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The paper investigates experimentally the global wake dynamics of a simplified
three-dimensional ground vehicle at a Reynolds number of Re ' 4.0 × 105. The
after-body has a blunt rectangular trailing edge leading to a massive flow separation.
Both the inclination (yaw and pitch angles) and the distance to the ground (ground
clearance) are accurately adjustable. Two different aspect ratios of the rectangular base
are considered; wider than it is tall (minor axis perpendicular to the ground) and
taller than it is wide (major axis perpendicular to the ground). Measurements of the
spatial distribution of the pressure at the base and velocity fields in the wake are used
as topological indicators of the flow. Sensitivity analyses of the base pressure gradient
expressed in polar form (modulus and phase) varying ground clearance, yaw and pitch
are performed. Above a critical ground clearance and whatever the inclination is, the
modulus is always found to be large due to the permanent static symmetry-breaking
instability, and slightly smaller when aligned with the minor axis of the base rather
than when aligned with the major axis. The instability can be characterized with a
unique wake mode, quantified by this modulus (asymmetry strength) and a phase
(wake orientation) which is the key ingredient of the global wake dynamics. An
additional deep rear cavity that suppresses the static instability allows a basic flow
to be characterized. It is shown that both the inclination and the ground clearance
constrain the phase dynamics of the unstable wake in such way that the component
of the pressure gradient aligned with the minor axis of the rectangular base equals
that of the basic flow. Meanwhile, the other component related to the major axis
adjusts to preserve the large modulus imposed by the instability. In most cases, the
dynamics explores only two possible opposite values of the component along the
major axis. Their respective probability depends on the geometrical environment of
the wake: base shape, body inclination, ground proximity and body supports. An
expression for the lateral force coefficients taking into account the wake instability is
proposed.
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1. Introduction
The aerodynamics of ground vehicles has become a major issue in view of lowering

fuel consumption and pollutant emissions. In particular, as one third of the total drag
is admitted to be generated at the car’s rear after-body (Hucho 1998), a deeper
understanding of the turbulent wake dynamics is thus of prime interest. In view of
the large commercial success of minivans and sport utility vehicles, vehicle shapes
with vertical after-bodies are nowadays very common.

From the academic point of view, fundamental research investigates simplified
geometries such as the Ahmed body (Ahmed, Ramm & Faitin 1984). The square-back
Ahmed body is a three-dimensional bluff body with a rectangular blunt after-body
producing a wide flow separation. It is known to experience a steady supercritical
bifurcation in the laminar regime for a Reynolds number of Re ' 340 resulting
in a permanent asymmetric state of the wake. This bifurcation was first identified
experimentally by Grandemange, Gohlke & Cadot (2012) and recently confirmed by
computation (Evstafyeva, Morgans & Dalla-Longa 2017). As the Reynolds number
increases, the wake undergoes random switching between two mirror asymmetric
states that statistically restores symmetries. These states have been observed up to
Reynolds number of 2.5× 106 in the seminal work of Grandemange, Gohlke & Cadot
(2013b), even with rotating wheels and road effects.

Since then, many works have reported these asymmetric states (so-called static
symmetry-breaking modes) in a variety of geometries with vertical rectangular bases:
flat plates (Cadot 2016), square-back Windsor model (Perry et al. 2016a; Perry,
Pavia & Passmore 2016b; Pavia & Passmore 2018; Pavia, Passmore & Sardu 2018),
square-back Ahmed body both experimentally (Volpe, Devinant & Kourta 2015;
Brackston et al. 2016; Evrard et al. 2016; Li et al. 2016; Barros et al. 2017) and
numerically (Pasquetti & Peres 2015; Evstafyeva et al. 2017; Lucas et al. 2017).
Grandemange, Gohlke & Cadot (2013a) showed the importance of the rectangular
base aspect ratio that can select either left/right or top/bottom asymmetric states of
the wake, respectively called y- and z-instabilities, where y and z refer to the wake
asymmetry directions as depicted in figure 1. Although the y-instability corresponds
to a pure reflectional symmetry breaking, the z-instability does not, strictly speaking,
because of the ground and the body supports (Grandemange et al. 2013a).

The presence of a permanent asymmetric wake state is also a general property
of turbulent wakes of axisymmetric bodies (Grandemange et al. 2013a; Rigas et al.
2014, 2015; Grandemange, Gohlke & Cadot 2014a; Gentile et al. 2016, 2017),
reminiscent of a steady symmetry-breaking bifurcation in the laminar regime leading
to an asymmetric state with planar symmetry (Pier 2008). In the turbulent regime,
the azimuthal phase of the symmetry plane evolves like a random walk (Rigas et al.
2015) thus exploring all azimuthal angles uniformly. This infinity of directions may
be interpreted as a multistable wake in opposition to rectangular bodies that just have
two directions, either y or z. Therefore, three-dimensional bodies with reflectional
symmetries or with symmetry of revolution present similar stability properties.

Sensitivity analyses of the asymmetric mode to small symmetrical imperfections
have been experimentally addressed, either by introducing a steady disturbance in
the vicinity of the body (Vilaplana et al. 2013; Grandemange et al. 2013a, 2014a;
Grandemange, Gohlke & Cadot 2014b; Brackston et al. 2016; Barros et al. 2017)
or by the main body inclination (Volpe et al. 2015; Perry et al. 2016b; Gentile
et al. 2017). A large majority of these studies show that the imperfection selects the
wake on a preferential asymmetric state, thus reducing considerably the multistable
dynamics obtained without the imperfections. In the works of Barros et al. (2017),
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FIGURE 1. (Colour online) Sketches of the recirculating bubbles for the y-instability (a)
and z-instability (b) interpreted from mean wake measurements of Grandemange et al.
(2013a). Thick arrows display the corresponding base pressure gradients.

Gentile et al. (2017), this selection is modelled as a pitchfork bifurcation, with either
the disturbance size or the misalignment angle as the bifurcation parameter.

These asymmetry-related instabilities have a substantial impact on the aerodynamic
loading of the body as demonstrated by the fluid–structure interaction experiment
of Cadot (2016). For the Ahmed body, the strategy of symmetrization of the wake
either by means of passive (Grandemange et al. 2014b; Cadot, Evrard & Pastur 2015;
Evrard et al. 2016; Lucas et al. 2017) or active (Brackston et al. 2016; Li et al.
2016; Evstafyeva et al. 2017) flow control techniques leads to drag reductions up to
9 %, although it is not clear yet what the real part due the instability suppression
alone is.

For sake of simplicity, the wake subjected to the y- or z-instability will be called
the unstable wake for the remainder of the paper. Variable orientations are often
encountered in ground vehicle aerodynamics due to cross-winds introducing yaw,
and payload mass modifying ground clearance and pitch. Most of the work done
so far considered a body subjected to the y-instability aligned with the incoming
flow; only few reported measurements with yaw variations (Cadot et al. 2015;
Volpe et al. 2015; Brackston et al. 2016; Perry et al. 2016b) or ground clearance
variations (Grandemange et al. 2013a; Cadot et al. 2015) but none with pitch
variations. To the authors’ knowledge, there are no results reported in the literature
about the effects of yaw or pitch for a body subjected to the z-instability. There is
then a fundamental issue about the unstable wake response to the body orientation.
One may ask the following questions: how does the unstable wake dynamics react to
small misalignment? And, what are the consequences on the aerodynamics loading
of the body?

Our experimental strategy is to perform sensitivity analyses changing independently
three parameters: the ground clearance c, the yaw β and the pitch α with and
without the instability by repeating the analyses with a deep rear cavity known
as an efficient way to suppress the asymmetric states of the wake (Evrard et al.
2016; Lucas et al. 2017). The study is extended for a second after-body designed to
develop the z-instability. As introduced by Grandemange et al. (2013b), we use the
spatial distribution of the pressure at the body base as a topological indicator of the
turbulent wake state. Rigas et al. (2014, 2015) successfully applied the same technique
to an axisymmetric body with a blunt trailing edge and proposed an insightful
low-dimensional physical model of the axisymmetric turbulent wake dynamics.
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The paper is organized as follows. The experimental set-up is described in § 2.
Results in § 3 are split into two parts, §§ 3.1 and 3.2 respectively investigating the
y-instability and z-instability. For the y-instability, sensitivity analyses of the base
pressure gradient varying ground clearance, yaw and pitch are presented in § 3.1.1
and then repeated in § 3.1.2 with an additional rear deep cavity to suppress the
instability. In the third part § 3.1.3, the lateral aerodynamic force is examined in
the light of the base pressure gradient contribution with and without the instability.
A relationship summarizing the measurements linking lateral force coefficients and
the base pressure gradient is given. For the z-instability, sensitivity analyses of the
base pressure gradient varying clearance, yaw and pitch are presented in § 3.2.1
and then yaw sensitivities are repeated in § 3.2.2 for different ground clearances to
evidence the two branches of most probable states of the wake. In the third part
§ 3.2.3, the vertical aerodynamic force is examined in the light of the base pressure
gradient contribution. Results lead to two discussions, the role of the phase dynamics
for a three-dimensional turbulent wake in § 4.1 and the wake instability adaptation
mechanism with the body orientation in § 4.2. Finally, § 5 concludes and offers
perspectives on the paper.

