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Computability has its origins in Logic within the framework formed along the original path

laid down by the founding fathers of the modern foundational analysis for Mathematics

(Frege and Hilbert). This theoretical itinerary, which was largely focused on Logic and

Arithmetic, departed in principle from the renewed relations between Geometry and Physics

occurring at the time. In particular, the key issue of physical measurement, as our only

access to ‘reality’, played no part in its theoretical framework. This is in stark contrast to the

position in Physics, where the role of measurement has been a core theoretical and

epistemological issue since Poincaré, Planck and Einstein. Furthermore, measurement is

intimately related to unpredictability, (in-)determinism and the relationship with physical

space–time. Computability, despite having exact access to its own discrete data type, provides

a unique tool for the investigation of ‘unpredictability’ in both Physics and Biology through

its fine-grained analysis of undecidability – note that unpredictability coincides with physical

randomness in both classical and quantum frames. Moreover, it now turns out that an

understanding of randomness in Physics and Biology is a key component of the intelligibility

of Nature. In this paper, we will discuss a few results following along this line of thought.

1. The issue of physical measurement

Before the crisis in the foundations in Mathematics, in other words, before the invention

of non-euclidean geometries, Mathematics was secured by a direct link between Euclid’s

Geometry and physical space. There was certainty in the relation between our human

experience of space and Euclid’s ruler and compass constructions, in particular, once

Descartes had embedded them in abstract spaces and Newton had made them absolute.

So a theorem proved at the scale or our everyday experiences could be transferred equally

well to the stars or to Democritus’ atoms: for example, the sum of internal angles of a

triangle is always 1800. But Riemann claimed that the relevant space manifolds, where ‘the

cohesive forces among physical bodies could be related to the metrics’ (Riemann 1854),

were not closed under homotheties (to be precise, this was Klein’s version). Hence, the scale

invariance (under homotheties – dilations) that allowed us to extend our ruler and compass

proofs to the astronomical and microscopic realms was lost. Then, as a result of Einstein’s

work, Euclid’s spaces finally turned out to be an irrelevant singularity, corresponding

to zero curvature, or, at best, a local approximation within the new geometrisation of

† This paper is an extended and revised version of Longo (2010a), which was an Invited Lecture presented at

the Computability in Europe conference held in the Azores in June 2010.
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Physics. In short, the physically crucial meaning of curved spaces demolished the assumed

absolute correspondence between our intuitions, which were grounded on action in human-

scale space, and physical space–time (see Boi (1995) for a survey of the epistemological

challenges thrown up). This was a true ‘epistemological break’, in Bachelard’s terms

(Bachelard 1940), or a ‘revolution’ (Khun 1962), as it stimulated a new and foundational

approach.

The response by Frege and Hilbert to this major crisis, though different in their

approach to meaning and existence, agreed in giving a central role to arithmetic, with

its ‘absolute laws’, and in turning away from the loss of certainty arising from the non-

Euclidean developments with regard to our intuitive relationship with space. Hence, logic

or formal systems should allow Mathematics to be reconstructed categorically (if we put

it in modern terms for Frege) or completely (for Hilbert).

This ‘royal way out’ in the foundations of Mathematics led it to break away from its

relationship with physical space and, thus also with Physics. In particular, it proposed

a foundational culture in Mathematics, thereby programmatically disregarding its con-

stitutive interaction with Physics, with its core of Riemannanian Geometry, and thus

ignoring our forms of ‘access to the world’ through measurement in space and time. The

foundations of Mathematics had to be divorced from our forms of life, action and space,

and built on pure logic: in other words, formal computations over meaningless strings of

signs†.

As a matter of fact, our only ‘access’ to physical processes is through measurement:

ranging from the cognitive/perceptive measurements arising from our relations with the

environment to the very refined tools of quantum measurement. By ignoring this, an entire

arithmetising community by-passed a key aspect of the revolution arising in Physics at the

turn of the twentieth century: viz. the novel role played by physical measurement in our

understanding of Nature. Now, when turning back to natural phenomena, some people

project on them these arithmetic/computational views, with their discrete structures of

determination, as I will explain below.

Poincaré first understood, through his Three Body Theorem of 1890, that the in-

trinsically approximate measurement of the initial conditions, in combination with the

non-linearity of the mathematical description (and gravitational ‘resonances’), led to

an unpredictable, though deterministic, continuous dynamics. And thus the Geometry of

Dynamical Systems was born, and classical randomness has since then become understood

as deterministic unpredictability (see below). Einstein’s relativity required reference systems

and their measure-invariant properties to be given explicitly, with what was at the time

a revolutionary correlation between space and time measurements. Quantum Mechanics,

in a rather different way, also brought the process of measurement into the limelight

† The foundations of Mathematics had to be independent of the ‘wildest visions of delirium’ that were being

proposed by the interpretations of non-Euclidean theories (in Frege’s words – Frege (1884, page 20)) and

instead directed towards axiomatic systems for Geometry that must contain no references to intuition or

meaning in space (see Hilbert (1899) and Poincaré’s critique of it in Poincaré (1903), as well as his critique of

Frege’s and Russell’s approach (Goldfarb 1988)). Hermann Weyl similarly interpreted and criticised formalism

and logicism, but from a geometric perspective Weyl (1918; 1927; 1985).
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by introducing an intrinsic randomness at the point that Schrödinger’s deterministic

dynamics of the state function (a probability density in Hilbert spaces) is made accessible

(by being measured in our space and time). And Planck’s h gave a lower bound for the

simultaneous measurement of conjugate (complementary) variables.

Shortly after, the arithmetising culture in foundations, which was explicitly born as

a reaction to Riemann and Poincaré’s physicalisation of Geometry (and geometrisation

of Physics), produced some remarkable formal-arithmetic machines. Computability was

invented within Logic, in the 1930s, for purely foundational purposes by Herbrand,

Gödel, Church, Kleene, and others. And Turing’s Logical Computing Machine introduced

a further – metaphysical – separation from the world: the perfect (Cartesian) dualism

provided by the distinction between hardware and software, based on a remarkable

theoretical (and later practical) split between the ‘logic’ of a process and its physical

realisation. Turing’s idea was the description of a human in the ‘least act of computing’,

or actually of thought. But wasn’t Frege’s and even Hilbert’s project also an analysis of

general human reasoning? Weren’t neural spikes, which were just the most visible traces

of complex critical transitions of electrostatic potentials in the brain, quickly regarded as

some sort of binary values?

The physical realisation of the Machine preserved Turing’s fundamental separation: its

soft ‘soul’ could act on discrete data types, without any access problem, and independently

from the hardware. There was no need for physically approximate measurements or

random information since its databases are given exactly. Digital processes are exact, and

evolve separately in their own world, over a very artificial device, which was indeed a

most remarkable human alphanumeric invention: a discrete state physical process, which

is capable of repeating identically whatever program it is given and, as a result, it is

reliable. Nothing like this had existed before in the World, since Nature very rarely

repeats anything exactly (there may be a few chemical processes, in vitro, which do, but

we will return to this later).

