
J. Fluid Mech. (2021), vol. 915, A117, doi:10.1017/jfm.2021.134

On the long-time transient formation of sink
zones in near-critical fluids. A theoretical
perspective

Yash Kulkarni1, Roger Khayat2 and Sakir Amiroudine1,†
1University of Bordeaux, CNRS, I2M Bordeaux, Talence F-33400, France
2Mechanical and Materials Engineering, Western University, Canada

(Received 19 July 2020; revised 25 January 2021; accepted 8 February 2021)

Near-critical fluids subject to simultaneous thermal quench and an imposed external
acceleration field are reported to develop ‘sink zones’, where the temperature in the
bulk falls below the imposed boundary value. This anomalous cooling effect persists for
a long period of time corresponding to the diffusive elimination of the cold boundary
layer. The sink-zone phenomenon has been captured previously in numerical simulations
(Zappoli et al., J. Fluid Mech, vol. 316, 1996, pp. 53–72; Sharma et al., Phys. Rev E, vol.
96, 2017, 063102; Sharma et al., Phys. Fluids, vol. 29, 2017, 126103) and was observed
experimentally (Beysens et al., Phys. Rev. E, vol. 84, 2011, 051201). The present work
provides a detailed and thorough theoretical analysis and interpretation based on matched
asymptotic expansions. By examining the one-dimensional transient flow and temperature
with a mean-field approach, we provide further insight into this striking phenomenon,
showing that the behaviour involved is unique to highly compressible near-critical van
der Waals gases. We also show that the sub-cooling phenomenon cannot be predicted in
perfect gases unless very extreme conditions are applied.

Key words: general fluid mechanics, compressible boundary layers, boundary layer stability

1. Introduction

Supercritical fluids (SCFs) are a class of fluids that exist beyond the liquid–vapour critical
point and may be considered as an intermediate state between a liquid and a gas, exhibiting
some properties of liquids, like high density and solubility, and some properties of gases,
such as low viscosity and high compressibility (Stanley 1971). On approaching the critical
point, the various thermo-physical properties show a singular behaviour, such as diverging
isothermal compressibility χT , heat conductivity λ, specific heat at constant pressure Cp
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and constant volume CV and a vanishing thermal diffusivity DT . These properties have
been found to behave according to universal power laws with a different critical exponent
for each property. They can be modelled on the basis of a common parameter μ = (Ti −
Tc)/Tc, where Tc refers to the critical temperature and Ti is the initial temperature of the
fluid (Stanley 1971).

Regarding the thermal behaviour of SCFs, it was initially believed that the vanishing
thermal diffusivity would have an impeding effect on the thermalization of a cell filled
with a SCF when subjected to a thermal heating at the boundary. However, Nitsche &
Straub (1987) observed that the thermal relaxation in the fluid cell containing supercritical
SF6 was completed in seconds as opposed to the predicted scale of days based on the
thermal diffusion. This phenomenon of a critical acceleration of heating was termed the
piston effect, attributed to the high compressibility near the critical point (Boukari et al.
1990; Onuki & Ferrell 1990; Zappoli et al. 1990). This phenomenon may be explained by
considering a cell filled entirely with a SCF and exposed to a small temperature increase at
the boundary. A very thin thermal boundary layer is formed due to the vanishing thermal
diffusivity. The high-density gradients in the thermal boundary layer, in conjunction with
a large isothermal compressibility in the bulk, compress the bulk fluid adiabatically.
Consequently, a wave propagates throughout the bulk fluid at the speed of sound, which
converts the mechanical energy of the waves into thermal energy, yielding an increase in
the temperature of the bulk. The time scale on which this thermal homogenization in the
bulk occurs is very small as compared to the diffusion time scale. A similar argument can
be applied when the bounding wall is cooled, where the fluid in the thermal boundary
layer contracts, and adiabatic cooling thermalizes the bulk fluid. This occurrence has also
been termed the piston effect owing to its resemblance to a piston which compresses a
gas in a closed cylinder and is the underlying phenomenon for understanding the physics
governing near-critical fluids.

Carlès & Zappoli (1995) analysed the problem of a container filled with a near-critical
fluid when subjected to mechanical vibrations by means of matched asymptotic
expansions. Among the various characteristic regimes defined for fluid vibration, a specific
low-frequency regime was highlighted wherein the bulk part of the fluid almost behaves
like a solid bouncing back and forth between two highly compressible thermal boundary
layers. This problem was solved with the temperatures at the walls being identical to the
initial temperature (no heat or thermal quench was applied).

Due to the anomalous behaviour of the properties of near-critical fluids, these fluids have
been known to exhibit various intriguing flow phenomena and instabilities when subject
to thermal perturbations (Zappoli et al. 1996; Accary et al. 2005a,b) and simultaneous
thermal quench and vibration (Amiroudine & Beysens 2008; Zappoli, Beysens & Garrabos
2016; Sharma, Erriguible & Amiroudine 2017a,b). A striking phenomenon, wherein the
temperature of the SCF in the bulk drops below the imposed boundary temperature upon
simultaneous thermal quench and vibration in zero-gravity conditions, was previously
investigated numerically (Sharma, Erriguible & Amiroudine 2017a). This subcooling
phenomenon was also observed in experiments performed under microgravity in low Earth
orbit by using SF6 at liquid-like density (Beysens, Fröhlich & Garrabos 2011).

We identify subcooled regions as sink zones, as they act like a sink for the heat
within the fluid domain. Although this phenomenon was clearly observed and described
numerically and in experiments, no theoretical proof has been proposed so far. In order
to explain this anomalous behaviour, a transient one-dimensional matched asymptotic
analysis is performed based on the initial work of Carlès & Zappoli (1995) but in the
case of non-homogeneous thermal boundary conditions. It is indeed observed that the
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effect of high compressibility along with the action of self-weight (due to the high
acceleration) causes the temperature to change in the bulk in addition to the usual action
of the piston effect. This subsequently affects the overall temperature profile thereby
leading to the formation of sink zones. The explanation for the one-dimensional case
can be judiciously extended to explain the sink-zone appearance in the two-dimensional
numerical simulations of Sharma, Erriguible & Amiroudine (2017a,b). Furthermore, the
appearance of sink zones is found to depend on several factors such as proximity to the
critical point and acceleration.

The subject of simultaneous thermal perturbations and mechanical vibrations of SCFs
have caught the attention of several researchers (Garrabos et al. 2007; Amiroudine &
Beysens 2008; Gandikota et al. 2013; Lyubimova et al. 2019). This was primarily attributed
to the intriguing flow features arising from the complex thermomechanical coupling in
such fluids. Furthermore, these have also been motivated by their direct implications, for
example, for g-jitters experienced by cryogenic storage reservoirs in zero gravity in space
technology. Experiments and numerical simulations performed with simultaneous thermal
quenches and mechanical vibrations with supercritical CO2 and SF6 under weightlessness
suggest evidence of various types of instabilities (Wunenburger et al. 1999; Garrabos
et al. 2007). The phenomenon described by Carlès & Zappoli (1995), wherein the bulk
part of the fluid almost behaves like a solid, bouncing back and forth between two highly
compressible thermal boundary layers, was further corroborated by the numerical studies
of Jounet et al. (1999). Amiroudine & Beysens (2008) investigated this problem with
a linearized equation of state for supercritical CO2, and observed finger-like patterns
which were attributed to thermo-vibrational instability. The stability analysis using the
same model was further extended by Gandikota et al. (2013), wherein different types of
instabilities were quantified in terms of the amplitude and frequency of the vibration.
In addition, a stability diagram was reported, illustrating the critical amplitude of all
instabilities (corner type, parametric, Rayleigh vibrational), providing an insight into the
kind of instabilities one may expect at a given frequency and proximity to the critical
point. The anomalous behaviour of the thermophysical properties in SCFs has also led to
several unique observations such as the drop in temperature near the wall below the initial
temperature imposed at the wall (see next).