2. Experimental set-up
2.1. Apparatus

The three-dimensional bluff bodies considered in this work are two flat-backed Ahmed
bodies (Ahmed et al. 1984) drawn in figure 2. They are composed of the same main
body supported by four vertical cylinders and with two interchangeable after-bodies.
The characteristic dimensions are given in table 1. The aspect ratio of the rectangular
base is W/H = 1.174 for the square-back after-body (model used in Evrard et al.
(2016)) and wb/H = 0.940 for the boat-tailed after-body. The first geometry is
known to be subjected to the y-instability (Evrard et al. 2016) while the second
geometry has been designed to develop the z-instability by reducing the base aspect
ratio, accordingly to Grandemange et al. (2013a). The boat-tail shape is a circle arc
tangential to the main body, characterized by two parameters, the boat-tail length `B
and the angle θB (see figure 2d and table 1). The rear of the square-back after-body is
equipped with a sliding board of dimensions (H− 20 mm)× (W − 20 mm) displayed
as the dashed rectangle in figure 2(d). A cavity of depth d is then produced by
pushing the board towards the interior of the body as in Evrard et al. (2016). For
the present study, the cavity depth remains fixed to d/H = 0.285 which has been
shown by the experiments of Evrard et al. (2016) and the computation of Lucas et al.
(2017) to suppress the y-instability.

The height of the body H and the main incoming velocity U∞ are chosen
respectively as length and velocity scaling units. For the remainder of the paper
any quantity a with superscript a∗ is expressed in these non-dimensional units. For
instance, the non-dimensional time is defined as t∗ = (tU∞)/H, the aspect ratio of
the rectangular base W∗ = W/H. The coordinate system used throughout is defined
in figure 2 with its origin set at the centre of the base of the models.

The ground clearance c∗ (normal distance from the body to the ground) can
be adjusted at the front within the range c∗f ∈ [0.050, 0.170] and independently at
the rear, c∗r within an identical range. These displacements are controlled by two
Standa 8MVT188-20 translation stages placed inside the body and driven by a
8SMC4-USB controller. The repeatability and the precision of the ground clearance
is, in non-dimensional value, δc∗ ' 3.4× 10−3. The independence of each axis allows
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200 G. Bonnavion and O. Cadot

Dimension Dimensional value Dimensionless value based on H

Height of the body H: 0.298 m 1.000
Width of the body W: 0.350 m 1.174
Length of the body L: 0.994 m 3.336
Wheelbase Λfr: 0.477 m 1.601
Track: 0.290 m 0.973
Supports diameter: 0.020 m 0.067
Location of rear supports Λr: 0.290 m 0.973
Projected surface area S: 0.104 m2 1.174
Width of the base wb: 0.350 m/0.280 m 1.174/0.940
Length of the boat tail `B: 0.160 m 0.537
Angle of the boat tail θB: 12.5◦

TABLE 1. Dimensions of the Ahmed body for the two after-body geometries.

for a pitch angle given by tan α = (cf − cr)/Λfr, where Λfr is the wheelbase,
kept constant owing to a sliding system mounted inside the body. The angle is
counted positively in the clockwise orientation as shown in figure 2(a) and is varied
in the range α ∈ [−1.5◦, 1.5◦]. The yaw angle β, defined in figure 2(b), can be
adjusted by means of a rotating table mounted in the test section floor. This angle is
counted following the direct orientation, the value β = 0◦ corresponding to the body
aligned with the incoming flow. It is considered aligned when, for a baseline ground
clearance of c∗ = 0.168, the left and right orientations of the wake subjected to the
y-instability are equally explored for the duration of observation. The actual angle
of the square-back body with respect to the wind tunnel is βw =−0.4◦, where βw is
the angle between the wind tunnel longitudinal axis and the body. The yaw angle is
varied in the range β ∈ [−6.0◦, 6.0◦].

The experiments are carried out at the GIE-S2A in Montigny-le-Bretonneux (France)
in a closed-loop model-scale wind tunnel dedicated to automotive aerodynamics.
The incoming flow is a 3/4 open jet with a cross-section of 2.60 m × 1.47 m.
The plenum dimensions are 9.30 m × 6.60 m × 4.15 m and the contraction ratio
is 1 : 6. The thickness of the boundary layer is controlled by suction so that its
displacement thickness equals δ∗1 = 1.0× 10−2 at a distance l∗0 = 4.70 upstream
of the nose of the model. The flow inhomogeneity is lower than 0.5 % with an
angular deviation smaller than 0.25◦ at the considered regime. The free-stream
velocity is set to U∞ = 20.0 m s−1 and the temperature inside the vein is
regulated at T∞ = 293.15 K with an uncertainty of less than 0.1 m s−1 and
0.5 K respectively. Under those conditions, the corresponding Reynolds number
is Re=U∞H/ν ' 4.0× 105, ν being the air kinematic viscosity.

2.2. Pressure measurements
Unsteady pressure is measured at the N = 21 locations (y∗i , z∗i ) indicated by the black
dots at the base of the body in figure 2(c). The sampling frequency is set at 200 Hz
per channel with an accuracy of ±3.75 Pa and measurements are performed thanks
to a Scanivalve ZOC22b pressure scanner connected to a Green Lake Engineering
SmartZOC100 electronics. The low-pass cutoff frequency due to the tubing lengths
between the pressure holes on the body and the pressure scanner is approximately
50 Hz which is enough for the time resolution requested for the present study. The
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FIGURE 2. (Colour online) Experimental apparatus: schematic side view (a), top view (b)
of the main body and rear views (c) of the square-back (top) and boat-tailed (bottom)
body bases. In (c), the bases of the models are equipped with pressure sensors (black
dots); the four points A, B,C,D are used for calculation of the base pressure gradient ĝ∗
(see text). Schematic view (d) of the square-back (left) and boat-tailed (right) after-bodies
and representation of the fixed horizontal and vertical laser planes used for particle
image velocimetry. They correspond to y∗ = 0 and z∗ = 0 for the aligned body case. The
rectangular board that creates the cavity of the square-back after-body (when pushed
inwards the body) is shown by the dashed rectangles in (d) for d∗ = 0 and d∗ = 0.285.

free-stream static pressure p∞, obtained directly from the facility, is used to compute
the instantaneous pressure coefficient:

cp(y∗, z∗, t∗)=
p(y∗, z∗, t∗)− p∞

1
2ρU2

∞

, (2.1)

where ρ denotes the air density. The uncertainty on the pressure coefficient is
approximately 2× 10−3.

The instantaneous base suction coefficient cb(t∗) is computed from the average on
the N = 21 pressure taps at the base:

cb(t∗)=−
1
N

N∑
i=1

cp(y∗i , z∗i , t∗). (2.2)
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202 G. Bonnavion and O. Cadot

This coefficient is always positive in separated flow areas and follows similar trends
as the total drag of the model (Roshko 1993).

Following the same experimental procedure as Grandemange et al. (2013a), four
pressure sensors are used to compute the base pressure gradient which is representative
of the instantaneous configuration of the wake. First, a horizontal component g∗y is
computed as follows using the sensors marked A, B, C and D in figure 2(c):

g∗y(t
∗)=

1
2
×

[
cp(y∗A, z∗A, t∗)− cp(y∗B, z∗B, t∗)

y∗A − y∗B
+

cp(y∗C, z∗C, t∗)− cp(y∗D, z∗D, t∗)
y∗C − y∗D

]
, (2.3)

where y∗i and z∗i stand for the coordinates of sensor i. The same process is repeated
to compute the vertical component g∗z using the pairs (A, C) and (B,D). Finally, the
complex base pressure gradient is obtained as ĝ∗ = g∗y + ig∗z where i2

= −1. The
modulus g∗r = |ĝ

∗
| and the argument ϕ = arg(ĝ∗) of the polar form will be referred

to as strength and phase of the base pressure gradient.

