp. cosuspended) if and only if (X ,Y[1]) (resp. (X [1],Y)) is
a t-structure (resp. co-t-structure).

For a t-structure (D�0,D�0), the objects U and V in a triangle U −→ M −→
V

+−→, with U ∈ D�0 and V ∈ D>0 := D�0[−1], are uniquely determined by M ∈
D up to isomorphism. The assignments M � U and M � V coincide on objects
with the action of the functors τ�0 : D −→ D�0 and τ>0 : D −→ D>0, which are
right and left adjoint to the inclusion functors. The functors τ�0 and τ>0 are
called the left and right truncation functors with respect to the t-structure. When
τ = (D�0,D�0) (resp. (D�0,D�0)) is a t-structure (resp. a co-t-structure), the
intersection H := D�0 ∩ D�0 (resp. C := D�0 ∩ D�0) is called the heart (resp. co-
heart) of the t-structure (resp. co-t-structure). Recall that H is an abelian category
in which the short exact sequences are induced by the triangles with all the three
terms in H (see [10]). Sometimes we shall use the term co-heart of the t-structure τ ,
meaning the intersection Cτ = ⊥(D�0)[1] ∩ D�0. A semi-orthogonal decomposition
of D is a torsion pair (X ,Y) such that X = X [1] (or, equivalently, Y = Y[1]). Note
that such a pair is both a t-structure and a co-t-structure in D, and the correspond-
ing truncation functors are triangulated. The notions of torsion pair, t-structure,
co-t-structure and semi-orthogonal decomposition are self-dual.

If D′ is a thick subcategory of D, we say that a torsion pair τ = (X ,Y) in D
restricts to D′ when τ ′ := (X ∩ D′,Y ∩ D′) is a torsion pair in D′. In this case τ ′ is
called the restriction of τ to D′. Conversely, when τ ′ = (X ′,Y ′) is a torsion pair in
D′, we say that it lifts to D if there is a torsion pair τ = (X ,Y) in D which restricts
to τ ′. Then τ is called a lifting of τ ′ to D.

Given two torsion pairs τ = (X ,Y) and τ ′ = (Y ′,Z) in D, we shall say that τ is
left adjacent to τ ′ or that τ ′ is right adjacent to τ or that τ and τ ′ (in this order)
are adjacent torsion pairs when Y = Y ′. Note that the torsion pairs associated to
the co-t-structure (D�0,D�0) and the t-structure (D�0,D�0) are adjacent if and
only if D�0 = D�0. In this case their co-hearts coincide. A triple of subcategories
(X ,Y,Z) of D is called a torsion torsion-free triple (TTF triple, for short) when
(X ,Y) and (Y,Z) are adjacent t-structures, which is equivalent to saying that they
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are adjacent semi-orthogonal decompositions. We shall say that such a TTF triple
is extendable to the right when (Y,Z,Z⊥) is also a TTF triple. By [45, proposition
3.4], we know that this is always the case when D and the torsion pair (Y,Z) are
compactly generated (see § 2.3 for the definition of compact generation). As before,
one can consider lifting and restriction of TTF triples (see [46] for details).

2.2. Recollements

Let D, X and Y be triangulated categories. D is said to be a recollement of X
and Y if there are six triangulated functors as in the following diagram

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

(2.1)

such that

(1) (i∗, i∗), (i∗, i!), (j!, j∗), (j∗, j∗) are adjoint pairs,

(2) i∗, j∗, j! are full embeddings,

(3) i!j∗ = 0 (and, hence j∗i∗ = 0 and i∗j! = 0),

(4) for any Z ∈ D the units and the counits of the adjunctions give triangles:

i∗i
!Z −→ Z −→ j∗j

∗Z
+−→,

j!j
∗Z −→ Z −→ i∗i

∗Z
+−→ .

To any recollement one canonically associates the TTF triple (Im(j!), Im(i∗),
Im(j∗)) in D. Conversely, if (X ,Y,Z) is a TTF triple in D, then one obtains a
recollement as above, where j! : X ↪→ D and i∗ : Y ↪→ D are the inclusion functors.
Two recollements (Y ≡ D ≡ X ) and (Ỹ ≡ D ≡ X̃ ) are said to be equivalent when
the associated TTF triples coincide. It is easy to see that this is equivalent to the
existence of triangulated equivalences F : X

∼=−→ X̃ and G : Y
∼=−→ Ỹ such that the

sextuple of functors associated to the second recollement is pointwise naturally
isomorphic to (G ◦ i∗, i∗ ◦ G−1, G ◦ i!, j! ◦ F−1, F ◦ j∗, j∗ ◦ F−1), for any choice of
quasi-inverses F−1 and G−1 of F and G.

Given thick subcategories Y ′ ⊆ Y, D′ ⊆ D and X ′ ⊆ X and a recollement

Y ′
ĩ∗ �� D′
ĩ!��

ĩ∗��
j̃∗

�� X ′
j̃∗��

j̃!��

, (2.2)

we say that the recollement (2.1) restricts to the recollement (2.2) or that the rec-
ollement (2.2) lifts to the recollement (2.1), when the functors in the recollement
(2.2) are naturally isomorphic to the restrictions of the functors in the recolle-
ment (2.1). We shall say that the recollement (2.1) restricts, up to equivalence, to
the recollement (2.2), or that the recollement (2.2) lifts, up to equivalence, to the
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recollement (2.1) when the TTF triple (Im(j!), Im(i∗), Im(j∗)) restricts to D′ and
the restriction coincides with (Im(j̃!), Im(̃i∗), Im(j̃∗)). Obviously ‘restricts’ implies
‘restricts up to equivalence’.

Remark 2.1. The typical situation throughout this paper is that of a recollement
(2.2), where we know that Y ′, D′ and X ′ are thick subcategories of Y, D and X ,
respectively. The condition that the TTF triple (Im(j̃!), Im(̃i∗), Im(j̃∗)) in D′ lifts
to a TTF triple in D does not mean that it lifts to a TTF triple coming from a
recollement (2.1), i.e. it might happen that we cannot find functors i∗, i∗, i

!, j!, j
∗

and j∗, which restrict to the functors ĩ∗, ĩ∗, ĩ
!, j̃!, j̃

∗ and j̃∗. Therefore if the rec-
ollement (2.2) lifts up to equivalence to a recollement (2.1), then the TTF triple
(Im(j̃!), Im(̃i∗), Im(j̃∗)) lifts to a TTF triple in D, but the converse need not be
true. Similarly, it might happen that a TTF triple coming from the recollement
(2.1) restricts to the subcategory D′ but the functors from (2.1) do not restrict to
Y ′,D′ and X ′.

Given torsion pairs (X ′,X ′′) and (Y ′,Y ′′) in X and Y, respectively, the torsion
pair glued with respect to the recollement (2.1) is the pair (D′,D′′) in D, where

D′ = {Z ∈ D|j∗Z ∈ X ′, i∗Z ∈ Y ′},

D′′ = {Z ∈ D|j∗Z ∈ X ′′, i!Z ∈ Y ′′}.

Moreover, when the original torsion pairs are associated to t-structures (resp.
co-t-structures or semi-orthogonal decompositions), the resulting torsion pair is
associated to a t-structure (resp. co-t-structure or semi-orthogonal decomposi-
tion) in D (see [10, théorème 1.4.10] for t-structures and [13, theorem 8.2.3] for
co-t-structures).

A ladder of recollements L is a finite or infinite diagram of triangulated categories
and triangulated functors

...
...

...

C′ ��

��

��

C��

��
��

��

�� C′′
��

��

...
...

...

such that any three consecutive rows form a recollement (see [5,11]). The height of
a ladder is the number of recollements contained in it (counted with multiplicities).

2.3. Generation and Milnor colimits

For a class of objects S in D one can consider the pair of subcategories
(X ,Y) = (⊥(S⊥),S⊥). Then, X and Y are closed under direct summands and
HomD(X,Y ) = 0 for all X ∈ X and Y ∈ Y. However, the inclusion X � Y ⊆ D
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might be strict, so that (X ,Y) is not necessarily a torsion pair. We shall say that S
generates a torsion pair in D or that the torsion pair generated by S in D exists if
(⊥(S⊥),S⊥) is a torsion pair. Slightly abusing common terminology, we will say that
S generates a t-structure (resp. co-t-structure or semiorthogonal decomposition) or
that the t-structure (resp. co-t-structure or semiorthogonal decomposition) gener-
ated by S in D exists when the torsion pair generated by

⋃
k�0 S[k] (resp.

⋃
k�0 S[k]

or
⋃

k∈Z
S[k]) exists. In all those cases S is contained in the aisle of the correspond-

ing t-structure (resp. co-t-structure, resp. semi-orthogonal decomposition). That is,
if (X ,Y) is the torsion pair constructed above, then (X ,Y[1]) = (⊥(S⊥�0),S⊥<0)
and (X ,Y[−1]) = (⊥(S⊥�0),S⊥>0) are the t-structure and co-t-structure generated
by S. The semi-orthogonal decomposition generated by S is (⊥(S⊥k∈Z),S⊥k∈Z) and
not (⊥(S⊥k∈Z),S⊥k∈Z)). The definition of the dual notions is left to the reader. We
just point out that, keeping the dual philosophy of forcing S to be contained in the
co-aisle, the t-structure (resp. co-t-structure) cogenerated by S, when it exists, is
the pair (⊥<0S, (⊥�0S)⊥) (resp. (⊥>0S, (⊥�0S)⊥)). A class (resp. set) S ⊂ Ob(D)
is a generating class (resp. set) of D if S⊥k∈Z = 0, in this case we will also say,
that S generates D. We say that D satisfies the property of infinite dévissage with
respect to S when D = LocD(S), a fact that implies that S generates D. When
D has coproducts, a compact object is an object X such that the canonical map∐

i∈I HomD(X,Mi) −→ HomD(X,
∐

i∈I Mi) is bijective, for each family of objects
(Mi)i∈I . A torsion pair is called compactly generated when there exists a set of
compact objects which generates the torsion pair. We say that D is a compactly
generated triangulated category when it has a generating set of compact objects.
It is well-known that in this case the subcategory Dc of the compact objects of D
is skeletally small (see, e.g. [40, lemma 4.5.13]). A triangulated category is called
algebraic when it is triangulated equivalent to the stable category of a Frobenius
exact category (see [26] and [49]).

Assuming that D has coproducts, for a sequence of morphisms

0 = X−1
x0−→ X0

x1−→ X1
x2−→ · · · xn−→ Xn

xn+1−→ · · · (2.3)

let us denote by σ :
∐

n∈N
Xn −→

∐
n∈N

Xn the unique morphism such that σ ◦ ιk =
ιk+1 ◦ xk+1, where ιk : Xk −→

∐
n∈N

Xn is the canonical inclusion, for all k ∈ N.
The Milnor colimit (or homotopy colimit [40]) of the sequence is the object X =
Mcolim(Xn) which appears in the triangle

∐
n∈N

Xn
1−σ−→

∐
n∈N

Xn −→ X
+−→ .

We will frequently use the fact that, when D has coproducts and S is a set of
compact objects, the pair (⊥(S⊥),S⊥) is a torsion pair in D (see [1, theorem 4.3]
or [2,42]). In the case of the t-structure (resp. semi-orthogonal decomposition)
generated by S, one has ⊥(S⊥�0) = SuspD(S) (resp. ⊥(S⊥i∈Z) = LocD(S)) (see
[28, theorem 12.1], [45, lemma 2.3]). Furthermore, the objects of LocD(S) (resp.
SuspD(S), for a non-positive S) are precisely the Milnor colimits of sequences of
the form (2.3), where the cone of each xn, denoted by cone(xn), is a coproduct of
objects from

⋃
k∈Z

S[k] (resp. of objects from S[n]), for each n ∈ N (see the proof
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of [40, theorem 8.3.3] for LocD(S), and [28, theorem 12.2] and [47, theorem 2] for
SuspD(S)) (see also [57, theorem 3.7]).

A class of objects T is called non-positive if HomD(T, T ′[i]) = 0 for any T, T ′ ∈
T , i > 0. Two non-positive sets T and T ′ are said to be add- (resp. Add-) equivalent
when add(T ) = add(T ′) (resp. Add(T ) = Add(T ′)).

2.4. DG categories and algebras

A differential graded (=dg) category is a category A such that, for each pair
(A,B) of its objects, the K-module of morphisms, denoted by A(A,B), has
a structure of a differential graded K-module (or equivalently a structure of
a complex of K-modules) so that the composition map A(B,C) ⊗A(A,B) −→
A(A,C) (g ⊗ f � g ◦ f) is a morphism of degree zero of the underlying graded
K-modules which commutes with the differentials. This means that d(g ◦ f) =
d(g) ◦ f + (−1)|g|g ◦ d(f) whenever g ∈ A(B,C) and f ∈ A(A,B) are homogeneous
morphisms and |g| is the degree of g. The reader is referred to [24] and [26] for
details on dg categories. The most important concept for us is the derived cate-
gory of a small dg category, denoted by D(A). It is the localization, in the sense
of Gabriel–Zisman [18] of C(A) with respect to the class of quasi-isomorphisms.
Here C(A) denotes the category whose objects are the (right) dg A-modules (i.e.
the dg functors M : Aop −→ CdgK, where CdgK is the category of dg K-modules)
and the morphisms f : M −→ N are the morphisms of degree zero in the under-
lying graded category which commute with the differentials. The category D(A)
is triangulated and it turns out that, up to triangulated equivalence, the derived
categories D(A) are precisely the compactly generated algebraic triangulated cat-
egories (see [24, theorem 4.3]). The canonical set of compact generators of D(A)
is the set of representable dg A-modules {A∧: A ∈ A}, where A∧ : Aop −→ CdgK
takes A′ to A(A′, A), for each A′ ∈ A. We will frequently use the fact that there is
a natural isomorphism of K-modules HomD(A)(A∧,M [k]) ∼= Hk(M(A)), for A ∈ A
and M ∈ D(A).

Two particular cases of small dg categories A will be of special interest to us.
Any small K-category can be considered as a dg category concentrated in degree
zero. A dg algebra A, i.e. an associative unital graded algebra A with a differential
d : A −→ A which satisfies the graded Leibniz rule, is a dg category with just one
object. The intersection of both cases is the case of an associative unital algebra,
called ordinary algebra throughout the paper, which is then considered as a dg
category with just one object concentrated in degree zero. Such an algebra will
be called a finite length algebra when it has finite length as a K-module (note
that we are neither requiring K to be a field nor an Artin ring). Note also that
an Artin algebra is just an ordinary algebra which is finite length over its centre,
which, in turn, is a commutative Artin ring. Conversely, an ordinary K-algebra A is
finite length if, and only if, it is an Artin algebra whose centre is a (commutative)
finite length K-algebra. For any ordinary algebra A, we will denote by Mod-A
(resp. mod-A, fl-A, Proj-A, proj-A) the category of all (resp. finitely presented,
finite length, projective, finitely generated projective) right A-modules. We refer
the reader to [3,8,9,61] for the classical terminology concerning ordinary rings,
algebras and their modules.
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3. On lifting recollements and TTF triples

In this section for thick subcategories of compactly generated algebraic triangulated
categories we investigate the relation between the preservation of compactness by
the functors of the recollement and lifting TTF triples and recollements.

The following lemma was proved in [45, lemma 2.4] and [45, lemma 2.3].

Lemma 3.1. Let T be a triangulated category with coproducts. If (E ,F) is a com-
pactly generated semi-orthogonal decomposition in T , then E is compactly generated
as a triangulated category and Ec = E ∩ T c. Moreover, F has coproducts, calculated
as in T , and the left adjoint τ : T −→ F of the inclusion functor preserves compact
objects. When, in addition, T is compactly generated, F is compactly generated by
τ(T c).

Lemma 3.2. Let D̂ be a compactly generated triangulated category and
let (U0,V0) be a semi-orthogonal decomposition of D̂c. Then (U ,V,W) :=
(LocD̂(U0),LocD̂(V0),LocD̂(V0)⊥) is a TTF triple in D̂ such that (U ,V) and (V,W)
are compactly generated semiorthogonal decompositions. Moreover, (U ∩ D̂c,V ∩
D̂c) = (U0,V0) = (Uc,Vc).