Indeed, an unconventional cooling was observed by Beysens, Fröhlich & Garrabos
(2011) in their experimental work. An interferometer cell filled with a SCF was subject
to a heat pulse with boundary temperatures held constant (see figure 1a), and, at the end of
the heat pulse, the bulk fluid was observed to cool below the initial temperature during a
long thermal transient (see figure 1b). The heating and cooling times are comparable and
of the order of the piston-effect time (≈1.3 s). In contrast, the time to return to the final
equilibrium temperature corresponds to the diffusion time (≈630 s). This clearly indicates
that the cooling process indeed corresponds to an isentropic piston effect and the return to
equilibrium to a diffusive process.

A nearly similar observation was also reported by Zappoli et al. (1996) when
investigating the mechanism of heat and mass transport in a side-heated square cavity
in the presence of gravity. The temperature in their case was found to rise above the wall
temperature near the corners. Very recently, Sharma, Erriguible & Amiroudine (2017a,b)
analysed numerically the behaviour of a SCF under the combined effect of thermal
perturbation and mechanical vibration. They considered a square cell (size h = 7 mm) with
solid walls filled with supercritical H2. The vertical walls were adiabatic and the top and
bottom walls were thermally quenched. The initial temperature Ti was set 100 mK above
the critical temperature, i.e. Ti − Tc = 100 mK and the amplitude of the thermal quench
at the walls was δT = 10 mK. The cell was submitted to a vibration of an amplitude
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Figure 1. (a) The interferometer cell with two 0.89 mm diameter thermistors used in Earth gravity experiments
in a homogeneous state. Thermistors TH1 and TH2 are identified by black dots. TH1 is used for heating.
(b) Time response of thermistor TH2 (dots) during relaxation after a 100 mW, 4 s heat pulse on Earth (TH1
exhibits a similar response). A temperature undershoot below the thermostat temperature is observed. The line
is the corresponding one-dimensional simulation (Ti = Tc + 16.5 K). Reprinted figure from: Beysens, Fröhlich
& Garrabos (2011), with permission from APS (2020).
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Figure 2. The T − Tw contour plots for (Ti − Tc = 100 mK), δT = 10 mK, f = 20 Hz and A = 5 mm at time
t = 7 s. Reprinted figure from: Sharma, Erriguible & Amiroudine (2017a,b) with permission obtained from
APS (2020).

A = 5 mm and a frequency f = 20 Hz. Figure 2 shows the temperature contour plots
T − Tw where Tw = Ti − δT corresponds to the wall temperature. The inset in figure 2
highlights the sink zone corresponding to T − Tw < 0.

2. The physical domain and problem formulation for SCFs

2.1. Statement of the problem
In this study, the existence of the observed sink zone is analysed quantitatively and
demonstrated theoretically using a one-dimensional model with mean-field properties for a
van der Waals gas. To our knowledge, and despite the reported experimental and numerical
evidence of the sink-zone phenomenon, no theoretical proof has been proposed so far in
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0

T ′ = T ′
w

T ′ = T ′
w

Constant
accelerationL′

x′

Figure 3. Sketch of the one-dimensional domain; x′ varies from 0 to L′ and the walls are maintained at a
constant temperature T ′

w such that T ′
i > T ′

w > T ′
c for all time t′ > 0; T ′

i represents the initial temperature of the
bulk fluid. Both walls are thermally quenched.

the literature. The objective of the present work is to prove mathematically the appearance
of the observed sink zone and elucidate the theoretical and physical mechanisms behind
this phenomenon.

Consider the non-isothermal response of the one-dimensional transient flow and heat
transfer of a near-critical fluid subject to a constant volume force or acceleration. The
physical domain is schematically illustrated in figure 3. In what follows, a prime denotes
dimensional parameters and variables, the subscript ‘0’ refers to a perfect gas, the subscript
‘i’ refers to initial conditions and a subscript ‘w’ refers to conditions at the wall. The cell is
subject to a thermal quench δT ′ at both walls, i.e. T ′

w = Ti
′ − δT ′. The length of the cavity

is taken as L′ and the constant acceleration is imposed in the downward x′-direction.

2.2. Problem formulation
The model adopted here is an extension of the one used by Carlès & Zappoli (1995). The
thermostated container is filled with a near-critical van der Waals fluid at critical density,
initially at rest, in thermal equilibrium with the walls. A constant external acceleration
field is imposed on the fluid cell, and the walls are thermally quenched and maintained
at a value T ′

w = Ti
′ − δT ′ for all time t′ > 0. In addition, the no-penetration condition is

imposed at the walls. The boundary conditions at x′ = 0 and x′ = L′ are written explicitly
as

T ′(x′ = 0, t′) = T ′(x′ = L′, t′) =
{

T ′
i , t′ = 0,

T ′
w, t′ > 0.

(2.1a)

u′(x′ = 0, t′) = u′(x′ = L′, t′) = 0. (2.1b)

915 A117-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.134


Y. Kulkarni, R. Khayat and S. Amiroudine

The imposed acceleration field is given by A′H(t′), where A′ is the constant amplitude,
and

H(t′) =
{

0, t′ < 0
1, t′ ≥ 0

(2.2)

is the Heaviside step function. We have purposely chosen A′ = 10 g (where g =
9.81 m s−2 is the gravity) in the present study since the main idea here is to explain
theoretically the emergence of the sink zone, which was reported in an earlier experiment
(Beysens, Fröhlich & Garrabos 2011) and numerical simulation (Sharma, Erriguible &
Amiroudine 2017a), and not necessarily to compare quantitatively against earlier results.
Our present model follows closely the one adopted in the numerical simulation. Sharma,
Erriguible & Amiroudine (2017a) considered a time-varying acceleration in a zero-g
environment, namely A′ω′2sin(ω′t′) (in their expression, A′ represents the amplitude of
displacement and ω′ is the imposed frequency). But, in an effort to explain the observed
sink zone, they also focused their study on a constant acceleration, A′ = 100 g, as reported
in their figure 6. The 10 g acceleration, which is different from the 100 g in Sharma,
Erriguible & Amiroudine (2017a), is arbitrarily chosen in order to amplify the magnitude
of the sink zone since it seems to clearly illustrate the interplay between the acceleration
and the imposed thermal quench at the wall. Simultaneously, the constant 10 g acceleration
could also mimic the 1 g terrestrial environment as in the experiment of Beysens, Fröhlich
& Garrabos (2011).

The thermal conductivity λ′ of near-critical fluids also diverges. This fact is taken into
account by the introduction of the following temperature dependence:

λ′

λ′0
= 1 + Λ

[
T ′ − T ′

c

T ′
c

]−1/2

, (2.3)

where λ′0 is the thermal conductivity of a perfect gas (Λ = 0.75 for CO2). The real
exponent, 0.57, is slightly superior to 0.5, which is a value based on the mean-field theory
(see, for instance, Zappoli, Beysens & Garrabos 2016). However, the 0.5 exponent is
convenient for our theoretical formulation and analysis, and should not lead to a different
phenomenological interpretation.

