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ABSTRACT
Multiple Attribute Decision Analysis (MADA), known to be simple and convenient, is one
of the most commonly used methods for Effectiveness Evaluation of Fighter (EEF), in which
the attribute weight assignment plays a key role. Generally, there are two parts in the index
system of MADA, i.e. performance index and decision index (or label), which denote the
specific performance and the category of the object, respectively. In some index systems of
EEF, the labels can be easily obtained, which are presented as the generations of fighters.
However, the existing methods of attribute weight determination usually ignore or do not
take full advantage of the supervisory function of labels. To make up for this deficiency,
this paper develops an objective method based on fuzzy Bayes risk. In this method, a loss
function model based on Gaussian kernel function is proposed to cope with the drawback
that the loss function in Bayes risk is usually determined by experts. In order to evaluate the
credibility of assigned weights, a longitudinal deviation and transverse residual correlation
coefficient model is designed. Finally, a number of experiments, including the comparison
experiments on University of California Irvine (UCI) data and EEF, are carried out to illustrate
the superiority and applicability of the proposed method.
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NOMENCLATURE
BP Basic Performance
CA Classification Accuracy
CCSD Correlation Coefficient and Standard Deviation
CE Conditional Entropy
CRITIC CRiteria Importance Through Inter-criteria Correlation
CS Cosine Similarity
DM Decision Maker
DS Decision System
DSOM Decision System Objective Method
EEF Effectiveness Evaluation of Fighter
FBRW Fuzzy Bayes Risk Weight assignment method
GJC Generalized Jaccarb Coefficient
GRA Grey Relation Analysis
IS Information System
ISOM Information System Objective Method
JC Jaccarb Coefficient
LTCC Longitudinal deviation and Transverse residual Correlation Coefficient
MADA Multiple Attribute Decision Analysis
MP Manoeuvre Performance
NRS Neighbourhood Rough Set
PCC Pearson Correlation Coefficient
SD Standard Deviation
SMC Simple Matching Coefficient
WDBC Wisconsin Diagnostic Breast Cancer
a an attribute
A attribute set
c a conditional attribute
C conditional attribute set
d a class of decision
D decision attribute
I information function
LCC Longitudinal Correlation Coefficient
N neighbourhood
P conditional probability
r region
R Bayes risk
TCC Transverse Correlation Coefficient
U universe
V value
w weight
W weight vector
x sample

Greek Symbol

� distance metric
δ neighbourhood threshold
γ loss function
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1.0 INTRODUCTION
The Effectiveness Evaluation of Fighter (EEF) is one of the most common approaches
to measure the capabilities of fighter to accomplish some specific tasks, which could
be applied to many aspects such as fighter design, combat simulation and military
might comparison(1). There are several categories of methods for EEF such as Analytic
Hierarchy Process (AHP)(2), Availability-Dependability-Capability (ADC)(3), synthesised
index method(4), Fuzzy Evaluation (FE)(1) and Multiple Attributes Decision Analysis
(MADA)(5), etc. Therein, MADA, known to be simple and practical, can only rely on the
characteristics of the data in the index system to obtain the evaluation results. In the MADA
method, the decision result of the object is obtained by the weighted sum so as to evaluate the
comprehensive performance of the object.

Attribute weight assignment plays a significant role in MADA, which can be generally
divided into three categories of methods, i.e. subjective methods(6,7), objective methods(9,13,14)

and hybrid methods(15-18), according to the extent of dependence on the preferences or
subjective judgements of Decision Makers (DMs)(8). In practical applications, some ideal
weights are usually hard to be obtained by the subjective or hybrid methods when there is
a lack of related field experts or no unanimous conclusion reached by DMs(19,20). Fortunately,
the objective weight methods can effectively solve the above problem, because attribute
weights are generated by using data rather than the DMs’ reference.

In terms of the data systems used in MADA, they can be broadly divided into two
categories, namely Decision System (DS) and Information System (IS), of which DS is a
set of data consisting of conditional attributes and decision attributes, and IS does not include
decision attributes, i.e. labels. With respect to DSs, although they contain decision attributes,
there are still many issues in MADA, such as effectiveness evaluation(21), classification(22) and
fault diagnosis(23). According to the applied data systems, there are two parts regarding the
objective methods, including Information System Objective Method (ISOM) and Decision
System Objective Method (DSOM). Based on these two categories, further introduction of
objective methods are given in detail.

Most objective weight assignment methods aim at IS. Among them, Entropy method(8,9) is
the most popular one in ISOMs, based on which a number of approaches are developed to
obtain more satisfactory results of weight assignment(8,10,11). To mention a few, Valkenhoef
and Tervonen(10) discussed the entropy-optimal weight constraint elicitation problem with
additive multi-attribute utility models. He et al(11) proposed a linguistic entropy weight method
to determine the attribute weights in the linguistic MADA. Yang et al(8) designed a three-stage
hybrid weight assignment approach based on entropy theory. In this category, another widely
used method is Principal Components Analysis (PCA)(12). Moreover, Diakoulaki et al(14)

raised a weight determination method based on the quantification of two fundamental nations
of MADA: the contrast intensity and the conflicting character of the evaluation criteria, which
is named CRiteria Importance Through Inter-criteria Correlation (CRITIC). Deng et al(9)

employed Standard Deviation (SD) to obtain the weights of attributes. In order to consider
the relationships of attributes, Wang and Luo(13) proposed a Correlation Coefficient and
Standard Deviation (CCSD) integrated method for determining attribute weights. To the best
of the authors’ knowledge, all of the above-mentioned methods do not take account of the
contributions of decision attributes to the determination of conditional attribute weights, when
applying to DS. With respect to DS, there is usually a single decision attribute1 that can

1 In fact, systems with multiple decision attributes can also be transformed into ones with a single decision attribute.
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be regarded as a generalisation of the overall system and an abstract of all the conditional
attributes. Each conditional attribute provides a particular contribution to its system and an
individual support degree to the abstract of the decision attribute, which could be depicted by
the weight of the conditional attribute. Therefore, the weight determination of the conditional
attribute cannot ignore the role of the decision attribute in DS. The approaches, such as
the Conditional Entropy (CE)(24) approach, Grey Relation Analysis (GRA)(25) approach and
Rough Set (RS)(26) approach, could be considered as the alternatives for the weight assignment
of the conditional attribute in DS because of taking into account the coupling relationships
between the conditional attributes and the decision attribute.

In fact, with regard to MADA, the final decision produced by any decision-making unit
will be accompanied by some risks. These risks are usually derived from the difference in the
distribution of data between the conditional attributes and the decision attribute. Consequently,
each of the conditional attributes will generate a unique risk for the final decision, which
could employ the weight of attribute as a metric. In addition, the fuzzy membership of a
sample induced by conditional attributes to a decision attribute can be considered as a kind of
main relationship between the two types of attributes. However, the aforementioned objective
methods, whether ISOMs or DSOMs, have not taken the decision risk as a main factor to
determine the weights of attributes, and not taken the above fuzzy membership into account
as well. Furthermore, with respect to the weight assignment in a multi-layer attribute set, it
usually needs the help of experts (DMs) or is achieved through some complex combination
methods(15), which have greatly limited the application of a weight assignment in a multi-layer
index system. These inadequacies of the present research motivate this work.