Proof. The pair (V,W) is clearly a torsion pair. We need to prove that (U ,V) is
a torsion pair in D̂. The argument is standard and can be found in the literature
(see [46]). We sketch it, leaving some details to the reader. Since objects in U0

are compact and objects in V are Milnor colimits of sequences of morphisms with
cones in Add(V0), we see that V ⊆ U⊥. For M ∈ U⊥ = (U0)⊥ let us consider the
truncation triangle V −→ M −→ W

+−→ with respect to (V,W). We get W ∈ U⊥

and W ∈ V⊥. Therefore, W ∈ (U0 ∪ V0)⊥. But for each D ∈ D̂c there is a triangle
U0 −→ D −→ V0

+−→, whose outer terms are in U0 and V0, respectively. It follows
that HomD̂(D,W ) = 0, for all D ∈ D̂c. This implies that W = 0, so V ∼= M belongs
to V. Then the pair (U ,V) is of the form (LocD̂(U0),LocD̂(U0)⊥), and hence is a
torsion pair. The torsion pairs (U ,V) and (V,W) are compactly generated by sets
U0 and V0, respectively.

By lemma 3.1, we know that (U ∩ D̂c,V ∩ D̂c) = (Uc,Vc). Since U0 is a thick
subcategory of a compactly generated triangulated category U which generates U
and consists of compact objects of U , we get U0 = Uc. Similarly, V0 = Vc. �

The key result of the section is the following.

Theorem 3.3. Let

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

be a recollement, where Y, D and X are thick subcategories of compactly generated
triangulated categories Ŷ, D̂ and X̂ which contain the respective subcategories of
compact objects. Consider the following assertions:
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(1) The given recollement lifts to a recollement

Ŷ
î∗ �� D̂î!��

î∗��
ĵ∗

�� X̂ĵ∗��

ĵ!��

which is the upper part of a ladder of recollements of height two.

(2) The TTF triple (Im(j!), Im(i∗), Im(j∗)) in D lifts to a TTF triple (U ,V,W)
in D̂ such that:
(a) The torsion pairs (U ,V) and (V,W) are compactly generated (whence

(U ,V,W) is extendable to the right);

(b) j!(X̂ c) = U ∩ D̂c and i∗(Ŷc) = V ∩ D̂c.

(3) The functors j!, j∗, i∗ and i∗ preserve compact objects, i.e. j!(X̂ c) ⊆ D̂c and
similarly for j∗, i∗ and i∗.

The implications (1) =⇒ (2) =⇒ (3) hold. Moreover, when Im(i∗) cogenerates
LocD̂(i∗(Ŷc)) or D cogenerates D̂, the implication (3) =⇒ (2) also holds.

Proof. (1) =⇒ (2) The functors ĵ!, ĵ∗, î∗ and î∗ preserve compact objects, since
they have right adjoints which preserve coproducts, because they also have right
adjoints. Let us consider the TTF triple (U ,V,W) := (Im(ĵ!), Im(̂i∗), Im(ĵ∗)) asso-
ciated with the recollement from assertion 1. The torsion pair (U ,V) is generated by
ĵ!(X̂ c) = j!(X̂ c). Indeed, the inclusion (ĵ!(X̂ c))⊥ ⊇ (Im(ĵ!))⊥ is obvious, the inverse
inclusion follows from the fact that, by infinite dévissage, X̂ = LocX̂ (X̂ c) and ĵ!
commutes with coproducts. Since j!(X̂ c) consists of compact objects and is skele-
tally small there is a set of compact objects generating (U ,V). Similarly, the torsion
pair (V,W) is generated by î∗(Ŷc) = i∗(Ŷc), and hence by a set of compact objects.
Thus condition 2.a holds and, moreover, we have inclusions j!(X̂ c) ⊆ U ∩ D̂c and
i∗(Ŷc) ⊆ V ∩ D̂c. On the other hand, if U ∈ U ∩ D̂c, then ĵ∗U ∈ X̂ c. Choosing now
X ∈ X̂ such that U = ĵ!X, we have X ∼= ĵ∗ĵ!X ∼= ĵ∗U ∈ X̂ c and, hence, U ∼= j!X ∈
j!(X̂ c). Similarly, V ∩ D̂c ⊆ i∗(Ŷc).

(2) =⇒ (3) By condition 2.b we know that j! and i∗ preserve compact objects.
Moreover, j!(X̂ c) = Im(j) ∩ D̂c and i∗(Ŷc) = Im(i∗) ∩ D̂c, since U ∩ D = Im(j!) and
V ∩ D = Im(i∗). This implies that j! and i∗ also reflect compact objects, i.e.
j!(X) ∈ D̂c (resp. i∗(Y ) ∈ D̂c) if and only if X ∈ X̂ c (resp. Y ∈ Ŷc). For any D ∈ D̂c

let us consider the associated triangle j!j
∗D −→ D −→ i∗i

∗D
+−→, we get that j∗

preserves compact objects if and only if so does i∗.
Let us prove that i∗ preserves compact objects. Since the semi-orthogonal

decomposition (Im(j!), Im(i∗)) is the restriction to D of (U ,V), the associated
truncation functor τ : D̂ −→ V has the property that τ(D) = V ∩ D = Im(i∗). By
lemma 3.1, we know that τ(D̂c) = Vc = V ∩ D̂c = Im(i∗) ∩ D̂c. We next decom-
pose i∗ as Y

∼=−→ Im(i∗) = D ∩ V ↪→ D, where the first arrow i∗ is an equivalence

https://doi.org/10.1017/prm.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.3


Lifting of recollements and gluing of partial silting sets 221

of categories. Then the left adjoint i∗ is naturally isomorphic to the composi-

tion D τ−→ Im(i∗) = D ∩ V i−1
∗−→ Y. But i−1

∗ (V ∩ D̂c) = Ŷc, since i∗(Ŷc) = V ∩ D̂c.
Therefore we get that i∗(D̂c) = Ŷc.

3) =⇒ 2) (assuming any of the extra hypotheses). Setting U0 := j!(X̂ c) and V0 :=
i∗(Ŷc), by lemma 3.2, (U ,V,W) := (LocD̂(j!(X̂ c)),LocD̂(i∗(Ŷc)),LocD̂(i∗(Ŷc))⊥) is
a TTF-triple with (U ,V) and (V,W) compactly generated by j!(X̂ c) and i∗(Ŷc).

We need to check that U ∩ D = Im(j!) and V ∩ D = Im(i∗). The equality
Im(j∗) = W ∩D will then follow automatically. Indeed, the inclusion Im(j∗) ⊆
W ∩D is obvious, the other inclusion follows from orthogonality. By properties of
recollements (see [10]), Im(i∗) = Ker(j∗). Since X̂ is compactly generated, an object
D of D belongs to Ker(j∗) if and only if 0 = HomX (X, j∗D) ∼= HomD(j!X,D), for
all X ∈ X̂ c. This happens exactly when D ∈ LocD̂(j!(X̂ c))⊥ ∩ D = V ∩ D, and thus
V ∩ D = Im(i∗).

Let us check that U ∩ D = Im(j!). Since each object of U is the Milnor colimit
of a sequence of morphisms in D̂ with successive cones in Add(j!(X̂ )c) and since
HomD̂(j!X,−) vanishes on Im(i∗), for each X ∈ X , we get that U ∩ D ⊆ Im(j!).
Indeed, (Im(j!), Im(i∗)) is a torsion pair in D and hence Im(j!) = ⊥Im(i∗) ∩ D. Con-
versely, for D ∈ Im(j!) let us consider the truncation triangle U −→ D −→ V

+−→
in D̂ with respect to (U ,V). As before, HomD̂(U,−) vanishes on Im(i∗), and
hence HomD̂(V,−) vanishes on Im(i∗). In the assumption that Im(i∗) cogenerates
V = LocD̂(i∗(Ŷc)), we immediately get V = 0. In the other case, we also have that
HomD̂(V,−) vanishes on W and, hence, it also vanishes on Im(j∗). It follows that
HomD̂(V,−) vanishes both on Im(j∗) and Im(i∗). This implies that HomD̂(V,−)
vanishes on D, and hence that V = 0 since, by hypothesis, D cogenerates D̂. Under
both extra hypotheses, we then get that U ∼= D ∈ U ∩ D.

Let us prove the inclusions U ∩ D̂c ⊆ j!(X̂ c) and V ∩ D̂c ⊆ i∗(Ŷc), the inverse
inclusions are obvious. For U ∈ U ∩ D̂c ⊆ Im(j!) the adjunction map j!j

∗(U) −→
U is an isomorphism. It follows that U ∈ j!(X̂ c), since j∗(U) ∈ X̂ c. The second
inclusion is analogous. �

Corollary 3.4. If in theorem 3.3 we assume that D = D̂c, then assertion 2 of the
theorem holds if and only if Y = Ŷc and X = X̂ c.

Proof. Let us suppose that D = D̂c in the recollement of theorem 3.3. If asser-
tion 2 of the theorem holds so does assertion 3, and hence the functors j!, j∗, i∗

and i∗ preserve compact objects. Hence, Im(j∗) ⊆ X̂ c and Im(i∗) ⊆ Ŷc. It follows
that Y = Ŷc and X = X̂ c, since the functors i∗ and j∗ are dense, for any recolle-
ment. Conversely, if Y = Ŷc and X = X̂ c, then (Im(j!), Im(i∗)) = (j!(X̂ c), i∗(Ŷc)) is
a semi-orthogonal decomposition of D = D̂c and by lemma 3.2 there is a TTF triple
(U ,V,W) = (LocD̂(Im(j!)),LocD̂(Im(i∗)),LocD̂(Im(i∗))⊥) in D̂, with compactly
generated constituent torsion pairs, such that (U ∩ D,V ∩ D) = (Im(j!), Im(i∗)).
Since W ∩D = V⊥ ∩ D = Im(i∗)⊥ ∩ D = Im(j∗), the TTF triple (U ,V,W) satisfies
all the conditions of assertion 2 in theorem 3.3. �

We immediately get:
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Corollary 3.5. Let Ŷ, D̂ and X̂ be compactly generated triangulated categories
and suppose that we have a recollement

Ŷc
i∗ �� D̂c
i!��

i∗��
j∗

�� X̂ c
j∗��

j!��

Then the TTF triple (Im(j!), Im(i∗), Im(j∗)) in D̂c lifts to a TTF triple (U ,V,W)
in D̂, where the torsion pairs (U ,V) and (V,W) are compactly generated.

Here is a list of examples where the last corollary applies:

Example 3.6. Let us consider one of the following situations:

(1) Let A, B and C be finite dimensional algebras over a field. Let the triple Y ≡
D ≡ X be mod-B̂ ≡ mod-Â ≡ mod-Ĉ, where mod-Â is the stable category of
the repetitive algebra Â of A (see [21, § 2.2]) and let D̂ be Mod-Â.

(2) Let A, B and C be self-injective finite length algebras. Let the triple Y ≡
D ≡ X be mod-B ≡ mod-A ≡ mod-C, where mod-A is the stable category of
A and let D̂ be Mod-A.

(3) Let U, X and Z be separated Noetherian schemes. Let the triple Y ≡ D ≡
X be Db(coh(U)) ≡ Db(coh(X)) ≡ Db(coh(Z)) and let D̂ be K(Inj-X) – the
homotopy category of injective objects of Qcoh(X).

(4) Let A, B and C be right Noetherian rings. Let the triple Y ≡ D ≡ X be
Db(mod-B) ≡ Db(mod-A) ≡ Db(mod-C) and let D̂ be the homotopy category
of injectives K(Inj-A).

Suppose there is a recollement

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

and consider D as a full triangulated subcategory of D̂, then there exists a TTF
triple (U ,V,W) in D̂, with compactly generated constituent torsion pairs (U ,V)
and (V,W), which restricts to the TTF triple (Im(j!), Im(i∗), Im(j∗)) in D.

Proof. In all the cases, it turns out that the three categories of the recollements
are the subcategories of compact objects in the appropriate compactly generated
triangulated categories.

(1) Let Λ̂ denotes the repetitive algebra of Λ. It is easy to see that the cate-
gory Mod-Λ̂ of unitary Λ̂-modules (i.e. modules M such that M Λ̂ = M) is
a Frobenius category, so that its stable category Mod-Λ̂ is triangulated and
compactly generated. Its subcategory of compact objects is precisely mod-Λ̂,
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where mod-Λ̂ is the subcategory of Mod-Λ̂ consisting of the finitely generated
Λ̂-modules, which coincide with the Λ̂-modules of finite length.

(2) It is well-known that if Λ is a self-injective Artin algebra, in particular a
self-injective finite length algebra, then its module category Mod-Λ is Frobe-
nius and its associated triangulated stable category Mod-Λ has mod-Λ as its
subcategory of compact objects.

(3) and (4) By [33, theorem 1.1], we can identify Db(coh(Y)) with the subcat-
egory of compact objects of K(Inj-Y), for any separated Noetherian scheme
Y, and by [33, proposition 2.3], we can identify Db(mod-R) with the subcat-
egory of compact objects of K(Inj-R), for any right Noetherian ring R (here
mod-R is the category of finitely generated R-modules, which coincides with
that of Noetherian modules).

With all these considerations in mind, the result is now a direct consequence of
the previous corollary. �

In order to provide some examples where condition 3 of the last theorem implies
condition 2, we introduce the following terminology.

Notation and Terminology 3.7: Given any triangulated category D and any
class X of its objects, we denote by D−

X (resp. D+
X or Db

X ) the (thick) subcategory of
D consisting of objects M such that, for each X ∈ X , one has HomD(X,M [k]) = 0
for k � 0 (resp. k � 0 or |k| � 0). We denote by DX ,fl the (thick) subcategory
of D consisting of objects M such that, for each X ∈ X and each k ∈ Z, the
K-module HomD(X,M [k]) is of finite length. We finally put D�

X ,† = D�
X ∩ DX ,†,

for � ∈ {∅,+,−, b} and † ∈ {∅, f l}. In the particular case when D is compactly gen-
erated and X = Dc, we will simply write D�

† instead of D�
X ,†. Note that, in order to

define D�
† in the latter case, one can replace Dc by any set X of compact generators

of D, since Dc = thickD(X ). Let us denote by P�
† the property that defines the full

subcategory D∗
† of D. For instance, if � = − and † = fl, then, for a given M ∈ D,

we will say that M satisfies property P�
† , for some X ∈ Dc, when HomD(X,M [k])

is zero, for k � 0, and is a K-module of finite length, for all k ∈ Z.

Example 3.8. If A is a small dg category, then D−(A) := D(A)− (resp. D+(A) :=
D(A)+ or Db(A) := D(A)b) is the subcategory of D(A) consisting of dg A-modules
M such that, for each A ∈ A, one has HkM(A) = 0 for k � 0 (resp. k � 0 or
|k| � 0). Similarly, for � ∈ {∅,+,−, b}, one has D�

fl(A) consists of dg A-modules
M ∈ D�(A) such that HkM(A) is a K-module of finite length, for each A ∈ A and
each k ∈ Z.

Remark 3.9. In [46] D−(A) was defined as the union
⋃

k�0 U [k], where U =
D�0(A). Here D�0(A) = SuspD(A)(A∧: A ∈ A), which is the aisle of a t-structure
in D(A). That definition does not agree in general with the one given here, although
they coincide when A = A is a dg algebra.
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Definition 3.10. Let D be a compactly generated triangulated category. We will
say that D is homologically locally bounded when Dc ⊆ Db and D is homologically
locally finite length when Dc ⊆ Db

fl.

Example 3.11. If A is a small dg category and D = D(A) is its derived category,
then D is homologically locally bounded if and only if the set {k ∈ Z: HkA(A,
A′) �= 0} is finite, for all A,A′ ∈ A. Moreover, D is homologically locally finite
length if, in addition, HkA(A,A′) is a K-module of finite length, for all k ∈ Z and
all A,A′ ∈ A. Slightly abusing the terminology, we will say in those cases that A is
a homologically locally bounded or a homologically locally finite length dg category,
respectively. When A = A is a dg algebra, we will simply say that A is homologically
bounded if Hk(A) = 0, for almost all k ∈ Z, or that A is homologically finite length
if H∗(A) := ⊕k∈ZHk(A) is a K-module of finite length.

We are ready to give examples where condition 3 of theorem 3.3 implies
condition 2.

Corollary 3.12. Let Ŷ, D̂ and X̂ be compactly generated triangulated categories.
For � ∈ {∅,+,−, b} and † ∈ {∅, f l} let

Ŷ�
†

i∗ �� D̂�
†i!��

i∗��
j∗

�� X̂ �
†j∗��

j!��

be a recollement, such that the subcategories involved contain the respective subcat-
egories of compact objects and such that the functors j!, j

∗, i∗, i∗ preserve compact
objects. If D̂ is homologically locally bounded (resp. homologically locally finite
length), then the subcategory D̂� (resp. D�

fl) cogenerates D̂, and hence assertion
2 of theorem 3.3 holds for † = ∅ (resp. † = fl).