2.3. Aerodynamic load measurements
A six-component aerodynamics balance provided by Schencker GmbH and located
beneath the wind tunnel floor is used to obtain time series of the aerodynamic forces
at a sampling frequency set at 10 Hz. The model is connected to the balance by
the four cylindrical supports. The forces (Fx, Fy, Fz) are the components of the total
aerodynamic load F in the coordinate system described above. The uncertainty is
0.3 N for the drag Fx and the side force Fy, whilst it is approximately 0.5 N for the
lift Fz. The model frontal surface S is used to compute the force coefficients:

ci =
Fi

1
2ρU2

∞
S
, i= x, y, z, (2.4)

with a corresponding maximum uncertainty of 10−3.

2.4. Velocity measurements
Velocity fields are measured using two-dimensional particle image velocimetry (PIV)
equipment. It is based on a dual pulse Nd:YAG laser (200 mJ, 4 ns) creating a
laser sheet whose thickness is 5 mm and combined with a Dantec FlowSense EO
4 MPx CCD camera. Image pairs are shot at a rate of 4 Hz and 400 snapshots are
recorded. The interrogation window size is set to 32× 32 pixels, which corresponds
to a physical size ∆∗y ×∆

∗

z = 0.017× 0.017 (or ∆∗x ×∆
∗

z = 0.017× 0.017 for vertical
planes) and with an overlap of 50 %. We investigate the two orthogonal planes fixed in
the laboratory frame and located at the base of the body: a vertical one at mid-width
that will be referred to as the y∗ = 0 plane and a horizontal one that will be referred
to as the z∗ = 0 plane. Both planes are shown in figure 2(d). Actually, when either a
pitch or a yaw angle is introduced, the local coordinate system (ex, ey, ez) associated
with the base in figure 2(d) will not coincide with the PIV measurements fields
anymore. Since the considered angles are small (less than 2◦), it was decided for the
sake of simplicity to keep the same name for the space coordinates of the velocity
fields. Using conventional notations, the PIV gives access to the field u∗xz= u∗ex+w∗ez

in the y∗ = 0 plane and to u∗xy = u∗ex + v
∗ey in the z∗ = 0 plane.
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2.5. Experimental protocol
Before each set of experiments, acquisitions of both the pressure and the forces are
performed in no-wind conditions for a duration of 10 s. The no-wind data are then
averaged and subtracted from the force balance and pressure measurements. Regular
tares are performed and zero values are checked to ensure accuracy, repeatability and
reliability of the results.

Simultaneous base pressure and aerodynamic load measurements are recorded
during t = 180 s (i.e. t∗ = 12 080 in dimensionless units). Although this is not long
enough to achieve complete statistical convergence (which in fact is a challenge to
fulfil because of the long-time dynamics), this duration was chosen as a compromise
that is sufficient to identify the most probable values.

Since the paper focuses on the long-time dynamics of the unstable wake, base
pressure and force balance data are low-pass filtered at fc = 2 Hz (i.e. f ∗c = 0.03)
by means of a moving average using a 0.5 s time window. As the natural cutoff
frequency of the two measurements systems is larger, both sets of filtered data are
comparable with an accurate frequency resolution.

In addition to those measurements, PIV is performed in the two planes described in
§ 2.4. Base pressure measurements are made during the acquisition in order to perform
conditional averaging based on synchronous measurements. For PIV measurements,
snapshots are acquired during t= 100 s (i.e. t∗ = 6711 in dimensionless units).

3. Results

We recall that the superscript ∗ indicates a quantity made non-dimensional using
the uniform incoming flow velocity U∞ and the body height H. Lower case letters
x are used for an instantaneous variable while upper case letters X = x denote the
temporal averaging of the variable. The Reynolds notation is also used for fluctuations,
x(t)= X + x′(t) for which the standard fluctuation is X′ =

√
x′2.

For the remainder of the paper, we will call the baseline the case where β =α= 0◦

with a ground clearance c∗=0.168. It is a similar configuration to that of Ahmed et al.
(1984). We show in table 2 characteristic properties of the baseline without (d∗ = 0)
and with the rear cavity (d∗= 0.285). The drag coefficient of the baseline without the
cavity lies within the range 0.25 6 Cx 6 0.35 reported in the literature (Ahmed et al.
1984; Barros et al. 2014; Volpe et al. 2015; Evrard et al. 2016). For the square-back
geometry, the large magnitude of the side force fluctuation C′y = 0.020 (compared to
those of the other components in table 2) reveals the y-instability through the bistable
dynamics (Grandemange et al. 2013b; Evrard et al. 2016). The rear cavity produces a
drag reduction of 9.7 % together with strong attenuation of the side force fluctuation
in conformity with Evrard et al. (2016), Lucas et al. (2017).

The first part of the results in § 3.1 will consider the square-back geometry with
the aim of performing sensitivity analyses of the y-instability. While the presence
of a y-instability is easily detectable because of the reflectional symmetry breaking
in the y-direction, it is much more difficult to diagnose the z-instability. Actually
there is no reflectional symmetry to break in the z-direction because of the ground
proximity and body supports. There is also no obvious reason to observe bistability
that would unambiguously reveal the presence of the z-instability. The second part
of the results in § 3.2 will consider the boat-tailed geometry in order to investigate
sensitivity analyses of the z-instability.
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w∗b Cb C′b Cx C′x Cy C′y Cz C′z
d∗ = 0 1.174 0.183 0.006 0.287 0.004 −0.003 0.020 −0.118 0.005
d∗ = 0.285 1.174 0.137 0.006 0.259 0.004 −0.003 0.005 −0.122 0.004
d∗ = 0 0.940 0.124 0.002 0.279 0.002 −0.001 0.003 −0.158 0.002

TABLE 2. Characteristic mean and fluctuating coefficients for baseline configurations
defined as c∗= 0.168, α= 0◦, β = 0◦ without (d∗= 0) and with (d∗= 0.285) the rear cavity
for the square-back geometry (w∗b = 1.174) and for the boat-tailed geometry (w∗b = 0.940).

3.1. The y-instability
This section presents results about the square-back geometry only. In § 3.1.1, we
show sensitivity maps of the base pressure gradient responses to variations of the
ground clearance c∗, the yaw angle β and the pitch angle α around the baseline.
The responses are assessed through the statistics of the base pressure gradient ĝ∗
considering each component of both coordinate systems (g∗y, g∗z ) and (g∗r , ϕ) by
representing its probability density function f normalized by its most probable value.
The resulting plots are four two-dimensional sensitivity maps for each of the three
geometrical configurations varying the geometrical parameter q= c∗, α or β : f (q, g∗y),
f (q, g∗z ), f (q, g∗r ) and f (q, ϕ). The wake dynamics and topology are then investigated
for chosen specific configurations reflecting all situations. In § 3.1.2, the procedure is
repeated with the rear cavity. In § 3.1.3, the aerodynamic force sensitivity is examined
and compared to the base pressure gradient contribution with and without the rear
cavity.

3.1.1. Wake sensitivity to the body clearance and inclinations
The four sensitivity maps of the base pressure gradient due to the variation of

the ground clearance c∗ are shown in figure 3(a,b) for the Cartesian components
and figure 3(c,d) for the polar form. When the body is gradually raised in
figure 3(a), the most probable branch for g∗y observed for c∗ < 0.080 bifurcates
in two symmetrical branches resulting from an instability. This was already fully
described by Grandemange et al. (2013a), Cadot et al. (2015) showing that the
ground proximity suppresses the instability towards a symmetric wake through a
pitchfork bifurcation. The region we consider is for large values of c∗ for which
the wake dynamics is dominated by the stochastic exploration of the two symmetric
branches. Independently of the sign of g∗y (i.e. the random switching dynamics) the
permanent asymmetry introduced by the symmetry-breaking (SB) modes can be seen
in the modulus g∗r displayed in figure 3(c). The modulus saturates to a constant value
when c∗ > c∗S ' 0.105 as shown in the figures. The regime c∗ > c∗S corresponds to the
unstable wake due to the y- or z-instability (Grandemange et al. 2013a), and will be
referred to as the saturated regime throughout. The interesting result is that, whilst
the vertical base pressure gradient g∗z decreases significantly, the gradient modulus g∗r
remains constant and corresponds to a change in the gradient orientation ϕ.

For the next two series of experiments concerning yaw and pitch sensitivities, we
will consider small variations of the inclination around the baseline (see table 2). The
baseline has most probable gradients that take phase values very close to ϕ ' 0 or π
and a modulus g∗r ' 0.187 obtained in figure 3(c).