To handle the aforementioned issues and overcome the deficiencies of the existing methods,
we propose a simple and effective objective attribute weight assignment method based on a
Fuzzy Bayes Risk (named FBRW), which is not only suitable for ISs and DSs, but can be
also applied to single-layer and multi-layer index systems. Bayes risk utilises the calculation
of probability to estimate the risk of event, which takes full account of the causality and
dependency between each event, i.e. the relationship of the conditional attributes and the
decision attribute in DS. Therefore, Bayes risk is very suitable for estimating the weights
of conditional attributes. The loss function in Bayes risk, however, is usually determined by
experts or through a large number of statistical tests(35,36), which greatly limits the practical
application and extension of Bayes risk theory. Based on Gaussian kernel, a loss function
model is proposed to cope with this drawback, in which the loss values of samples are
obtained by the distribution characteristics of data. Furthermore, considering the fuzziness
of the data system, the fuzzy similarity of each sample and the fuzzy membership between
conditional attributes and the decision attribute are employed in our method. On the other
hand, as a significant part of the weight assignment, the weight evaluation has not been
paid enough attention in literature. Hence, we propose a correlation coefficient named
Longitudinal deviation and Transverse residual Correlation Coefficient (LTCC) that considers
two directions, i.e. the longitudinal direction and the transverse direction, to measure the
similarity between the assigned weights and the reference ones. Subsequently, a number of
comparison experiments are carried out to illustrate the superiority of the proposed method.
Finally, we demonstrate and verify the applicability of the proposed method through the
effectiveness evaluation of fighter. Therefore, the main contributions of this work lie in
that

(1) A simple and effective objective attribute weight assignment method based on fuzzy
Bayes risk is proposed.
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(2) A Gaussian kernel loss function model is raised, which could promote the application
and extension of Bayes risk theory.

(3) A longitudinal deviation and transverse residual correlation coefficient model is raised
for weight evaluation.

(4) The demonstration and analyses of the fighter effectiveness evaluation have guiding
significance for other similar engineering applications.

The remainder of this paper is organised as follows. Section 2 introduces the preliminaries
for this work. The basic theories and analyses of the proposed method are presented in Section
3. The weight evaluation model is depicted in Section 4. The results and analyses of numerical
experiments are given in Section 5, and the effectiveness evaluation of fighter is demonstrated
in Section 6. Then, some discussions are brought in Section 7. Finally, conclusions and future
work are described in Section 8.

2.0 PRELIMINARIES
This work takes the decision system as the research object, and employs the Bayes risk and
neighbourhood relationship to realise the assignment of attribute weight. Thus, in this section,
the aforementioned theories and concepts are introduced, which will pave the way for the
further development of the following sections.

Definition 1. (Decision system)(28) A decision system is a 4-tuple DS = (U, {A|A = C∪D},
{Va|a ∈ A}, {Ia|a ∈ A}), where U is a finite set of objects called universe and U = {x1, x2, ���,
xm}, A is the attribute set, C is the set of conditional attributes, D is the decision attribute,
C∩D = ∅, D �= ∅, Va is a set of values of each a ∈ A, and Ia is an information function for
each a ∈ A.

On account of such a form of the four tuples (i.e. U, A, V, I) and the three basic elements
(i.e. U, C, D) of the decision system in Definition 1, a decision system is often denoted as
DS = (U, A, V, I) or DS = (U, C∪D) for short. It is noted that the above definition of the
decision system only considers one decision attribute, and such a definition has been widely
used in practical applications. In fact, systems with multiple decision attributes can be also
transformed into the ones with single decision attribute. Specifically, a decision system is also
called an information system IS = (U, C) if its decision attribute forms an empty set(29).

Definition 2. (Neighbourhood)(27) Given an arbitrary sample xi ∈ U and a conditional
attribute subset B⊆C, a neighbourhood NB(xi) of xi in B is defined as:

NB(xi ) = {xj |xj ∈ U,�B(xi, xj ) ≤ δ}, … (1)

where � is a metric, δ is a threshold.

In order to consider the fuzziness between each sample, a fuzzy similarity relation(33) is
introduced as follows:

�a(xi, xj ) =
{

1 − |xi − xj |, |xi − xj | ≤ δ,

0, |xi − xj | > δ,
… (2)
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where a ∈ C, δ is a neighbourhood threshold and 0 < δ � 1. Obviously, the following
properties hold:

(1) �a(xi, xj) = �a(xj, xi);

(2) �a(xi, xi) = 1;

(3) 0 � �a(xi, xj) < 1.

The samples with respect to xi satisfied the first condition in Equation (2), are denoted by
Na(xi), and named the fuzzy neighbourhood of xi.

For a subset B⊆C, a ∈ B, the fuzzy neighbourhood relation �B(xi, xj) between xi and xj is
defined as follows:

�B(xi, xj ) = ∩a∈B�a(xi, xj ), … (3)

where ∩ is the fuzzy conjunction.

Definition 3. (Bayes risk)(30) Given a domain of objects X (X = {x1, x2, ���, xm}) and a set
of classes Y (Y = {y1, y2, ���, yn}). For a classification function C : X → Y that maps each
object to one class, the risk of classifying xi (xi ∈ X) into yp (yp ∈ Y) is defined as follows:

R(yp(xi )) =
n∑

q=1

λp
q · P(yq|xi ), … (4)

where λ
p
q is a loss function that measures the error of classifying object xi into class yp

knowing that the possible class is yq, and P(yq|xi) is the probability of object xi belonging
to class yq.

It is worth noting that different loss functions will yield different decision risks. In practical
applications, the loss function is usually difficult to be provided, which has been the key
bottleneck of the application and extension of Bayes risk theory.

3.0 WEIGHT ASSIGNMENT BASED ON FUZZY BAYES
RISK

Through the previous analyses in Sections 1 and 2, we can know that the decision risk can
be considered as an important factor in the attribute weight determination in DS. Therefore,
in this section, the single-layer dataset is taken as an example to analyse the presented form
of the above-mentioned risk in DS. Subsequently, the FBRW method is designed. Finally, the
FBRW method is extended for the weight assignment in a multi-layer dataset.

3.1 FBRW for single-layer DS

Generally, data-driven attribute weight is determined based on a single-layer dataset(9,13).
Considering a single-dimensional conditional attribute c (c ∈ C) and D = {d1, d2, ���, dK}
in DS, the distribution of sample set X (X = {x1, x2, ���, xm}) in c with respect to D can be
depicted as Fig. 1, where di, dj, dk ∈ D.
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r1
r2

P(di|X)
P(dj|X)

P(dk|X)

r3 r4

Figure 1. (Colour online) The distribution of X in c with respect to D.