Proof. Let us check that D̂b (resp. D̂b
fl) cogenerates D̂. For this take a minimal

injective cogenerator E of Mod-K and use the notion of Brown–Comenetz dual.
Since compactly generated (or even well-generated) triangulated categories satisfy
Brown representability theorem (see [40, proposition 8.4.2]), for each X ∈ D̂c, the
functor HomK(HomD̂(X,−), E) : D̂op −→ Mod-K is naturally isomorphic to the
representable functor HomD̂(−,D(X)), for an object D(X), uniquely determined
up to isomorphism, called the Brown–Comenetz dual of X. It immediately follows
that {D(X): X ∈ D̂c} is a skeletally small cogenerating class of D̂. Our task reduces
to check that D(X) ∈ D̂b (resp. D(X) ∈ D̂b

fl), when D̂ is homologically locally
bounded (resp. homologically locally finite length). But this is clear since, given any
Y,X ∈ D̂c, we have that HomD̂(Y,D(X)[k]) ∼= HomK(HomD̂(Y,X[−k]), E) and the
homologically locally bounded condition on D̂ implies that HomD̂(Y,X[−k]) = 0,
for all but finitely many k ∈ Z. When D̂ is homologically locally finite length, we
have in addition that each HomD̂(Y,X[−k]) is of finite length as K-module, which
implies that the same is true for HomD̂(Y,D(X)[k]). �
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Our next result, inspired by the analogous results for derived categories of ordi-
nary algebras [5], says that ‘restriction up to equivalence’ and ‘restriction’ are
equivalent concepts for recollements in some interesting cases.

Proposition 3.13. Let

Ŷ
î∗ �� D̂î!��

î∗��
ĵ∗

�� X̂ĵ∗��

ĵ!��

be a recollement of compactly generated triangulated categories that is the upper part
of a ladder of recollements of height two, let � ∈ {∅, b,−,+} and † ∈ {∅, f l}, and
suppose that Ec ⊆ E�

† , for E = X̂ , D̂, Ŷ. The following assertions are equivalent:

(1) The recollement restricts to (−)�
†-level.

(2) The recollement restricts, up to equivalence, to (−)�
†-level, i.e. the associated

TTF triple (Im(ĵ!), (Im(̂i∗), (Im(ĵ∗)) restricts to D̂�
†

(3) î∗(D̂�
† ) ⊆ Ŷ�

† .

(4) ĵ!(X̂ �
† ) ⊆ D̂�

†

Proof. The fact that the recollement is the upper part of a ladder of recollements of
height two implies that the functors î∗, î∗, ĵ!, ĵ

∗ preserve compact objects, since their
right adjoints preserve coproducts. Note that if in an adjoint pair of triangulated
functors (F : D −→ E , G : E −→ D) between compactly generated triangulated cat-
egories the functor F preserves compact objects, then G(E�

† ) ⊆ D�
† . Indeed, let E ∈

E�
† be any object. Then G(E) ∈ D�

† if and only if G(E) satisfies property P∗
† for all

X ∈ Dc. Due to the natural isomorphism HomE(F (X), E[n]) ∼= HomD(X,G(E)[n]),
for all X ∈ Dc and n ∈ Z, and since F (X) ∈ Ec we get that G(E) satisfies prop-
erty P∗

† for all X ∈ Dc, since E satisfies property P∗
† , for all Z ∈ Ec. This implies

that all the functors î∗, î!, ĵ∗ and ĵ∗ restrict to the (−)�
†-level. In particular, the

triangle î∗î
!D −→ D −→ ĵ∗ĵ

∗D
+−→, which is the truncation triangle with respect

to (V,W) := (Im(̂i∗), Im(ĵ∗)), belongs to D̂�
† for each D ∈ D̂�

† . Therefore the semi-
orthogonal decomposition (V,W) restricts to D̂�

† . As a consequence, assertion 2

holds if and only if the triangle ĵ!ĵ
∗D −→ D −→ î∗î

∗D
+−→ (I), which is the trun-

cation triangle with respect to (U ,V) := (Im(ĵ!), Im(̂i∗)), belongs to D̂�
† for each

D ∈ D̂�
† .

Since î∗ and ĵ∗ are fully faithful, the counits of the adjoint pairs (̂i∗, î∗) and
(ĵ∗, ĵ∗) are natural isomorphisms, and, hence Ŷ�

† ⊆ î∗(D̂�
† ) and ĵ∗(D̂�

† ) = X̂ �
† . Using

this, we get that the triangle (I) belongs to D̂�
† , for each D ∈ D̂�

† if and only if
ĵ!(X̂ �

† ) ⊆ D̂�
† . Thus, assertions 2 and 4 are equivalent.

On the other hand, we have î∗(D̂c) = Ŷc. Indeed, we only need to check the
inclusion ⊇, since î∗ preserves compact objects. If Y ∈ Ŷc then Y ∼= î∗î∗(Y ), and
î∗Y ∈ D̂c. The equality î∗(D̂c) = Ŷc implies, that for Y ∈ Ŷ, one has that î∗Y ∈ D̂�

†
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if and only if Y ∈ Ŷ�
† . Indeed î∗Y ∈ D̂�

† if and only if î∗Y satisfies property P�
† , for

all D0 ∈ D̂c, which, by adjunction, is equivalent to saying that Y satisfies property
P�

† for all î∗(D0), with D0 ∈ D̂c. That is, if and only if Y satisfies property P�
† ,

for all Y0 ∈ Ŷc, if and only if Y ∈ Ŷ�
† . Thus, triangle (I) belongs to D̂�

† , for each
D ∈ D̂�

† , if and only if î∗î
∗D ∈ D̂�

† if and only if î∗D ∈ Ŷ�
† , if and only if î∗(D̂�

† ) ⊆ Ŷ�
† .

Therefore assertions 2 and 3 are also equivalent. Finally, taking into account the
first paragraph of this proof, it is clear that if the equivalent assertions 3 and 4
hold, then assertion 1 holds. �

Theorem 3.14. Let D̂ and X̂ be compactly generated algebraic triangulated cate-
gories and let B be a small K-linear category. For � ∈ {∅,+,−, b} and † ∈ {∅, f l}
let

D�
† (B)

i∗ �� D̂�
†i!��

i∗��
j∗

�� X̂ �
†j∗��

j!��

be a recollement, such that the categories involved contain the respective subcate-
gories of compact objects and such that the functors j!, j

∗, i∗, i∗ preserve compact
objects (that is j!(X̂ c) ⊆ D̂c and similarly for j∗, i∗ and i∗). Then Im(i∗) cogenerates
V = LocD̂(i∗(Dc(B))) and assertion 2 of theorem 3.3 holds.

If in addition X̂ = D(C), for some small K-linear category C, then the given
recollement lifts up to equivalence to a recollement

D(B)
î∗ �� D̂î!��

î∗��
ĵ∗

�� D(C)
ĵ∗��

ĵ!��

,

which is the upper part of a ladder of recollements of height two.

Proof. We are going to use the notation from the proof of theorem 3.3. To prove
the first assertion, we are going to check that D(B)

∼=−→ V and that this equiva-
lence restricts to D�

† (B)
∼=−→ Im(i∗). Note that B is homologically locally bounded

considered as a dg category. When † = fl, due to the inclusion Dc(B) ⊆ D�
† (B),

the dg category B is also homologically locally finite length. By lemma 3.2,
(U ,V,W) = (LocD̂(j!(X̂ c)),LocD̂(i∗(Dc(B))),LocD̂(i∗(Dc(B)))⊥) is a TTF triple in
D̂ and Vc = V ∩ D̂c. By the proof of the implication (3) =⇒ (2) of theorem 3.3,
Im(i∗) = V ∩ D̂�

† . Indeed, the additional condition on Im(i∗) was used only to check
that Im(j!) = U ∩ D̂�

† .
By hypothesis, we have i∗(Dc(B)) ⊆ V ∩ D̂c. For V ∈ V ∩ D̂c ⊆ Im(i∗) take W

such that i∗W 
 V , since i∗ preserves compact objects W 
 i∗i∗W is compact and
V ∈ i∗(Dc(B)). So Vc = V ∩ D̂c = i∗(Dc(B)). Hence, also i∗i

∗D̂c = i∗Dc(B).
Note that V is a quotient of an algebraic compactly generated triangulated cat-

egory by a localizing subcategory generated by a set of compact objects. Then
V is compactly generated by [39, theorem 2.1] (using the description of compact
objects and the right adjoint to the localization functor), and it is also algebraic
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as a triangulated subcategory of an algebraic triangulated category. Furthermore,
by [24, theorem 9.2] there is a triangulated equivalence F : D(B)

∼=−→ V such that
F (B∧) ∼= i∗(B∧), for each B ∈ B. Since Dc(B) = thickD(B)(B∧: B ∈ B), we get
F (Dc(B)) = i∗(Dc(B)).

Consider the canonical triangle j!j
∗Z −→ Z −→ i∗i

∗Z
+−→, for each Z ∈ D̂c.

Since j!j
∗(Z) is compact HomD̂(j!j∗(Z),−) vanishes on Im(F ) = V. For Y ∈ D(B)

we get that F (Y ) belongs to D̂∗
† iff it satisfies property P�

† , for all Z ∈ D̂c, iff it satis-
fies property P�

† , for all Z ′ ∈ D̂c such that Z ′ ∼= i∗i
∗(Z). Since i∗i

∗D̂c = i∗Dc(B), we
get that F (Y ) is in D̂∗

† iff it satisfies property P�
† , for all Z = i∗(M) ∼= F (M ′), with

M,M ′ ∈ Dc(B). The fact that F is an equivalence implies that F (Y ) ∈ D̂∗
† iff Y sat-

isfies property P�
† in D(B) for all M ′ ∈ Dc(B). Thus, F (Y ) ∈ D̂∗

† iff Y ∈ D∗
†B. This

means that F (D∗
† (B)) = D̂∗

† ∩ Im(F ) = D̂∗
† ∩ V = Im(i∗). Therefore F induces an

equivalence of triangulated categories F : D∗
† (B)

∼=−→ Im(i∗). Note that, this equiv-
alence need not be naturally isomorphic to the one induced by i∗. By the proof of
corollary 3.12, D∗

† cogenerates D(B), and hence Im(i∗) cogenerates V.
Let us prove the second assertion of the proposition. From the TTF triple

constructed above we get a recollement:

D(B)
î∗ �� D̂î!��

î∗��
ĵ∗

�� Wĵ∗��

ĵ!��

, (3.1)

where ĵ∗ : W ↪→ D̂ is the inclusion, such that the associated TTF triple
(Im(ĵ!), Im(̂i∗), Im(ĵ∗)) in D̂ restricts to the TTF triple (Im(j!), Im(i∗), Im(j∗)) in
D̂∗

† . In particular, there is an equivalence of categories U
∼=−→ W which restricts to

the canonical equivalence Im(j!)
∼=−→ Im(j∗) given by j∗j

−1
! . As a quotient of an alge-

braic triangulated category W is algebraic. Since W
∼=−→ U = LocD̂(j!(Dc(C))) =

LocD̂(j!(C∧): C ∈ C), we conclude that W is compactly generated by
{j∗(C∧): C ∈ C}.

As before, by [24, theorem 9.2], there is a triangulated equivalence G : D(C)
∼=−→

W such that G(C∧) ∼= j∗(C∧), for each C ∈ C. Let X ∈ D(C) be any object.
We claim that G(X) ∈ Im(j∗) = W ∩ D̂∗

† iff X ∈ D∗
† (C). Indeed, G(X) ∈ D̂∗

† iff
HomD̂(Z,G(X)[k]) satisfies property P�

† , for all Z ∈ D̂c. Using the triangle

i∗i
!Z −→ Z −→ j∗j

∗Z
+−→ and the fact that HomD̂(i∗i!Z,−) vanishes on W =

Im(G), we get that G(X) is in D̂∗
† iff HomD̂(j∗j∗Z,G(X)[k]) satisfies P�

† , for
all Z ∈ D̂c. By hypothesis, we have an inclusion j∗(D̂c) ⊆ Dc(C). Conversely,
if X ′ ∈ Dc(C) then j!(X ′) ∈ D̂c, so that X ′ ∼= j∗j!(X ′) ∈ j∗(D̂c). Thus, when Z
runs through the objects of D̂c, the object j∗Z runs through the objects of
Dc(C). Since Dc(C) = thickD(C)(C∧: C ∈ C), we easily conclude that G(X) ∈ D̂∗

† iff
HomD̂(j∗(C∧), G(X)[k]) satisfies P�

† , for all C ∈ C. Since G is an equivalence of cat-
egories and j∗(C∧) ∼= G(C∧), we have G(X) ∈ D̂∗

† iff HomD(C)(C∧,X[k]) satisfies
P�

† , for all C ∈ C. That is, iff X ∈ D∗
† (C).
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The previous paragraph yields an equivalence of categories G : D(C)
∼=−→ W which

induces by restriction another equivalence D∗
† (C)

∼=−→ Im(j∗). This implies that we
can replace W by D(C) in the recollement (3.1), thus obtaining a recollement as
in the final assertion of the proposition, which in turn restricts to a recollement
whose associated TTF triple is (Im(j!), Im(i∗), Im(j∗)). This last recollement is
then equivalent to the original one.

It remains to prove that the obtained recollement

D(B)
î∗ �� D̂î!��

î∗��
ĵ∗

�� D(C)
ĵ∗��

ĵ!��

is the upper part of a ladder of recollements of height two. This is a direct
consequence of [19, proposition 3.4] since î∗ preserves compact objects. �

Remark 3.15. When B is a K-linear category, the assumption Dc(B) ⊆ D∗
† (B)

always holds when † = ∅. When † = fl the assumption holds iff B(B,B′) is a
K-module of finite length, for all B,B′ ∈ B. In particular when B = B is an ordinary
algebra, the inclusion Dc(B) ⊆ D∗

fl(B) holds iff B is finite length.

For our next result, we shall use the following concept.

Definition 3.16. A compactly generated triangulated category E will be called
compact-detectable in finite length when Ec consists of the objects X ∈ Eb

fl such
that HomE(X,E[k]) = 0 for E ∈ Eb

fl and k � 0. Note that such a category is
homologically locally finite length.

Example 3.17. The following triangulated K-categories D̂ are compact-detectable
in finite length and have the property that D̂b

fl is Hom-finite (i.e. HomD̂(M,N) is
a K-module of finite length for any M , N ∈ D̂b

fl):

(1) D̂ = D(Qcoh(X)), for a projective scheme X over a perfect field K [54].

(2) D̂ = D(A), where A is a homologically non-positive homologically finite
length dg K-algebra, where K is any commutative ring.

Proof. (1) By [54, lemma 7.46], for an arbitrary projective scheme X over
K, we have Db(coh(X)) = D(Qcoh(X))b

fl, which is well-known to be Hom-finite
over K. By [54, lemma 7.49], D(Qcoh(X))c consists of X ∈ D(Qcoh(X)) such
that, for each M ∈ Db(coh(X)), the K-vector space ⊕k∈ZHomD(Coh(X))(X,M [k])
is finite dimensional. But if X,M ∈ Db(coh(X)), then HomD(Qcoh(X))(X,M [k]) =
0 for k � 0. We also know that Db(coh(X)) is Hom-finite. Thus, the subcat-
egory consisting of X ∈ Db(coh(X)) such that, for each M ∈ Db(coh(X)), one
has HomD(Qcoh(X))(X,M [k]) = 0 for k � 0, coincides with the subcategory of
X ∈ Db(coh(X)) such that ⊕k∈ZHomD(Qcoh(X))(X,M [k]) is finite dimensional. This
subcategory is precisely D(Qcoh(X))c ∩ Db(coh(X)) = D(Qcoh(X))c.
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(2) By [46, § 3.7] or [28, example 6.1], there is a canonical t-structure
(D�0A,D�0A) in D(A), where D�0(A) (resp. D�0(A)) consists of the dg A-modules
M such that Hk(M) = 0, for all k > 0 (resp. k < 0). Moreover, D�0(A) =
SuspD(A)(A). By corollary 4.8 below for T = {A}, this t-structure restricts to
Db

fl(A).
Note that there is a dg subalgebra Ã of A, given by Ãn = An, for n < 0,

Ã0 = Z0(A) = {0-cycles of A}, and Ãn = 0, for n > 0. The inclusion λ : Ã ↪→ A
is a quasi-isomorphism, and the associated restriction of scalars λ∗ : D(A) −→
D(Ã) is a triangulated equivalence which takes A to Ã. As a consequence, this
equivalence preserves the canonical t-structure, and hence it induces an equiv-
alence between the corresponding hearts. The heart of (D�0(Ã),D�0(Ã)) is
known to be equivalent to the category of modules over H0(Ã) ∼= H0(A) (see
[28, example 6.1]). This equivalence is given by H0 : H

∼=−→ Mod-H0(A) (M �
H0(M)). Putting Hfl := H ∩Db

fl(A), which is the heart of the restricted t-structure
(D�0(A) ∩ Db

fl(A),D�0(A) ∩ Db
fl(A)) in Db

fl(A), we deduce an equivalence of cat-

egories H0 : Hfl

∼=−→ mod-H0(A), bearing in mind that H0(A) is a finite length
K-algebra.