We use the following non-dimensional variables for the density, temperature, pressure,
velocity, time and position, respectively,

ρ = ρ′

ρ′
c
, T = T ′

T ′
c
, P = P′

ρ′
cr′T ′

c
, u = u′√

γ0r′T ′
c
, t = t′

t′a
, x = x′

L′ , (2.4a–f )

where T ′
c and ρ′

c are the critical values of temperature and density, respectively, and t′a =
L′/
√

γ0r′T ′
c is the acoustic time for a perfect gas. Here γ0 is the specific heat ratio for a

perfect gas, and r′ is the universal gas constant divided by the molar mass for a perfect gas.
The equation of state used here is for a van der Waals fluid, which has been proven to

model correctly the fluid flow near the critical point, in numerical simulations (Zappoli
et al. 1996; Accary et al. 2005a,b) and asymptotic analyses (Peng & Robinson 1976;
Carlès & Zappoli 1995). The van der Waals equation of state does not necessarily yield
the exact real critical exponents. However, both numerical simulations (Zappoli et al.
1990, 1996) and asymptotic analyses (Ferrel & Hong 1993; Zappoli & Carlès 1995) have
already demonstrated that a van der Waals equation of state can provide a wealth of
phenomenological insight, while enabling a relatively simple mathematical formulation.
This choice was therefore made here to facilitate the formal analysis of the process of
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heat sink rather than to provide a quantitative comparison with real measurements. If
a quantitative analysis is needed, one could use more sophisticated state equations such
as the Peng–Robinson equation (Peng & Robinson 1976) and the NIST database or real
exponents (Ferrel & Hong 1993).

We denote the kinematic viscosity and the thermal diffusivity for a perfect gas, by ν′
0 and

κ ′
0, respectively. The introduction of the non-dimensional variables leads to the following

equations for mass, momentum and energy conservation, as well as the van der Waal
equation of state

ρt + (ρu)x = 0,

ρ(ut + uux) = − 1
γ0

px + 4
3
εuxx + ρAH(t),

ρ(Tt + uTx) = −(γ0 − 1)

(
p + 9

8
ρ2
)

ux + 4
3
εγ0(γ0 − 1)u2

x

+ε

[
γ0

Pr0

(
1 + Λ√

T − 1

)
Txx − Λ

2
T2

x (T − 1)−3/2
]

,

P = ρT
1 − ρ/3

− 9
8
ρ2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

Here, ε = (t′a/t′d)Pr0, where t′d = L′ 2/κ ′
0 is the characteristic diffusion time, Pr0 = ν′

0/κ
′
0

is the reference Prandtl number for a perfect gas and μ = (T ′
i − T ′

c/T ′
c) is a measure of

the departure of the initial temperature from the critical temperature. We note that both ε

and μ are typically very small. For a 10 mm cell filled with CO2, ε ≈ 10−8. However, μ

cannot be less than 10−6 for the continuum hypothesis to hold. Finally, A = A′L′/γ0r′T ′
c

is the non-dimensional imposed acceleration. For the CO2 cell, A = 1.22 × 10−5 which
corresponds to a dimensional acceleration of A′ = 10 g.

Initially, the fluid is assumed to be at rest, and (2.5) are solved subject to the following
initial and boundary conditions:

ρ(x, t = 0) = 1, u(x, t = 0) = 0,

T(x, t = 0) ≡ Ti = 1 + μ, P(x, t = 0) ≡ Pi = 3
2 (1 + μ) − 9

8 ,

}
(2.6)

u(x = 0, t) = u(x = 1, t) = 0, T(x = 0, t) = T(x = 1, t) = Tw. (2.7a,b)

Here, Tw represents the dimensionless wall temperature at time t > 0. When cast in terms
of the dimensionless thermal quench δT = aA, it reads

Tw(t) = Ti − δTH(t). (2.8)

In this study, we assume the dimensionless thermal quench and imposed acceleration to
be of the same order of magnitude so that a remains of order one. For a thermal quench of
10 mK, a = 2.7 for the CO2 cell described above.

We emphasize that the aim of the present one-dimensional analysis is to predict the
non-isothermal transient response of a slab shaped container subject to a volume force
acceleration (see figure 3). In the study of Carlès & Zappoli (1995), the walls were not
thermally quenched but rather maintained at the same initial temperature of the fluid.
Additionally, in the present work, a constant instead of a periodic acceleration field
is imposed in order to demonstrate the appearance of sink zones in the bulk near the
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boundary. It is worth noting that the analysis carried out by Carlès & Zappoli (1995)
captured only the steady state and sustained oscillatory behaviours. In the present study,
the entire transient phenomenon is captured in order to understand and highlight the
striking sub-cooling of the bulk observed in previous numerical and experimental works.
The present study constitutes the theoretical proof of the observed and numerically
predicted phenomenon. The analysis is performed in the bulk first. Due to the singularity
in the problem (the walls are maintained at a constant temperature), it is necessary to
introduce boundary layers near the walls of the cell.

Several characteristic time scales are inherent to the fluid flow and heat transfer near
the critical point. In particular, we mention the acoustic time scale reflected here by
the normalized time t, the piston-effect time scale reflected by τ = (ε/μ3/2)t (Zappoli
et al. 1990) and the thermal diffusion time scale. The latter time scale is very long and
tends to infinity upon approaching the critical point. Consequently, we shall focus in this
study on the acoustic and piston-effect time scales as the phenomenon of sink zone is
observed on the piston-effect time scale (see § 4). Although the formulation is presented
in dimensionless form, the results will be reported in terms of dimensional variables and
parameters, in an effort to elucidate realistically the underlying phenomena.

3. The flow and temperature fields at the acoustic time scale

Although no sink zone is expected to emerge at the acoustic time scale, it is useful to
consider this scale in some detail here as it illustrates the implementation of the matched
asymptotic approach, providing an additional insight into the distinct physical features in
the propagation of acoustic waves in the cell domain. In addition, this section will pave the
way towards understanding the mathematical and physical complexity inherent to the flow
and temperature fields at the piston-effect time scale.

We begin by observing that at the acoustic time scale, as the physical time is already
scaled by the acoustic time, there is no need to introduce any further change of variables.

3.1. The flow and temperature in the bulk region
The physical variables in the problem are written as a superposition of the initial state and
first-order perturbations on the t scale with corresponding order coefficients A1≤i≤4 as

ρ(x, t) = 1 + A1ρ̄(x, t) + o(A1), u(x, t) = A2ū(x, t) + o(A2),

T(x, t) = Ti + A3T̄(x, t) + o(A3), P(x, t) = Pi + A4P̄(x, t) + o(A4).

}
(3.1)

Introducing expressions (3.1) into the governing equations, the set of (2.5), and examining
the balance of terms, provides the order coefficients which turn out to be all equal to
the imposed non-dimensional acceleration field magnitude: Ai = A for any i. Thus, we
formally write

ρ(x, t) = 1 + Aρ̄(x, t), u(x, t) = Aū(x, t),

P(x, t) = Pi + AP̄(x, t), T(x, t) = Ti + AT̄(x, t),

}
(3.2)

which, when introduced in (2.5), lead to the following closed set of first-order equations
in the bulk region for the perturbation field:

ρ̄t = −ūx, ūt = − 1
γ0

P̄x + H(t), −αūx = T̄t, P̄ = 3
2

T̄, (3.3a–d)

where α = (γ0 − 1)(Pi + 9
8 ).