The sensitivity analysis to small variations of the yaw angle β with a fixed ground
clearance c∗= 0.168 and pitch α= 0◦ is shown in figure 4. The main result observed
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FIGURE 3. (Colour online) Base pressure gradient response to a variation of the ground
clearance c∗ for the square-back body. Sensitivity maps (a) f (c∗, g∗y), (b) f (c∗, g∗z ),
(c) f (c∗, g∗r ) and (d) f (c∗, ϕ). The clearance c∗S ' 0.105 is defined as the threshold from
which the instability is saturated. See discussion § 4.1 for white symbols.

in figure 4(a) and previously reported in Cadot et al. (2015), Volpe et al. (2015),
Evrard et al. (2016) is a discontinuous transition between two opposite branches of g∗y
which implies a phase jump (figure 4d) between values close to 0 and π. Nevertheless,
this transition occurs with a fairly constant modulus g∗r as shown in figure 4(c). The
vertical component g∗z in figure 4(b) has a slight, unexpected affine variation with
the yaw which is likely to be due to an imperfection of the set-up, coming from
multiple sources such as wind inhomogeneity, non-zero roll angle and cable passage
behind the rear right-hand side cylindrical support. Because of the constant modulus,
the set-up imperfections affect slightly the phase ϕ (figure 3d) which slightly deviates
from ϕ0 = 0 or ϕ0 =π.

We now turn to the sensitivity to the pitch angle α. The yaw angle is set to
β = 0◦ and the front and rear ground clearances are adjusted for a given pitch but
keeping c∗ = (c∗f + c∗r )/2= 0.168 in order to recover the baseline when c∗f = c∗r . The
sensitivity results of the base pressure gradient are shown in figure 5. Looking at
figure 5(a), which shows the sensitivity of the horizontal gradient component g∗y , we
can distinguish three regimes. At large nose-down, for α .−0.75◦, there is a single
branch located around g∗y = 0, which bifurcates in two opposite branches in the range
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FIGURE 4. (Colour online) Base pressure gradient response to variations of the yaw angle
β for the square-back body. Sensitivity maps (a) f (β, g∗y), (b) f (β, g∗z ), (c) f (β, g∗r ) and
(d) f (β, ϕ). See discussion § 4.1 for white symbols.

−0.75◦.α. 0.5◦. In the last regime with nose-up, for which α& 0.5◦, the horizontal
component varies almost uniformly in a wide range |g∗y |. 0.2.

The effect of the pitch on the vertical gradient component g∗z is shown in figure 5(b).
It displays a monotonic variation with the pitch angle in the range −0.75◦ . α . 0.5◦
coincidently with the two branches observed for g∗y . Apart from this range, the vertical
component is saturated to extreme values. Although these three regimes are very
different, the modulus shown in figure 5(c) displays an almost symmetric evolution,
with decreases on both sides of the maximum. In the third regime, the phase is
unlocked in the [−π, 0] interval with a rather uniform exploration (figure 5d), unlike
nose-down regimes. This different behaviour is attributed to the wall proximity at the
trailing edge which has a major effect on the base flow in nose-up configurations.

Most importantly, a similar conclusion as for the ground clearance and the yaw
experiments can be drawn. The small pitch angle variation produces a component g∗z
of the vertical pressure gradient. The modulus g∗r is slightly modulated, maximum for
horizontal orientation and minimum for vertical one.

The wake dynamics of the four configurations of the base pressure gradient
orientations: vertical positive, horizontal (positive and negative) and vertical negative
is now respectively investigated through the pitch angles α=−1◦, α= 0◦ and α= 1◦.
We show the corresponding time series of the gradient modulus g∗rα(t

∗) and phase
ϕα(t∗) in figure 6. The nose-down at α =−1◦ in figure 6(a) clearly depicts a phase
lock-in for ϕ−1◦(t∗) at π/2 with turbulent fluctuations. When the pitch is set to zero
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FIGURE 5. (Colour online) Base pressure gradient response to variations of the pitch angle
α for the square-back body. Sensitivity maps (a) f (α, g∗y), (b) f (α, g∗z ), (c) f (α, g∗r ) and
(d) f (α, ϕ). See discussion § 4.1 for white symbols.

(baseline configuration), the phase dynamics in figure 6(b) consists of random jumps
of π and elsewhere to very long-time duration of typically δt∗= 1000 of phase lock-in
at 0 and −π. This long-time bistable dynamics was fully described in Grandemange
et al. (2013b) using Cartesian coordinates for the gradient. It is worth mentioning
that the dynamics is not only mainly made of phase jumps, since some events of the
phase ϕ0◦ occur around −π/2 with long-time evolution related to phase drift or wake
rotation (see for instance within the time interval [1; 2] × 103 in figure 6b). For the
nose-up case, there is no phase lock-in but large phase fluctuations associated with
random wake rotations exploring the range [−π, 0] with some phase jumps like the
one observed at t∗ = 4.5 × 103 in figure 6(c). There are obviously some similarities
with the diffusive dynamics of the turbulent axisymmetric wake of Rigas et al. (2014,
2015), the main difference being the random walk of the phase that is bounded.
Since the modulus is decoupled from the phase in Rigas et al.’s (2015) model, it is
possible to present a best fit of the statistics of the gradient modulus g∗r shown as
the red lines in figure 6.

In the following, N and P states terminology refers to negative and positive
horizontal base pressure gradient as introduced by Grandemange et al. (2013b).
Making use of this definition, the state depicted in figure 1(a) is state N. The
mean flows of the wake measured in the two perpendicular planes confirm the four
different wake orientations according to the base pressure gradient alignments. For
the baseline case, the mean flow has been conditioned by −π/2<ϕ0◦ <π/2 in order
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FIGURE 6. (Colour online) Modulus g∗rα(t
∗) and phase ϕα(t∗) time series (left) of the base

pressure gradient for the square-back body. Corresponding probability density functions
(PDFs) (right) for (a) nose-down α =−1◦, (b) baseline α = 0◦ and (c) nose-up α =+1◦.
The smooth red lines superimposed on the PDFs (g∗r ) in (a), (b) and (c) are best fits of
Rigas et al.’s (2015) PDF model; the three parameters of the fit are not given.
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FIGURE 7. (Colour online) Cross-sections of the mean velocity field of the square-back
body visualized using streamlines superimposed on the modulus of the components in the
vertical plane (x∗, z∗) (a,c,e) and horizontal plane (x∗, y∗) (b,d, f ) for (a,b) nose-down α=
−1◦, (c,d) baseline α = 0◦ (P state, see text) and (e, f ) nose-up α =+1◦.

to capture the P state only (i.e. phase lock-in ϕ0◦(t∗) ' 0) in figure 7(c,d). The N
state (i.e. phase lock-in ϕ0◦(t∗)'π) is not shown. It is the mirror of the P state using
the transformation (y∗, z∗)→ (−y∗, z∗). We can see in figure 7 that the strong wake
asymmetry is successively detected in the y∗ = 0 plane in figure 7(a), in the z∗ = 0
plane in figure 7(d) and in the y∗ = 0 plane in figure 7(e) while the wake in the
other perpendicular plane is always more symmetric. They respectively correspond
to the phase lock-in ϕ−1◦ ' π/2 (figure 7a,b), ϕ0◦ ' 0 (state P in figure 7c,d) or
equivalently ϕ0◦ ' π (state N, not shown) and finally to the mean orientation (with
−π < ϕ1◦(t∗) < 0) towards a negative vertical pressure gradient (figure 7e, f ). A
supplementary movie available at https://doi.org/10.1017/jfm.2018.630 provides the
dynamics of wake pressure imprints at the base of the body for the pitch angles from
which pressure gradients shown in figure 6 are extracted.

As a summary of the wake sensitivity to the body orientation in the saturated regime
of the instability, it is found that independently of the phase dynamics, the modulus
of the base pressure gradient depends upon the vector orientation, maximum for a
horizontal alignment with g∗r (0 or π)' 0.187 and minimum for a vertical alignment
with g∗r (π/2)' 0.159. Ground clearance, yaw and pitch variations produce a vertical
component g∗z of the pressure gradient that constrains the phase dynamics because of
the modulus properties. Different phase dynamics scenarios have been identified: phase
locks-in, phase jumps and bounded drifts. As depicted in the mean PIV fields, the
phase of the base pressure gradient is confirmed to be an accurate indicator of the
global wake orientation.