Let now X ∈ Db
fl(A) be any object. By the proof of [47, theorem 2] and the

fact that HomD(A)(A[k],M) ∼= H−kM is a K-module of finite length, for each
M ∈ Db

fl(A) and each k ∈ Z, we know that X is the Milnor colimit of a sequence

0 = X−1
f0−→ X0

f1−→ X1 −→ · · · −→ Xn
fn−→ · · · such that cone(fn) ∈ add(A)[n],

for each n ∈ N. Let r > 0 be arbitrary and, for each n > r, put un := fn ◦ · · · ◦ fr+1 :
Xr −→ Xn and Cn = cone(un). By Verdier’s 3 × 3 lemma (see [37, lemma 1.7]), we
have a commutative diagram, where all rows and columns are triangles

∐
n>r Xr

∐
n>r un

��

1−σ

��

∐
n>r Xn ��

1−σ

��

∐
n>r Cn

��

��

∐
n>r Xr

��

∐
n>r un

��
∐

n>r Xn ��

��

∐
n>r Cn

��

��

Xr
�� X �� C �� .

Since each Cn is a finite iterated extension of objects in add(A)[n], with n > r, we
get Cn ∈ D<−r(A), for each n > r. It follows that C ∈ D�−r(A). But C ∈ Db

fl(A),
since the left two terms of the triangle in the bottom row of the diagram are in
Db

fl(A). We then get a triangle Xr −→ X −→ C
+−→ in Db

fl(A) such that Xr ∈
Dc(A) and C ∈ D�−r(A). If now Y ∈ Db

fl(A) is any object, then we know that
Y ∈ D>−r(A), for some integer r > 0. For this integer, we then get a monomorphism
HomD(A)(X,Y ) −→ HomD(A)(Xr, Y ) whose target is a K-module of finite length.
This proves that Db

fl(A) is Hom-finite.
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On the other hand, by [15, lemma 3.7], we know that

D�0(A) ∩ Db
fl(A) =

⋃
n∈N

add(Hfl[n] � Hfl[n − 1] � · · · � Hfl[0]). (3.2)

Let X ∈ Db
fl(A) be an object such that, for each M ∈ Db

fl(A), one has
HomD(A)(X,M [k]) = 0 for k � 0 (and, hence, also for |k| � 0). Let us choose a
(necessarily finite) set S of representatives of the isoclasses of simple objects of
Hfl. If m is the Loewy length of H0(A), then Hfl ⊂ add(S)� m. . . �add(S). Fixing
r ∈ N such that HomD(A)(X,S[k]) = 0, for k � r, we get that HomD(A)(X,−[k])
vanishes on Hfl, for all k � r. By (3.2) above, HomD(A)(X,−) vanishes on

D�−r(A) ∩ Db
fl(A). If for this r we consider the triangle Xr −→ X −→ C

+−→ con-
structed above, then the arrow X −→ C is the zero map, and hence X is isomorphic
to a direct summand of Xr and X ∈ Dc(A). �

Remark 3.18. While preparing the manuscript we have learnt that Neeman has
introduced the powerful tool of approximable triangulated categories. Using it, one
can derive the compact-detectability in finite length for the categories from the
last example, using the fact that they are approximable, with the equivalence class
of the canonical t-structure as the preferred one (see [43, examples 3.3 and 3.6]).
Although nontrivial, the only thing left to prove would be the fact that what is
T −

c , in Neeman’s terminology, coincides with D̂b
fl in our case. Once this is proved

the compact-detectability in finite length follows from [41, theorem 0.3].

Proposition 3.19. Let Ŷ, D̂ and X̂ be compactly generated triangulated categories
which are compact-detectable in finite length and let

Ŷb
fl

i∗ �� D̂b
fli!��

i∗��
j∗

�� X̂ b
flj∗��

j!��

be a recollement. Then the functors j!, j∗, i∗ and i∗ preserve compact objects. In
particular, the associated TTF triple (Im(j!), Im(i∗), Im(j∗)) in D̂b

fl lifts to a TTF
triple (U ,V,W) in D̂ such that the torsion pairs (U ,V) and (V,W) are compactly
generated and j!(X̂ c) = U ∩ D̂c and i∗(Ŷc) = V ∩ D̂c.

In the particular case when Ŷ = D(B) and X̂ = D(C), for ordinary finite length
K-algebras B and C (and hence Ŷb

fl
∼= Db(mod-B) and X̂ b

fl
∼= Db(mod-C)), and D̂

is algebraic, the given recollement lifts, up to equivalence, to a recollement

D(B)
î∗ �� D̂î!��

î∗��
ĵ∗

�� D(C),
ĵ∗��

ĵ!��

which is the upper part of a ladder of recollements of height two.

Proof. It is clear that if D and E are triangulated categories which are compact-
detectable in finite length and F : Db

fl −→ Eb
fl is a functor that has a right adjoint,
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then F preserves compact objects. Therefore j!, j∗, i∗ and i∗ preserve com-
pact objects. Now corollary 3.12 says that assertion 2 of theorem 3.3 holds. The
last assertion of the proposition is a direct consequence of the last assertion of
theorem 3.14. �

Remark 3.20. Last proposition applies to any recollement

Db(mod-B)
i∗ �� Db(mod-A)
i!��

i∗��
j∗

�� Db(mod-C),
j∗��

j!��

where A, B and C are finite length algebras.

4. Partial silting sets

Recall that a silting set in a triangulated category D is a non-positive set T such
that thickD(T ) = D (see [1]). In this paper, we will call a silting set with this
property a classical silting set. In [47,50] the authors introduced the notion of
a silting set in any triangulated category with coproducts. We take the following
definition, given in [47] for triangulated categories with coproducts, and consider
it in an arbitrary triangulated category D.

Definition 4.1. Let D be a triangulated category. A set of objects T in D will be
called partial silting when the following conditions hold:

(1) The t-structure generated by T exists in D;

(2) HomD(T,−[1]) vanishes on the aisle of that t-structure, for all T ∈ T .

Such a set will be called a silting set when it generates D.
A t-structure (D�0,D�0) in D is called a (partial) silting t-structure when it is

generated by a (partial) silting set.

Remark 4.2. Note that this definition of a silting set from [47] coincides with
the one from [50], i.e. a set of objects T such that (T ⊥>0 , T ⊥<0) is a t-structure.
Furthermore, ‘silting set in D consisting of compact objects’ and ‘classical silting
set in Dc’ are the same.

Example 4.3.

(a) If D has coproducts, then any non-positive set of compact objects is partial
silting (see [47, example 2(1)]).

(b) Let A be an ordinary algebra and let Kb(Proj-A) denote the bounded
homotopy category of complexes of projective modules. A complex P • ∈
Kb(Proj-A) is called a semi-tilting complex in [59] if HomD(A)(P •, P •(I)[k]) =
0, for all sets I and all integers k > 0, and thickD(A)(Add(P •)) = Kb(Proj-A).
In such a case T = {P •} is a silting set in D(A) (see [47, example 2(2)]).

The following gives a good source of examples of partial silting sets.

https://doi.org/10.1017/prm.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.3
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Proposition 4.4. Let D be a thick subcategory of a triangulated category E and let
T ⊂ D be a set of objects. If T is partial silting in E and the associated t-structure τ
in E restricts to D, then T is partial silting in D. Moreover, when E has coproducts
and T is a silting set in E consisting of compact objects that is partial silting in D,
then τ restricts to the t-structure generated by T in D.

Proof. Assume T is partial silting in E and the associated t-structure τ in E restricts
to D. The restricted t-structure in D is (⊥(T ⊥�0) ∩ D, T ⊥<0 ∩ D), where the orthog-
onals are taken in E . Since HomE(T,−) vanishes on (⊥T ⊥�0)[1], it vanishes on
(⊥(T ⊥�0) ∩ D)[1]. It remains to see that the restricted t-structure is generated by
T in D. That is, that (⊥(T ⊥�0) ∩ D, T ⊥<0 ∩ D) = (⊥(T ⊥�0 ∩ D) ∩ D, T ⊥<0 ∩ D).
Right parts of these pairs coincide and we clearly have the inclusion ⊆ on the left
parts. If X ∈ ⊥(T ⊥�0 ∩ D) ∩ D and U

f−→ X
g−→ V

+−→ is the truncation triangle
with respect to the restricted t-structure, then g = 0 and hence X is a direct sum-
mand of U ∈ ⊥(T ⊥�0) ∩ D. This implies that X belongs to ⊥(T ⊥�0) ∩ D since this
class is closed under direct summands.

For the second part of the statement note that by [47, theorem 1], the set T is
partial silting in E and ⊥(T ⊥�0) = T ⊥>0 . On the other hand, the t-structure in D
generated by T is τ ′ = (⊥(T ⊥�0 ∩ D) ∩ D, T ⊥<0 ∩ D), and the partial silting condi-
tion of T in D gives ⊥(T ⊥�0 ∩ D) ∩ D ⊆ T ⊥>0 , so ⊥(T ⊥�0 ∩ D) ∩ D ⊆ T ⊥>0 ∩ D.
Thus, we get a chain of inclusions ⊥(T ⊥�0) ∩ D ⊆ ⊥(T ⊥�0 ∩ D) ∩ D ⊆ T ⊥>0 ∩ D,
all of which must be equalities. Hence, τ ′ = (T ⊥>0 ∩ D, T ⊥<0 ∩ D) is the restriction
of τ to D. �

We now address the question on the uniqueness of the partial silting set which
generates a given partial silting t-structure. The following is a consequence of the
results in [47, § 4].

Proposition 4.5. Let D be a triangulated category with coproducts. If (D�0,D�0)
is a partial silting t-structure in D, then the partial silting set which generates the
t-structure is uniquely determined up to Add-equivalence.

When D is a subcategory of a category with coproducts and the t-structure is
generated by a partial silting set of compact objects, we still have a certain kind of
uniqueness, as the following result shows.

Proposition 4.6. Let D be a thick subcategory of a triangulated category with
coproducts D̂ such that D̂c ⊆ D and D̂c is skeletally small. Suppose that (D�0,D�0)
is a t-structure in D generated by a partial silting set which consists of compact
objects in D̂. There is a non-positive set T ⊆ D̂c, uniquely determined up to add-
equivalence, such that the following two conditions hold:

(a) T is partial silting in D and it generates (D�0,D�0).

(b) If T ′ ⊂ D̂c is any partial silting set in D which generates (D�0,D�0), then
add(T ′) ⊆ add(T ).

If (D�0,D�0) is the restriction of a t-structure (D̂�0, D̂�0) in D̂ generated by some
non-positive set T0 ⊂ D̂c, then add(T ) = add(T0).
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Proof. Let C := ⊥(D�0[1]) ∩ D�0 be the co-heart of (D�0,D�0) and let T ′ ⊂ Dc

be any partial silting set in D which generates this t-structure. Since HomD(T ′,−)
vanishes on D�0[1], for all T ′ ∈ T ′, we have T ′ ⊂ C, and hence add(T ′) ⊆ C ∩ D̂c.
Let T be a set of representatives of isomorphism classes of objects of C ∩ D̂c. Let
us check that T generates (D�0,D�0).

Without loss of generality, we can assume that T ′ ⊆ T . This implies that T ⊥�0 ∩
D ⊆ T ′⊥�0 ∩ D = D>0 := D�0[−1]. Since T ⊂ D�0, we have that HomD(T, Y ) = 0,
for all T ∈ T and Y ∈ D>0. Hence, the inclusion D>0 = T ′⊥�0 ∩ D ⊆ T ⊥�0 ∩ D
also holds and T generates the t-structure (D�0,D�0).

Let us prove the last assertion of the proposition. Suppose that (D�0,D�0) =
(⊥(T ⊥�0

0 ) ∩ D, T ⊥<0
0 ∩ D), for some non-positive set T0 ⊂ D̂c. Recall that

⊥(T ⊥�0
0 ) = SuspD̂(T0) (see [47, theorem 2]). If C ∈ C ∩ D̂c, then HomD̂(C,−)

vanishes on SuspD̂(T0)[1] = ⊥(T ⊥�0
0 )[1]. Indeed,

⋃
k>0 T0[k] ⊂ D�0[1], HomD̂(C,−)

vanishes on D�0[1] and C is compact. Hence, C ∩ D̂c belongs to the co-heart
Ĉ := ⊥SuspD̂(T0)[1] ∩ SuspD̂(T0) of the t-structure (⊥(T ⊥�0

0 ), T ⊥<0
0 ) in D̂. By [47,

lemma 6], we conclude that C ∩ D̂c ⊆ Add(T0) and, since C ∩ D̂c consists of compact
objects, C ∩ D̂c ⊆ add(T0). On the other hand, by proposition 4.4, T0 is a partial
silting set in D which generates (D�0,D�0). By the first paragraph of the proof,
add(T0) ⊆ C ∩ D̂c, and hence add(T0) = add(T ). �

Recall the notation and terminology of 3.7.

Corollary 4.7. Let D be a triangulated category and let T be a partial silting set
in D. For any � ∈ {∅,+,−, b} and † ∈ {∅, f l} the t-structure τT = (⊥(T ⊥�0), T ⊥<0)
restricts to D�

T ,†. In particular, if T is contained in D�
T ,†, then T is a partial silting

set in D�
T ,†.

Proof. For M ∈ D, let us consider the truncation triangle with respect to τT

U −→ M −→ V
+−→ .

Then V ∈ T ⊥�0 and, since HomD(T ,−) vanishes on ⊥(T ⊥�0)[1], we get U ∈ T ⊥>0 .
This gives induced isomorphisms HomD(T,U [k]) ∼= HomD(T,M [k]), for k � 0,
and HomD(T,M [k]) ∼= HomD(T, V [k]), for k > 0. It immediately follows that τT
restricts to D∗

T ,†, for any choices � ∈ {∅,+,−, b} and † ∈ {∅, f l}. �

Using that for any generating set X of D, consisting of compact objects, D∗
X ,† =

D∗
† , we get:

Corollary 4.8. Let D be a compactly generated triangulated category and let
T be a classical silting set in Dc. For any � ∈ {∅,+,−, b} and † ∈ {∅, f l} the t-
structure τT = (⊥(T ⊥�0), T ⊥<0) = (T ⊥>0 , T ⊥<0) restricts to D�

† . And if T ⊂ D�
†

(equivalently, if Dc ⊂ D�
†), then T is a silting set of D�

† .

5. (Pre)envelopes and their constructions

Recall that in any category C, a morphism f : C −→ C ′ is left (resp. right)
minimal when any endomorphism g ∈ EndC(C ′) (resp. g ∈ EndC(C)) such that
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g ◦ f = f (resp. f ◦ g = f) is an isomorphism. When X is a subcategory, a morphism
f : C −→ XC , with XC ∈ X , is called an X -preenvelope or left X -approximation of
C if each morphism g : C −→ X, with X ∈ X , factors through f . The dual concept
is that of X -precover or right X -approximation. An X -envelope (resp. X -cover)
or minimal left X -approximation (resp. minimal right X -approximation) is an
X -preenvelope (resp. X -precover) which is a left (resp. right) minimal morphism.
The subcategory X is called (pre)enveloping (resp. (pre)covering) when each object
of C has an X -(pre)envelope (resp. X -(pre)cover). In this section we show some
relationship between (pre)enveloping subcategories and t- and co-t-structures in a
triangulated category D.