I would like to stress that the mathematical origins of the Machine are reflected in

its exactness over discrete data types and, thus, in the reliable and identically repeatable

interaction between hardware and software. This is given by the arithmetical certainty

postulated by Frege and Hilbert within Logic, which is distinct from the imprecise meas-

urements of classical/relativistic dynamics, and the randomness of Quantum Mechanics.

However, networks of concurrent computers, which are distributed in physical space–time,

are now challenging this original view.

2. Preliminaries: from equational determination to incompleteness.

I suggested in a short note in 2001 that Poincaré’s Three Body Theorem may be considered

to be an epistemological predecessor of Gödel’s undecidability result† if we understand

Hilbert’s completeness conjecture as a meta-mathematical revival of Laplace’s idea of

the predictability of formally (equationally) determined systems. For Laplace, once the

† This is discussed more extensively in Longo (2009; 2010b)
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equations are given, we can completely derive the future states of affairs (with some,

preserved, approximation). Or, more precisely, in ‘Le système du monde’, he claimed that

the mathematical mechanics of moving particles, one by one, two by two, three by three,

and so on, compositionally and completely ‘covers’, or makes understandable, the entire

Universe. Specifically in relation to celestial bodies, he said that through this progressive

mathematical integration ‘We should be able to deduce all facts of astronomy’.

The challenge, if we are to make a closer comparison, is that Hilbert was speaking about

the completeness of formal systems as deducibility or decidability of purely mathematical

‘yes or no’ questions, while unpredictability shows up in the relations between a physical

system and a mathematical set of equations (or evolution function).

In order to relate unpredictability to undecidability consistently, we need to make the

dynamical spaces and measure theory effective (typically, using a computable Lebesgue

measure), since they are the loci for dynamic randomness. This allows us to have a sound

and purely mathematical treatment of the epistemological issue (and obtain a convincing

correspondence between unpredictability and undecidability – see the next section).

Remark 2.1 (On proof methods). The theorems produced by Poincaré and Gödel are also

methodologically related: they both (and independently, of course) destroy the conjecture

of predictability (Laplace) and decidability (Hilbert) from within. Poincaré does not need to

refer concretely to an unpredictable physical process by measuring it ‘before and after’. He

shows, by a pure analysis of the equations, that the resulting bifurcations and ‘homoclinic

intersections’ (intersection points of stable and unstable manifolds or trajectories) lead

to deterministic unpredictability (of course, the equations were derived with reference to

three bodies interacting through their gravitational fields, in much the same way as Peano’s

Axioms were invented with reference to the ordered structure of numbers). Similarly, in

the statements and proofs of his 1931 paper, Gödel formally constructed an undecidable

sentence by playing a purely syntactic game, with no reference whatsoever to ‘semantics’,

‘truth’ or suchlike, in other words, with no reference to the underlying mathematical

structure.

By contrast, modern ‘concrete incompleteness’ theorems (that is, Girard’s normalisa-

tion, Paris–Harrington or Friedman–Kruskal Theorems – see Longo (2002; 2010b) for

references and a discussion) resemble Laskar’s results of the 1990s (Laskar 1994), where

‘concrete unpredictability’ was shown for the Solar system, as the physical system of

interest, with reference to the best possible astronomical measurements. Similarly, concrete

incompleteness was given by proving (unprovability and) truth over the (standard ) model,

thus comparing formal syntax and the intended mathematical structure.

Philosophically, the incompleteness of our formal (and equational) approaches to

knowledge is a general and fundamental epistemological issue. It motivates our per-

manent need for new science: by inventing new contentual – that is, content based or

meaningful – principles and conceptual constructions, we can change direction, propose

new understandings and get a meaningful grasp or organisation of new fragments of

the world. There is no such thing as ‘the final solution to the foundational problem’ in

Mathematics (as Hilbert dreamed – a true nightmare), or indeed in other sciences.
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As a preliminary hint in the field of Biology, note that the ‘incompleteness’ of molecular

theories for understanding life-related phenomena is a comparable issue. There is no way

to understand/derive embryogenesis nor phylogenesis (Evolution) completely by just

looking at the four letters of the bases of DNA (the formal language of Molecular

Biology) – despite the claims of too many biologists (see Monod (1973) and Maynard

Smith (1989) for two classic examples, and Fox Keller (2000) for a critical survey). The

massive control and feedback response of the cell and organism on DNA expression and

subsequent molecular cascades is being increasingly acknowledged in Molecular Biology.

Thus, the analysis of the global structure of the cell (and the organism) must go in parallel

with the absolutely crucial molecular analyses. The difficult philosophical point to explain

to our colleagues in Molecular Biology is that ‘incomplete’ does not mean useless, but

that we also need a (still missing) autonomous theory of the organism and to further

develop the Darwinian theory of Evolution.

Incidentally, randomness plays a key role in both Evolution and embryogenesis. But

what kind of randomness? Classical and Quantum Physics proposes two distinct notions

of randomness. Can logical undecidability (incomputability) help us in understanding

this? We will focus on these questions at the end of this paper.

3. Randomness versus undecidability

As I mentioned earlier, classical (physical) randomness is the unpredictability of determ-

inistic systems in finite time. For example, dice trajectories are theoretically determined:

they follow the Hamiltonian, and thus a unique geodetics; yet they are so sensitive to

the initial and boundary conditions that it is not worth our writing the equations of

motion. On the other hand, algorithmic randomness, that is Martin-Löf’s (and Chaitin’s)

number-theoretic randomness, is defined for infinite sequences (Calude 2002), so how can

this yield a connection between Poincaré’s unpredictability and Gödel’s undecidability?

Classical physical randomness is deterministic unpredictability, so it manifests itself

at the ‘equations/process’ interface and shows up in finite time (that is, after a finite

number of iterations of the dynamics, if this is represented, as usual, using the technique

of Poincaré sections). However, this physical randomness can also be expressed as a limit

or asymptotic notion, and in this way can be soundly turned into a purely mathematical

problem: this is Birkhoff’s ergodicity (for any observable, time averages coincide with

space averages, and this is an equality of two infinite sums or integrals (Petersen 1983)).

And in this sense, it applies in (weakly chaotic) dynamical systems within the framework

of Poincaré’s Geometry of Dynamical Systems.

As for algorithmic randomness, Martin-Löf randomness is a ‘Gödelian’ notion of

randomness since it is based on recursion theory and yields a strong form of undecidability

for infinite 0-1 sequences (in short, a sequence is random if it passes all effective statistical

tests; as a consequence, it contains no infinite recursively enumerable subsequences).