915 A117-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.134


On the long-time transient formation of sink zones

After successive substitutions and eliminating the density, pressure and temperature, we
obtain the following non-homogeneous wave equation for the velocity and temperature
fields:

ūtt(x, t) = c2ūxx(x, t) + δ(t), (3.4a)

T̄tt(x, t) = c2T̄xx(x, t), (3.4b)

where δ(t) is the Dirac delta function, reflecting the initial suddenly imposed acceleration
and thermal quench at the boundary, as reflected in the second equation in (2.5) and (2.8).

Here, c =
√

3
2 (α/γ0) is the speed of sound for a van der Waals fluid relative to the speed of

sound of a perfect gas. Since the fluid is initially at rest, equation (3.4a) is solved subject
to ū(x, t = 0) = 0, as well as homogeneous conditions at the walls: ū(x = 0, t) = ū(x =
1, t) = 0. We recall that no boundary conditions can be imposed at this stage. In this case,
we first tackle the solution of (3.4a) for the velocity, which may be conveniently written in
the Laplace domain as

ū(x, s) = − 1
s2

(
e−(s/c)x

e−s/c + 1
+ e(s/c)x

es/c + 1
− 1

)
. (3.5)

We note that, throughout this work, we use the same notation for any variable and its
Laplace transform to avoid the proliferation of notations. From the solution of the velocity
field, the transformed bulk temperature profile can be obtained from (3.4b) as

T̄(x, s) = −2γ0c
3

1
s2

(
e−(s/c)x

e−s/c + 1
− e(s/c)x

es/c + 1

)
. (3.6)

We observe that, although the velocity profile (3.5) satisfies the homogeneous
(no-penetration) conditions at the walls, this is not the case for the temperature,
necessitating the presence of a boundary layer at each wall. In the matched asymptotic
analysis, boundary conditions for the bulk are derived from matching with the boundary
layers. However, it will be shown later in this section that the order coefficient for velocity
in the boundary layer is much smaller than in the bulk. Consequently, the boundary
conditions for the velocity in the bulk are the actual physical no-penetration conditions
introduced in (2.7a,b). Finally, and as we shall see in § 5, although the velocity takes the
same form as in the case of a perfect gas, the temperature assumes a slightly different form
as a result of the additional coupling with the density in that case (see (3.3a–d)).

We note that solutions (3.5) and (3.6) yield time-oscillatory velocity and temperature,
as well as oscillatory density and pressure. By taking the time average of the solution over
one cycle, the following temperature profile is obtained:

〈T̄〉(x) = −γ0

3
(1 − 2x), (3.7)

which suggests that the average profile does not depend on the imposed acceleration, wall
temperature and proximity to the critical point. Although the profile T̄(x, t) itself depends
on the proximity to the critical point (c depends on it), averaging it over one cycle cancels
its effect. However, T̄(x, t) is multiplied by A (see (3.2)), i.e. by the non-dimensional
acceleration whose value for a 10 g acceleration (considered here) is of the order of
A ≈ 10−5. It can be shown that this average temperature is above the wall temperature
on the acoustic time scale. In this case, 〈T̄〉max(x = 1) 
 0.46 and 〈T̄〉min(x = 0) 
 −0.46

915 A117-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.134


Y. Kulkarni, R. Khayat and S. Amiroudine

3(a) (b)
2

1

0

–1

(T
′ –
T′ i

)
(m

K
)

–2

–3

3

2

1

0

–1

–2

–3
0 0.2 0.4 0.6 0.8 1.0

x = 0.1

x = 0.1, 0.9
x = 0.2, 0.8
x = 0.3, 0.7
x = 0.4, 0.6
x = 0.5

x = 0.2
x = 0.3
x = 0.4
x = 0.5
x = 0.6
x = 0.7
x = 0.8
x = 0.9

t′ (s)

u′
(m

 s
–
1
)

1.2 1.4 1.6

(×10–4)

(×10–8)

0 0.2 0.4 0.6 0.8 1.0

t′ (s)

1.2 1.4 1.6

(×10–4)

Figure 4. Transient (a) temperature profiles and (b) velocity profiles at the acoustic time scale for different
(dimensionless) locations for 0 < x < 1 in the bulk region. The walls are maintained at constant temperature
T ′

w such that T ′
i > T ′

w > T ′
c for t′ > 0. The horizontal axis represents the dimensional time t′ (acoustic time

scale). The fluid is CO2 with critical temperature of 304.14 K filled inside a 10 mm thick one-dimensional slab
under 10 g acceleration. Initial temperature is 0.2 K above the critical point giving the value of dimensionless
speed of sound of c = 0.8. The angular points or sharp corners are a result of choosing the acceleration as a
step function. Note from figure 4(a) that T ′ − T ′

i ≤ 0 for 0 < x ≤ 0.5 and T ′ − T ′
i ≥ 0 for 0.5 ≤ x < 1.

for γ0 = 1.4. So 〈T̄〉min is above the boundary value temperature T̄w = −δT ′/AT ′
c ∼ −5.4

with A = 1.22 × 10−5. We note that, in contrast to the boundary layer regions, the velocity
and temperature fields do not depend on the thermal quench in the bulk region.

Solutions (3.5) and (3.6) are numerically inverted and the oscillatory profiles for the
temperature and velocity fields are obtained, as shown in figure 4.

The velocity and temperature profiles are periodic with a dimensionless period of 2/c ≈
2.5 (which corresponds approximatively to 8.8 × 10−5 s and corroborates well the results
in figure 4). This period corresponds to the propagation of the sound speed back and
forth in the one-dimensional cell. While the velocity profiles in figure 4(a) are symmetric
about x = 0.5 (the profiles for x > 0.5 are identical to the ones for x < 0.5), the temperature
profiles in figure 4(b) are antisymmetric with the same dimensionless period of 2/c ≈
2.5. This distinction in symmetry, although not possible to confirm from (3.4), becomes
evident when replacing x by 1 − x in solutions (3.5) and (3.6). In spite of the space–time
coupling between the velocity and the temperature in (3.3a–d) and (3.4), which results
in similar waveforms (trapezoidal due to step function), solutions (3.5) and (3.6) clearly
indicate the velocity and the temperature are not in phase. In fact, figure 4 indicates that the
velocity reaches its maximum at a location x < 0.5 earlier than the temperature reaching
its minimum. On the other hand, at a location x > 0.5, the velocity reaches its maximum
later than the temperature. In general, the delay decreases with diminishing distance from
the middle of the cell. Finally, we note that, although the temperature remains equal to
its initial value at all time in the middle of the cell (x = 0.5), the velocity continues to
fluctuate with time as shown in figure 4.

As stated above, only the velocity boundary conditions were used and no boundary
conditions were imposed on the temperature when obtaining the bulk temperature profile
at the acoustic time scale. More importantly, the solution is thus independent of the thermal
quench magnitude. Consequently, this profile is solely due to the presence of the suddenly
imposed acceleration field A initially. This in turn causes the pressure and consequently
the temperature through the last equation in (3.3a–d), to oscillate about an average linear
profile with constant gradient. Later, it will be shown that this behaviour is also exhibited
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for a perfect gas. We finally note that no sink zone is developed in the bulk at this acoustic
time scale.