The following result is folklore and follows from [34, corollary 1.4].

Lemma 5.1. Let V be a full subcategory of D such that V is Krull–Schmidt. If an
object M of D has a V-preenvelope (resp. V-precover), then it has a V-envelope
(resp. V-cover).

Lemma 5.2. Let V be a full subcategory of D closed under extensions, let f : M −→
V be a morphism with V ∈ V. Consider the following assertions:

(1) f is a V-envelope

(2) the object U in the triangle U −→ M
f−→ V

+−→ belongs to ⊥V

(3) f is a V-preenvelope.

Then (1) =⇒ (2) =⇒ (3) holds.

Proof. (1) =⇒ (2) Adapt the proof of [16, lemma 1.3].
(2) =⇒ (3) Applying the functor HomD(−, V ′) to the triangle from assertion 2,

we get that HomD(f, V ′) : HomD(V, V ′) −→ HomD(M,V ′) is an epimorphism for
any V ′ ∈ V, thus f is a V-preenvelope. �

Lemma 5.3. Let E and F be full subcategories of D. Consider the following
homotopy pushout diagram, where the rows are triangles.

C

g

��

u �� M
h ��

f

��

F

E
u′

�� X
h′

�� F

(1) If h is an F-preenvelope and g is an E-preenvelope, then f is an E � F-
preenvelope.

(2) Suppose that E and F are closed under extensions, and that the inclusion
F ⊆ E [1] holds. If g is an E-envelope and h is an F-envelope, then f is an
E � F-envelope (and hence an add(E � F)-envelope), provided that one of the
following conditions hold:
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(a) D is Krull–Schmidt.

(b) HomD(E,F ) = 0, for all E ∈ E and F ∈ F .

Proof. (1) Let f ′ : M −→ X ′ be any morphism, where X ′ ∈ E � F and fix a triangle
E′ γ−→ X ′ δ−→ F ′ +−→, with E′ ∈ E and F ′ ∈ F . The F-preenveloping condition on
h gives a morphism ρ : F −→ F ′ such that ρ ◦ h = δ ◦ f ′. We then get a morphism
g′ : C −→ E′ making commutative the following diagram:

C

g′

��

u �� M
h ��

f ′

��

F

ρ

��
E′

γ
�� X ′

δ �� F ′

The E-preenveloping condition of g gives a morphism λ : E −→ E′ such that g′ =
λ ◦ g. Thus γ ◦ λ ◦ g = γ ◦ g′ = f ′ ◦ u and there exists μ : X −→ X ′ such that μ ◦
u′ = γ ◦ λ and μ ◦ f = f ′, since the diagram we started from is a homotopy pushout.
In particular, f ′ factors through f so that f is an E � F-preenvelope.

(2) Since any E � F-envelope is an add(E � F)-envelope, we only need to check
the left minimality of f .

(2.a) When D is Krull–Schmidt, there is a decomposition f =
(
f ′ 0

)t : M −→
X1 ⊕ X2 = X, where f ′ : M −→ X1 is left minimal. Thus we can assume that the
triangle C(f) −→ M

f−→ X
+−→, coincides with the triangle

C(f ′) ⊕ X2[−1]

(
γ 0

)

−→ M

(
f ′ 0

)t

−→ X1 ⊕ X2
+−→ .

Since homotopy pushout squares are also homotopy pullback we get a triangle (∗)

C(g) = C(f ′) ⊕ X2[−1]

(
α β

)

−→ C
g−→ E

+−→,

so u ◦
(
α β

)
=

(
γ 0

)
and u ◦ β = 0. Thus β admits a factorization β : X2[−1] −→

F [−1] −→ C. But F [−1] ∈ F [−1] ⊆ E and X2[−1] is a direct summand of C(g). By
lemma 5.2, C(g) ∈ ⊥E , which implies β = 0. Hence, the triangle (∗) is isomorphic

to C(f ′) ⊕ X2[−1]

(
α 0

)

−→ C

(
g′ 0

)t

−→ E′ ⊕ X2
+−→, where E 
 E′ ⊕ X2. The left

minimality of g implies X2 = 0 and, hence, that f is left minimal.
(2.b) Assume now that HomD(E ,F) = 0. Let α ∈ EndD(X) be such that α ◦ f =

f . Since h′ ◦ α ◦ u′ ∈ HomD(E,F ) = 0, there are α1 : E −→ E and α2 : F −→ F
making the following diagram commutative:

F [−1]

��

λ �� E

α1

��

u′
�� X

h′
��

α

��

F

α2

��
F [−1]

λ �� E
u′

�� X
h′

�� F
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Then u′ ◦ α1 ◦ g = α ◦ u′ ◦ g = α ◦ f ◦ u = f ◦ u = u′ ◦ g, which implies u′ ◦ (g −
α1 ◦ g) = 0 and, hence, g − α1 ◦ g factors in the form C

t−→ F [−1] λ−→ E. But
F [−1] ∈ F [−1] ⊆ E and since g is an E-envelope, there is a morphism π : E −→
F [−1] such that t = π ◦ g. It follows that g − α1 ◦ g = λ ◦ π ◦ g and g = (α1 +
λ ◦ π) ◦ g. The left minimality of g implies that α1 + λ ◦ π is an isomorphism. But
u′ ◦ (α1 + λ ◦ π) = u′ ◦ α1 since u′ ◦ λ = 0. This means that we can replace α1 by
α1 + λ ◦ π (and α2 by some new α2) and assume that α1 is an isomorphism.

Note now that α2 ◦ h = α2 ◦ h′ ◦ f = h′ ◦ α ◦ f = h′ ◦ f = h. Then the left min-
imality of h implies that α2 is an isomorphism and, as a consequence, α is an
isomorphism. �

Corollary 5.4. Let E and F be enveloping subcategories of the triangulated cate-
gory D closed under extensions and such that F ⊆ E [1]. If either D is Krull–Schmidt
or HomD(E ,F) = 0, then E � F is an enveloping subcategory of D and, in partic-
ular, it is closed under direct summands. If, moreover, HomD(E ,F [1]) = 0 then
E � F is also closed under extensions in D.

Proof. The enveloping condition on E � F is a direct consequence of lemma 5.3, and
it is well-known that any enveloping subcategory is closed under direct summands.
The final statement follows from [47, lemma 8]. �

By [1, lemma 2.15] we have the following:

Lemma 5.5. Let T be a non-positive set of objects of D. Then

(1) thickD(T )=
⋃

r�s add(add(T )[r] � add(T )[r + 1] � · · · � add(T )[s]). Moreover,
if add(T ) is an enveloping subcategory of D, then

thickD(T ) =
⋃
r�s

(add(T )[r] � add(T )[r + 1] � · · · � add(T )[s])

(2) suspD(T ) =
⋃

r�0 add(add(T ) � add(T )[1] � · · · � add(T )[r]). If add(T ) is an
enveloping subcategory of D, then suspD(T ) =

⋃
r�0(add(T ) � add(T )[1] �

· · · � add(T )[r]).

Proof. First equality in assertion (1) is [1, lemma 2.15], first equality in assertion
(2) is proved analogously. When add(T ) is enveloping, the assertions follow by an
iterative application of corollary 5.4. �

For an object M and a subcategory T in D, we shall use the notation

s(M, T ) := Sup{k ∈ N | HomD(M,−[k])|T �= 0} ∈ N ∪ {∞},

when this subset of natural numbers is nonempty. When this subset is empty, by
convention, we put add(T ) � add(T )[1] � · · · � add(T )[s(M, T )] := 0.

https://doi.org/10.1017/prm.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.3


Lifting of recollements and gluing of partial silting sets 237

Lemma 5.6. Let T be a nonpositive set of objects of D and U := suspD(T ). The
following assertions are equivalent for an object M ∈ D:

(1) M has a U-(pre)envelope.

(2) HomD(M,−[k])|T = 0 for k � 0, and M has an add(add(T ) � add(T )[1] �
· · · � add(T )[s])-(pre)envelope, where s = s(M, T ).

Proof. (1) =⇒ (2) Let us check that HomD(M,−[k])|T = 0 for k � 0. Let f :
M −→ U be a U-(pre)envelope. By lemma 5.5 there exists an r ∈ N such that
U ∈ add(add(T ) � add(T )[1] � · · · � add(T )[r]). If k > r and g : M −→ T [k] is a

morphism, with T ∈ T , then g factors in the form g : M
f−→ U

h−→ T [k], where the
second arrow is zero since HomD(−, T [k]) vanishes on add(T )[j], for j = 0, 1, . . . , r.

There is a triangle U ′

(
v1 v2

)t

−→ U ⊕ Z

(
p1 p2

)

−→ U ′′ +−→, where U ′ ∈ add((T ) �
add(T )[1] � · · · � add(T )[s] and U ′′ ∈ add(T )[s + 1] � · · · � add(T )[r]. By definition
of s = s(M, T ), we have that HomC(M,U ′′) = 0, and so 0 = p1 ◦ f =

(
p1 p2

)
◦(

f 0
)t. This implies that

(
f 0

)t : M −→ U ⊕ Z admits a factorization
(
f 0

)t :

M
f ′
−→ U ′

(
v1 v2

)t

−→ U ⊕ Z, and so f = v1 ◦ f ′. Then f ′ is clearly the desired preen-
velope. If f was an envelope, then U is a summand of U ′ and f is the desired
envelope.

(2) =⇒ (1) Let 0 �= f : M −→ X be any morphism with X ∈ U , then X ∈
add(add(T ) � add(T )[1] � · · · � add(T )[r]), for some r ∈ N. Without loss of gener-
ality, we assume that X ∈ add(T ) � add(T )[1] � · · · � add(T )[r]. There is a triangle
X ′ v−→ X

p−→ X ′′ +−→, where X ′ ∈ add((T ) � add(T )[1] � · · · � add(T )[s] and X ′′ ∈
add(T )[s + 1] � · · · � add(T )[r]. As before, HomC(M,X ′′) = 0, and so p ◦ f = 0.

This implies that f admits a factorization f : M
f ′
−→ X ′ v−→ X. Thus any mor-

phism from M to U factors through add(add(T ) � add(T )[1] � · · · � add(T )[s]) and
we are done. �

Proposition 5.7. Let D be a triangulated category and T be a non-positive set of
objects in D. Consider the following assertions:

1 HomD(M,−[k])|T = 0 for any M ∈ D, k � 0 and M has an add(T )
[s(M, T )]-envelope.

1′ HomD(M,−[k])|T = 0 for any M ∈ D, k � 0 and M has an add(T )
[s(M, T )]-preenvelope.

2 HomD(M,−[k])|T = 0 for any M ∈ D, k � 0 and M has an add(add(T ) �
add(T )[1] � · · · � add(T )[s(M, T )])-envelope.

2′ HomD(M,−[k])|T = 0 for any M ∈ D, k � 0 and M has an add(add(T ) �
add(T )[1] � · · · � add(T )[s(M, T )])-preenvelope.

3 suspD(T ) is an enveloping class in D.
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3′ suspD(T ) is a preenveloping class in D.

4 (⊥suspD(T )[1], suspD(T )) is a co-t-structure in D.

Then implications

(1′) �� �� (2′) ��
�����

��
���

��

(1)

		�����
�����

�����
���

���
���

(3′) �� �� (4)

(2) �� �� (3)

		������
������

hold and if D is Krull–Schmidt, then all the assertions are equivalent. Moreover,
when assertion 1 holds, the envelope M −→ U from assertion 2, which is also a
suspD(T )-envelope, can be constructed inductively.

Proof. The implications (2) ⇐⇒ (3) =⇒ (4) =⇒ (3′) follow from lemma 5.6 and
lemma 5.2. The equivalence (2)′ ⇐⇒ (3′) also follows from lemma 5.6, and the
implications (1) =⇒ (1′) and (3) =⇒ (3′) are clear. Apart from the statement about
inductive construction, it is enough to prove implications (1) =⇒ (2) and (2′) =⇒
(1′) =⇒ (4), then the equivalence of all assertions when D is Krull–Schmidt will
follow from lemma 5.1.

(1) =⇒ (2) Without loss of generality, we only consider M such that
HomC(M,−[k])|T �= 0, for some k ∈ N. Let us prove by induction on r � 0 that if M
is an object such that 0 � s := s(M, T ) � r, then M has an add(T ) � add(T )[1] �
· · · � add(T )[r]-envelope. Note that if s := s(M, T ) < r, then by the induction
hypothesis, there is an add(T ) � add(T )[1] � · · · � add(T )[s]-envelope, which is eas-
ily seen to be an add(T ) � add(T )[1] � · · · � add(T )[r]-envelope. Assume r = s,
and fix an add(T )[s]-envelope h : M −→ TM [s], which we complete to a trian-
gle C

u−→ M
h−→ TM [s] +−→ (∗). Since add(T )[s] is closed under extensions, by

lemma 5.2, HomC(C,−[s])|T = 0. Applying HomC(−, T [k]) to the triangle (∗),
we see that HomC(C,−[k])|T = 0, for k � s. Then s(C, T ) < s. By the induc-
tion hypothesis there is an add(T ) � add(T )[1] � · · · � add(T )[r − 1]-envelope g :
C −→ E. Then, for E = add(T ) � add(T )[1] � · · · � add(T )[r − 1], F = add(T )[r]
and F = TM [r], lemma 5.3 implies that M has an E � F = add(T ) � add(T )[1] �
· · · � add(T )[r]-envelope.

(2′) =⇒ (1′) Let f : M −→ U be an add(T ) � add(T )[1] � · · · � add(T )[s]-
preenvelope, where s = s(M, T ) � 0. There is a triangle X ′ −→ U

g−→ T [s] +−→,
where X ′ ∈ add(T ) � add(T )[1] � · · · � add(T )[s − 1] and T ∈ add(T ). Let h :
M −→ T ′[s] be any morphism, where T ′ ∈ T . Then there is a morphism η :
U −→ T ′[s] such that η ◦ f = h. Since HomC(X ′, T ′[s]) = 0, there is a morphism
μ : T [s] −→ T ′[s] such that μ ◦ g = η. Thus, h = η ◦ f = μ ◦ g ◦ f and g ◦ f is an
add(T )[s]-preenvelope of M .

(1′) =⇒ (4) Put U := suspD(T ). Let us prove that any object M fits into a tri-
angle VM −→ M −→ UM

+−→, where UM ∈ U and VM ∈ ⊥U . If M ∈ ⊥U there is
nothing to prove. We then assume that M �∈ ⊥U , so that s(M, T ) � 0. Let us prove
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the statement by induction on s(M, T ). Assume s(M, T ) = 0 and consider the tri-

angle VM −→ M
f−→ T0

+−→, where f is an add(T )-preenvelope, which exists by
the hypothesis. It follows that the map f∗ : HomD(T0, T ) −→ HomD(M,T ) is an
epimorphism and HomD(VM , T [k]) = 0, for all T ∈ T and all integers k � 0. Given
the description of U from lemma 5.5, we conclude that VM ∈ ⊥U .

Suppose s := s(M, T ) > 0 and that all N ∈ D such that s(N, T ) < s admit
the desired triangle. Consider a triangle X −→ M

g−→ Ts[s]
+−→, where g is an

add(T )[s]-preenvelope. Applying the functor HomD(−, T [k]), for T ∈ T , to this
triangle we see that HomD(X,T [k]) = 0, for all T ∈ T and k � s. It follows that
s(X, T ) < s. By the induction hypothesis X ∈ ⊥U � U and Ts[s] ∈ ⊥U � U . It follows
that M ∈ ⊥U � U since ⊥U � U is closed under extensions (see [47, lemma 8]).

Finally, the proof of implication (1) =⇒ (2) shows how to construct suspD(T )-
envelopes inductively. �

Definition 5.8. We shall say that a non-positive set T in D is weakly preenveloping
when it satisfies condition (1′) of proposition 5.7. The notion of a weakly precovering
nonpositive set of objects is defined dually.

Recall that an object G of a triangulated category D is called a classical generator
when thickD(G) = D. Recall also that if a pair (X ,Y) is a t-structure or a co-t-
structure in D, it is called left (resp. right) bounded when D =

⋃
k∈Z

X [k] (resp.
D =

⋃
k∈Z

Y[k]). The pair is called bounded when it is left and right bounded.
The following proposition together with its dual generalizes [23, proposition 3.2].