Recently, under Galatolo’s and my supervision, M. Hoyrup and C.Rojas proved that

dynamic randomness (à la Poincaré, and thus in the ergodic sense, but at the purely

mathematical limit) in suitable effectively given measurable dynamical systems is equivalent

to (a generalisation of) Martin-Löf randomness (specifically, Schnorr randomness). This
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is a non-obvious result, which was also based on a collaboration with P. Gacs (Gacs et al.

2011), and developed in the two parallel doctoral dissertations mentioned above (which

were defended in June 2008)†.

When it comes to quantum randomness, note that because of entanglement, it differs

mathematically from classical randomness: if two classical dice interact and then separate,

the probabilistic analysis of their values are independent; but when two quanta interact

and form a ‘system’, they can no longer be separated, since measurements on them give

correlated probabilities of the results. Mathematically, they violate Bell’s inequalities – see

Bailly and Longo (2007) for a comparative introduction.

Algorithmic randomness provides a close analysis of classical randomness, but how can

this mathematics of discrete structures tell us more about randomness in general?

4. Discrete versus continua

One of the ideas extensively developed in the book Bailly and Longo (2011) and in several

papers written with two physicists, Francis Bailly‡ and Thierry Paul (see our downloadable

papers) is that the mathematical structures constructed to develop an understanding of

physical phenomena may, depending on their continuous (mostly in Physics) or discrete

(generally in computing) nature, suggest different views of Nature.

In other words, the ‘causal relations’ in Physics, as mathematical determinations and

intelligibility structures (through which we ‘understand Nature’), are usually given in terms

of (differential) equations or evolution functions. Their physical meaning is dependent on

the use of the continuum or the discrete, and may differ deeply according to the choice of

one of these mathematical frameworks. For example, in most non-linear systems, discrete

approximations soon diverge from continuous evolutions and do not provide actual

‘models’ of the intended physical processes. In a few cases, such as hyperbolic systems,

‘shadowing theorems’ can, at most, guarantee that continuous evolutions approximate

discrete ones (but not the converse!) – see Pilyugin (1999). In modern terms, the continuous

or discrete underlying mathematical structures induce different symmetries and symmetry-

breaking (Bailly and Longo 2011; Longo and Montévil 2011, Chapters 4 and 5).

But what discrete (mathematical) structures are we referring to? A clear mathematical

definition of ‘discrete’ is that a structure is discrete when the discrete topology on it is

‘natural’. Of course, this is not a formal definition, but in Mathematics we all know what

‘natural with respect to the intended purpose means. For example, we can endow Cantor’s

real line with the discrete topology, but it is not ‘natural’ (you cannot do much with it),

while, the integer numbers or a digital data base are naturally endowed with the discrete

† Undecidability over dynamical systems had already been investigated and proved to yield a form of

unpredictability: the undecidability, say, of a point crossing or not a given region of phase space – see

Moore (1990) and da Costa and Doria (1991) among others. Here, however, we are comparing an independent

notion of physical unpredictability, as classical randomness à la Birkhoff, with algorithmic randomness, as a

strong form of Gödelian undecidability.
‡ The enlightening collaboration with Francis, a physicist who was also interested in Biology, has been

fundamental for me. Francis recently passed away: a recorded Colloquium in his memory may be accessed

from my web page, http://www.di.ens.fr/users/longo.

https://doi.org/10.1017/S0960129511000569 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000569


G. Longo 886

topology. Even though we may have good reason to use a different structure for some

purposes, the interval topology on the reals is ‘natural’ for Mathematical Physics in being

derived from the interval (approximate) nature of measurement. And this induces the

discrete topology on the subset of integers or on any finite set of approximating numbers.

Church’s thesis, which was introduced in the 1930s following the functional equivalence

proofs of various formal systems for computability, is only concerned with computability

over integers or discrete data types. As such, it is an extremely robust thesis: it ensures

that any sufficiently expressive finitistic formal system over integers (a Hilbertian-type

logico-formal system) computes exactly the recursive functions, as defined by Herbrand,

Gödel, Kleene, Church, Turing, and so on. This thesis therefore emerged within the

context of Mathematical Logic. It is a thesis grounded on languages and formal systems

for arithmetic computations on discrete data types, which were programmatically invented

by the founding fathers, without any connections with Physics and its space–time.

So the first question we can ask is what happens if we extend just the formal framework?

If we want to refer to continuous (differentiable) mathematical structures, the extension

to consider is to the computable real numbers (Pour-El and Richards 1989). And we

then need to ask whether the various formalisms for computability over real numbers

are equivalent? An affirmative answer could suggest an extension of Church’s thesis to

computability on ‘continua’. Of course, there are only countably many computable reals,

but they are dense in the ‘natural’ (interval) topology over Cantor’s reals, and, as we shall

see below, this yields a crucial difference.

By posing this question, we get closer to current Physics, since we assume spatial

and often temporal continuity when we represent dynamical systems, that is, in most

mathematical models for (classical) Physics. This does not imply that the World is

continuous, but only that since Newton and Leibniz we have a better understanding of

large parts of Physics, such as space–time and movement within it, using continuous tools,

as was later very well specified by Cantor (though his continuum is not the only possible

one: for example, Lawvere and Bell proposed a topos-theoretic continuum without points

(Bell 1998)).

Now, when we pass to computability over real numbers, very little remains of this

equivalence of formalisms, which lies at the heart of Church’s thesis: the theories proposed

are demonstrably different in terms of computational expressiveness (the classes of defined

functions). The various systems (such as: recursive analysis, which was first developed

by Lacombe and Grezgorzcyk in 1955–57; the Blum, Shub and Smale, BSS, system;

the Moore-type recursive real functions; and different forms of ‘analogue’ systems, such

as threshold neurones, the GPAC) yield different classes of ‘continuous’ computable

functions. Some recent work has established links, or reductions, between the various

systems (more precisely, pairwise relations between subsystems and/or extensions), but

the full equivalence of the discrete case is lost. Moreover, these systems have no ‘universal

function’ in Turing’s sense. In the discrete case, this function is constructed by a computable

isomorphism between spaces of different dimension, that is N2 = N. However, there is

no continuous and computable isomorphism between the computable reals Rc and R2
c

that would allow us to transfer the notion of a Universal Machine to computability over

continua – see Costa et al. (2009) for more.
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As a consequence of the N2 = N computable isomorphism, when we consider

computability on the discrete, the work spaces may be of any finite dimension: they

are all effectively isomorphic, or, in other words, the ‘Cartesian dimension’ does not

matter! This is a highly unsuitable property for Physics. First, dimensional analysis is a

fundamental tool (one cannot confuse energy with force, or with the square of energy, and

so on). Second, dimension is a topological invariant in all space manifolds for classical

and relativistic Physics. Specifically, if we take physical measurement, an interval, as a

‘natural’ starting point for the metric (which gives us the interval or ‘real’ topology), then

you can prove that if two such spaces have isomorphic open subsets, they have the same

dimension. The topological invariance of dimension on physically meaningful topologies

is a very simple, but beautiful, correspondence between Mathematics and Physics.