3.1.2. Wake sensitivity with a rear cavity
The sensitivity analyses have been repeated in exactly the same conditions but with

the rear cavity. For the sake of brevity, the three sensitivity experiments are grouped
in figure 8 for Cartesian coordinates and in figure 9 for the polar form. The ground
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FIGURE 8. (Colour online) Base pressure gradient response to ground clearance c∗ (a,b),
yaw β (c,d) and pitch angle α (e, f ) variations for the square-back body with a rear cavity.
Sensitivity maps f (same colour bar for f as in figures 3–5) of the horizontal component
g∗y (a,c,e) and vertical component g∗z (b,d, f ).

clearance bifurcation observed in figure 3(a) has been completely suppressed by the
rear cavity in figure 8(a) as expected because of the stabilization observed by Evrard
et al. (2016). For the baseline configuration with the rear cavity, both Cartesian
components of the base gradient are approximately zero. From figure 8(c,d,e, f ),
we see that a slight change of yaw (respectively the pitch) shifts almost linearly
the horizontal component g∗y (respectively vertical component g∗z ) while the other
component g∗z (respectively g∗y) remains constant. However, even with the cavity, a
saturation of the varying component is observed for angles, either yaw or pitch, larger
than ±1◦ in figure 8(c, f ).

The modulus and phase sensitivity maps are shown in figure 9. Despite the fact that
the modulus is considerably reduced (by more than a factor 2), it is now a function
of the yaw and pitch angles that reaches a minimal value around the baseline where
the gradient changes sign. The complex phase dynamics observed without the cavity
(phase drifts and jumps) is now replaced by trivial permanent lock-in except when
the phase is poorly defined for small modulus. This loss of phase dynamics is the
consequence of the suppression of the wake instability.

The mean wake of the body with the rear cavity is presented in figure 10 which
can be directly compared to the same plane views without the cavity in figure 7.
The wake observed for the nose-down configuration at α = −1◦ in figure 10(a,b) is
similar to that of the figure 7(a,b) albeit that with the cavity the separation from
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FIGURE 9. (Colour online) Base pressure gradient response to ground clearance c∗ (a,b),
yaw β (c,d) and pitch angle α (e, f ) variations for the square-back body with a rear cavity.
Sensitivity maps f (same colour bar for f as in figures 3–5) of the gradient modulus g∗r
(a,c,e) and phase ϕ (b,d, f ).

the ground is prevented in figure 10(a) and the wake reflectional symmetry is better
checked in figure 10(b). For the baseline configuration in figure 10(c,d) the wake is
fully symmetrized as in Evrard et al. (2016), Lucas et al. (2017). The wake for the
nose-up configuration at α = +1◦ in figure 10(e, f ) is also quite similar to that of
figure 7(e, f ) without the cavity. Hence, for the two extreme cases α=±1◦, the pitch
angle of the body orientates the wake in the vertical direction with a similar strength
as without the cavity.

3.1.3. Global force sensitivity versus wake aerodynamic loading
The y- and z-components of the mean force coefficients obtained for the yaw and

pitch sensitivity experiments are shown in figure 11(a–d) with and without the rear
cavity. A clear stabilization of the unstable wake can be seen in the mean horizontal
y-component in figure 11(a) obtained with the yaw variations. The nonlinear behaviour
due to the instability (also reported in Perry et al. (2016b)) is replaced by a linear law
with the cavity. For the other mean coefficients, we can hardly distinguish any effect
induced by the rear cavity. For the force coefficient fluctuations shown in figure 11(e–
h), one can observe fluctuation crisis each time phase unlocking occurs.

Figure 11(a) suggests that the mean side force coefficient CB
y obtained without the

instability (the superscript B will refer to this basic flow) should evolve linearly with
β as for the cavity experiment. The force coefficient CB

y (β)=−0.055× β (where β
is expressed in degrees), simply obtained from a linear fit of the cavity experiment,
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FIGURE 10. (Colour online) Cross-sections of the mean velocity field of the square-back
body with the rear cavity visualized using streamlines superimposed on the modulus of
the components in the vertical plane (x∗, z∗) (a,c,e) and horizontal plane (x∗, y∗) (b,d, f )
for (a,b) nose-down α =−1◦, (c,d) baseline α = 0◦ and (e, f ) nose-up α =+1◦.
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FIGURE 11. Mean (a–d) and fluctuating (e–h) cross-flow force coefficients versus yaw
(a,b,e, f ) and pitch angle (c,d,g,h) of the square-back body (black filled circles) and with
the rear cavity (empty circles).

is shown in figure 12(a) as the red straight line. We compare the strength of the
instability Cy − CB

y to the mean horizontal base pressure gradient G∗y in figure 12(b).
The two curves are satisfactorily proportional such that the mean side force coefficient
can be directly related to the mean base gradient as:

Cy =CB
y −

G∗y
10
. (3.1)

We can see in figure 12(a) the good agreement of (3.1) (blue dashed line) with the
experimental data (symbols). An instantaneous relationship can be speculated from

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

63
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.630


Unstable wake dynamics of rectangular flat-backed bluff bodies 213

0.1

10

0

CB
y

Cy

Cy

(a) (b)

C y
-

C
B y

CB
y - G

*
y 

-0.1

-2 -1 0 1 2

10
G*

y 

ı (deg.)
-2 -1 0 1 2

ı (deg.)

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

FIGURE 12. (Colour online) Mean side force coefficient versus yaw β of the square-back
body. In (a), measured force coefficient (symbols), basic flow coefficient (red line) and
coefficient computed from (3.1) (blue dashed line, see text). In (b), mean contribution
of the instability Cy − CB

y (filled circles) and mean horizontal base pressure gradient G∗y
(crosses).

(3.1) to take into account the unsteady loading due to the wake instability through
the dynamics of the base gradient:

cy(t∗)=CB
y −

g∗y(t
∗)

10
(3.2)

implying that C′y = G∗y
′/10. The fluctuation force coefficient C′y is plotted in

figure 13(a) for yaw variation and figure 13(b) for pitch variation and matches
satisfactorily with G∗′y/10.

Since the mean lift coefficient Cz is not affected by the instability (no differences
in figure 11(b,d) with or without the rear cavity), we can state that for the vertical
force coefficient:

Cz =CB
z (3.3)

regardless of the base pressure gradient orientation. Again, an instantaneous
relationship but with only the fluctuations of the vertical gradient component can
be speculated:

cz(t∗)=CB
z −

g∗′z(t
∗)

10
(3.4)

implying that Cz
′
=G∗z

′/10. Although the fluctuations are much smaller vertically than
horizontally, we still see good agreements of (3.4) in figure 13(c,d).

One may wonder if a similar relationship could be obtained from the drag cx and
the base suction cb coefficients. Actually, independently of the ground clearance, the
yaw or the pitch, the rear cavity has a beneficial effect on the mean base suction or
mean drag coefficient that are respectively reduced within the ranges [23 %, 25 %] and
[9.5 %, 10.5 %] as can be seen in figure 14(a–d). Comparable drag reduction is also
observed below the instability threshold (c∗< 0.105). As shown in Lucas et al. (2017),
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FIGURE 13. Components of the fluctuation force coefficients of the square-back body
C′y and C′z (filled circles) compared to the fluctuation base pressure gradient G∗y

′ and G∗z
′

(crosses) versus yaw β (a,c) and pitch angle α (b,d).

a deep rear cavity has a primary effect of considerably lengthening the recirculating
region towards the inside of the body. Consequently, low pressure sources therein are
reduced independently from the symmetry properties of the wake. It then remains
impossible to distinguish the contribution from the wake symmetrization due to the
instability suppression to this strong mean flow modification. Hence, from our point
of view, the drag of the basic flow CB

x is not extractable from the data. Considering
all yaw and pitch variations, the fluctuations of both the base suction and drag
remain almost identical to those of the baseline given in table 2 as can be seen in
figure 14(e–h). There are then no consequences of the unstable wake phase dynamics
on these coefficients. The reason is that base suction is more related to the magnitude
of the gradient’s modulus that was shown to be almost constant rather than to its
orientation. The correlation between base suction and the gradient’s modulus was
previously reported in the sensitivity analysis to a disturbance placed in the wake by
Grandemange et al. (2014b) or instantaneously by Evrard et al. (2016).
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FIGURE 14. Mean (a–d) and fluctuating (e–h) drag force and base suction coefficients
versus yaw (a,b,e, f ) and pitch angle (c,d,g,h) of the square-back body (black filled circles)
and with the rear cavity (empty circles).