3.2. The top and bottom boundary layers
The analysis is focused on the top boundary layer located at x = 0 as the sink zone is most
likely to appear on the top layer due to the gravity field which is directed downwards. In
order to capture this phenomenon in this confined region, which represents the thin thermal
diffusion layer due to the vanishing of the thermal diffusion coefficient, a new space
variable z is introduced and is defined by z = x/δ. Here δ =

√
εμ1/2 is the boundary layer

thickness. All the variables are once again perturbed about the initial values. However, in
this case, terms are expanded for x → 0 and δ → 0 with z fixed. In particular, a coupling
arises between the diffusion term and work of the pressure forces in the energy equation,
which represents the thermomechanical coupling. Such a coupling is characteristic of
near-critical boundary layers and absent in classical perfect gases (see § 5). Similar to
the case in the bulk region, the balance of terms yield the following expansions:

ρ(z, t) = 1 + A
μ

ρ̂(z, t), u(z, t) = A
√

ε

μ
û(z, t),

T(z, t) = Ti + AT̂(z, t), P(z, t) = Pi + AP̂(z, t).

⎫⎪⎬
⎪⎭ (3.8)

It is now clear that the order coefficient of the velocity is much smaller compared to the
one in the bulk, and hence the validity of the bulk boundary (no-penetration) conditions
on the velocity is fully justified. Introducing expressions (3.8) in the set of equations (2.5)
leads to the following system of equations:

ρ̂t = −ûz, P̂z = 0, Kûz = 2
3 T̂zz, P̂ = 3

2 T̂ + 9
4 ρ̂, (3.9a–d)

where K = 2
3 (αγ0Λ)Pr0.

The boundary conditions are

T̂(z = 0, t) = −aH(t), û(z = 0, t) = 0. (3.10a,b)

Here, we recall a = δT/A = O(1). An additional boundary condition is needed in the
limit z → ∞ in order to close the problem. It corresponds to the matching condition on
the temperature

lim
z→∞ T̂(z, t) ∼ lim

x→0
T̄(x, t). (3.11)

The equation for the temperature is readily derived from the set (3.9a–d) as

T̂t = 1
K

T̂zz + 2
3

P̂t = 1
K

T̂zz + T̄t(x = 0, t). (3.12)

Here, we note that the pressure is known since (3.9a–d) indicates that the pressure is
constant across the boundary layer, and is therefore equal to the pressure in the bulk region.
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Figure 5. Transient temperature profile of T ′ − T ′
i in the top (a) and bottom (b) boundary layers at the acoustic

time scale for six different positions. The thermal quench of 20 mK is imposed at both walls and all other
parameters are exactly the same as in figure 4. All profiles are oscillatory with a dimensionless period of 2/c.
We observe that the angular points are the direct result of the non-sinusoidal wave patterns shown in figure 4.

In this case, the temperature deviation in the Laplace domain becomes

T̂(z, s) = −a
s

e−z
√

Ks + T̄(x = 0, s)(1 − e−z
√

Ks). (3.13)

The temperature in the bottom layer is obtained similarly by introducing z∗ = (1 − x)/δ,
yielding the counterpart solution of (3.13)

T̂(z∗, s) = −a
s

e−z∗
√

Ks + T̄(x = 1, s)(1 − e−z∗
√

Ks). (3.14)

Noting that T̄(x = 1, s) = −T̄(x = 0, s) = (1/s2)(2γ0c/3)((es/c − 1)/(es/c + 1)), (3.13)
and (3.14) indicate that while the temperature is antisymmetric in the bulk region, the
symmetry is broken by the imposition of the thermal quench at the walls. A more useful
expression than the separate representations in the bulk and boundary layer regions is the
composite solution. Recalling that z = x/δ and z∗ = (1 − x)/δ, the composite temperature
can be expressed in terms of x by combining (3.6), (3.13) and (3.14)

T(x, t) = Ti + A[T̄(x, t) + T̂(z, t) − lim
z→∞ T̂(z, t) + T̂(z∗, t) − lim

z∗→∞
T̂(z∗, t)]. (3.15)

Once again, due to the complex expressions of the temperature field, the analytical
inversion is not possible. Hence, numerical inversion is performed using the Euler
algorithm described by Abate & Whitt (2006). The algorithm is an implementation of
Fourier-series method, using Euler summation to accelerate the convergence of the final
infinite series appearing while evaluating the Bromwich integral for the inverse Laplace
transform of a complex valued function.

Figure 5 illustrates the evolution of the temperature at different positions in the boundary
layer regions. Although all profiles are oscillatory with a non-dimensional period of 2/c,
periodicity is essentially lost very near the wall, with a sudden drop in the temperature.
A little further from the wall, the initial drop softens, and smooth oscillations begin to
appear. Further still, the oscillations begin to show a rapid change around the peak. The
triangular wave pattern appears at a location close to the walls. The temperature ramps up
at an increasingly slower rate when approaching the peak to diminish rapidly thereafter.
The difference in the growth and diminishing rates is reflected in the dissymmetry of the
oscillations. Far away from the wall, the behaviour overlaps that of the bulk (reported
earlier in figure 4); the change in slope becomes discontinuous, and the temperature ramps
up and down at the same rate (symmetric wave). As expected, the temperature remains at
all time above the temperature of the walls: no sink zone is observed.
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4. The flow and temperature fields at the piston-effect time scale

The second time scale that appears in fluids near the critical point is the piston-effect time
scale. It represents the time at which the temperature is homogenized (to first order) when
a cell is heated on one end. A new time variable τ = (ε/μ3/2)t relative to the piston-effect
time scale (Zappoli et al. 1990, 1996; Zappoli, Beysens & Garrabos 2016) is introduced to
capture the phenomena at this time scale. Here again, we examine the response subject to
the imposed acceleration and thermal wall quench.

4.1. The bulk region
In this region, the orders of the density, temperature, pressure and velocity are determined
as a function of the amplitude A and proximity to the critical point μ as

ρ(x, τ ) = 1 + Aρ̄(x, τ ), u(x, τ ) = A
ε

μ3/2 ū(x, τ ),

P(x, τ ) = Pi + AP̄(x, τ ), T(x, τ ) = Ti + AT̄(x, τ ),

⎫⎬
⎭ (4.1)

with the corresponding linearized equations

ρ̄τ = −ūx, P̄x = γ0H(τ ), −αūx = T̄τ , P̄ = 3
2 T̄. (4.2a–d)

Comparing systems (3.3a–d) and (4.2a–d), we note interesting similarities and differences
between the acoustic and piston-effect time scales in the bulk region. At the piston-effect
time scale, the pressure as well the temperature gradients are solely due to the action of
the imposed acceleration. At the acoustic time scale, additional contribution results from
inertia in the second (momentum) in (3.3a–d). The absence of the acceleration term at
the piston-effect time scale in the momentum equation in (4.3) leads to a break in the
symmetry exhibited at the acoustic time scale. At both time scales, the diffusion term in
the energy equation is negligible, and a wall temperature condition is therefore not needed
for the bulk solution. We finally note that the density is decoupled from the remaining
variables at both scales as it is dominated by the pressure and temperature in the equation
of state. This is not the case in the boundary layer regions, as we shall see and already saw
in (3.9a–d).