Proposition 5.9. Let D be a skeletally small triangulated category with split
idempotents. The assignment T � (⊥suspD(T )[1], suspD(T )) gives a one-to-one
correspondence between (add-)equivalence classes of weakly preenveloping non-
positive sets and left bounded co-t-structures in D. Its inverse associates to such
a co-t-structure a set of representatives of the isomorphism classes of the objects of
its co-heart.

This correspondence restricts to a bijection between equivalence classes of classical
silting sets and bounded co-t-structures in D. When D has a classical generator,
this induces a bijection between equivalence classes of silting objects and bounded
co-t-structures in D.

Proof. By proposition 5.7, τ(T ) := (⊥U [1],U) := (⊥suspD(T )[1], suspD(T )) is a
co-t-structure in D. Moreover, for each M in D, there exists r ∈ N such that
HomD(M,−[k])|T = 0, for k � r. It follows that M ∈ ⊥U [r] and τ(T ) is left
bounded.

By [13], the co-heart of any co-t-structure τ is a non-positive class of objects.
In our case it is skeletally small, so we can chose a set T (τ) of representatives of
isomorphism classes of its objects. We claim that T and T (τ(T )) are equivalent
non-positive sets. The inclusion T ⊂ C, where C is the co-heart of τ(T ), clearly
holds, so we need to prove that C ⊆ add(T ). For 0 �= C ∈ C we get s(C, T ) = 0,
since HomD(C,−) vanishes on U [1]. Since T is weakly preenveloping, there is an

add(T )-preenvelope f : C −→ TC , let us consider a triangle VC
g−→ C

f−→ TC
+−→.
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As before (see the proof of implication (1′) =⇒ (4) in proposition 5.7), VC ∈ ⊥U
and, hence, g = 0. It follows that f is a section and C ∈ add(T ).

Let τ = (⊥Uτ [1],Uτ ) be any left bounded co-t-structure in D, let C := ⊥Uτ [1] ∩ Uτ

be its co-heart and let T be a set of representatives of its isomorphism classes. The
left boundedness of τ implies that HomD(M,−[k])|T = 0 for any M ∈ D for k � 0.
Clearly s := s(M,U) � s(M, T ). We claim that the inverse inequality also holds,
provided s(M,U) � 0. Let us consider the triangle coming from the co-t-structure τ :

V −→ M [−s]
f−→ U

+−→. For an arbitrary U ′ ∈ Uτ applying HomD(−, U ′) to this
triangle gives HomD(U,U ′[k]) = 0, for all k > 0. Thus, U ∈ ⊥Uτ [1] ∩ Uτ = C and
U ∈ add(T ). Clearly, the map f : M [−s] −→ U is an add(T )-preenvelope. This in
turn implies that f [s] : M −→ U [s] is an add(T )[s]-preenvelope. Note that f is a
nonzero map, since, otherwise M ∈ ⊥Uτ , contradicting the hypothesis. This implies
that s(M, T ) = s and that M has an add(T )[s(M, T )]-preenvelope. Hence, T is
weakly preenveloping and the map from the set of left bounded co-t-structures to
weakly preenveloping non-positive sets is well-defined.

The last paragraph shows that if M �∈ ⊥Uτ , then there exists a nonzero mor-
phism f : M −→ T [s], for some T ∈ T , where s = s(M,U) = s(M, T ). It follows
that ⊥Uτ = ⊥(

⋃
k�0 T [k]) and, hence, that ⊥Uτ = ⊥suspD(T ). Due to the weak

preenveloping condition on T , proposition 5.7 provides a co-t-structure τ ′ :=
(⊥suspD(T )[1], suspD(T )) in D. Clearly, τ ′ = τ . Since τ = τ(T (τ)), the assignments
T � τ(T ) and τ � T (τ) define mutually inverse maps.

As for the last statement, note that the dual version of the result above gives
the bijection T � (cosuspD(T ), cosuspD(T )⊥[−1]) between the equivalence classes
of weakly precovering non-positive sets and right bounded co-t-structures in D,
the inverse of this map takes any such co-t-structure τ to a set of representa-
tives of isomorphism classes of objects of the co-heart of τ . If τ is a bounded
co-t-structure in D and Tτ is a set of representatives of isomorphism classes of
objects of its co-heart, then we deduce from the bijections and from the con-
struction of the triangle with respect to τ that τ = (cosuspD(T ), suspD(T )). In
particular, any object M ∈ D fits into a triangle V −→ M −→ U

+−→, where
V ∈ cosuspD(T )[−1] ⊂ thickD(T ) and U ∈ suspD(T ) ⊂ thickD(T ). It follows that
D = thickD(T ), so that T is a classical silting set. The fact that if T is a clas-
sical silting set in D, then (cosuspD(T ), suspD(T )) is a bounded co-t-structure is
well-known (see [13, theorem 4.3.2(II.1)]).

Finally, if D has a classical generator G and T is a silting set in D, then
G ∈ thickD(T ), which implies the existence of a finite subset T0 ⊆ T such that
G ∈ thickD(T0), so that D = thickD(T0), and hence T0 is a classical silting set. By
[1, theorem 2.18], we conclude that T0 = T and T̂ :=

∐
T∈T T is a classical silting

object. �

We point out the following consequence of the proof of last proposition.

Corollary 5.10. Let D be a skeletally small triangulated category with split idem-
potents and let T be a classical silting set. Then it is weakly precovering and weakly
preenveloping in D.
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Proposition 5.11. Let D be a triangulated category with coproducts, let T be a
nonpositive set of compact objects and let (UT ,U⊥

T [1]) = (⊥(T ⊥�0), T ⊥<0) be the
associated t-structure in D. The following assertions are equivalent:

(1) T is a weakly preenveloping set in Dc.

(2) (⊥suspD(T )[−1] ∩ Dc, suspD(T )) is a co-t-structure in Dc.

(3) For each M ∈ Dc, there is a triangle VM −→ M −→ UM
+−→, where UM ∈

UT and VM ∈ ⊥UT .

Proof. (1) ⇐⇒ (2) is just the equivalence (1′) ⇐⇒ (4) of proposition 5.7 applied
to Dc.

(2) =⇒ (3) Let M be compact and fix a triangle VM −→ M −→ UM
+−→, where

UM ∈ suspD(T ) and VM ∈ ⊥suspD(T ). We clearly have that UM ∈ UT . It remains
to prove that HomD(VM ,−) vanishes on UT [1]. But, by the proof of [28, theorem
12.2] (see also [47, theorem 2]), we know that if U ∈ UT then it is the Milnor colimit
U = McolimUn of a sequence

U0
h1−→ U1

h2−→ · · · hn−→ Un
hn+1−→ ,

where U0 ∈ Sum(T ) and cone(hn) ∈ Sum(T )[n], for all n > 0. The compactness of
VM gives lim−→HomD(VM , Un) ∼= HomD(VM , U) = 0.

(3) =⇒ (1) Let M ∈ Dc be arbitrary and let VM −→ M
f−→ UM

+−→ be the
triangle given by assertion 3. As mentioned above, we have a sequence of morphisms

U0
h1−→ U1

h2−→ · · · hn−→ Un
hn+1−→ ,

where U0 ∈ Sum(T ) and cone(hn) ∈ Sum(T )[n] for all n > 0, such that
UM

∼= McolimUn. Due to compactness of M , the canonical morphism
lim−→HomD(M,Un) −→ HomD(M,UM ) is an isomorphism. Thus, there exists g :

M −→ Ut, for some t ∈ N, such that f factors in the form f : M
g−→ Ut

ut−→ UM ,
where ut is the canonical morphism into the Milnor colimit. It immediately follows
that g is a UT -preenvelope since so is f . But HomD(Ut,−) vanishes on Sum(T [k]),
for all k > t, hence, HomD(M,−[k])|T = 0 for k > t.

Let us consider the sequences of morphisms Us
1−→ Us

1−→ · · · −→ Us
1−→ · · ·

and Us
hs+1−→ Us+1

hs+2−→ · · · hn−→ Un
hn+1−→ · · · . There is a morphism of sequences

(Us, 1) −→ (Un, hn) that for n � s is the map h′
n := hn ◦ · · · ◦ hs+1 : Us −→ Un and

for n = s is h′
s = 1Us

. Thus, there is a triangle Us
h′

n−→ Un −→ U ′
n

+−→, for each
n � s, where U ′

n ∈ Add(T [s + 1]) � Add(T [s + 2]) � · · · � Add(T [n]), for each n � s.
Using Verdier’s 3 × 3 lemma and [40, lemmas 1.6.6 and 7.1.1], we get a triangle

Us = Mcolim(Us, 1)
f ′
−→ UM = Mcolim(Un, hn) −→ U>s

+−→, where U>s fits into
a triangle

∐
n�s U ′

n −→
∐

n�s U ′
n −→ U>s

+−→. In particular, HomD(M,U>s) = 0,
and hence f ′

∗ : HomD(M,Us) −→ HomD(M,UM ) is surjective, since M is compact
and HomD(M,U ′

n[k]) = 0 for each k � 0 and n � s. It follows that there exists a

https://doi.org/10.1017/prm.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.3
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factorization f : M
f ′
−→ Us −→ UM of the map f of the previous paragraph, Then

f ′ is a UT -preenvelope since so is f .
Let us consider finally the triangle Us−1

hs−→ Us
p−→

∐
i∈I Ti[s]

+−→. An argument
similar to that of the proof of implication (2′) =⇒ (1′) in proposition 5.7 shows
that the composition p ◦ f ′ : M −→

∐
i∈I Ti[s] is an Add(T )[s]-preenvelope. The

compactness of M gives a factorization p ◦ f ′ : M
α−→

∐
i∈F Ti[s]

ιF−→
∐

i∈I Ti[s],
for some finite subset F ⊆ I, where ιF is the canonical section. It follows that
α : M −→

∐
i∈F Ti[s] is also an Add(T )[s]-preenvelope and, hence, an add(T )[s]-

preenvelope. �

We can now deduce the following consequence.

Corollary 5.12. Let D be a triangulated category with coproducts, and let T be a
silting set in D consisting of compact objects, i.e. a classical silting set in Dc. The
following assertions hold:

(1) T is a weakly preenveloping and weakly precovering set in Dc.

(2) The associated t-structure in D is τT = (T ⊥>0 , T ⊥<0) = (SuspD(T ), T ⊥<0),
and it has a left adjacent co-t-structure (⊥SuspD(T )[1],SuspD(T )) which
restricts to Dc.

(3) SuspD(T ) ∩ Dc = T ⊥>0 ∩ Dc = suspD(T ) and ⊥SuspD(T )[1] ∩ Dc =
cosuspD(T ).

Proof. Assertion 1 is a particular case of corollary 5.10, and assertion 2 fol-
lows from [48, corollary 7]. We just need to prove assertion 3. Indeed the pair
(⊥SuspD(T ) ∩ Dc,SuspD(T ) ∩ Dc) is a pair of orthogonal subcategories of Dc. But,
by proposition 5.9 and its proof we know that (cosuspD(T )[−1], suspD(T )) is a tor-
sion pair in Dc. Since we have inclusions cosuspD(T )[−1] ⊆ ⊥SuspD(T ) ∩ Dc and
suspD(T ) ⊆ SuspD(T ) ∩ Dc, these inclusions are necessarily equalities. �

6. Gluing partial silting sets

In this section, we will give criteria for the gluing of partial silting t-structures to
be a partial silting t-structure.

6.1. Sufficient condition

Lemma 6.1. Let

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

(6.1)

be a recollement of triangulated categories, let (X ′,X ′′) and (Y ′,Y ′′) be torsion pairs
in X and Y, respectively, generated by classes of objects SX ⊆ X ′ and SY ⊆ Y ′. The
glued torsion pair (D′,D′′) is generated by j!(SX) ∪ i∗(SY ).
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Proof. An object Z ∈ D belongs to the class (j!(SX) ∪ i∗(SY ))⊥ iff HomD
(j!(S), Z) = 0 = HomD(i∗(S′), Z), for all objects S ∈ SX and S′ ∈ SY iff
HomX (S, j∗(Z)) = 0 = HomY(S′, i!(Z)) for all S ∈ SX and S′ ∈ SY iff j∗(Z) ∈ X ′′

and i!(Z) ∈ Y ′′ iff Z ∈ D′′. �

Remark 6.2. In the recollement (6.1) if (X�0,X�0) is a t-structure in X , then
j!(X�0) is the aisle of a t-structure in D. Indeed j!(X�0) = {D ∈ D | j∗D ∈
X�0, i∗D = 0} and so it is the aisle of the t-structure in D glued from (X�0,X�0)
and the trivial t-structure (0,Y) in Y.

We are ready to prove the technical criteria on which all further results of this
section are based. The main applications will be given in corollaries 6.11 and 6.12.

Theorem 6.3. Let

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

be a recollement of triangulated categories, let TX and TY be (partial) silting sets
in X and Y, let (X�0,X�0), (Y�0,Y�0) be the associated t-structures in X and
Y and let (D�0,D�0) be the glued t-structure. Suppose that the following condition
holds:

(�) For each object TY ∈ TY , there is a triangle T̃Y −→ i∗TY

fTY−→ UTY
[1] +−→ such

that UTY
∈ j!(X�0) and T̃Y ∈ ⊥j!(X�0)[1].

Then for T̃Y := {T̃Y : TY ∈ TY } the set j!(TX) ∪ T̃Y is a (partial) silting set in D
which generates (D�0,D�0).

Proof. Let us prove that T := j!(TX) ∪ T̃Y generates (D�0,D�0). By lemma 6.1,
the class j!X�0 ∪ i∗(TY ) generates (D�0,D�0), so D>0 = (j!X�0 ∪ i∗(TY ))⊥�0 .
Condition (�) implies that (j!X�0 ∪ i∗(TY ))⊥�0 = (j!X�0 ∪ T̃Y )⊥�0 . Note that
(j!X�0)⊥ ⊆ (j!(TX))⊥�0 . Conversely, if Z ∈ (j!(TX))⊥�0 then HomX (TX [k], j∗Z) ∼=
HomD(j!TX [k], Z) = 0, for all TX ∈ TX and all integers k � 0. Then j∗Z ∈
X>0, and so HomD(j!X,Z) ∼= HomX (X, j∗Z) = 0, for all X ∈ X�0 since TX

generates (X�0,X�0). Thus, there is an equality (j!X�0)⊥ = (j!(TX))⊥�0 . It
follows that D>0 = (j!X�0 ∪ T̃Y )⊥�0 = (j!X�0)⊥�0 ∩ T̃ ⊥�0

Y = (j!X�0)⊥ ∩ T̃ ⊥�0
Y =

(j!(TX))⊥�0 ∩ T̃ ⊥�0
Y = (j!(TX) ∪ T̃Y )⊥�0 . Therefore T := j!(TX) ∪ T̃Y generates

(D�0,D�0).
In order to prove that T is partial silting, we need to check that the func-

tors HomD(j!TX ,−) and HomD(T̃Y ,−) vanish on D<0 := D�0[1], for all TX ∈
TX and TY ∈ TY . Consider D ∈ D�0. Due to adjunction, HomD(j!TX ,D[1]) ∼=
HomX (TX , j∗D[1]), for all TX ∈ TX . But j∗D ∈ X�0, so the partial silting con-
dition on TX gives HomX (TX , j∗D[1]) = 0, for all TX ∈ TX . On the other hand,
j∗D ∈ X�0 and, by definition of T̃Y , we have T̃Y ∈ ⊥(j!X�0[1]), for each TY ∈ TY .
Then HomD(T̃Y ,D[1]) ∼= HomD(T̃Y , i∗i

∗D[1]) ∼= HomY(i∗T̃Y , i∗D[1]). The equal-
ity i∗ ◦ j! = 0 implies that i∗ vanishes on j!X�0[k], for all k ∈ Z, and hence
i∗T̃Y

∼= i∗i∗TY
∼= TY . Thus, HomD(T̃Y ,D[1]) ∼= HomY(TY , i∗D[1]), for each TY ∈
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TY . Since, by definition of D�0, we know that i∗D ∈ Y�0, the partial silting condi-
tion on TY implies that HomD(T̃Y ,D[1]) ∼= HomY(TY , i∗D[1]) = 0, for all TY ∈ TY .
Therefore T := j!(TX) ∪ T̃Y is partial silting in D.