These facts weaken computational approaches to the analysis of physical invariants

over continua since two fundamental computational invariants are lost: equivalence (which

is the basis of the Church Thesis) and universality.

In summary, in discrete computability, a cloud of isolated points has no dimension per

se, and, for all theoretical purposes we may encode them on a line. When we put dimension

back in to consideration, we lose the universal function and the equivalence of systems

in computability over continua, where the trace of the interval topology maintains good

physical properties. There is thus a huge gap between the theoretical world of discrete

computability and physico-mathematical continua. While I believe that we should be

able to do better than Cantor for continua, I would not give a penny for a physical

theory whose dynamics only takes place on discrete spaces, thereby divorcing itself from

physical measurement, dimensional analysis and the general relevance of dimensions in

Physics (again, space dimension is crucial in problems ranging from heat propagation,

through mean field theory, to relativity theory). The analysis over ‘computable continua’

provides a more interesting framework for Physics by adding relevant information, though

it loses two key invariants of computations over the discrete (typically, the Universal

Function). We will discuss the peculiar ‘discrete’ nature of Quantum Mechanics later in the

paper.

Remark 4.1 (On physical constants). As an aside, we might ask whether the main physical

constants (G, c, h) are computable (real numbers). Of course, it depends on our choice of

reference system and the metrics. So, suppose we fix h = 1. We then have to renormalise all

metrics and re-calculate, using equations, dimensional analyses and physical measurement,

G and c. But physical measurement will always give an interval, as we have already said, or,

in the quantum case, the probability of a value. If we interpret the classical measurement

interval as a Cantorian continuum (which is, so far, the best way we have for grasping

fluctuations), then, for believers in the absolute existence of the real numbers R, where are

G and c? The computable reals form a dense subset of Lebesgues measure 0, with plenty

of gaps but no jumps. Why should (the mathematical understanding of) fluctuations

avoid falling into the gaps, and jump from computable real to computable real? Cristian

Calude and I conjecture that random (and thus highly incomputable) reals form a better

structure for understanding non-observable events.
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However, the most striking mistake many ‘computationalists’ make is to say that if

‘Physics is not fully computable’, then some physical processes would super-compute (that

is, ‘compute’ non-computable functions)! But this is not the point. Most physical processes

simply do not define a mathematical function. And the challenge again arises from the

fact that our only form of access to the (physical) ‘world’ is measurement. In order to force

a classical process to define a function, you have to fix a time for the input, associate a

(rational) number with the interval of measurement, and then let the process go. Then

you wait until the output time and measure again. In order for the process to define the

mathematical function f(x) = y at the rational input x, it must always produce the same

rational output y every time the process is repeated on input x. But if, say, we try this

with a physical double pendulum (a simple deterministic and chaotic process), and restart

it on x, that is restart it within the interval of measurement corresponding to x, then a

minor (typically, thermal) fluctuation below the interval defined by x will yield a different

observable result y′, even if we fix a very short ‘computation’ time. Of course, for processes

that are modelled by non-linear dynamics, taking intervals as input and output does not

solve the physical problem. Non-linear maps (or the solutions of non-linear equations,

if any) may enlarge the interval exponentially (following Lyapounov exponents (Cencini

2010)) and are mixing, that is, the extremes and the maxima/minima of the intervals

are shuffled around. As numerical analysts know very well, this even makes the rarely

applicable ‘shadowing theorems’ fail (and they would at least guarantee that the discrete

dymanics is approximated by the continuous one, but not conversely, as mentioned earlier

(Pilyugin 1999)).

So a better question would be to consider a physical process that does define a function,

and ask is this function computable?

The idea then is that the process should be sufficiently insensitive to initial conditions

(which is sometimes called robust) as to actually define a function. But the question then

changes radically (and becomes trivial). Typically, we should be able to partition the World

into little cubes of the smallest size, according to the best measurement of the insensitivity

(the scale at which fluctuations have no effect on the dynamics). If the Accessible World

is considered finite†, we can make a finite list of the input–output relation established by

the given process. This is a ‘program’. But then a good programming question would be

is this program compressible?

Remark 4.2 (On quanta and discrete space–time). When it comes to the relevance of

the discrete case, Quantum Mechanics started precisely with the discovery of a key (and

unexpected) discretisation of atomic energy absorption and emission spectra. A few people

dared to propose a discrete lower bound to measurement of action, that is, of the quantity

energy × time. It is this physical dimension that reveals a discrete structure. Clearly, we

can then compute, by assuming the relativistic maximum for the speed of light, a Planck

† But according to which measure would it be finite? What about Riemann’s sphere as a model for the

Relativistic Universe, and the little human moving with his/her metre rule towards the poles being squeezed

to 0? For the God, who holds it in His hand, this Universe is finite, but it is infinite for our little human’s

measurements.
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length and time. But this does not in any way mean that space and time are discretised

in small ‘quantum boxes or cubes’. And this is the most striking and crucial feature of

Quantum Mechanics: the ‘systemic’ or entanglement effects that yield the non-separability

of observables. In this context, no discrete space topology is natural as it would yield a

separability of all (measurable) observables. That is, these quantum effects in space–time

are the opposite of a discrete, and thus well-separated, organisation of space, and this

fact lies at the core of its scientific originality. In particular, they motivate quantum

computing (as well as our analysis of quantum randomness above). In fact, Thierry Paul

and I claim that the belief in an absolutely separable topology of space continua was

Einstein’s mistake in EPR (Einstein et al. 1935), where entanglement was first examined

and considered to be impossible (this is ongoing work – see Longo (2010b) for some

further analysis).

Note, finally, that loop gravitation and string theory do in fact assert that our world

might be composed of (a very large number of) finite objects with discrete relations.

However, and crucially, these objects and their dynamical relations are handled in abstract

mathematical spaces, such as Hilbert or Fock spaces, with possibly infinite dimensions. In

those spaces, which are very remote from ‘ordinary’ space–time, processes may even be

represented by a linear, and thus fully computable, mathematical dynamics, such as given

by the Schrödinger equation. The problem then, as usual, is to ‘return’ these dynamics to

our own space–time, through measurement, since that is where the intrinsic uncertainty

pops out.

In summary, continua, Cantorian or topos theoretic, though not absolute, take rather

good care of the approximate nature of (classical) physical measurement, which is

represented as an interval: with unknowable fluctuations lying within the interval. In

Quantum Physics, the peculiar correlation of conjugated variabes and intrinsic uncertainty

gives measurement an even more important role. And (physical) measurement is our only

form to access ‘reality’. The arithmetising foundations of Mathematics went along another

(and very fruitful) direction, but based on perfectly accessible data types.