P(~di|N1)

N1 N2 N3 N4 N5 N6 N7 N8

~di diP(di|N4)

Figure 2. (Colour online) The distribution of N in c with respect to di.

From Fig. 1, we can see that decision making in region r1 is bound to generate risks because
of the overlaps of three probability distributions. Region r2, in particular, will produce a riskier
decision than r3 and r4 because there are three distributions in it.

With the help of a neighbourhood relationship, we transform the above distributions into
discrete space, where the basic cells are the neighbourhood set instead of sample set. We take
a set of neighbourhoods with regard to decision class di as an example, and the distribution of
neighbourhood sets N in c is depicted as Fig. 2.

In Fig. 2, Nk (Nk ∈ N, k = 1, 2, ���, 8) is the neighbourhood of sample xk, the red regions
denote that the samples in neighbourhood Nk are classified into di in terms of a given metric,
and the grey regions are the ones classified into other classes except di.

According to the above analyses and the Definition 3 of Bayes risk, the risk produced by a
conditional attribute could be the error that measures the difference between the distribution
of the current conditional attribute and that of the decision attribute. Therefore, we can derive
the principle of attribute weight assignment in DS, as such an attribute should be assigned
a greater weight whose Bayes risk with respect to decision attribute is less. Therefore, the
definition of Bayes risk with respect to DS can be drawn as follows.

Definition 4. (Bayes risk in DS) Given a decision system DS = {U, C∪D, V, I}, U = {x1, x2,
���, xm}, D = {d1, d2, ���, dK}, for an arbitrary sample xi (xi ∈ U), it may be divided into
any decision classes of D with respect to an attribute c (c ∈ C) by using some metrics, but
it belongs to a certain class dk(dk ∈ D) in terms of the information function I. Therefore, the
Bayes risk of xi vesting in dk with respect to c is defined as:

Rc(dk|xi ) =
K∑

j=1

λk
j (c, xi )P(d j |xi ), … (5)

https://doi.org/10.1017/aer.2018.54 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.54


1282 August 2018The Aeronautical Journal

where λk
j (c, xi ) is a loss function that measures the loss relative to its own class dk when xi is

classified into the possible class dj, and P(dj|xi) is the probability of xi belonging to dj.

The commonly used loss function is 0–1 type, but it can not effectively evaluate the real
loss of decision making. In order to improve the effectiveness of loss function, it is usually
determined by experts or through a large number of statistical tests(35,36), which has been a
stumbling block to the application and extension of this theory. Therefore, we propose a loss
function based on Gaussian kernel in which the loss values of samples are depicted by the
distribution characteristics of data.

Definition 5. (Gaussian kernel loss function) Given a decision system DS = (U, C∪D), c ∈
C, D = {d1, d2, ���, dN}, for an arbitrary sample xi in U, its designated decision class is dk

and its possible class is dj produced by a given metric, dj, dk ∈ D. Then, the Gaussian kernel
loss function of xi relative to c is defined as:

λk
j (c, xi ) =

{
exp

(
− (xi−μk )2

2σ2
k

)
, k �= j,

0, k = j,
… (6)

where μk is the expectation of the sample set belonging to class dk with respect to c, and σk is
the corresponding standard deviation, k, j ∈ {1, 2, ���, N}. Usually, we take the loss function
as λk

j for short.

Remark 1. There are three aspects about the Gaussian kernel loss function: (a) the loss of the
sample is 0 if it is divided into its own decision class, i.e. k = j; (b) the smaller the distance
between the sample and the expectation, the greater the loss will be; (c) the loss is 1 if the
standard deviation is 0, which means that all the data in this class are equal to each other, i.e.
every datum is the expectation.

Through the above definition and remark, we can see that the Gaussian kernel loss function
model could accord with the definition of loss function in Definition 4.

Definition 6. (Probability) Given a decision system DS = (U, C∪D), for an arbitrary sample
xi ∈ U, its neighbourhood is N(xi) = {x1, x2, ���, xm}, and the corresponding decision set is
N(d) = {d1, d2, ���, dp}, N(d)⊆D. Thus, the probability of xi classifying to dj (dj ∈ N(d)) is
denoted as:

Pc(d j |xi ) =
∑m

k �(xj
i , xj

k)∑m
k �(xi, xk)

, … (7)

where xj is the sample belonging to decision class dj in terms of the information function in
this DS and � is the fuzzy similarity relation between xi and xk. This definition can also be
called fuzzy membership due to the fuzzy similarity relation, and the Bayes risk in Definition 4
can be named as Fuzzy Bayes Risk (FBR), which is more succinct than our previous result(37).

Theorem 1. The Bayes risk (Definition 4) defined as Rc(dk|xi ) = ∑K
j=1 λk

j P(d j |xi ) is

equivalent to Rc(dk|xi ) = λk
∼k(1 − P(dk|xi )), where d∼k is the decision class except for dk.
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Proof. According to Equation (6), the loss function can be rewritten as λk
∼k =

exp
(
− (xi−μk )2

2σ2
k

)
if k �= j and λk

k = 0 (k = j). Therefore, the risk function can be written as:

Rc(dk|xi ) =
K∑

j=1

λk
j P(d j |xi )

= λk
1P(d1|xi ) + λk

2P(d2|xi ) + · · · + λk
kP(dk|xi ) + · · · + λk

K P(dK |xi )

= λk
∼kP(d1|xi ) + λk

∼kP(d2|xi ) + · · · + λk
kP(dk|xi ) + · · · + λk

∼kP(dK |xi )

= λk
∼k(P(d1|xi ) + P(d2|xi ) + · · · + P(dK |xi )) + λk

kP(dk|xi )

= λk
∼k(1 − P(dk|xi )) + λk

kP(dk|xi )

= λk
∼k(1 − P(dk|xi )).

Thus, Rc(dk|xi ) = ∑K
j=1 λk

j P(d j |xi ) is equivalent to Rc(dk|xi ) = λk
∼k(1 − P(dk|xi )).

The above Theorem 1 greatly reduces the computational complexity of the Bayes risk,
which will be helpful for promoting the proposed method.

Remark 2. Through the above theorem and its corresponding proof, the loss function can be

rewritten as λk
∼k = exp

(
− (xi−μk )2

2σ2
k

)
.

Theorem 2. The Bayes risk (Definition 4) satisfies that 0 � Rc(dk|xi) < 1.

Proof. According to Theorem 1, the Bayes risk could be written as Rc(dk|xi ) = λk
∼k(1 −

P(dk|xi )), and λk
∼k = exp

(
− (xi−μk )2

2σ2
k

)
. The loss function satisfies that 0 < λk

∼k ≤ 1. On the

other hand, the probability satisfies that 0 < P(dk|xi) � 1 according to Definition 6. Therefore,
the above theorem holds.