Assume now that TX and TY generate X and Y, respectively. Let us prove that
T = j!(TX) ∪ T̃Y generates D. Let Z ∈ D be an object such that HomD(T [k], Z) =
0, for all T ∈ T , k ∈ Z. Then HomX (TX [k], j∗Z) ∼= HomD(j!TX [k], Z) = 0, for
all k ∈ Z and TX ∈ TX . Since TX generates X , we get j∗Z = 0. In particular,
HomD(j!X[k], Z) = 0, for all X ∈ X�0. Condition (�) implies HomY(TY [k], i!Z) ∼=
HomD(i∗TY [k], Z) = 0, for all k ∈ Z and all TY ∈ TY . The generating condition on
TY gives i!Z = 0. From the canonical triangle i∗i

!Z −→ Z −→ j∗j
∗Z

+−→, we con-
clude that Z = 0. Therefore j!(TX) ∪ T̃Y generates D, and hence is a silting set
in D. �

It is natural to ask when condition (�) from theorem 6.3 holds. The following
result is useful.

Lemma 6.4. Let Y,D,X be triangulated categories and let L be a ladder of
recollements of height two

Y
i∗ ��

i�
��

D
i!��

i∗��

j�

��

j∗
�� Xj∗��

j!��

(6.2)

Let (X1,X ′
1) and (X2,X ′

2) be adjacent torsion pairs in X and let (Y1,Y ′
1) and

(Y2,Y ′
2) be adjacent torsion pairs in Y. Consider the torsion pairs (Di,D′

i) (i = 1, 2)
defined as follows:

(1) (D1,D′
1) is the torsion pair in D glued from (X1,X ′

1) and (Y1,Y ′
1) with respect

to the upper recollement of the ladder.

(2) (D2,D′
2) is the torsion pair in D glued from (X2,X ′

2) and (Y2,Y ′
2) with respect

to the lower recollement of the ladder.

Then (D1,D′
1) and (D2,D′

2) are adjacent torsion pairs in D.

Proof. By the gluing procedure we get: D2 = {Z ∈ D | j∗Z ∈ X2, i
∗Z ∈ Y2} = {Z ∈

D | i∗Z ∈ Y ′
1, j

∗Z ∈ X ′
1} = D′

1. �

Corollary 6.5. Let L be a ladder of recollements as in lemma 6.4, and let TX

and TY be partial silting sets which generate t-structures τX = (X�0,X�0) and
τY = (Y�0,Y�0) in X and Y, respectively. If τX has a left adjacent co-t-structure
in X , then condition (�) of theorem 6.3 holds, so j!(TX) ∪ T̃Y is a partial silting
set which generates the t-structure (D�0,D�0) in D glued with respect to the lower
recollement of the ladder.
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Proof. Gluing the co-t-structures (⊥(X�0)[−1],X�0) and (Y, 0) with respect to
the upper recollement of the ladder, we obtain a co-t-structure in D whose right
component is j!(X�0). Then condition (�) of theorem 6.3 holds. �

Example 6.6. In the situation of the last corollary, let X have coproducts, let TX

be a silting set in X with the associated t-structure τX := (X�0,X�0). If either of
the following conditions holds, then τX has a left adjacent co-t-structure:

(1) X is the stable category of an efficient Frobenius exact category with
coproducts in the terminology of [55];

(2) TX consists of compact objects.

(See [14, theorem 4.3.1] for a more general condition than 2 where the argument
below also works.)

Proof. By [47, theorem 1] (see also [50]), we have (X�0,X�0) = (T ⊥>0
X , T ⊥<0

X ).
Then the proof reduces to check that (⊥(T ⊥>0

X ), T ⊥>0
X ) is a torsion pair in X .

Under condition 1, this follows from [55, corollary 3.5]. Under condition 2 it follows
from [1, theorem 4.3] or from corollary 5.12. �

Remark 6.7. The following diagram is a recollement of triangulated categories

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

if and only if so is Yop
i∗ �� Dop
i∗��

i!��
j∗

�� X op.j!��

j∗��

As a con-

sequence, after defining (partial) cosilting set as the dual of (partial) silting set,
many results in this section admit a dualization. We leave their statement to the
reader.

6.2. Gluing partial silting sets of compact objects

When some of the functors in a recollement preserve compact objects, we can
approach condition (�) of theorem 6.3 on the compact level.

Setup 6.8. In this subsection we consider:

(1) A recollement

Y
i∗ �� D
i!��

i∗��
j∗

�� Xj∗��

j!��

, (6.3)

where Y, D and X are thick subcategories of triangulated categories with
coproducts Ŷ, D̂ and X̂ which contain the corresponding subcategories of
compact objects.

(2) Partial silting sets TX and TY in X and Y, respectively, consisting of com-
pact objects, and the t-structures (X�0,X�0) and (Y�0,Y�0) in X and Y,
generated by TX and TY .
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(3) j!(TX) ∪ i∗(TY ) ⊂ D̂c and j!(TX) weakly preenveloping in D̂c.

The following are examples of weakly preenveloping sets of compact objects.

Example 6.9. Let D̂ be a compactly generated triangulated category. Under either
of the following conditions, the set T is weakly preenveloping in D̂c:

(1) D̂ is homologically locally bounded, HomD̂(M,N) is a finitely generated K-
module, for all M,N ∈ D̂c, and T is a finite non-positive set in D̂c.

(2) T is classical silting in D̂c.

Proof. Example 2 follows from corollary 5.10. As for example 1, using the finiteness
of T , we can assume that T = {T}. The homological local boundedness of D̂ implies
that, for each M ∈ D̂c, one has HomD̂(M,T [k]) = 0, for k � 0. Moreover, if s =
s(M,T ) = Sup{k ∈ N: HomD̂(M,T [k]) �= 0}, then M has an add(T )[s]-preenvelope
because HomD̂(M,T [s]) is finitely generated as a K-module. �

In setup 6.8, there exists a triangle (†) : T̃Y −→ i∗TY −→ UTY
[1] +−→ in D̂c, where

UTY
∈ suspD̂(j!(TX)) and T̃Y ∈ ⊥SuspD̂(j!(TX))[1], for each TY ∈ TY (see proposi-

tion 5.11). The natural question is: does condition (�) of theorem 6.3 hold? Our
next result gives a partial answer.

Theorem 6.10. In setup 6.8, if j!(X�0) ⊆ SuspD̂(j!(TX)), then condition (�) of
theorem 6.3 holds and, for T̃Y = {T̃Y : TY ∈ TY }, the set T := j!(TX) ∪ T̃Y ⊆ D̂c is
partial silting in D and generates the glued t-structure (D�0,D�0).

The inclusion j!(X�0) ⊆ SuspD̂(j!(TX)) holds if, in addition to setup 6.8, either
one of the following conditions hold:

(1) Recollement (6.3) is the restriction of a recollement

Ŷ
î∗ �� D̂î!��

î∗��
ĵ∗

�� X̂ĵ∗��

ĵ!��

,

and (X�0,X�0) is the restriction of the t-structure in X̂ generated by TX .

(2) The triangulated categories Ŷ, D̂ and X̂ are compactly generated, TX is a
classical silting set in X̂ c, the functors j!, j∗, i∗ and i∗ preserve compact
objects and either Im(i∗) cogenerates LocD̂(i∗(Ŷc)) or D cogenerates D̂.

Proof. Let us consider the triangle (†) : T̃Y −→ i∗TY −→ UTY
[1] +−→. The inclusion

j!(X�0) ⊆ SuspD̂(j!(TX)) implies that T̃Y ∈ ⊥j!(X�0)[1], and hence condition (�)
of theorem 6.3 holds.

Let us check that j!(X�0) ⊆ SuspD̂(j!(TX)) under conditions 1 or 2.

(1) Since ĵ! : X̂ −→ D̂ has a right adjoint, it preserves Milnor colimits.
Moreover, since (X�0,X�0) = (X̂�0 ∩ X , X̂�0 ∩ X ), where (X̂�0, X̂�0) =
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(⊥(T ⊥�0
X ), T ⊥<0

X ), each object X of X�0 is the Milnor colimit of a sequence

X0
f1−→ X1

f2−→ · · · fn−→ Xn
fn+1−→ · · · ,

where X0 ∈ Add(TX) and cone(fn) ∈ Add(TX)[n], for each n > 0 (see
[47, theorem 2]). Thus, j!(X) ∈ SuspD̂(j!(TX)), for each X ∈ X�0.

(2) By theorem 3.3, (LocD̂(j!(X c)),LocD̂(i∗(Y)c),LocD̂(i∗(Yc))⊥) =: (U ,V,W)
is a TTF triple in D̂ such that (U ∩ D,V ∩ D,W ∩D) = (Im(j!), Im(i∗),
Im(j!)) and it satisfies conditions 2.a and 2.b of that theorem. We then get
an associated recollement

V
î∗ �� D̂î!��

î∗��
ĵ∗

�� Uĵ∗��

ĵ!��

,

which restricts up to equivalence to the recollement

Im(i∗)
i∗ �� D
i!��

i∗��
j∗

�� Im(j!)j∗��

j!��

. (6.4)

Recollement (6.4) is equivalent to the one in setup 6.8 via the equivalences of
triangulated categories i∗ : Y

∼=−→ Im(i∗) and j! : X
∼=−→ Im(j!).

By proposition 4.4, we know that the t-structure (T ⊥>0
X , T ⊥<0

X ) in X̂ restricts
to X , and so (X�0,X�0) = (T ⊥>0

X ∩ X , T ⊥<0
X ∩ X ) := (T ⊥>0(X )

X , T ⊥<0(X )
X ). Using

the equivalence j! : X
∼=−→ Im(j!) = U ∩ D, we get that (j!(X�0), j!(X�0)) =

(j!(TX)⊥>0(U∩D), j!(TX)⊥<0(U∩D)), which is the restriction to U ∩ D of the pair
(j!(TX)⊥>0(U), j!(TX)⊥<0(U)). The equality X̂ c = thickD(TX) gives the equality
Uc = U ∩ D̂c = j!(X̂ c) = thickU∩D(j!(TX)) = thickU (j!(TX)), so j!(TX) is a silting
set of compact objects in U and (j!(TX)⊥>0 , j!(TX)⊥<0) is a t-structure in U which
restricts to (j!(X�0), j!(X�0)).

We have checked that condition (1) holds for the recollement (6.4), and hence
the inclusion j!(X�0) ⊆ SuspD̂(j!(TX)) holds by the first part of the proof, since
the corresponding functor in (6.4) is the inclusion. �

Several consequences of the last theorem (condition 2) and the results in § 3 can
be obtained. For the sake of brevity, we provide two of them.

Corollary 6.11. Let Ŷ, D̂ and X̂ be compactly generated triangulated categories,
where D̂ is homologically locally bounded and such that HomD̂(M,N) is finitely
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generated (resp. of finite length) as a K-module, for all M,N ∈ D̂c. Let

Ŷ�
†

i∗ �� D̂�
†i!��

i∗��
j∗

�� X̂ �
†j∗��

j!��

be a recollement, such that the subcategories involved contain the respective subcate-
gories of compact objects and the functors j!, j∗, i∗ and i∗ preserve compact objects.
Let TX and TY be partial silting sets in X̂ �

† and Ŷ�
† consisting of compact objects,

with TX finite and classical silting in X̂ c, and let (X�0,X�0) and (Y�0,Y�0) be the
associated t-structures in X̂ �

† and Ŷ�
† , respectively. Then condition (�) of theorem 6.3

holds for � ∈ {∅,+,−, b} and † = ∅ (resp. † = fl). Therefore j!(TX) ∪ T̃Y is a partial
silting set in D̂�

† , consisting of compact objects, which generates the glued t-structure.

Proof. Let us check that the conditions from setup 6.8 hold. For this we only
need to check that j!(TX) is weakly preenveloping in D̂c. This follows from exam-
ple 6.9. Thus, the result is a direct consequence of theorem 6.10 (condition 2) and
corollary 3.12. �

Corollary 6.12. Let Ŷ, D̂ and X̂ be compactly generated algebraic triangulated
categories and let

Ŷb
fl

i∗ �� D̂b
fli!��

i∗��
j∗

�� X̂ b
flj∗��

j!��

(6.5)

be a recollement, such that the subcategories involved contain the respective sub-
categories of compact objects and D̂ is compact-detectable in finite length. Let
TX ∈ X̂ c and TY ∈ Ŷc be classical silting in X̂ c and Ŷc, respectively. Let (X�0,X�0)
and (Y�0,Y�0) be the corresponding t-structures in X̂ b

fl and Ŷb
fl. There is a tri-

angle T̃Y −→ i∗(TY ) −→ UTY
[1] +−→ in D̂c such that UTY

∈ suspD̂(j!(TX)) and
T̃Y ∈ ⊥j!(X�0)[1]. In particular T := j!(TX) ⊕ T̃Y is a silting object in D̂c, uniquely
determined up to add-equivalence, which generates the glued t-structure in D̂b

fl.

Proof. The object TX generates X̂ . By [24, theorem 4.3], there is a dg algebra C

and a triangulated equivalence F : D(C)
∼=−→ X̂ which takes C to TX . In particu-

lar, there is an isomorphism HkC ∼= HomD(C)(C,C[k])
∼=−→ HomX̂ (TX , TX [k]), for

each k ∈ Z. Hence, C is homologically non-positive and homologically finite length.
In addition, F restricts to an equivalence Db

fl(C)
∼=−→ X̂ b

fl, since Db
fl(C) = D(C)b

fl.
Similarly, there is a homologically non-positive homologically finite length dg alge-
bra B and a triangulated equivalence G : D(B)

∼=−→ Ŷ which takes B to TY and
restricts to a triangulated equivalence Db

fl(B)
∼=−→ Ŷb

fl.
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Thus, we can assume, that the recollement (6.5) is of the form

Db
fl(B)

i∗ �� D̂b
fli!��

i∗��
j∗

�� Db
fl(C)

j∗��

j!��

,

where B and C are homologically non-positive homologically finite length dg
algebras. Moreover, by the proof of corollary 6.11, we know that we are in
the situation of setup 6.8. Then, by proposition 3.19 (see example 3.17(2))
and theorem 6.10 (condition 2) with TX = {TX} and TY = {TY }, the result
follows, except for the uniqueness of T . This uniqueness is a consequence
of propositions 4.4 and 4.6. �

6.3. Gluing with respect to t-structures versus gluing with respect to
co-t-structures over finite length algebras

If A is a finite length K-algebra there is a triangulated equivalence Db
fl(A) ∼=

Db(mod-A) and Dc(A) may be identified with Kb(proj-A), the homotopy category of
finitely generated projective A-modules. The following result is a direct consequence
of proposition 3.19 (see remark 3.20) and corollary 6.12, except for its last sentence
which follows from proposition 5.7.

Corollary 6.13.
Let A, B and C be finite length algebras, let

Db(mod-B)
i∗ �� Db(mod-A)
i!��

i∗��
j∗

�� Db(mod-C)
j∗��

j!��

(6.6)

be a recollement, and let TC and TB be silting complexes in Kb(proj-C) and
Kb(proj-B) which generate t-structures (X�0,X�0) in Db(mod-C) and (Y�0,Y�0)

in Db(mod-B). There is a triangle T̃B −→ i∗(TB)
f−→ UTB

[1] +−→ in Kb(proj-A)
such that UTB

∈ suspD(A)(j!(TC)) and T̃B ∈ ⊥j!(X�0)[1]. The object T := j!(TC) ⊕
T̃B is a silting complex in Kb(proj-A), uniquely determined up to add-equivalence,
which generates the glued t-structure (D�0,D�0) in Db(mod-A).

Moreover, the map f can be taken to be a susp(j!TC)[1]-envelope, which can be
calculated inductively.

In this section we compare the gluing of silting objects via the co-t-structures
[35] and the one given by the last corollary. Conceptually, t-structures and co-t-
structures corresponding to silting objects are adjacent, hence by lemma 6.4 gluing
with respect to two recollements in a ladder of recollements should give the same
result. We provide the details below.
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Proposition 6.14. Let A,B,C be finite length algebras and suppose that there are
recollements

Db(mod-B)
i∗ �� Db(mod-A)
i!��

i∗��
j∗

�� Db(mod-C)
j∗��

j!��

(6.7)

and

Kb(proj-C)
j! �� Kb(proj-A)
j∗

��

j�

��
i∗ �� Kb(proj-B)
i∗��

i�

��

(6.8)

where the functors j!, j∗, i∗ and i∗ of the second recollement are the restrictions
of the corresponding functors in the first one. Let TC and TB be silting objects
in Kb(proj-C) and Kb(proj-B), let (X�0,X�0) and (Y�0,Y�0) be the associated
t-structures in Db(mod-C) and Db(mod-B) and (X�0,X�0) and (Y�0,Y�0) the
associated co-t-structures in Kb(proj-C) and Kb(proj-B), respectively.