5. The originality of the Discrete State Machine

As I have already mentioned, the Discrete State Alphanumeric Machine is a remarkable

and very original human invention, with a long history. As hinted in Longo (2008), this

story began with the invention of the alphabet, which is probably the oldest example

of discretisation. Instead of trying to capture concepts and ideas in designs (by recalling

‘meaning’, like in ideograms), the continuous aural stream of speech is discretised by

annotating phonetic pitches, which is an amazing idea (due to the people of Altham,

in Mesopotamia, 3300 B.C.). Meaning is reconstructed by the sound, which acts as a

compiler, either aloud or in silence (it was only after the fourth century A.D. that we

learned to read ‘within the head’!).

The other key passage towards alphanumeric discretisation was the invention of a

discrete coding structure. This originated with Gödel numbering, which seems an obvious

thing to do now, but was another idea that was as remarkable as it was artificial. Turing’s
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work followed: the Logical Computing Machine (LCM), as he first called it, is at the

core of computing (right/left, 0, 1 . . . ). Of course, between the invention of the alphabet

and Turing, there was Descartes’ ‘discretisation’ of thought (stepwise reasoning, along a

discrete chain of intuitive certitudes), and much more.

When, in the late 1940s, Turing worked again in Physics, he changed the name of his

LCM: in Turing (1950; 1952), he refers to it as a Discrete State Machine (this is what

matters for its physical behaviour). And twice in his 1950 paper (the ‘imitation game’), he

calls it ‘Laplacian’. Its evolution is theoretically predictable, even if there may be practical

unpredictability (programs that are too long to be grasped, he says).

So, by using ideas from formal Logic, we invented and later physically realised an

incredibly stable processor, which, by working on discrete data types, does what it is

expected to do. And it produces repeatable results, very faithfully, which I stress is its

key feature. Primitive recursion and the portability of software are forms of repeatability:

iteration and the update of a register do what they are supposed to do, even when in

slightly different contexts, and they do it over and over again. For example, suppose we

program the evolution function of the most chaotic strange attractor we know, but if we

push ‘restart’, the digital evolution, by starting on the same initial digits, will follow exactly

the same trajectory. This makes no physical sense, but it is very useful (for example, in

meteorology, you can restart your turbulent flow, exactly, and try to understand better

how it evolves). Of course, one may imitate unpredictability using some pseudo-random

generator or by incorporating some true physical randomness, added ad hoc. But this is

cheating the observer, in the same way as Turing’s imitation of a woman’s brain is meant

to cheat the observer, rather than ‘model’ the brain. He says this explicitly, while working

in his 1952 paper on a model of morphogenesis as (non-)linear dynamics. He speculates

that brain activity may depend on fluctuations below the level of measurement, and not

his DSM – see Longo (2008) for a closer analysis and, of course, Turing’s two papers,

which should always be read together. In contrast to imitation, a mathematical model tries

to propose a ‘structure of determination’ (for example, the equations for action, reaction

and diffusion in the 1952 paper). Finally, we may observe that our colleagues working in

networks and concurrency are so good that programming in concurrent networks is also

reliable: programs do what they are supposed to do, they run again and give you the

web page you want, identically every time, one thousands times, one million times. And

this is hard, as physical space–time, which we understand better through continua and

continuous approximations, steps in, but still using discrete data types, and this allows

repeatability. Of course, identical repetition is the opposite of randomness (many define a

process to be random when, repeated with the ‘same’ initial conditions – as in the case of

physical measurement – it follows a different evolution).

Those who claim that the Universe is a big digital computer miss the originality of this

machine of ours: in particular, its history, from the alphabet through Hilbert’s formal

systems and on to the current work in concurrency in networks, where reliability is a

key objective. The construction of computers has been a remarkable achievement in

producing a reliable (and thus programmable), physical (but artificial) device, divorced

from the natural world, and repeating as we wish and any time we wish, even in

networks. One should not ignore the principles that guided this invention, as well as the
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principles through which we have understood physical dynamics, since Poincaré. The very

rich relations between computing and the (physical) world, and with those dynamics in

particular, is a non-trivial issue, and a long way from the flat transfer of techniques or

the identification of models.

6. The relevance of negative results

Even if we do not consider the Universe to be a big computer, some still claim that the

‘Laws of Physics’ are computable. However, this is hard to (dis-)prove, as I have never

seen the ‘Complete Table of the Laws of Physics’, or their enumeration algorithm.

What should be analysed is the effectiveness of our mathematical description of physical

invariants. Of course, equations, evolution functions, and so on, are given in terms of

sums, products, exponents, derivations, integrations, and so on, which are all computable

operations. And no one would be so crazy as to put an incomputable real as a coefficient or

exponent in an equation (even if h might be one). This allows us to make some remarkable

approximations and, frequently, also gives us qualitative information: Poincaré’s Geometry

of Dynamical Systems or Hadamard’s analysis of the geodetic flow on hyperbolic surfaces

do not give predictions, but do provide some very relevant global information (through

attractors, for example, or regularities in flows, which we can observe beautifully today, as

never before, through fantastic approximations, which are ‘shadowed’ on our computers’

screens). On the other hand, we can write two equations that ‘model’ in the best way we

know the non-linear dynamics of a double pendulum, and even compute a computable

solution – it is just too bad that that solution does not follow the actual physical

dynamics: no matter how well we measure its initial conditions, a fluctuation below our

best measurement lets the pendulum go along a completely different trajectory from the

one we rushed to compute.

Moreover, Pour-El, Richards, Baverman, Yampolsky, and so on, were able to find

unique (or just) non-computable solutions of effective equations (Pour-El and Richards

1989; Braverman and Yampolski 2006; Weihrauch and Zhong 2002). In the end, these

results reduce the question to the halting problem, that is, to the diagonal writing of

sequences of digits. Turing said that computing is ‘a man provided with paper, pencil and

rubber’. Computing does not exist in the real World, but is an extraordinary alpha-numeric

invention of ours, based on written language, and is a form of re-writing made possible

by the very abstract and dualistic nature of the alphabet (the signs have no meaning

in themselves – classical Chinese computers are geometric devices). The alphabet and

computing are very rough approximations of the expressivity of the continuous stream of

spoken language and of the physical world, respectively.

As I said earlier, isolating the Absolute Laws of Nature is too hard for us: our human

insight is provided by the constructive theorising on the phenomenal veil, at the interface

between us and the World. These active constructions are effective (we understand a lot

and can transform the World, though not always for the best) and mostly computable

(we use the alphabet, computable operations and codings).

Yet, there are very few predictable processes in Nature: you can compute the date of

a few forthcoming Eclipses, on a human time scale, but the Solar System is chaotic in
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astronomical times, as Poincaré proved and Laskar later quantified by computing an

upper bound to its predictability.