According to the aforementioned definitions, we can derive the definition of attribute weight
based on the proposed fuzzy Bayes risk as follows.

Definition 7. (Bayes risk weight) Given a decision system DS = (U, C∪D), U = {x1, x2,
���, xm}, for an arbitrary conditional attribute c ∈ C, its weight based on fuzzy Bayes risk is
denoted as:

wc = 1 − Rc, … (8)

where Rc = 1
m

∑m
i=1 Rc(dk|xi ), xi ∈ U, dk ∈ D.

It is easy to see that 0 � wc � 1 holds according to Theorem 2. Thus, the weight vector of
DS is W = (w1,w2, · · · ,wn), where wc = wc/

∑n
c=1 wc.

3.2 FBRW for multi-layer DS

In a practical application, the multi-layer index system is frequently used in MADA. Generally,
the weight determination of multi-layer DS depends on some subjective approaches.
Nevertheless, the method proposed in this paper can easily obtain the weights of each layer
conditional attributes by using a neighbourhood relation.
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Remark 3. The main difference of weight assignment between single-layer attribute set and
multi-layer attribute set is the metric of fuzzy neighbourhood. Equation (2) is employed in a
single-layer attribute weight assignment and that is Equation (3) in the multi-layer’s case.

Remark 4. The other differences of weight determination between single-layer attribute set
and multi-layer attribute set are that (a) the single attribute c in the aforementioned definitions
is replaced by a subset B (B⊆C); and (b) the normalised risk of an attribute set B should be
rewritten as RB = 1

m·n
∑n

k=1

∑m
i=1 RB(dk|xi ), where n is the number of conditional attributes

in B.

In addition, although there are some above-mentioned differences, all the theorems still
hold.

3.3 FBRW algorithm

Based on the preceding theories and definitions, the algorithm of FBRW can be designed as
Algorithm 1.

Algorithm 1 FBRW algorithm
Input: the m × n raw data and the m × 1 labels as DS = (U, C∪D), threshold δ

Output: weights
−→W

1: Normalise the raw data into [0,1].
2: for each class in D do
3: Obtain the expectation and standard deviation.
4: end for
5: for each c or B in C do // c : m × 1, B : m × k, (k � n)
6: for each xi in U do
7: Gather its fuzzy neighbourhood N(xi) according to Definition 2.
8: Compute P(d(xi)|xi) according to Definition 6.
9: Compute λ(xi) according to Remark 1 and 2.

10: R(xi) = λ(xi) · P(d(xi)|xi).
11: end for
12: Rc = Rc + R(xi) or RB = RB + R(xi).
13: end for
14: Rc = Rc/m or RB = RB/(m · k).
15: wc = 1 − Rc or wB = 1 − RB

16: wc = wc/
∑n

c=1 wc and the same as wB.
17: return

−→W combined with wc or wB

4.0 WEIGHT EVALUATION
To the best of our knowledge, there are no ideal methods to evaluate the weight results. The
existing methods are mostly based on the consistency between the assigned weights and the
actual situations to measure the quality of the methods. In fact, if we can obtain reliable
importances of attributes by using some approaches, such as a large number of expert surveys
and classification accuracy (CA) in DS, we can employ the similarity degree or correlation
coefficient to evalute the rationality of the assigned weights. In statistics, the commonly used
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metrics of similarity measure are Simple Matching Coefficient (SMC), Jaccarb Coefficient
(JC), Cosine Similarity (CS), Generalised Jaccarb Coefficient (GJC) and Pearson Correlation
Coefficient (PCC)(34). Therein, SMC and JC are not suitable for continuous data, CS and GJC
employ vector dot product, and PCC considers the covariance and standard deviation of data.
All of these methods do not take account of the fluctuation of data that includes two aspects,
i.e. the longitudinal direction and the transverse direction. Therefore, we propose a kind of
correlation coefficient that considers both the longitudinal deviation and transverse residual.

Definition 8. (Longitudinal correlation coefficient) Given two vectors X = {x1, x2, ���, xm}
and Y = {y1, y2, ���, ym}, the longitudinal similarity degree between X and Y is defined as
follows:

LCC = exp(−std(
m⊔
i

|xi − yi|)), … (9)

where std(·) is the operation of standard deviation,
⊔

denotes the combination of the elements
in it, and | · | represents the absolute value of the elements in it.

Definition 9. (Transverse correlation coefficient) Given two vectors X = {x1, x2, ���, xm}
and Y = {y1, y2, ���, ym}, the transverse similarity degree between X and Y is defined as
follows:

TCC = exp(−std(
m−1⊔

i

|x̃i − ỹi|)), … (10)

where x̃i = xi − xi+1 is the residual of xi.

Definition 10. (LTCC) Given two vectors X = {x1, x2, ���, xm} and Y = {y1, y2, ���,
ym}, their longitudinal deviation and transverse residual correlation coefficient is defined as
follows:

LTCC = LCC + TCC
2

. … (11)

It is easy to see that the following properties 0 < LCC � 1, 0 < TCC � 1 and 0 < LTCC
� 1 hold. Usually, the two vectors have a strong correlation if LTCC > 0.95, and they are
completely uncorrelated if LTCC < 0.5.

5.0 NUMERICAL EXPERIMENTS
In this section, we carry out two parts of experiments, one of which is the comparison
experiment on the proposed correlation coefficient, and the other one includes some
comparison experiments to reveal the superiority of FBRW.

With regard to the reference of weight, we employ the CA in the following experiments,
which can effectively measure the importance of attributes and has been widely used in feature
selection and data reduction(27). Therefore, it is suitable to be the reference of attribute weight
determination in DS.
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Table 1
The details of the artificial data

f1 f2 f3 f4 f5 f6 f7

x x ± 0.5 x + 1 x − 2 r(x)a x + 0.2(i − 5)b x + 0.2(5 − i)

x1 0.9949 0.4949 1.9949 −1.0051 1 0.1949 1.7949
x2 0.9879 1.4879 1.9879 −1.0121 1 0.3879 1.5879
x3 1.0160 0.5160 2.0160 −0.9840 1 0.6160 1.4160
x4 1.0156 1.5156 2.0156 −0.9844 1 0.8156 1.2156
x5 0.9568 0.4568 1.9568 −1.0432 1 0.9568 0.9568
x6 0.9985 1.4985 1.9985 −1.0015 1 1.1985 0.7985
x7 0.9918 0.4918 1.9918 −1.0082 1 1.3918 0.5918
x8 1.0314 1.5314 2.0314 −0.9686 1 1.6314 0.4314
x9 1.0547 0.5547 2.0547 −0.9453 1 1.8547 0.2547
x10 1.0555 1.5555 2.0555 −0.9445 1 2.0555 0.0555

a r( · ) is a rounding operation, b i = 1, 2, ���, 10.