The solution of (4.2a–d) leads to the following general expressions for the temperature
and velocity in the Laplace domain:

T̄(x, s) = 2
3

[γ0x
s

+ F(s)
]

= 2
3

P̄(x, s), (4.3)

ū(x, s) = − γ0

3α
x2 − 2

3
s
α

F(s)x + G(s), (4.4)

where F(s) and G(s) are unknown functions which will be determined from matching. In
comparison to the acoustic time scale, we can already see two important distinctions. We
first observe that the symmetry in the velocity and temperature fields earlier predicted at
the acoustic scale in the bulk region (see figure 4) is now broken. This becomes evident
when replacing x by 1 − −x in (4.3). We also anticipate that the order of magnitude of the
velocity in the boundary layers is comparable to that in the bulk region. Consequently, and
unlike the case at the acoustic time scale, the no-penetration condition cannot apply for the
velocity (4.4) in the bulk region. Hence, at the piston-effect time scale, the boundary layers
at the two walls are both hydrodynamic and thermal, with matching conditions needed to
obtain the complete profiles of the velocity and the temperature. We finally anticipate the
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pressure to be independent of position across the two boundary layers. Consequently, the
last equation in system (4.2a–d) and (4.3) suggest, and as we shall show, that F(s) actually
turns out to be the pressure in the top boundary layer.

4.2. The top and bottom boundary layers
For the top layer, we again introduce the following change of variable z = x/δ, where we
recall δ =

√
εμ1/2, and set

ρ(z, τ ) = 1 + A
μ

ρ̂(z, τ ), u(z, τ ) = A
ε

μ3/2 û(z, τ ),

T(z, τ ) = Ti + AT̂(z, τ ), P(z, τ ) = Pi + AP̂(z, τ ),

⎫⎪⎬
⎪⎭ (4.5)

leading to the following equations for the perturbation field:

ρ̂τ = −ûz, P̂z = 0, Kûz = 2
3 T̂zz, P̂ = 3

2 T̂ + 9
4 ρ̂ . (4.6a–d)

Interestingly, system (4.6a–d) is the same as (3.9a–d) at the acoustic time scale when τ is
replaced by t. However, the solution in each case is not the same since it is matched on to
different temperatures in the bulk region. Both (3.9a–d) and (4.6a–d) indicate that, close
to the walls, the diffusion term is no longer negligible, causing a thin boundary layer to
form, and a coupling occurs between the density and temperature terms through the state
equation which gives rise to the thermomechanical coupling.

Upon solving system (4.6a–d) subject to the top wall conditions, and matching with
the bulk field (4.3) and (4.4), we obtain, in particular, the temperature and velocity
perturbations near the top wall

T̂(z, s) = −a
s

e−z
√

Ks + 2
3

P̂T(s)(1 − e−z
√

Ks), (4.7)

û(z, s) = 2
3

1√
Ks

(
2
3

sP̂T(s) + a
)

(e−z
√

Ks − 1). (4.8)

Here, P̂T(s) is the pressure transform in the top layer. Matching the temperature in the bulk
and top layer regions by taking the limit x → 0 of (4.3) and z → ∞ of (4.7), we find that
F(s) = P̂T(s).

Similarly, matching (4.4) and (4.7) for the velocity, we obtain G(s) = −2
3(1/

√
Ks)

(2
3 sP̂T(s) + a). We note that the pressure P̂T(s) remains unknown at this stage, and will be

determined next once the matching near the bottom layer is secured.
A similar treatment is implemented in the boundary layer near the bottom wall by letting

z∗ = (1 − x)/δ. In this case, the governing equations are

ρ̂τ = ûz∗, P̂z∗ = 0, −Kûz∗ = 2
3 T̂z∗z∗, P̂ = 3

2 T̂ + 9
4 ρ̂, (4.9a–d)

yielding the following temperature and velocity perturbations in the Laplace domain:

T̂(z∗, s) = −a
s

e−z∗
√

Ks + 2
3

P̂B(s)(1 − e−z∗
√

Ks), (4.10)

û(z∗, s) = −2
3

1√
Ks

(
2
3

sP̂B(s) + a
)

(e−z∗
√

Ks − 1). (4.11)

Matching the temperatures from (4.3) and (4.10) by setting T̄(x → 1, s) ∼ T̂(z∗ → ∞, s)
indicates that the pressure transform in the bottom layer becomes P̂B(s) = F(s) + γ0/s.
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Finally, F(s) is determined from (4.4) and (4.11) by setting ū(x → 1, s) ∼ û(z∗ → ∞, s),
yielding F(s) = −γ0/2s − 3

2 a(β/s)(
√

s + β)−1, where β = 3
4 (

√
K/α).

4.3. The sink-zone phenomenon

Noting that L−1[(β/s)(
√

s + β)−1] = 1 − eβ2τ erfc(β
√

τ), the pressure distribution
becomes readily and explicitly available in the three regions

P(x, τ ) = Pi − 3
2
δT[1 − eβ2τ erfc(β

√
τ)] +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−A
γ0

2
, x ∼ 0+

Aγ0

(
x − 1

2

)
, 0 ≺ x ≺ 1

+A
γ0

2
, x ∼ 1

. (4.12)

Clearly, the transient response is directly related to the thermal quench at the walls.
Interestingly, and unlike the temperature and velocity, the initial pressure profile across
the three regions diminishes by the same factor 3

2δT(uniformly across the three regions).
At any time, the pressure exhibits the same gradient across the bulk region.

As to the temperature, unlike the pressure, the analytical inversion in the top and
bottom boundary layers is not possible, and the inversion will be carried out numerically.
Substituting F(s) in (4.3), the analytical inversion leads to an explicit time and position
dependence for the temperature in the bulk region

T(0 ≺ x ≺ 1, τ ) = Tw + 2
3 AH(τ )γ0(x − 1

2) + δT eβ2τ erfc(β
√

τ). (4.13)

Profile (4.13) illustrates analytically the conditions for the sink zone to emerge in the bulk
region, and corresponds to the basic idea behind the present work. The composite solution
for the temperature transform is obtained by combining (4.3), (4.7) and (4.10).

The evolution of the temperature profiles in the bulk and boundary layers is illustrated
in figure 6, where the temperature is plotted against position at different times. Since the
profiles in the boundary layers are obliterated over the range 0 < x < 1 (middle sections of
figure 6), they are shown over a small x range near the top and bottom walls in the left and
right sections of the figure, respectively. Figure 6(a) shows a wider perspective over the
range 0 < t′ < 25 s, whereas figure 6(b) depicts the details for 5 < t′ < 25 s.

We have also added the profiles corresponding to a zero acceleration (dashed lines). In
all three regions, the temperature drops significantly with time, especially initially. The
profiles in the middle section of figure 6(a,b) reflect the behaviour in the bulk region.
We first observe that the temperature gradient 2

3 Aγ0 is constant and independent of time.
There are two contributing terms in (4.13) to the temperature perturbation, the first term
2
3 Aγ0(x − 1

2) represents the coupling between the imposed acceleration and the pressure
gradient. The second term eβ2τ erfc(β

√
τ) is the signature of the piston effect in the

heat transfer process. It is positive and monotonically decreasing with time. The profiles
are comparable to those numerically calculated by Sharma, Erriguible & Amiroudine
(2017a,b).