Note that the unpredictable processes are the mathematical and computational chal-

lenge, as a computable physical process is, by definition, deterministic and predictable.

In order to predict (pre-dicere, ‘to say in advance’ in Latin), we just ‘say’ or write the

corresponding program and compute in advance. Thus, the results mentioned above, by

showing the equivalence of unpredictability and (strong) undecidability (ML-randomness),

prove this equivalence by logical duality. Unpredictability may pop-up in computer

networks because of physical space–time, as observed earlier, but we then make them

computable and predictable/reliable by enforcing semaphores, handling interleaving, and

so on. In Nature, many (fortunately, most) processes evade prediction, and thus our

computations. Fortunately, because otherwise there would be no change, in particular,

there would be no life: randomness is crucial. And when we compute unpredictable

evolutions, we just approximate their initial paths, or provide some qualitative information,

though both may be very relevant tasks. Thus the detailed analysis of unpredictability

and randomness is an essential component of scientific knowledge. Moreover, by ‘saying

no’ to strong programs (Laplace, Hilbert), unpredictability and undecidability led to the

discovery of new science: modern dynamics and Mathematical Logic.

Computability is as artificial (and, thus, as useful) as the alphabet. By formalising what

we can effectively say (compute/predict), we get detached symbolic images of the World

and, in particular, the best way (the only one?) we have to describe what we cannot say (in

advance). As mentioned above, computability was invented by proving incomputability.

This is why I emphasise that a peculiar and relevant role must be given to incomputability

(and randomness) in the relation between Physics (and Biology, see the next section) and

Mathematics as a form of meaningful ‘writing’ about the World.

As a matter of fact, the only mathematical way I know to define randomness in

classical dynamics is Birkhoff’s ergodicity. But it is very specific (to certain dynamics).

Otherwise, randomness is given in terms of probability measure. But this is unsatisfactory,

as probability just gives a measure of randomness, not a definition. It is the theory

of algorithms that, asymptotically, gave us a fully general and mathematical notion of

randomness as a strong form of incomputability, and independently of probability theory.

Again, physical (classical) randomness is deterministic unpredictability, and the bridging

results mentioned above, and others in the literature, bring the role of computational

randomness further into the limelight. In particular, it provides a very flexible theory of

randomness: you can adjust the class of effective randomness tests (Martin-Löf, Schnorr,

and many more). A wild conjecture is that this may help us get a better grasp of, for

example, the mathematical difference between classical and quantum randomness.

7. Randomness, entropy and anti-entropy in Biology

7.1. Embryogenesis and ontogenesis

In Biology, randomness is even more relevant than in Physics. About 50% of conceptions

in mammals fail (do not produce a birth), which is a very bad performance for DNA
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as a program. This is because DNA is not a ‘program’ in any reasonable sense. While

repeatability, as reliability, is at the core of software (and hardware) design, the key

principle for understanding life – at the phenotypic level – is variability, a form of non-

iterability, combined with ‘structural stability’ against unexpected change, which is a very

different matter. In Evolution, as in ontogenesis, a cell is never identical to its mother cell,

and this is crucial to life. So the principles of intelligibility are exactly opposite: variability

and failure correspond to the crucial possibility that a random mutant is a better fit in a

changing environment.

Of course, some molecular processes do iterate, in particular, in vitro, but there is an

increasing tendency to analyse molecular cascades in terms of stochastic phenomena,

in particular, in eukaryotic cells (Kaern et al. 2005; Raj and van Oudenaarden 2008),

and this is where good computational approaches may also help our understanding

through stochastic network interactions – see, for example, Krivine et al. (2008). It has

even been said that ‘the DNA is a random generator of proteins, regulated by the cell,

the organism and the environment’ (Kupiec 2009). This is an extreme, but empirically

motivated, reaction to the over-long domination of the ‘one gene–one protein’ hypothesis

and Crick’s ‘central dogma’ of 1958 (on the unidirectional, linear determinism from DNA

to RNA to proteins and, then, to the phenotype). These imposed, until early this decade,

a Laplacian framework for Molecular Biology (in other words, the DNA is a program

paradigm).

I believe that the complexity of life processes is also a blend of conceptually opposite

aspects. The central dogma is almost always false, but a few molecular cascades may

actually follow Crick’s dogma: the colours in plants, apparently, are predictably and

uniquely determined by a fragment of DNA, a gene in the classical sense, but this is a

very rare example. And some Laplacian molecular cascades can be reproduced in vitro or

observed in bacteria (but very rarely in eukaryote cells). However, large parts of DNA or

RNA interact statistically in a non-linear way and in a turbulent context, in the presence

of quasi-chaotic enthalpic oscillations of huge molecules – in particular, in the cytoplasm

of eukaryotes.

Whatever the validity or level of the blend I suggest, these new views on randomness

open the way to an increasing role for epigenetics, and thus to the relevance of downward

regulating effects from the cell and the organism to DNA expression.

Random effects persist during life. In particular, the recent Darwinian perspective

in cancerogenesis proposes growth as the ‘default state’ of all cells (Sonnenschein and

Soto 1999). This largely random proliferation is usually controlled by the various

regulating activities of the organism on the cells: cancer should then be mostly viewed as

the failure of this control and/or of the exchanges between cells in a tissue, generally in

the presence of external carcinogenic factors.

7.2. Evolution

Through a remarkable analysis spanning many articles and two books (Gould 1989;

Gould 1998), S. J. Gould stressed the role of randomness in Evolution. In particular, we

– primates – are a random complexification in a bacterial world, appearing along a
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contingent diffusive path. The expansion of life, which has been ‘punctuated’ by sudden

explosions and massive extinctions of species, has preserved a few invariants, while

constantly changing organisms and their ecosystems. In order to set these remarks and

the associated paleontological evidence on mathematical grounds, we have proposed the

notion of anti-entropy, as formalised biological complexity (a qualitative evaluation of

cellular, functional and phenotypical differentiation) – see Bailly and Longo (2009). I

will briefly survey some aspects of that technical paper as an application of the role of

randomness in Evolution.

Anti-entropy formally opposes entropy as a new observable (it has the opposite sign),

in the same way that anti-matter opposes matter, as required by new (observable)

particles in Quantum Mechanics. Anti-entropy is a form of (increasing) information

in embryogenesis and Evolution. Organisms become more ‘complex’, from bacteria to

eukaryotes to multicellular organisms, and this is the result of an asymmetric diffusion of

biomass over anti-entropy, following along random paths. Anti-entropy locally opposes

the (increasing) entropy inherent in all irreversible processes, by the (increasing) structuring

of organisms, both in embryogenesis and Evolution.