Table 2
The results of comparison

f1≈f1 f1≈f2 f1≈f3 f1≈f4 f1≈f5 f1≈f6 f1≈f7

CS 1.0000 0.9070 0.9999 -0.9986 0.9996 0.8822 0.8700
GJC 1.0000 0.8112 0.6685 -0.3330 0.9993 0.7726 0.7619
PCC 1.0000 0.5570 1.0000 1.0000 - 0.5708 -0.5022
LTCC 1.0000 0.6856 1.0000 1.0000 0.9745 0.8303 0.8303

With the help of Weka2, we employ as many as ten classifier methods and 10-fold cross-
validation in order to guarantee that the results are highly credible. Therein, the employed
ten classification algorithms produced in Weka are C4.5(J48), REPTree, NaiveBayes,
SVM(SMO), IBk, Bagging, LogitBoost, FilteredClassifier, JRip and PART, and default
parameters in Weka are chosen. The weights produced by CAs are the average values of
the ten methods. All of the following experiments are carried out on the same platform and
compiled by Matlab.

5.1 Comparison experiments on LTCC

In this subsection, we choose CS, GJC and PCC(34) as the objects of comparison, and use
some artificial data to illustrate the superiority of LTCC. The details of the artificial data are
shown in Table 1 and the corresponding curves are shown in Fig. 3.

We take the data of f1 as the reference and compute the similarity degrees or correlation
coefficients between the others and f1. The results are shown in Table 2.

From the results in Table 2, we can see that (a) all the methods produce the similarity
degree of f1≈f1 is 1; (b) CS and GJC consider that f1≈f2 should be given a greater similarity
degree, however, this is not quite consistent with the actual situation in Fig. 3; (c) if the spatial

2 http://weka.wikispaces.com, v3.6.13
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Figure 3. (Colour online) The curves of the artificial data.

translation is not considered, the similarity degrees of f1≈f3 and f1≈f4 should be equal to 1;
(d) the data of f5 are the same as those of f1, which are the rounding ones of f1’s, however,
there is no result generated by PCC because the standard deviation of them are 0; (e) almost
all the methods do not assign f1≈f6 and f1≈f7 high similarity degrees.

Through the above analyses, we can see that by considering the factors of both longitudinal
direction and transverse direction, it can evaluate the correlation between spatial vectors
more reasonably. What’s more, if the standard deviation of the concerned data is not 0, the
PCC method can also produce satisfied results. Therefore, in order to effectively evaluate the
assigned weight results, we employ the two methods, i.e. PCC and LTCC, in the following
experiments.

5.2 Comparison experiments

In this subsection, we select some commonly used objective weight determination methods
and some mature methods that can produce the weights of DS as comparisons to illustrate the
advantage of the proposed method. Therein, the objective methods are Entropy method(9),
CRITIC(14), SD(14) and CCSD(13), and the other mature ones are GRA(25), CE(24) and
Neighbourhood Rough Set (NRS)(27). In the GRA model, we take the decision attribute as
the optimal one to measure the importance degrees of conditional attributes, which could be
considered as the weights of attributes. In the CE model, we take the conditional entropy of the
decision attribute with regard to the conditional attribute as the metric to produce the weight of
the conditional attribute; the smaller the conditional entropy is, the greater the weight should
be assigned. In addition, we select the Supervised and Multivariate Discretization Naive Scaler
(SMDNS) method as the discretisation tool who has the best performance compared with
other models in the literature(31) because the discretisation method plays an important role in
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Table 3
The details of UCI data

ID Data Samples Feature Discrete Continuous Class

1 Blood 748 4 0 4 2
2 E. coli 336 7 2 5 8
3 Iris 150 4 0 4 3
4 Seeds 210 7 0 7 3
5 Vote 435 16 16 0 2
6 Vowel 528 10 0 10 11
7 WDBC 569 30 0 30 2
8 Wine 178 13 0 13 3

Table 4
The results of comparison experiments using PCC

Data Entropy CRITIC SD CCSD GRA CE NRS FBRW

Blood − 0.8336 0.7665 0.0278 0.5557 − 0.5322 − 0.3677 0.7279 0.9891
E. coli − 0.7523 0.6690 0.8135 0.4204 − 0.5871 0.4058 0.5838 0.9202
Iris 0.9817 − 0.4432 0.9955 − 0.2401 0.9834 0.6054 0.9617 0.9973
Seeds 0.9041 − 0.8018 0.9709 − 0.9399 − 0.6036 0.4256 0.9053 0.9944
Vote 0.0631 0.0065 − 0.2194 0.1375 − 0.2304 − 0.2443 – 0.9752
Vowel 0.3539 − 0.2432 − 0.4202 − 0.1263 0.2056 0.3521 0.3339 0.8989
WDBC 0.3340 − 0.1334 0.5685 − 0.4151 − 0.7614 0.6076 0.7914 0.9414
Wine 0.6350 0.0377 0.4810 − 0.0110 − 0.6843 0.7167 0.4570 0.9637

the CE model. In the NRS model, the dependencies are employed to transform into the weights
of attributes, and the neighbourhood threshold is the same as that of FBRW, which is 0.2 in our
method. In addition, the CA and the correlation coefficients produced by PCC and LTCC are
also employed to evaluate the performance of each method, and the University of California
Irvine (UCI) data in Table 3 are used in these experiments. Therein, the feature is the number
of the conditional attributes in DS and the class is the number of decision categories. The
comparison results are shown in Tables 4 and 5 and the bold values indicate the maximum
ones.

From the results in Tables 4 and 5, we can see that the results obtained by FBRW are the
best ones; in other words, almost all the correlation coefficients of each data have reached the
maximum values. It is worth noting that there is no result of Vote with regard to the NRS model
because there are always some overlap regions between the classes of each discrete conditional
attribute and that of the decision attribute, which produces an empty positive region and a
zero-weight result in the NRS model. The above problem is a main drawback of the NRS
model.

6.0 EFFECTIVENESS EVALUATION OF FIGHTER
In this section, one of the practical applications of MADA, i.e. EEF, is carried out to illustrate
the validity of the proposed method.
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Table 5
The results of comparison experiments using LTCC

Data Entropy CRITIC SD CCSD GRA CE NRS FBRW

Blood 0.9197 0.9131 0.9134 0.9129 0.9725 0.9799 0.8263 0.9955
E. coli 0.7966 0.9653 0.9646 0.9580 0.9721 0.9769 0.7662 0.9771
Iris 0.9620 0.8624 0.9911 0.8585 0.9846 0.9543 0.9194 0.9811
Seeds 0.9792 0.9011 0.9872 0.9078 0.9638 0.9836 0.9494 0.9912
Vote 0.9821 0.9910 0.9904 0.9913 0.9879 0.9909 – 0.9978
Vowel 0.9574 0.9697 0.9671 0.9709 0.9714 0.9689 0.8764 0.9737
WDBC 0.9847 0.9896 0.9934 0.9881 0.9941 0.9961 0.9597 0.9982
Wine 0.9743 0.9758 0.9849 0.9721 0.9846 0.9919 0.9261 0.9952

Index system of fighters

C2: Maneuver Performance index

C11:   Thrust (10N) C21:   Thrust-to-weight ratio

C12:   Takeoff wing load (kg/m2) C22:   Maximum using overload (g)

C23:   Maximum hover overload (g)

C24:   Specific excess power (m/s)

C13:   Basic range (km)

C14:   Maximum range (km)

C15:   Ceiling (m)

C17:  Maximum permissible 
         indicate speed (km/h)

C16:  Maximum speed (km/h)

C1: Basic Performance index

Figure 4. (Colour online) The index system of fighters.