The transient behaviour becomes evident in the limits of small and large times. For this,
we note the following useful asymptotic forms of the transient term, which will be used in
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Figure 6. Temperature profiles at the piston-effect time scale against position x. Profiles shown for
0 < t′ < 25 s in (a), and for 5 < t′ < 25 s in (b). The bulk region is shown for 0.09 ≤ x ≤ 0.91, along with the
corresponding boundary layers. The wall temperature T ′

w corresponds to the (−20 mK) horizontal line. The
conditions are the same as at the acoustic time scale except that the thermal quench here is 20 mK. Dotted lines
correspond to zero gravity and plain lines to an acceleration of 10 g.

subsequent discussions:

eβ2τ erfc(β
√

τ) ≈

⎧⎪⎪⎨
⎪⎪⎩

1 − 2√
π

β
√

τ , (τ � 1)

1
β
√

πτ
, (τ � 1)

(4.14)

Consequently, (4.13) and (4.14) suggest that, in the absence of an imposed acceleration
(A = 0), the temperature will everywhere always be larger than the wall temperature Tw =
Ti − δT , and this case represents the usual process of heat diffusion, with the pressure
remaining independent of the position across the three regions and below the initial
pressure at all time as per (4.12). Simultaneously, the temperature is independent of the
position (flat dashed lines in the middle section of figure 6) with narrow boundary layers.
Now, for A /= 0, there is a competition between the acceleration and the piston-effect
thermal quench. It is clear from (4.14) that the temperature can be below that of the
wall only in the upper half-region (x < 1/2); T(x > 1/2, τ ) > Tw at any time. The early
sharp drop in the bulk temperature depicted in figure 6(a) is reflected in the first equation
of (4.14). The saturation shown in the figure at the later time is reflected in the second
equation of (4.14) through the 1/

√
τ behaviour. In this case, the effect of the thermal

quench, despite its imposition at the walls, is no longer felt across the bulk region. The
monotonic decrease with time reflected in figure 6 and (4.13) is typical of the bulk region,
and will not always be present near the walls. The profiles reveal that the temperature
decreases below the boundary value at a longer time (t′ 
 25 s in figure 6, the piston-effect
time scale) near the upper wall of the cell. More generally, this time may be estimated
from (4.14) to be: (π/4β2)(1 − γ0/3a)2 < τPE < 9a2/πγ 2

0 β2.
Concerning the complex dynamics near the walls, additional insight is gained by

examining (4.7) and (4.10) for small z and z*, respectively. In this case, the analytical
inversion becomes possible. Noting that L−1[(s + β

√
s)−1] = eβ2τ erfc(β

√
τ), we obtain

T(z → 0, τ ) ≈ Tw −
√

K
[
γ0A − 3δT

3
√

πτ
+ δTβ eβ2τ erfc(β

√
τ)

]
z, (4.15)

T(z∗ → 0, τ ) ≈ Tw +
√

K
[
γ0A + 3δT

3
√

πτ
− δTβ eβ2τ erfc(β

√
τ)

]
z∗. (4.16)
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Figure 6 indicates that while the temperature drops everywhere like 1/
√

τ at a
significant rate initially. The early behaviour is reflected from (4.15) and (4.16) in the
sharp slopes near the walls as the term involving 1/

√
τ is dominant for small τ . At a

later time, on recalling (4.14), the effect of the quench is annihilated in (4.15) and (4.16)
as the terms proportional to δT cancel out, yielding a temperature slope essentially equal
to −A(γ0/3)

√
K/πτ near both walls, a behaviour that also explains the saturation with

time shown in figure 6 near the two walls. More importantly, (4.16) confirms, as figure 6
indicates, that a sink zone cannot form near the bottom wall for short and long time. On
the other hand, a sink zone can form near the top wall. The temperature can drop by an
amount essentially equal to A(γ0/3)

√
K/πτ that subsides over the piston-effect time scale,

independently of the thermal quench level.
This result is similar to the experimental observations of Beysens, Fröhlich & Garrabos

(2011) in which an internal heat source is applied in a cell containing a SCF with
thermostated walls (see figure 1). A hot boundary layer compresses (heats) the bulk fluid,
and a cold boundary layer expands (cools) the bulk fluid. When the heating stops, the
pressure ceases to rise due to the cold layer. However, the pressure drop due to the cold
layer still continues as the layer slowly vanishes by diffusion. This results in a temperature
drop in the bulk sample that can be reached beyond the initial equilibrium temperature
as can be seen from figure 1 (Beysens, Fröhlich & Garrabos 2011). The effect is more
important when the cold boundary layer is thinner, making the heat exchange more
efficient. This is especially true when the cold boundary layer is convected by buoyancy
due to the presence of the acceleration. The cooling effect is then more pronounced when
the acceleration is larger. Our theoretical results corroborate well this experimental study.
Moreover, our predictions are in agreement with the numerical results (Sharma, Erriguible
& Amiroudine 2017a,b).

Figure 7 shows the evolution of the temperature field as a function of time over both
boundary layer and bulk regions. As can be seen from this figure, the top boundary exhibits
a negative temperature (the temperature dips below the imposed wall temperature, which
in this case is T ′

w = T ′
i − 20 mK). A minimum temperature, similar to the one observed

by Beysens, Fröhlich & Garrabos (2011) reported above in figure 1, is also predicted
and the time at which this minimum temperature occurs increases with the increase in
distance from the top wall. On the other hand, the bottom boundary layer does not exhibit
a minimum. The presence and absence of the minimum near the top and bottom walls,
respectively, can be confirmed from (4.15) and (4.16). Approximately, for a short time and
close to the top wall, (4.15) suggests, after using (4.14), that the minimum occurs at a time
τ 
 (3a − γ0)/6aβ2.

4.4. The mechanism behind the sink-zone formation
We are now in a position to elucidate the physical mechanism behind the temperature
drop. To aid the discussion, we also include contour and surface plots in figure 8 for the
temperature as function of time and position. We recall that the acceleration is acting
downward in the x-direction (see figure 3). The heavier fluid in the top thermal boundary
layer and the bulk exerts a force (due to its self-weight) on the fluid beneath it, which
leads to a high stratification of the density field in the whole domain (due the high
compressibility). Consequently, the fluid is compressed near the bottom, while near the top
the fluid expands in addition to the usual expansion caused by the piston effect. Therefore,
the overall temperature profile is a superimposed effect of the expansion of fluid due to
the piston effect and compression or expansion due to the self-weight, depending on the
location of the fluid element from the bottom. This results in the temperature near the
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Figure 7. Temperature profile at a fixed z as a function of time (a) in the left boundary layer and (b) in the
right boundary layer. The conditions are the same as in previous plots.
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Figure 8. Temperature contour plot (a) and surface (b) as a function of the time and position at the
piston-effect time scale. The thermal quench is 20 mK.

bottom being higher than in a weightlessness condition, as can be clearly seen from 6 and
8 (the temperature is higher than −20 mK). At subsequent times, as the temperature of
the fluid in the thermal boundary layer drops due to cooling, the density in the thermal
boundary layer increases while the thermal expansion (contraction in the present case)
increases (due to its diverging behaviour when approaching the critical point). While the
fluid in the bottom thermal boundary layer is already in a stable configuration, with cold
and heavier fluid being under the lighter bulk fluid, the scenario is the opposite for the fluid
in the top thermal boundary layer. A heavier and colder fluid (in the top thermal boundary
layer) not only compresses the fluid beneath it but also moves downwards, causing the
temperature to drop at a faster rate as compared to the weightlessness condition. The
combined action of compression of the bulk fluid by this heavy fluid and action of
self-weight causes a faster decrease in the temperature near the top as compared to the
bottom. Consequently, while the temperature of the fluid near the top reaches the wall
temperature, the fluid near the bottom is yet to attain the imposed wall temperature and
thus continues to expand. This temperature gradient near the bottom, which corresponds
to the temperature in the bulk (and it is constant, as can been seen from figure 6), thus
causes the fluid to expand, thereby decreasing the temperature everywhere. As a result,
the temperature near the top wall falls below the boundary value and extends into the
bulk fluid with time as can been seen in figures 6 and 8). The temperature of the fluid
continues to fall below the wall temperature until the fluid in the thermal boundary layer
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starts to expand due to the heating from the top wall and thus exerting an opposite effect,
i.e. compressing the bulk fluid.