In order to give a brief comparison between anti-entropy and information, observe

that traditionally Shannon’s information is considered as negentropy (Brillouin). Then,

by definition, the sum of a quantity of information (negentropy) and an equal quantity of

entropy gives 0. Information (as defined by Shannon, but also Kolmogorov) is ‘insensitive

to coding’ – it is also an analysis of coding, since one can ‘encrypt’ and ‘decrypt’ as much

as one wishes and, at least in principle, the information content will not be increased or

decreased.

Note that in doing this we have now passed from Turing’s elaboration of information

(Computability Theory), which is also insensitive to coding and dimension, to the analysis

of information (Shannon, Brillouin, and so on). However, this notion, though hugely

important for the development of machines and the transmission of data, is not sufficient

for an investigation of the living state of matter. DNA, which is usually considered as

digital information, is the most important component of the cell, but it is also necessary to

analyse the organisation of the living objects, as an observable specific to biological theory.

Without a proper theory of the organism and its genesis comparable to the remarkable

one we have for Evolution, we may get stuck in the current situation, where there is

no general theoretical framework relating genotype to phenotype (only very long lists

of mosty differential correlations, and only a few direct, positive ones relating the wild

gene to the phenotype (Fox Keller 2000; Longo and Tendero 2007)). In short, modulo a

few exceptions, we have no idea how the discrete chemical structures of DNA and other

active macromolecules contribute to the construction of biological ‘forms’ in general.

It is certain that randomness and constraints (including deformations, torsions, relative

geometric positions, and so on), regulation and integration, as well as timing, and so

on, play a radically different role from the one, if any, they may have in programs that

generate forms from digits in machines.

In our work, anti-entropy, as biological complexity, may be understood as ‘information

specific to the form’, including the intertwining and enwrapping of levels of organisation,

which lie at the core of the autonomy of life. Anti-entropy yields a strict extension, in a
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logical sense, of the thermodynamics of entropy in that it extends some balance equations

(Bailly and Longo 2009). It is compatible with information as negentropy, but it differs

from it. First, the production of entropy and anti-entropy are summed in an ‘extended

critical singularity’ (Bailly and Longo 2008; Longo and Montévil 2011) in the form of an

organism, and never to 0, which is in direct contrast to Brillouin’s and others’ negentropy.

Second, as it is linked to spatial forms, anti-entropy is ‘sensitive to coding ’, unlike digital

information, since it depends on the dimensions of embedding manifolds, on folds, on

fractal structures, on singularities, and so on.

Its use in metabolic balance equations has produced a number of results. We have, in

particular, following Schrödinger’s ‘operational method’ in Quantum Mechanics, proposed

a diffusion equation of biomass over anti-entropy. This has enabled us to operate

a mathematical reconstruction of this diffusion, which fits Gould’s curve describing

phenotypic complexity along the evolution of species. As mentioned earlier, we could then

mathematically describe the random complexification during Evolution, as evidenced by

Gould, by an asymmetric diffusion equation. The original asymmetry (Gould’s ‘left wall’

of least complexity, which is the formation of bacteria, and which was a critical transition

from the inert to the living state of matter) propagates as right average bias along random

evolving paths. Then, through purely local effects, as in any asymmetric random diffusion,

biological complexity, qualitatively described by anti-entropy, propogates Evolution with

no goal-directedness or program whatsoever.

7.3. Computability in bio-chemical cycles

Rosen (1991) hinted at the possibility of a stimulating investigation of incomputability

at the molecular level. Through an abstract analysis of metabolic cycles and a refined

distinction between mechanical simulation and modelling, the claim is made that some

auto-referential steps would lead to incomputability (or non-mechanisability). Unfortu-

nately, the technical sections on this topic are flawed by notational ambiguities and

(crucial) misprints. By proposing a possible interpretation of Rosen’s equations, we gave

in Mossio et al. (2009) a λ-calculus, and thus computable, fixed-point solution to these

equations. Other interpretations and, of course, other, possibly incomputable, solutions

can be given. However, a computable (and possibly optimal in Scott domains) version may

be obtained. Unfortunately, incorrect ideas have for too long plagued a lively ‘Rosenian’

debate. Some people (see Mossio et al. (2009) for references) have claimed that ‘life is not

computable’ because Rosen’s equations:

(1) lead to divergence (while computable functions should always be total);

(2) are circular (self-referential);

(3) are impredicative;

(4) are set-theoretically non-well-founded.

However, in the computablity community, we know very well that:

(1) This branch of Mathematics was initiated through proofs of the existence of ‘(relevant)

partial computable functions that cannot be extended to total ones’ (they are
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intrinsically diverging: cf. Gödel’s work on incompleteness and Turing’s work on

halting).
(2) Circularity lies at the core of recursion; type-free λ-calculus, in particular, is based

on self-reference (such as f(f) = f equations, which, for some Rosenians, represents

an incomputable miracle with a one-line computable solution in λ-calculus). Reflexive

domain equations and λ-calculus fixed-point constructions, which are both rich forms

of circularity, may give interesting (and useful) non-normalising terms. And this may

correspond to the correct intuition that formal (computable) metabolic ‘cycles’ are not

supposed to stop.
(3) Impredicativity is an integral part of Girard’s Type Theory, which computes exactly

the recursive functions that are provably total in II order Arithmetic (see Asperti and

Longo (1991) for models of λ-calculus and Impredicative Type Theory).
(4) Models of anti-foundation axioms (non-well-founded sets) can be (relatively) inter-

preted in constructive models of type-free λ-calculus (and conversely – see Mossio

et al. (2009) for a discussion and references).

(In-)computability in Biology is a delicate issue, which is also related to computer

simulation and Artificial Life. Equational descriptions and the solutions are generally

computable, as discussed above, but with very hard (‘construed’) counterexamples. These

counterexamples are always proved by reducing the problem to Turing’s halting problem,

which is a pure ‘diagonal’ game of signs. Once again, computability and its opposite

are a (very relevant) alpha-numeric linguistic construction – they are not in the World.

As for incomputability, I would say, by way of a metaphor, that it applies to Natural

Sciences in the same way as it relates to Cantor’s real numbers: these are ‘almost all’

non-computable (in fact, they are all ML-random, apart from a set of measure 0), yet it

is extremely hard, using our mathematical language to describe one: Turing’s example and

Chaitin’s random number Ω are the only examples that have been given so far, though,

with infinitely many variants, of course. In Nature, we can informally point out many

incomputable (or unpredictable) processes, but it has been very difficult to single them

out formally. Poincaré had to give meaning to the absence of analytic solutions of certain

equations – an unusual step in Mathematical Physics. The computational difficulty is that

not only is our writing effective, but also, I stress, that we invented computability and its

machines as alphanumeric (re-)writing systems, of which λ-calculus is a paradigm. That

is, when we write (and re-write), we obtain computable structures. And in order to depart

from them and formally provide an example of an incomputable object, we can only, at

least to date, use diagonalisation or a reduction to some diagonalisation process. The first

examples were invented by Gödel and Turing, and the reduction to the second of these

has been applied by a few (from Chaitin to Pour-El, Braverman and collaborators).