6.1 Index system of fighters

The index system of fighters consists of two parts, i.e. the Basic Performance (BP) index set
and the Manoeuvre Performance (MP) index set, and there are some sub-attributes in the two
sets. The index system can be regarded as a multi-layer system shown in Fig. 4.

We have sorted out the index data of some typical fighters(1) shown in Tables 11–12 in the
Appendix. These index data are classified into four categories according to the generational
criteria(32).

6.2 Weight assignment based on FBRW

We demonstrate the calculation process of FBRW based on the above index system. For
single-layer attribute weight determination, we take the basic performance index set as an
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example. First of all, the raw data should be normalised into the range of [0,1], where
the cost normalised model x = max(x)−x

max(x)−min(x) is used for the second attribute, i.e. take-off
wing load, because the less the wing load is, the better the manoeuvreability will be in air
combat. Meanwhile the income normalised model x = x−min(x)

max(x)−min(x) is employed for the other
attributes.

Firstly, we calculate the expectation μ and the standard deviation σ of each generation
produced by the basic performance indexes. Secondly, we take the index value, namely
thrust of MiG-9, as an example to demonstrate the following calculation process. The
normalised value of MiG-9’s thrust is 0 denoted as x1, and its neighbourhoods are NC11 (x1) =
{x1, x2, x3, x4, x5, x6, x7, x10, x13} if the δ is 0.2. Subsequently, the classification probability
of x1 can be calculated according to Equation (7), which is shown as follows:

PC11 (d1|x1) = 1 + 0.9781 + 0.9625 + 0.9372 + 0.9913 + 0.9607
1 + · · · + 0.9607 + 0.8300 + 0.8057 + 0.8130

= 0.7042. … (12)

Then, the loss of x1 is obtained in terms of Definition 5 and Remark 2, which is presented as
follows:

λ
d1
∼d1

(C11, x1) = exp − (0 − 0.0284)2

2 × 0.02292
= 0.4640. … (13)

After that, the risk of x1 with regard to C11 can be produced as follows according to Definition
4 and Theorem 1.

RC11 (d1|x1) = λ
d1
∼d1

(C11, x1) · (1 − PC11 (d1|x1)) = 0.4640 × 0.2958 = 0.1373. … (14)

Finally, we can obtain all the normalised risks of the conditional attributes, i.e. RC1 =
{0.3546, 0.4739, 0.4739, 0.4387, 0.4223, 0.3176, 0.3097}, and the normalised weights are
W C1 = {0.1533, 0.1250, 0.1250, 0.1333, 0.1372, 0.1621, 0.1640} according to Definition 7.
Moreover, the normalised weights of manoeuvre performance indexes are W C2 = {0.2676,

0.1828, 0.2450, 0.3046}.
Similarly, for the multi-layer index system, we can obtain the fuzzy Bayes risks of the two

index sets which are 70.9604 and 38.8923, respectively. Then, the weights of each index set
can be generated as 0.4897 and 0.5103.

In addition, if we crudely combine the weight of each index to obtain the weights of the
attribute sets, which are shown as follows:

W1 =
∑

WC1/7∑
WC1/7 + ∑

WC2/4
= 0.5150, … (15)

W2 =
∑

WC2/4∑
WC1/7 + ∑

WC2/4
= 0.4850, … (16)

where

WC1 = {0.6454, 0.5261, 0.5261, 0.5613, 0.5777, 0.6824, 0.6903}, … (17)

WC2 = {0.6834, 0.4669, 0.6258, 0.7778} … (18)
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Table 6
The weights of basic performance index set

Method C11 C12 C13 C14 C15 C16 C17

Entropy 0.2757 0.0503 0.1140 0.1187 0.1224 0.1155 0.2033
CRITIC 0.1173 0.2609 0.1085 0.1246 0.1329 0.1269 0.1289
SD 0.1477 0.1123 0.1123 0.1269 0.1586 0.1655 0.1768
CCSD 0.1294 0.2414 0.1363 0.1540 0.1313 0.1188 0.0888
GRA 0.1562 0.1104 0.1387 0.1441 0.1363 0.1548 0.1595
CE 0.1452 0.1646 0.1853 0.1300 0.1148 0.1300 0.1300
NRS 0.0833 0.0833 0.0833 0.1667 0 0.1667 0.4167
FBRW 0.1533 0.1250 0.1250 0.1333 0.1372 0.1621 0.1640
CA 0.2028 0.1055 0.1093 0.0954 0.1269 0.1906 0.1695

Table 7
The weights of manoeuvre performance index set

Method C21 C22 C23 C24

Entropy 0.2431 0.1459 0.3297 0.2813
CRITIC 0.1795 0.3306 0.1886 0.3013
SD 0.2283 0.2360 0.2624 0.2733
CCSD 0.1532 0.3365 0.1633 0.3470
GRA 0.2507 0.2202 0.2508 0.2784
CE 0.2227 0.2227 0.3009 0.2536
NRS 0.4286 0 0.2143 0.3571
FBRW 0.2676 0.1828 0.2450 0.3046
CA 0.2780 0.1290 0.2393 0.3538

are the un-normalised weights, and the constant coefficients 7 and 4 are the numbers of the
elements in their set.

From the above results we can see that the weights determined by FBRW conforms to the
standard of the evaluation of fighters in reality, i.e. the manoeuvre performance indexes (C2)
are more important than the basic performance indexes (C1). However, the weights obtained
by the simple method reveal the opposite conclusion. This shows that the weights of datasets
can not be determined by such a simple and rude method, e.g. the above method.