If (D�0,D�0) is the glued t-structure in Db(mod-A) with respect to the recolle-
ment (6.7) and (D�0,D�0) is the glued co-t-structure in Kb(proj-A) with respect to
the recollement (6.8), then there is a silting complex T ∈ Kb(proj-A), uniquely deter-
mined up to add-equivalence, such that (D�0,D�0) is the t-structure in Db(mod-A)
associated with T and (D�0,D�0) is the co-t-structure in Kb(proj-A) associated
with T .

Proof. By corollary 6.13, there is a triangle T̃B −→ i∗(TB)
f−→ UTB

[1] +−→ (�)
in Kb(proj-A) such that UTB

∈ suspD(A)(j!(TC)) and T̃B ∈ ⊥j!(X�0)[1] and
(D�0,D�0) is the t-structure in Db(mod − A) associated with T = j!TC ⊕ T̃B.
Note that, by construction, this is a triangle associated with the co-t-structure
(⊥suspD(A)(j!TC))[1] ∩ Kb(proj-A), suspD(A)(j!TC))[1]) in Kb(proj-A) (see the para-
graph immediately before theorem 6.10).

On the other hand, (X�0,X�0) = (cosuspD(C)(TC), suspD(C)(TC)) and
(Y�0,Y�0) = (cosuspD(B)(TB), suspD(B)(TB)) are the co-t-structures in Kb(proj-C)
and Kb(proj-B) cogenerated by TC and TB , respectively. By the dual of
lemma 6.1 (see remark 6.7), the glued co-t-structure (D�0,D�0) with respect
to recollement (6.8) is precisely the one cogenerated by S = j!TC ⊕ i∗TB . That
is, (D�0,D�0) = (⊥>0S ∩ Kb(proj-A), (⊥�0S ∩ Kb(proj-A))⊥ ∩ Kb(proj-A)). By the
triangle (�) above, we clearly have that ⊥>0S ⊆ ⊥>0 T̃B ∩ ⊥>0j!T = ⊥>0(T̃B ⊕
j!TC) = ⊥>0T . The same triangle also shows that any object M ∈ ⊥>0T is also
in ⊥>0i∗TB , which in turn implies that M ∈ ⊥>0(j!TC ⊕ i∗TB) = ⊥>0S. Therefore
(D�0,D�0) is the co-t-structure in Kb(proj-A) cogenerated by T , i.e. (D�0,D�0) =
(cosuspD(A)(T ), suspD(A)(T )).

The uniqueness of T up to add-equivalence follows from corollary 6.13 for
(D�0,D�0) and from proposition 5.9 for (D�0,D�0). Alternatively, it follows from
the Koenig–Yang bijection for the case of a finite-dimensional algebra over a field
(see [32]). �
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A natural subsequent question is when the ‘overlap’ of recollements like in the
last corollary exists. Our next result gives two situations for which it is the case:

Proposition 6.15. Let A,B,C be finite length K-algebras and let

Db(mod-B)
i∗ �� Db(mod-A)
i!��

i∗��
j∗

�� Db(mod-C)
j∗��

j!��

(6.9)

be a recollement. The following assertions are equivalent:

(1) There is a recollement

Kb(proj-C)
j! �� Kb(proj-A)
j∗

��

j�

��
i∗ �� Kb(proj-B)
i∗��

i�

��

(6.10)

where the functors j!, j∗, i∗ and i∗ are the restrictions of the corresponding
functors in the recollement (6.9) (see proposition 3.19).

(2) The induced functor j! : Kb(proj-C) −→ Kb(proj-A) has a left adjoint.

Under either one of the following two conditions, the assertions above hold:

(a) K is a field (and hence A, B and C are finite dimensional algebras);

(b) The algebra C has finite global dimension.

Proof. (1) =⇒ (2) is clear.
(2) =⇒ (1) For each D ∈ Kb(proj-A), the triangle j!j

∗D −→ D −→ i∗i
∗D

+−→
given by the recollement (6.9) belongs to Kb(proj-A) by proposition 3.19,
implying that (j!(Kb(proj-C)), i∗(Kb(proj-B))) is a semi-orthogonal decompo-
sition in Kb(proj-A). Let j� : Kb(proj-A) −→ Kb(proj-C) be the left adjoint
to j!. Since j! is fully faithful, the counit δ : j� ◦ j! −→ 1Kb(proj-C) is an

isomorphism. Let us consider the triangle KD −→ D
ηD−→ j!j

�D
+−→, for any

D ∈ Kb(proj-A), where ηD is the unit of the adjunction. For each X ∈
Kb(proj-C), there is a composition of morphisms HomKb(proj-C)(j�D,X)

j!−→
HomKb(proj-A)(j!j�D, j!X) −→ HomKb(proj-A)(D, j!X), which is easily identified
with the adjunction isomorphism. The first arrow of this composition is
an isomorphism, since j! is fully faithful. Hence, η∗

D = HomKb(proj-A)(ηD, j!X)
is an isomorphism, for all X ∈ Kb(proj-C), yielding KD ∈ ⊥j!(Kb(proj-C)).
So (⊥j!(Kb(proj-C)), j!(Kb(proj-C))) is a semi-orthogonal decomposition of
Kb(proj-A), and (S0,U0,V0) := (⊥j!(Kb(proj-C)), j!(Kb(proj-C)), i∗(Kb(proj-B)))
is a TTF triple in Kb(proj-A). One then obtains the recollement of assertion (1) by
standard methods. In particular, the functor i� : Kb(proj-B) −→ Kb(proj-A) is the

composition Kb(proj-B) i∗−→ V0

∼=−→ S0
incl
↪→ Kb(proj-A), where the central arrow is

the canonical equivalence induced by the TTF triple.
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We next prove that, under either one of conditions (a) or (b), assertion 2 holds.
By theorem 3.14 and proposition 3.13, there is a recollement

D(B)
î∗ �� D(A)
î!��

î∗��
ĵ∗

�� D(C)
ĵ∗��

ĵ!��

. (6.11)

that restricts to the Db(mod)-level and whose restriction is equivalent to the rec-
ollement 6.9. When K is a field, using [5, proposition 3.2(b)], we get that ĵ! has a
left adjoint ĵ�. The functor ĵ� preserves compact objects since its right adjoint
preserves coproducts. The induced functors (ĵ� : Kb(proj-A) −→ Kb(proj-C), ĵ! :
Kb(proj-C) −→ Kb(proj-A)) form an adjoint pair. Bearing in mind that
j!(Kb(proj-C)) = Kb(proj-A) ∩ Im(j!) = Kb(proj-A) ∩ Im(ĵ!) = ĵ!(Kb(proj-C)), we
get a triangulated autoequivalence ϕ : Kb(proj-C)

∼=−→ Kb(proj-C) such that
(ĵ!)|Kb(proj-C) ◦ ϕ ∼= (j!)|Kb(proj-C). Therefore assertion 2 holds.

When C has finite global dimension, we consider, for any M ∈ Kb(proj-A), the
homological functor H := HomKb(proj-A)(M, j!(−)). Note that, when R is a finite
length K-algebra, all Hom spaces in Kb(proj-R) are modules over K/IR, where
IR = {λ ∈ K: λR = 0} is the annihilator of R in K. Since K/IR is a K-submodule
of R, it is of finite length. Putting I := IA ∩ IB ∩ IC in our case, one gets a com-
mutative ring K/I that has finite length as a K-module, and hence is an Artinian
(whence Noetherian) ring. Moreover it is clear that all the functors in the recolle-
ment are K/I-linear. Therefore, replacing K by K/I if necessary, we can assume
that K is an Artinian (whence Noetherian) commutative ring. Then the dual of
[54, corollary 4.18], obtained first in [12, theorem 1.3] when K is a field, applies to
our case. Indeed, in the terminology of [54], Kb(proj-C)op is Ext-finite and strongly
finitely generated (see [54, proposition 7.25]) and the cohomological functor H :
(Kb(proj-C)op)op −→ Mod − K is locally finite. Then H is representable, so that
we get an object XM ∈ Kb(proj-C)op such that H ∼= HomKb(proj-C)op(−,XM ) ∼=
HomKb(proj-C)(XM ,−). It is routine to check that the assignment M � XM is
the definition on objects of a functor j� : Kb(proj-A) −→ Kb(proj-C) which is left
adjoint to j! : Kb(proj-C) −→ Kb(proj-A). Therefore assertion 2 holds. �

We do not know of any recollement of derived categories of finite length algebras
where the equivalent assertions 1 and 2 of last proposition do not hold.

We would like to finish this section with examples of gluing computed applying
the algorithm from corollary 6.13 and proposition 5.7. Let A be a finite dimen-
sional algebra over a field. Recall the following example of a recollement of the
unbounded derived category D(A). Let e ∈ A be an idempotent element such that
eA(1 − e) = 0. It induces a homological ring epimorphism i : A −→ A/AeA (see
[45, example 4.1]). Moreover, since eA = eAe, the left eAe-module eA is projec-
tive; A/AeA ∼= A(1 − e) is projective as a left A-module as well. We then get a
recollement

D(A/AeA)
i∗ �� D(A)
i!��

i∗��
j∗

�� D(eAe)
j∗��

j!��

, (6.12)
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where i∗ = −⊗L

A/AeA(A/AeA)= −⊗A/AeA(A/AeA), i∗ = −⊗L

A (A/AeA) = −⊗A

(A/AeA), i! = RHomA(A/AeA,−)), j∗ = −⊗L

A (Ae) = −⊗A Ae, j! = −⊗L

eAe

eA = −⊗eAe eA and j∗ = RHomeAe(Ae,−). It is clear that the functors i∗, i∗, j!, j
∗

restrict to the Db(mod)-level. So by [5, theorem 4.6] the recollement restricts to the
Db(mod)-level if and only if i∗(A/AeA) ∈ Kb(proj-A). That is, if and only if A/AeA
(equivalently AeA) has finite projective dimension as a right A-module. So if the
idempotent e satisfies the following two conditions

(a) eA(1 − e) = 0;

(b) the projective dimension of AeA as a right A-module is finite;

we get an induced recollement

Db(mod-A/AeA)
i∗ �� Db(mod-A)
i!��

i∗��
j∗

�� Db(mod-eAe)
j∗��

j!��

. (6.13)

Example 6.16. Let A = KA3 = K(1 a−→ 2 b−→ 3) be the path algebra of the lin-
ear orientation of A3. We will denote by Pi, Ii, Si the indecomposable pro-
jective, injective and simple modules corresponding to the vertex i. Let e =
e3 be the idempotent corresponding to the vertex 3. It is clear that condi-
tions (a) and (b) are satisfied. Then A/AeA 
 K(1 a−→ 2) and eAe 
 K. Let us
consider the following silting complexes for these algebras. For A/AeA we con-
sider TY := P̄1[1] ⊕ P̄2, where P̄i is the indecomposable projective A/AeA-module
corresponding to the vertex i. For eAe we take TX := eAe. Then in recolle-
ment 6.13 we have: j!eAe = eAe ⊗eAe eA 
 e3A = P3, i∗TY = i∗(P̄1[1] ⊕ P̄2) =
(P̄1[1] ⊕ P̄2) ⊗A/AeA (A/AeA) 
 I2[1] ⊕ S2. Note that I2 
 (P3

ab−→ P1) and S2 

(P3

b−→ P2) in Db(mod-A). We need to construct susp(P3)[1]-envelope of I2[1] ⊕ S2.
The maximal s such that Hom(I2[1] ⊕ S2, P3[1][s]) �= 0 is 1, the add(P3[2])-envelope
of I2[1] ⊕ S2 is given by the chain map h depicted by the following diagram:

P3

id

��

(0,ab)t

�� P3 ⊕ P1

(b,0)
�� P2

P3

.

The cocone of this map is the complex P3 ⊕ P1
(b,0)−−−→ P2, which is isomorphic to

P1[1] ⊕ S2 in Db(mod-A). We denote by u the map representing the morphism
P1[1] ⊕ S2 −→ I2[1] ⊕ S2 from the cocone. The add(P3[1])-envelope of P1[1] ⊕ S2 is
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the chain map g given by the following diagram:

P3 ⊕ P1

(id,0)

��

(b,0)
�� P2

P3

,

the cocone of which is the complex P1
0−→ P2 isomorphic to P1[1] ⊕ P2. Denote by

v the map representing the morphism P1[1] ⊕ P2 −→ P1[1] ⊕ S2 from the cocone.
By lemma 5.3 the susp(P3)[1]-envelope f of I2[1] ⊕ S2 is the map from I2[1] ⊕ S2

to the cone of u ◦ v. It easily follows that the desired triangle T̃Y −→ i∗TY
f−→

U [1] +−→ is, up to isomorphism in Db(mod-A), of the form P1[1] ⊕ P2 −→ I2[1] ⊕
S2 −→ P3[2] ⊕ P3[1] +−→. The glued silting complex is then j!TX ⊕ T̃Y

∼= P1[1] ⊕
P2 ⊕ P3.

Example 6.17. Let A be any finite dimensional algebra and e ∈ A be an idem-
potent satisfying conditions (a) and (b) above. Let (X�0,X�0) be the canonical
t-structure in Db(mod-eAe), induced by the tilting object eAe, and let (Y�0,Y�0)
be a partial silting t-structure in Db(mod-A/AeA) induced by a compact par-
tial silting object TY in Db(mod-A/AeA) such that TY ∈ D�0(A/AeA). Fix a
quasi-isomorphism s : P • −→ i∗(TY ), where P • ∈ K�0(proj-A) is assumed to be
minimal, i.e. such that the image of the differential dk : P k −→ P k+1 is contained in
P k+1rad(A), for each i ∈ Z. The exact sequence of complexes 0 → P •(1 − e)A −→
P • −→ P •/P •(1 − e)A → 0 splits in each degree and induces a triangle T̃Y −→
i∗TY

h−→ U [1] +−→ in Db(mod-A), where h is a j!(X�0)[1]-envelope. In particu-
lar T = eA ⊕ P •(1 − e) ∼= j!(eAe) ⊕ T̃Y is a partial silting object of Db(mod − A)
which generates the glued t-structure by corollary 6.11.

Proof. Each projective right A-module P decomposes as eP ⊕1−e P , with eP ∈
add(eA) and 1−eP ∈ add((1 − e)A). Since eA(1 − e) = 0, eP (1 − e)A = 0 and
P (1 − e)A =1−e P . It follows that 1−eP

• ∼= P •(1 − e)A is a subcomplex of P •

and the three terms in the exact sequence 0 → P •(1 − e)A −→ P • −→ P •/P •

(1 − e)A → 0 are complexes of projectives. The component P 0 of the complex P •

is a projective cover of H0(i∗TY ). Since H0(i∗TY ) is a quotient of a module in
add(A/AeA), we get P 0 ∈ add((1 − e)A). Thus, P •/P •(1 − e)A ∼= eP

• belongs to
K<0(add(eA)).

Note that ePe ⊗eAe eA ∼= eP . Moreover, j!(eP
•e) ∼= eP

•e ⊗L

eAe eA ∼= eP
•e ⊗eAe

eA ∼= eP
• ∈ j!(D<0(mod-eAe) ∩ Db(mod-eAe)) = j!(X�0)[1]. On the other hand,

Im(j!) = K−(add(eA)) ∩ Db(mod-A), when we view K−(add(eA)) as a full sub-
category of D(A). Hence HomD(A)(P •(1 − e)A,−) vanishes on Im(j!), and so
π : P • −→ P •/P •(1 − e)A is a j!(X�0)[1]-preenvelope. It is easy to see that π is
a left minimal morphism in Db(mod-A), and therefore a j!(X�0)[1]-envelope of
P • ∼= i∗TY . �
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vol. II, pp. 151–190 (Zürich: European Mathematical Society, 2006).

27 B. Keller and P. Nicolás. Cluster hearts and cluster tilting objects. http://www.iaz.uni-
stuttgart.de/LstAGeoAlg/activities/t-workshop/NicolasNotes.pdf, 2011.

28 B. Keller and P. Nicolás. Weight structures and simple dg modules for positive dg algebras.
Int. Math. Res. Not. IMRN 2013 (2013), 1028–1078.

29 B. Keller and D. Vossieck. Aisles in derived categories. Bull. Soc. Math. Belg. Sér. A 40
(1988), 239–253, Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987).
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