3.2. The z-instability
This section presents the results about the boat-tailed geometry depicted in figure 2(d)
and with a base aspect ratio of w∗b = 0.940. In § 3.2.1, we show sensitivity maps of
the base pressure gradient responses to variations of the ground clearance c∗, the
yaw angle β and the pitch angle α around the baseline exactly as in § 3.1.1. The
wake topologies and dynamics are then investigated for chosen specific configurations
reflecting all situations. The yaw sensitivities are repeated in § 3.2.2 for different
ground clearances to evidence the two branches of most probable states of the wake.
The aerodynamic force is examined in a third part § 3.2.3.

3.2.1. Wake sensitivity to the body clearance and orientations
The four sensitivity maps of the base pressure gradient due to the variation of the

ground clearance c∗ are shown in figure 15(a,b) for the Cartesian components and
figure 15(c,d) for the polar form. When the ground clearance is gradually increased
in figure 15(a), the horizontal component g∗y remains almost around zero. The vertical
component g∗z (figure 15b) experiences a jump for c∗ ' 0.080 from a positive branch
(g∗z ' 0.1) to a negative one (g∗z '−0.1). A bistable dynamics is then obtained around
c∗' 0.080. In the experiment of Grandemange et al. (2013a), the ground clearance is
non-dimensionalized using the body width, c∗W = c∗/W∗, and the z-instability is found
to saturate on the positive branch only for a ground clearance c∗SW ' 0.060 and then
switches to the negative branch at c∗W ' 0.1. Our experiment satisfactorily reproduces
the switch from the positive to the negative branch but with smaller ground clearance.
Using non-dimensionalization of Grandemange et al. (2013a), the switch we observe
at c∗'0.080 in figure 15 is within the range 0.068. c∗W .0.085 when translated using
either W∗ or w∗b of the boat-tailed body. The range remains below the value c∗W ' 0.1
of Grandemange et al. (2013a). This can be ascribed to a Reynolds number effect,
which is approximately ten times larger in the present study (Re ' 4.0 × 105) than
in Grandemange et al. (2013a) (Re ' 4.5 × 104). It is in accordance with Reynolds
number effect studied in Cadot et al. (2015) who report a 30 % decrease of the critical
ground clearance for the y-instability when the Reynolds number is increased from
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FIGURE 15. (Colour online) Base pressure gradient response to a variation of the
ground clearance c∗ for the boat-tailed body. Sensitivity maps (a) f (c∗, g∗y), (b) f (c∗, g∗z ),
(c) f (c∗, g∗r ) and (d) f (c∗, ϕ).

1.7 × 104 to 1.6 × 105. The critical ground clearance c∗S of the z-instability is not
observed in our study because it is below the minimal value c∗= 0.05 allowed by the
set-up. It is also found that the critical ground clearance is larger for the y-instability
than for the z-instability as in Grandemange et al. (2013a). The modulus g∗r displayed
in figure 15(c) has a value close to 0.1 that is smaller than the modulus found within
the range 0.15–0.2 (see figures 3c, 4c, 5c) in § 3.1 for the square-back body. This
must be ascribed to the different after-body geometry. The larger fluctuations observed
for c∗ ' 0.080 are a consequence of the bistable dynamics at the branches switch in
figure 15(d).

For the next two series of experiments concerning yaw and pitch sensitivities, we
will consider small variations of the inclination around the baseline with characteristics
given in table 2.

The sensitivity analysis to the yaw angle β with a fixed pitch α = 0◦ is shown
in figure 16. The results being reasonably symmetric with respect to β, we only
comment the part for β < 0◦. From these figures, four distinctive regions can be
observed, successively named l1, b1, b2 and l2 in figure 16(a). They are delimited in
all the figures by vertical dashed lines. In region l1 the base pressure gradient remains
almost identical to that of the baseline: it is locked with a vertical direction orientated
towards the ground corresponding to ϕ '−π/2 in figure 16(d) and a modulus close
to g∗r ' 0.1 in figure 16(c). When the yaw angle β is increased, the wake becomes
bistable in the region b1 and the gradient experiences small phase jumps of amplitude
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FIGURE 16. (Colour online) Base pressure gradient response to variations of the yaw
angle β for the boat-tailed body. Sensitivity maps (a) f (β, g∗y), (b) f (β, g∗z ), (c) f (β, g∗r )
and (d) f (β, ϕ).

δϕ1'π/7 without noticeable changes in the modulus g∗r . This small lateral bistability
has not been observed for yaw experiments at lower ground clearance – for which
transitions occur at smaller angles – presented in § 3.2.2. Although not discernible
on the side pressure measurements, it is suspected to be caused by premises of
separation on the leeward boat tail. For larger yaw angles, another bistable regime in
b2 is observed with much larger phase jumps of δϕ2' 3π/4 in figure 16(d) associated
with large fluctuations of the modulus. In the last regime l2, the gradient is locked
with a vertical direction orientated towards the top (ϕ '+π/2) and a modulus close
to g∗r ' 0.15. The main result is that the yaw around β = ±4.5◦ triggers the switch
of the negative vertical pressure gradient component of the baseline observed in l1 to
a positive vertical component in l2 as clearly shown in figure 16(b).

The sensitivity towards the pitch angle α is now given in figure 17. For this
experiment, the yaw angle is set to β = 0◦ and, as in § 3.1, the front and rear ground
clearances are adjusted for a given pitch but keeping c∗ = (c∗f + c∗r )/2= 0.168. Based
on the mechanism identified for the y-instability in § 3.1, we restricted the range of
pitch angles to nose-down configurations for which a clear transition is observed. The
pitch angle has almost no effect on the horizontal component in figure 17(a) except
for a disturbance around α = −0.4◦ that corresponds to the switching region with a
bistable dynamics in figure 17(b) of the vertical component of the gradient.

The successive experiments changing ground clearance, pitch and yaw mainly show
that for the boat-tailed body subjected to the z-instability, two principal orientations of
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FIGURE 17. (Colour online) Base pressure gradient response to variations of the pitch
angle α for the boat-tailed body. Sensitivity maps (a) f (α, g∗y), (b) f (α, g∗z ), (c) f (α, g∗r )
and (d) f (α, ϕ).

the base pressure gradient are observed: almost positive vertical and negative vertical.
The phase then remains locked except for the bistable dynamics where the wake
switches between opposite orientations. The dynamics of the two bistable cases b1

and b2 evidenced during the yaw sensitivity in figure 16(c) is respectively presented
in figure 18(a) and figure 18(b). The bistable dynamics b2 is similar to that obtained
in ground clearance sensitivity (figure 15c) and pitch sensitivity (figure 17c) analyses.
The striking observation is that the rate of random switching between the two most
probable phases is substantially larger than that of the bistable wake subjected to the
y-instability in figure 6(b). For the most important bistable behaviour that involves
vertical wake reversals in figure 18(b), approximately 50 switches are observed against
only 9 in figure 6(b) for horizontal wake reversals. This trend was checked for all
bistable cases, thus confirming that the characteristic time of the random switching is
approximately five times smaller for the z-instability than for the y-instability.

The different wake configurations are illustrated by their mean flow in the vertical
plane in figure 19 together with their corresponding mean base pressure distribution.
Because of the boat tailing, the after-body develops four strong longitudinal vortices at
each corner of the base affecting considerably the mean bubble closure in the figure 19
compared to that observed for the square-back after-body in figures 7 and 10. For
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FIGURE 18. (Colour online) Modulus g∗rα(t
∗) and phase ϕα(t∗) time series (left) of the

base pressure gradient for the boat-tailed body. Corresponding probability density functions
(right) for (a) β = −3◦, (b) β = −5◦. The smooth red lines superimposed on the PDFs
(g∗r ) in (a) and (b) are best fits of Rigas et al.’s (2015) PDF model; the three parameters
of the fit are not given.

the baseline in figure 19(a), the negative vertical pressure gradient observed in the
pressure distribution is associated with a skewed feedback flow orientated towards
the bottom edge of the base that is the best topological indicator of the z-instability.
We have identified wake reversals from the baseline for each of the three sensitivity
experiments either by decreasing the ground clearance, increasing the yaw angle or
by pitching down the body. For a lower ground clearance, the wake has effectively
switched to the opposite base pressure gradient in figure 19(b) with a skewed feedback
flow orientated to the top edge of the base. For a large yaw in figure 19(c), the
switch from the baseline is not clearly observable in the vertical velocity field, while
it is clearly established in the corresponding pressure distribution. Finally, for large
nose-down pitch, the skewed feedback flow and the pressure distribution are clearly
inverted from those of the baseline.
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FIGURE 19. (Colour online) Cross-sections of the mean velocity field for the boat-tailed
body visualized using streamlines superimposed on the modulus of the components in
the vertical plane (x∗, z∗) for (a) baseline configuration (α = β = 0◦, c∗ = 0.168),
(b) α = β = 0◦, c∗ = 0.060, (c) α = 0◦, β =−5◦, c∗ = 0.168, (d) nose-down configuration
α = −0.6◦ (β = 0◦). The associated mean base pressure distributions Cp(y∗, z∗) are also
provided.