6.3 Comparison experiments

In this subsection, we also take the aforementioned weight assignment methods in Subsection
5.2 to compare and analyse the practicability of FBRW. The weight determination results of
the basic performance index set and manoeuvre performance index set are shown in Tables 6-
7. Therein, CA is the weight determination method based on CAs that are produced by the
ten classification methods in Subsection 5.2. In addition, the PCCs and LTCCs between the
weights assigned by the eight methods and those of CAs are shown in Table 8, and the values
in bold are the maximum ones. Table 8 shows that the weights obtained by FBRW are closely
related to the reference weights determined by CAs.
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Table 8
The comparison results of weight assignment

CC Index Entropy CRITIC SD CCSD GRA CE NRS FBRW

PCC BP 0.7297 − 0.3525 0.7210 − 0.5714 0.7197 − 0.3099 0.2901 0.8851
PCC MP 0.6762 − 0.2648 0.5632 − 0.0737 0.9828 0.2276 0.8805 0.9993
LTCC BP 0.9437 0.9114 0.9708 0.9254 0.9717 0.9585 0.8889 0.9729
LTCC MP 0.9222 0.8450 0.9146 0.8266 0.9263 0.9166 0.8726 0.9552

Table 9
The rank-order of basic performance index weights

Method Rank-order

Entropy C11 > C17 > C15 > C14 > C16 > C13 > C12

CRITIC C12 > C15 > C17 > C16 > C14 > C11 > C13

SD C17 > C16 > C15 > C11 > C14 > C12 > C13

CCSD C12 > C14 > C13 > C15 > C11 > C16 > C17

GRA C17 > C11 > C16 > C14 > C13 > C15 > C12

CE C13 > C12 > C11 > C14 > C16 > C17 > C15

NRS C17 > C14 > C16 > C11 > C12 > C13 > C15

FBRW C17 > C16 > C11 > C15 > C14 > C12 > C13

CA C11 > C16 > C17 > C15 > C13 > C12 > C14

Table 10
The rank-order of manoeuvre performance index weights

Method Rank-order

Entropy C23 > C24 > C21 > C22

CRITIC C22 > C24 > C23 > C21

SD C24 > C23 > C22 > C21

CCSD C24 > C22 > C23 > C21

GRA C24 > C23 > C21 > C22

CE C23 > C24 > C21 > C22

NRS C21 > C24 > C23 > C22

FBRW C24 > C21 > C23 > C22

CA C24 > C21 > C23 > C22

For further comparative analysis, we rank the weights determined by the nine methods in
descending order, and the results are shown in Tables 9-10. In order to fully compare and
explain the results, we analyse the weight assignment from two aspects, i.e. the distribution
characterisation of data and the practical meanings of attributes. For simplicity, we take the
basic performance index set as an example for the first aspect and the manoeuvre performance
index set for the second one.
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Figure 5. (Colour online) The statistical distribution of each attribute data

From the results in Table 9, we can see that there are some differences between the rank-
orders of the weights obtained by the above methods. In order to analyse the reasons of the
above problem more accurately and clearly, we visualise the basic performance index data
through the data statistical distribution produced by the generations (shown in Fig. 5). Therein,
the short horizontal lines distributed at both ends of the boxes indicate the maximum and
minimum values, and the boxes mean the ranges between the 25th percentile and the 75th
percentile, the lines in the boxes are the median values, and the cross symbols are the abnormal
data.

From the results in Fig. 5 we can see that there are obvious discriminations in the
distributions of C11, C16 and C17, and it is just the opposite for C12 and C13. In other words, we
can easily distinguish the fighters according to the distributions of C11, C16 and C17 rather than
those of C12 and C13. Therefore, the attributes C11, C16 and C17 should be assigned greater
weights, and the weights of C12 and C13 should be less than others’.

According to the above analyses, we can see that the results (see Table 9) produced by
CRITIC, CCSD and CE have lower credibility, which can also be verified by the results in
Table 8. The PCCs of CRITIC, CCSD and CE are negative, and their LTCCs are less than
others’.

On the other hand, for the manoeuvre performance indexes, the attribute C24 (specific
excess power) has been recognised as the most important parameter to measure the operational
effectiveness of fighters because some indexes such as stable hover performance, climb rate,
longitudinal acceleration and ceiling are closely related with it(1). Therefore, C24 should be
assigned the greatest weight. The ranking results in Table 10 show that Entropy, CRITIC,
CE and NRS do not put C24 at the leading place. The attribute C21 (thrust-to-weight) is
considered as a relatively important index for the combat effectiveness evaluation of fighter,
which will directly affect the manoeuvreability of fighter(1) and should also be assigned a
greater weight. However, CRITIC, SD and CCSD assign C21 to the least important position
(shown in Table 10). Additionally, the significance of C23 is greater than that of C22 in the
combat effectiveness evaluation of fighter, thus, the weight of C23 should be greater than
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Figure 6. (Colour online) The basic effectiveness of the fighters.

C22’s. Therefore, only the rank-order results produced by FBRW and CA are in line with the
actual situation.

In summary, the weights assigned by FBRW are more reasonable and explanatory than
others’.

6.4 Effectiveness evaluation

In this subsection, we take seven fighters, i.e. MiG-29, MiG-31, F-15A, F-16A, F/A-18A,
Mirage 2000-5 and Tornado, to demonstrate the combat effectiveness evaluation of the
fighters, which belong to the 4th generation. In MADA, the effectiveness evaluation is a
linear weighted calculation of sample data. Therefore, the effectiveness results are depicted in
Figs 6-8.

From the results in Fig. 6, we can see that MiG-31 has the maximum effectiveness,
i.e. 0.8276. However, it is the opposite that the manoeuvre effectiveness of MiG-31 is
the minimum one in Fig. 7. This reason can be summed up as follows. Most of the
basic performances of MiG-31 are better than those of the other fighters. Its manoeuvre
performances, however, are so poor that they result in the lowest manoeuvre effectiveness.

On the other hand, with the help of the reasonable weights of the two index sets, the
total effectiveness is more in line with the actual situation than other sub-effectiveness
(see Figs 6-7). From the results in Fig. 8, we can see that the F-15A fighter has the
maximum effectiveness value, i.e. 0.7882, and Tornado has the minimum one. Therefore,
we can conclude two levels of the above fighters, which is consistent with the actual
situation and the results in literature(1,4,5). One includes four fighters, i.e. F-15A, MiG-29,
F-16A and Mirage 2000-5. The other three fighters, i.e. MiG-31, F/A-18A and Tornado,
belong to the second level. With respect to F-15A and F-16A, F-15A is recognised as
an outstanding fighter, and its performance is better than that of F-16A. Actually, F-16A
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Figure 7. (Colour online) The manoeuvre effectiveness of the fighters.

0.7857

0.6199

0.7882 0.7748

0.5759

0.7334

0.529

MiG-29
MiG-31

F-15A
F-16A

F/A-18A
Mirage2000-5

Tornado
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
ffe

ct
iv

en
es

s

Figure 8. (Colour online) The total effectiveness of the fighters.
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is designed to be the partner of F-15A. The three fighters, MiG-29, F-16A and Mirage
2000-5, are considered to be the ones with the same level. With regard to these three
fighters, the thrust (C21) and maximum speed (C211) of MiG-29 are larger than those of
F-16A, but its take-off wing load (C23) is more than F-16A’s. The power system is the “short
board” of Mirage 2000-5; however, its take-off wing load and maximum speed make its
combat performance comparable to that of F-16A. The design objectives of MiG-31 are high
speed and strong firepower, which reduce the air combat capability of MiG-31. F/A-18A is a
kind of carrier-based aircraft whose combat performance is certainly not as good as the other
subgrade fighters. Compared with the other fighters, many performances of Tornado are worse
than those of others, which can be seen in Tables 11-12.