When both these opposite effects (the expansion and compression of the bulk due to
the bottom and top boundary layers, respectively) become balanced, the temperature stops
falling below the boundary value. Subsequently, it tends to return to the imposed values as
imposed by the boundary conditions (see figure 7).

5. The special case of a perfect gas

In an effort to contrast the behaviour of the van der Waals gas near criticality, we consider
the case of a perfect gas of constant properties, with governing equations deduced from
system (2.5) by setting Λ = 0 and P = ρT , subject to the same initial and boundary
conditions. We observe that only two time scales exist in the case of a perfect gas, namely
the acoustic and diffusive time scales (Kassoy 1979).

5.1. At the acoustic time scale
Perturbing about the initial values, exactly as in (3.2) for a van der Waals gas, yields the
following equations:

ρ̄t = −ūx, ūt = − 1
γ0

P̄x + H(t), −(γ0 − 1)ūx = T̄t, P̄ = ρ̄ + T̄. (5.1a–d)

Interestingly, the flow and temperature fields are coupled to the density, which is not the
case for a van der Waals gas, as equation (3.3a–d) suggests. In this case, the equation and
solution for the velocity in the bulk region take the same form as (3.4) and (3.5) with c = 1,
as expected. The temperature takes a slightly different form from (3.5)

T̄(x, s) = γ0 − 1
s2

(
esx

1 + es − e−sx

1 + e−s

)
. (5.2)

As in the case of a van der Waals gas, the behaviour is oscillatory in time. The time
average over one cycle also suggests, as does (3.7), a linear increase with position

〈T̄〉 = (γ0 − 1)

(
x − 1

2

)
. (5.3)

Setting z = x/δ, and noting that the boundary layer thickness is δ = √
ε for a perfect

gas, the field perturbation takes a slightly different form than (3.8)

ρ(z, t) = 1 + Aρ̂(z, t), u(z, t) = A
√

εû(z, t),

T(z, t) = Ti + AT̂(z, t), P(z, t) = 1 + AP̂(z, t).

}
(5.4)

We see that the density perturbation for the perfect gas in the boundary layer differs from
that of a near-critical fluid. This is discussed later. The density is of order A in (5.4), which
is small relative to the supercritical case for a van der Waals gas for which (3.8) indicates
that the density is of the order A/μ. Recall that A and μ are of the order of 10−5 and 10−3,
respectively. The corresponding equations are

ρ̂t = −ûz, P̂z = 0, T̂t = −(γ0 − 1)ûz + γ0

Pr0
T̂zz, P̂ = T̂ + ρ̂ . (5.5a–d)

When compared to (3.9a–d), we see that (5.5a–d) suggests that the transient term in
the energy equation is no longer negligible for a perfect gas. However, the resulting
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Figure 9. Temperature profiles at the diffusion time scale for the perfect gas. The lower dashed line
represents the wall temperature.

temperature equation remains of the same form as (3.12), namely T̂t = (1/Pr0)T̂zz +
((γ0 − 1)/γ0)P̂t.

5.2. At the diffusion time scale
The diffusion time scale in a perfect gas is defined by τ = εt where ε is the same small
parameter as defined in § 2 below (2.5). In this case, all field perturbations in the bulk
region are of order A, with the corresponding equations written as

ūx = 0, P̄x = γ0H(τ ), T̄τ = γ0

Pr0
T̄xx, P̄ = ρ̄ + T̄. (5.6a–d)

In this case, and despite the presence of a pressure gradient, the velocity is negligibly small
over the entire domain. In addition, the diffusive term in the energy equation ensures
that the temperature perturbation satisfies: T̄(x = 0, τ ) = T̄(x = 1, τ ) = −aδ(τ ) at the
two walls.

Consequently, and as expected, there is no formation of thermal boundary layers. In this
case

T(x, s) = Ti − δT
ex

√
(Pr0/γ0)s + e(1−x)

√
(Pr0/γ0)s

s(1 + e
√

(Pr0/γ0)s)
. (5.7)

The above equation reveals that at no time the temperature in the bulk falls below 1 – a.
This means that no quenching is observed in perfect gases.

Figure 9 shows the temperature profile as a function of time. The conditions are the same
as in the previous SCF case, i.e. the fluid is at 0.2 K above the critical temperature and the
applied thermal quench is 20 mK. As expected, no formation of sink zones is predicted.

6. Concluding remarks

The results of the present theoretical analysis indicate that cooling beyond the boundary
value or the development of sink zones is unique to near-critical fluids, and is not predicted
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for perfect gases. The novelty of the present work is a detailed quantitative theoretical
analysis of the sink-zone phenomenon observed in experiments (Beysens, Fröhlich &
Garrabos 2011) and numerical simulations (Sharma, Erriguible & Amiroudine 2017a).
The present analysis is based on the matched asymptotic expansions, and constitutes a
thorough mathematical proof of the existence of sink zones.

At the acoustic time scale in both cases, i.e. near-critical and perfect gases, the
development of a weak temperature gradient is observed in the bulk region; weak in the
sense that it is not possible for the temperature to drop below the boundary value unless an
acceleration field is applied. The temperature at the top wall drops slightly below the initial
value, while that at the bottom increases above the initial value. However, the temperature
remains exactly the same as the initial temperature at the midpoint. It is further shown
that the development of this gradient is independent of the wall temperature and solely
depends on the acceleration field or imposed gravity. Thus, it is natural to conclude that
the behaviour of the ideal gas and near-critical fluid is nearly the same at the acoustic time
scale.

At the piston-effect time scale in a near-critical fluid, an unusual scenario is predicted in
which ‘sink zones’ develop. From the expression of the temperature in the bulk, it is seen
that, as per the initial value theorem, the initial value of the temperature matches with
the final value of the acoustic time scale. This may seem to be a constraint that must be
satisfied, but this is not the case since, by introducing a change of variable for a different
time scale, only the phenomenon occurring at that time scale is captured and the rest
is ‘filtered out’. This initial gradient again depends only on the acceleration and not on
the thermal quench amplitude. The effect of the quenching is seen at time t > 0 at the
piston-effect time scale. The thermo-mechanical coupling equilibrates the temperature in
the bulk to that on the boundary, and in the process, the initial temperature profile which
contains the temperature gradient, is brought down to the boundary value as expected.
However, in the process, the initial gradient is not at all disturbed, and a sink zone near
the top wall is observed. This is nicely interpreted in terms of density stratification. We
note that the coupling of the pressure gradient with the sudden acceleration initiates the
density stratification and development of the initial gradient. This gradient development
is caused only by the acceleration, and happens so fast that, later, when the temperature
reaches the boundary value, it remains unchanged, and sink zones are formed. From the
order coefficients it is also seen that huge density fluctuations occur in the boundary layers
which are 600 times larger than in perfect gases. This phenomenon may speed up any kind
of chemical reaction occurring at the wall with the inner fluid and proves to have some
very good or drastic applications.

The behaviour of the perfect gas at the diffusion time scale is as expected. No sink zones
are observed, and a careful examination of the equations show that the acceleration term
in the bulk actually disappears, with no gravity effect. The process of diffusion results in
a balance between the temperatures in the bulk region and near the boundary.
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