Yet, as a form of unpredictability, incomputability in Biology should be analysed well

beyond classical randomness, that is, in addition to the strong incomputability of determ-

inistic unpredictability or quantum randomness. An understanding of unpredictability

and incomputability may certainly depend on non-linear and network interactions, but

also on an understanding of organisms as specific (contingent) autonomous systems in

a changing ecosystem, as proposed by many, including Rosen. Equationally determined

objects, by contrast, are generic (mathematically invariant), which is a crucial difference
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– see Bailly and Longo (2011). Moreover, ‘resonance’ effects may take place between

different levels of organisation, the analysis of which has not yet formed a part of

the mathematical tools inherited from Physics (since Poincaré, we have understood the

importance of gravitational resonance, which is a critical non-linear interaction, as a

source of deterministic unpredictability at a single level of organisation: a planetary

system, say). An organism contains networks of cells in tissues as parts of organs subject to

morphogenesis, which are also integrated and regulated within an organism by hormones,

the neural and immune systems, and so on. Thus, proper biological randomness is a

further mathematical challenge, as yet unexplored, and one component of the many

difficult issues in the ‘mathematisation’ of Biology (Buiatti and Longo 2012).

8. Conclusion

In this paper, we have compared physical (dynamic) randomness synthetically with

algorithmic randomness (which lies at the heart of algorithmic theories of information).

This has been a way to discuss incomputability in Physics. With reference to randomness

in Evolution, we mentioned the concept of anti-entropy (which forms a ‘geometrical

extension’ of the notion of information) as an observable that we have added to

thermodynamic balance equations. This has allowed us to mathematise the globally

random complexification of life (where any diffusion is based on random paths). A

further, ongoing, analysis of some aspects of the stable/unstable, far from equilibrium,

dissipative state of living matter is based on a theory of ‘extended criticality’, which is a

mathematical extension of point-wise critical transitions in Physics.

The scientific outcome of this work, whose conceptual framework is presented in Bailly

and Longo (2011), may also entail some epistemological consequences.

First, through science, we grasp, at most and approximately, some relevant, but changing

fragments of the World; relevant for us, that is, from our perspective of randomly

complexified bacteria, up to the neotenic monkeys we are, with free hands and relatively

too big brains, in constant historical evolution. The understanding that physical and

biological processes do not coincide with formal computations, and that our symbolic

writings cannot even represent them faithfully and completely, constitutes a constant need

to search for new forms of knowledge. Our (mathematical) descriptions are not absolute,

and they are ‘reasonably effective’ exactly because they are derived from a concrete friction

between our evolutive (and historical) being and the World.

The close analysis of incomputability or unpredictability, through the negative results it

produces, and its contribution to a qualitative analysis leading to a better understanding

of limits and, thus, to a search for new perspectives, is part of this quest. If, one day,

Molecular Biology is able to prove from the inside (in the same way as Poincaré’s and

Gödel’s analyses did in Mathematics and Logic) that we are unable to predict the shape

of the ear by analysing the DNA alone, I would say that something theoretically very

original and relevant has happened. Instead, there are still such claims as the identification

of the gene for marital fidelity (Young et al. 1999).

Second, as part of the many existing interactions with Physics and Biology, this

view should also make a contribution to the epistemological debate on the notion of
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information, and, in particular, to the updating of its theoretical principles. Both the

concept and theory of information in the current sense (of negentropy, say) seem largely

inadequate as a way of expressing biological dynamics. And a possible outcome of these

interactions for the notion of information could be that we are led to start thinking

about the ‘next machine’, but along a different path from the one explored by quantum

computing. I am prepared to bet that this nice DSM of ours will not be the ‘final machine’

invented by Mankind, despite what computationalists seem to claim when they consider

the World to be identical to it, or a faithful image of it, or its logic.

Biology presents us with the need for a radical departure from this narrow view,

particularly when we are faced with issues like ‘structural stability’ as a non-identical

iteration of a morphogenetic process, as well as the role of contingency in phylogenesis

and ontogenesis. And randomness, which lies at the core of life’s contingency, also

seems to depend on quantum effects, which are increasingly showing up in cells, and

on non-linear interactions, which are amplified by (metabolic) circularities, and also on

‘resonance’ effects between different levels of organisation, both within the cytoplasm and

the organism’s integration–regulation system. But this is ongoing work – see Buiatti and

Longo (2012).
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Goldfarb, W. (1988) Poincaré Against the Logicists. In: Aspray, W. and Kitcher, P. (eds.) Essays

in the History and Philosophy of Mathematics, Minnesota Studies in the Philosophy of Science,

Volume XI 61–81.

Gould, S. J. (1989) Wonderful Life, Harvard University Press.

Gould, S. J. (1998) Full House, Harmony Books.

Hilbert, D. (1899) Grundlagen der Geometrie. (English translation: Unger, L. and Bernays, P. (1971)

Foundations of Geometry, Open Court.)

Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stocasticity in gene expression: from

theories to phenotypes. Nature Review Genetics 6 451–464.

Krivine, J., Milner, R. and Troina, A. (2008) Stochastic Bigraphs. Proceedings of MFPS XXIV:

Mathematical Fondations of Programming Semantics. Electronic Notes in Theoretical Computer

Science 218 73–96.

Kuhn, T. S. (1961) The Function of Measurement in Modern Physical Science. Isis 52 161–193.

Kuhn, T. S. (1962) The Structure of Scientific Revolutions, University of Chicago Press.

Kupiec, J.-J. (2009) On the lack of specificity of proteins and its consequences for a theory of

biological organzation. Progress in Biophysics and Molecular Biology 102 (1) 45–52.

Laskar, J. (1994) Large scale chaos in the Solar System. Astronomy and Astrophysics 287 L9–L12.

Longo, G. (2002) Reflections on Concrete Incompleteness: Invited Lecture. In: Callaghan, P., Luo,

Z., McKinna, J. and Pollack, R. (eds.) Types for Proofs and Programs. Springer-Verlag Lecture

Notes in Computer Science 2277 160–180. (Revised version in Philosophia Mathematica (2011)

19 (3) 255–280.)

Longo, G. (2008) Critique of Computational Reason in the Natural Sciences. In: Gelenbe, E. and

Kahane, J.-P. (eds.) Fundamental Concepts in Computer Science, Imperial College Press.

Longo, G. (2009) From exact sciences to life phenomena: following Schroedinger and Turing on

Programs, Life and Causality. Information and Computation 207 (5) 543–670.

Longo, G. (2010a) Incomputability in Physics. In: Ferreira, F., Löwe, B., Mayordomo, E. and Mendes
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