7.0 DISCUSSION
Based on the above amount of experiments, we provide some extension discussions as follows.

From the results of the comparison experiments we can see that, with the help of considering
some relationships, i.e. the risk of decision and the fuzzy membership, between conditional
attributes and the decision attribute in DS, the weights produced by FBRW are better than
others’. Nevertheless, all the compared methods have their shortcomings that can be summed
up as follows. (a) The Entropy, CRITIC, SD and CCSD methods do not take account of
the above relationships. (b) Data-driven weight assignment technique is usually based on the
assumption of attribute independent so that it extracts the weights from the aspect of statistic.
However, GRA ignores the above assumption due to considering the maximum and minimum
differences between all the conditional attributes and the decision attribute, which results in
some unsatisfactory weights. (c) CE is greatly affected by discretisation methods; different
discretisation methods generate kinds of conditional attributes’ partitions, which result in
various weights. (d) The dependencies of conditional attributes with respect to the decision
attribute are employed in NRS, which may generate zero weight (see Tables 4-7).

For the effectiveness evaluation of fighter, it is undeniable that fighters are optimised for
certain roles, i.e. a particular aircraft may not have a high overall effectiveness but may be
the most effective in a specific role. With regard to this study, it is better to gather as many
fighters with the same function (role) as possible to evaluate the effectiveness of fighters.
However, due to the confidentiality of fighter data, our research on effectiveness evaluation
can only be based on a small number of fighters with open data, which are characterised
with different roles (such as high altitude combat role, close combat role), but they are all
belonging to the combat fighters. On the other hand, the index system consisting of basic
performance indexes and manoeuvre performance indexes in our research is the most basic
system for evaluating fighters, through which the comprehensive combat performance values
of fighters can be obtained. These values can be regarded as the basic references for evaluating
the performance of the fighters from the comprehensive performance perspective.

With regard to weight assignment for IS, the combination of FBRW and some clustering
methods is an optional approach, where the clustering methods provide labels as the decision
attribute for FBRW. Therefore, the FBRW method can be applied to both IS and DS.

8.0 CONCLUSION
In order to deal with the labelled multiple attribute decision-making issue, this paper proposes
an object weight assignment method based on FBRW. Firstly, some preliminaries are presented
and the FBRW method follows, where a Gaussian kernel loss function is raised to make up the
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deficiency of the Bayes risk. Subsequently, the problem of weight determination for a multi-
layer attribute set is discussed. Then, a weight assignment algorithm based on FBRW is given.
In order to evaluate the credibility of assigned weights, the LTCC model is designed. Finally,
a large number of experiments are carried out which include the comparison experiments
on LTCC, the comparison experiments of weight assignment using a UCI dataset, and the
effectiveness evaluation of the fighter. The experimental results and discussions show that (a)
LTCC is suitable for evaluating the assigned weights, and (b) the proposed FBRW method is
not only good at dealing with single-layer or multi-layer DS, but can also be extended to cope
with IS. Compared with other weight assignment methods, the weights produced by FBRW
are more reasonable and closely related to those determined by CAs.

In future work, we will focus on combining the FBRW method with some clustering
methods to deal with the weight assignment for IS and apply FBRW to other fields.
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APPENDIX

The index sets for EEF are shown as follows, which include the BP index set (see Table 11)
and the MP index set (see Table 12).

Table 11
The BP index set of fighters

ID Fighter C11 C12 C13 C14 C15 C16 C17 Generation

1 MiG-9 1,568 277 800 1,100 12,800 950 910 1
2 MiG-15 2,200 234 1,420 1,860 15,000 1,080 1,050 1
3 MiG-15bis 2,650 241 1,330 2,520 15,500 1,080 1,076 1
4 MiG-17 3,380 236 1,240 2,020 16,600 1,150 1,145 1
5 F-80C 1,820 248 1,600 2,220 13,700 1,000 932 1
6 F-86F 2,700 275 1,470 2,200 14,300 1,130 1,053 1
7 MiG-21 6,468 364 1,020 2,100 19,000 1,300 2,571 2
8 Su-7 9,310 320 1,150 1,450 19,500 1,200 2,448 2
9 F-100D 7,565 372 1,600 2,100 12300 1,125 1,591 2
10 F-104G 7,170 520 1,290 2,220 16,760 1,390 2,448 2
11 MiG-25 22,000 569 1,500 1,730 20,700 1,200 3,427 3
12 F-4E 16,000 403 2,000 2,600 17,700 1,390 2,448 3
13 Mirage F-1 6,960 460 1,700 2,800 18,500 1,470 2,448 3
14 MiG-29 16,260 389 1,480 2,000 18,000 1,400 2,877 4
15 MiG-31 30,400 666 3,000 3,300 20,600 1,500 3,464 4
16 F-15A 21,200 316 1,980 4,450 18,300 1,380 2,815 4
17 F-16A 10,800 375 1,825 3,800 18,000 1,380 2,387 4
18 F/A-18A 14,250 443 1,800 2,600 15,240 1,345 2,203 4
19 Mirage2000-5 9,500 268 1,650 3,200 18,300 1,480 2,693 4
20 Tornado 14,220 680 1,850 2,500 15,000 1,390 2,570 4
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Table 12
The MP index set of fighters

ID Fighter C21 C22 C23 C24 Generation

1 MiG-9 0.310 4.0 2.5 16 1
2 MiG-15 0.460 8.0 4.0 42 1
3 MiG-15bis 0.530 8.0 4.4 50 1
4 MiG-17 0.630 8.0 4.8 75 1
5 F-80C 0.340 6.5 3.0 35 1
6 F-86F 0.375 7.0 3.5 47 1
7 MiG-21 0.770 8.0 5.9 145 2
8 Su-7 0.850 8.0 5.0 150 2
9 F-100D 0.557 7.3 5.5 130 2
10 F-104G 0.760 6.0 3.0 254 2
11 MiG-25 0.630 4.5 3.0 200 3
12 F-4E 0.810 8.0 6.0 152 3
13 Mirage F-1 0.610 8.0 5.0 165 3
14 MiG-29 1.100 9.0 9.0 310 4
15 MiG-31 0.740 5.0 3.2 235 4
16 F-15A 1.190 7.3 7.3 300 4
17 F-16A 1.030 9.0 9.0 305 4
18 F/A-18A 0.870 7.0 6.0 245 4
19 Mirage2000-5 0.860 9.0 9.0 255 4
20 Tornado 0.700 7.5 5.5 180 4
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