3.2.2. Exploration of the most probable states
We now investigate the wake reversals with yaw for different fixed ground

clearances: c∗ = 0.060; 0.080; 0.124; 0.168 and a pitch angle set at α = 0◦. With no
yaw angle, we can see from figure 15(a,b) that these ground clearances successively
correspond to a locked positive vertical gradient for c∗ = 0.060, a bistable dynamics
for c∗ = 0.080 and a locked negative vertical gradient for c∗ = 0.124 and c∗ = 0.168.
It is remarkable that the ground clearance has almost no effect on the gradient
modulus in figure 15(c). So, it seems that the ground orientates the unstable wake
with a positive vertical gradient for small c∗ and with a negative vertical gradient for
large c∗. At large ground clearance we would have expected the ground to become
irrelevant and that the recovery of the top/down symmetry of the flow would have
led to a bistable dynamics independently of the ground proximity. It is then the
presence of the four supports that is responsible for the locked wake orientation at
large ground clearance.

Sensitivity analyses with the yaw angle limited to β ∈ [−6◦, 0◦] are presented in
figure 20. For clarity, we extract the branches of most probable gradients using the
following technique. The location of the maxima of each branch of the sensitivity
maps such as the one given in figure 16 for c∗ = 0.168 are identified for each yaw
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FIGURE 20. (Colour online) Most probable pressure gradients for the boat-tailed body g∗y
and g∗z (a), g∗r (b) and ϕ (c) versus the yaw angle at different ground clearances (with
descending values from top to bottom in a). The triangles at β = 0◦ correspond to the
experiment with a fifth cylindrical support (see text).

angle. Due to the normalization, the first maximum is 1, and a second maximum
is plotted only if its value is larger than 0.10. This means that the second state
is considered only if its probability exceeds approximately 10 % of the observation
time. The corresponding states for the vertical gradient component g∗z are shown in
figure 20(a). They form two distinctive branches, branch P for positive gradients, and
branch N for negative gradients. Besides, the most probable horizontal component g∗y
of the gradient remains close to zero with little evolution for yaw around the switch
for the two largest ground clearances. Except for the smallest ground clearance
c∗ = 0.060, large yaw angles select the P state. The larger the ground clearance, the
larger the yaw angle at which the P state is selected.
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FIGURE 21. Mean (a–d) and fluctuating (e–h) cross-flow force coefficients versus yaw
(a,b,e, f ) and pitch angle (c,d,g,h) for the boat-tailed body.

In order to evidence the important role of the four supporting cylinders in the state
selection mechanism, a fifth identical support is placed between the two front cylinders
for c∗= 0.168. This experimental point is indicated by the black triangle in figure 20
that clearly shows a permanent wake reversal from branch N to branch P. On the
basis of this simple experiment, one can draw a plausible mechanism for the change
of branch as yaw increases. It is likely that in yaw conditions, the wake of the front
leeward support that develops under the body gets closer to the mid-track of the base
as the yaw increases, resulting in the wake reversal.

For yaw angles |β| < 3◦, and independently of the ground clearance, the modulus
shown in figure 20(b) is found to be almost constant and the gradient has only two
opposite phase orientations +π/2 for branch P and −π/2 for branch N, as can be
seen in figure 20(c). For larger yaw |β|> 3◦ the N state becomes yaw dependent and
the modulus not as well defined.

3.2.3. Global force sensitivity versus wake aerodynamic loading
The y- and z-components of the mean force coefficients obtained for small yaw and

pitch inclinations around the baseline are shown in figure 21(a–d). With respect to the
yaw angle β, Cy in figure 21(a) has a linear evolution showing that it is not influenced
by the z-instability. Accordingly, the fluctuations (figure 21e) are small independently
of the angle. On the contrary, the behaviour of the mean lift coefficient Cz (figure 21b)
is strongly impacted by the selected wake state which reveals two distinctive levels
corresponding each to one wake orientation, either at Cz ' −0.14 for the P state or
at Cz ' −0.18 for the N state. As expected, there is a fluctuation crisis during the
bistable dynamics at the transitions around ±4◦ as shown in figure 21( f ).

For the pitch experiments with varying α, neither Cy in figure 21(c) nor its
fluctuation C′y in figure 21(g) are influenced by the z-instability. In contrast, the
mean lift coefficient Cz in figure 21(d) and its fluctuation C′z in figure 21(h) reveal
the z-instability. The transition between the two states is clearly observable in both
figures around α'−0.4◦. Actually the transition in pitch of the z-instability is similar
to that in yaw of the y-instability when compared to figure 11(a,e).

We now look for a relationship between the mean gradient G∗z and Cz as we
did in figure 12(a) between G∗y and Cy for the y-instability. For pitch sensitivity,
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FIGURE 22. (Colour online) Mean lift coefficient versus inclination of the boat-tailed body.
The measured force coefficient (symbols) are compared to the basic flow coefficient (red
line) and coefficient computed from (3.7a) (blue dashed line, see text). (a) Pitch angle
sensitivity, (b) yaw angle sensitivity.

Cz measurements reported in figure 22(a) suggest that the mean lift coefficient CB
z

obtained without the instability would be a linear function of the pitch angle α. The
basic flow coefficient CB

z = 0.11α− 0.177 (where α is expressed in degrees) is shown
in figure 22(a) as the red straight line. We recall that the superscript B refers to
as the basic flow that is the flow without the instability as introduced in § 3.1.3.
For the yaw sensitivity experiment, Cz measurements reported in figure 22(b) have
a quadratic dependency that is not present in g∗z shown in figure 16(b). Thus the
quadratic dependency should be ascribed to the basic flow. The basic flow coefficient
CB

z (β) = 6 × 10−4β2
− 0.177 (where β is expressed in degrees) is shown as the red

curve in figure 22(b). For both pitch and yaw sensitivities, the blue dashed lines
in figure 22 combines the base pressure gradient and the lift of the basic flow and
shows satisfactorily a relationship:

Cz =CB
z −

G∗z
5
. (3.5)

The strength of the z-instability contribution to the lift coefficient, given by Cz − CB
z

for either a pure P state or N state of the wake, is found to be approximately 0.02 as
for the y-instability. Since the side force coefficient Cy is not affected by the instability,
one should have

Cy =CB
y . (3.6)

Both mean relationships (3.5) and (3.6) suggest the instantaneous expressions:

cz(t∗)=CB
z −

g∗z (t
∗)

5
, (3.7a)

cy(t∗)=CB
y −

g∗y
′(t∗)

5
. (3.7b)

Figure 23 shows the measured force fluctuation compared to the fluctuation computed
from (3.7) using the base pressure gradient. These reasonably good agreements lead
to similar relationships as (3.2) and (3.4) obtained for the y-instability, but with an
exchange between the y- and the z-directions.
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FIGURE 23. Components of the fluctuating force coefficients C′y and C′z (filled circles)
compared to the fluctuation base pressure gradient G∗y

′ and G∗z
′ (crosses) versus yaw β

(a,c) and pitch angle α (b,d) for the boat-tailed geometry.
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FIGURE 24. Mean (a–d) and fluctuating (e–h) drag force and base suction coefficients
versus yaw (a,b,e, f ) and pitch angle (c,d,g,h) for the boat-tailed geometry.

As displayed in figure 24(a–d), the wake dynamics associated with the z-instability
has almost no influence on either the drag or the base suction. The fluctuations
remain one order of magnitude smaller than those of the lateral force coefficients
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Geometry (c∗, α, β)switch 1c∗ 1α 1β

Square back (0.168, 0◦, 0◦) . . . 1.5◦ 1◦
Boat tailed (0.080, 0◦, 0◦) 0.02 . . . 5◦
Boat tailed (0.124, 0◦,±4.0◦) . . . . . . 1◦
Boat tailed (0.168, 0◦,±4.5◦) . . . . . . 0.2◦
Boat tailed (0.168,−0.4◦, 0◦) . . . 0.2◦ . . .

TABLE 3. Recap of the switch parameters (c∗, α, β)switch at which state P and state N have
same probability for the Ahmed bodies presented in §§ 3.1, 3.2. ∆ denotes the range of
variation of x (while the two other parameters are kept at the switch position) x±1x/2 of
bistable dynamics. Outside this range, a wake state either P or N is permanently selected.

(observed around 0.02 in figure 23). An interesting result is that drag (or equivalently
base suction) is found to be the smallest during the bistable dynamics, either around
β = ±4.5◦ for the yaw experiment or around α = ±0.4◦ for the pitch experiment.
This can be explained by the low-drag events related to wake switching as reported
in Evrard et al. (2016).

4. Discussion
The experimental analysis provides conditions for which the wake is highly sensitive

to the body orientation and ground clearance. These conditions are met each time
variations are considered around the switch between the two branch solutions P and N.
Table 3 recapitulates these positions for both flat-backed Ahmed bodies, and gives the
sensitivity range of each parameter of the studies. In the following discussions, we try
to clarify the key role played by the phase dynamics of the unstable wake and, based
on our experimental results, propose a mechanism of phase dynamics adaptation to
the body inclination, the ground proximity and the presence of the body supports.

4.1. On the role of the phase dynamics of the unstable wake
In the saturated regime of the instability (c∗ > c∗S), the investigation of the base
pressure gradient in polar form (g∗r , ϕ) indicates a permanent large modulus. For the
square-back after-body, it is within the range 0.15< g∗r < 0.2 independently of the
explored pitch and yaw misalignments of the body, while using the cavity, it drops to
values below 0.1. The stabilization due to the cavity confirms that the large modulus
results from the natural instantaneous asymmetry associated with the instability of the
wake. Such asymmetry can be observed in the z-direction in many recent publications
about rectangular-based bodies (Barros et al. 2016; McArthur et al. 2016; Castelain
et al. 2018; Schmidt et al. 2018).

Due to the shape of the base, the modulus is larger when the gradient is horizontal
g∗r (0 or π) ' 0.187 than vertical with g∗r (π/2) ' 0.159. A similar observation is
reported in Barros et al. (2017) where different gradient orientations were obtained
by disturbing the flow in the ground clearance with small bodies of varying sizes.
Since the ratio between the two orientations is very close to the rectangular base ratio
W∗, we can propose a simple interpretation based on geometrical arguments. The idea
is to introduce the non-axisymmetry of the after-body using different characteristic
length scales in gy and gz directions. We then simply do the transformation:

gy =W∗gA
y ,

gz = gA
z ,

}
(4.1)
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where superscript A stands for the axisymmetric wake having a constant modulus gA
r

independently to its orientation. Making use of the transformation (4.1):

ĝA
=

gy

W∗
+ igz (4.2)

and

(gA
r )

2
= gr(ϕ)

2
(

cos2 ϕ

W∗2 + sin2 ϕ

)
. (4.3)

Noting that gr(π/2) = gA
r , we obtain for the dimensionless modulus of the

non-axisymmetric wake:

g∗r (ϕ)=
g∗r
(π

2

)
√[

1−
(

1−
1

W∗2

)
cos2 ϕ

] . (4.4)

The ratio of the horizontal to the vertical component of the base gradient is given
by g∗r (0)/g

∗

r (π/2) = W∗. This relation is in good agreement with the measurements
in figure 5(c), where the white symbols are the time average g∗r of the formula (4.4)
computed from the time series ϕ(t) and with g∗r (π/2)= 0.159.

The simple model (4.4) describes an elliptical modulation of the gradient modulus
with its orientation. It is likely that the right angles of the rectangular base do
not introduce any singularities in the base pressure gradient modulus. Similarly
we computed both components as (g∗y = g∗r cos ϕ|ϕ>π/2, g∗y = g∗r cos ϕ|ϕ<π/2) shown
in figure 5(a) and g∗z = g∗r sin ϕ shown figure 5(b) with white symbols. It is
successively repeated in figure 3 and figure 4 for the two other sensitivity experiments.
Hence, the good agreements with the sensitivity maps indicate that regardless of
the body inclination and ground clearance above the critical value, the unstable
wake obeys the modulus model (4.4). For the boat-tailed after-body, mainly two
opposite vertical orientations of the base pressure gradient are observed, ϕ ' ±π/2
as can be seen in figures 15(d), 16(d) and 17(d). The corresponding modulus shown
in figures 15(c), 16(c), 17(c) and recap in figure 20(b) remain almost constant
g∗r (π/2)' 0.1 for yaw angles |β|< 4◦ which is also consistent with the model. The
smaller value of the gradient modulus compared to those of the square-back body is
likely to be due to the different after-body geometries that are not self-similar.

The observation that the base pressure gradient modulus of the unstable wake is
mainly imposed by the base shape offers a simplification for the wake modelling.
The key ingredient is actually the comprehension of the phase dynamics of a unique
symmetry-breaking mode of a known intensity given in (4.4) since the base gradient
of the turbulent wake may be written as:

g∗y(t)= g∗r (ϕ)cos ϕ, g∗z (t)= g∗r (ϕ)sin ϕ. (4.5a,b)

We have seen that the axisymmetric turbulent wake model of Rigas et al. (2014, 2015)
produces radial statistics in agreement with the pressure gradient modulus statistics in
figures 6 and 18. It may then be modified in future work to consider the asymmetry
of the body base. However, the real challenge is to take into account of the asymmetry
in the phase dynamics modelling by introducing a specific potential. A fundamental
question is how the phase dynamics adapts to the non-axisymmetric environment
of the wake flow introduced by the rectangular base, the body inclination, ground
proximity and body supports. In the following, we discuss how such symmetrical
defects constrain the phase dynamics of the unstable wake.
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FIGURE 25. (Colour online) Phase dynamics adaptation of the base pressure gradient
of the unstable wake for the y-instability (a,b) and z-instability (c). The modulus of the
pressure gradient is depicted by the dashed ellipse following (4.4). The (red) mean minor
component G∗m equals that of the basic flow (4.7), thus restricting the possible phase
dynamics. It is a bistable distribution with the two possible orientations P and N in (a)
for nose-down pitch and in (c), and a continuous distribution in the grey area in (b)
for nose-up configuration. The (blue) mean major component G∗M depends on the states
probability distribution given by κ following (4.8).

4.2. Phase dynamics adaptation and consequences for cross-flow force
A remarkable result is that large discontinuous transitions of all sensitivity experiments
are always observed in the horizontal component g∗y (respectively, vertical component
g∗z ) of the base pressure gradient for the square-back (respectively boat-tailed) body.
These two observations justify the terminologies y-instability and z-instability used in
the paper. The component of the gradient that undergoes these discontinuities between
opposite values is then always the one aligned with the major axis of the rectangular
base, since the base aspect ratio is larger than 1 for the square-back body and smaller
than 1 for the boat-tailed body. In contrast, the component in the minor axis direction
of the base (g∗z for the y-instability, and g∗y for the z-instability) present continuous
evolution with ground clearance, yaw and pitch.

New definitions are necessary to set a common framework for both the y-instability
and z-instability. For the remainder of the paper, m subscript will denote the minor
component and M subscript the major component of the rectangular base axes system
as displayed in figure 25. We also define the phase orientation ϕM computed from the
major axis. In this coordinate system, the base gradient (4.5) becomes:

g∗M(t)= g∗r (ϕM) cos ϕM, g∗m(t)= g∗r (ϕM) sin ϕM. (4.6a,b)
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In addition, the aspect ratio in g∗r (ϕM) defined by (4.4) should be redefined as
W∗ = lM/lm > 1, where lM is the largest side of the rectangular base and lm the
smallest.

For the square-back body, both the mean of this minor gradient component G∗m =G∗z
and minor force coefficient component Cm = Cz deserve specific attention when
compared to the case with a rear cavity. In figure 11(d), the rear cavity has no effect
on the mean lift component while the instability is suppressed. The asymmetry of the
mean velocity in the vertical plane is also very similar without (figure 7a,c,e) and
with (figure 10a,c,e) the cavity. The main difference being the larger bubble length
associated with higher base pressure for the rear cavity (Evrard et al. 2016). Hence,
the observed vertical asymmetries introduced by the pitch are not resulting from the
wake instability but from the inclination of the body. It then appears that the minor
component of the base pressure gradient G∗m matches in average the component that
would have been obtained without the instability G∗m

B, i.e. that of the so-called basic
flow as introduced in § 3.1.3:

G∗m = g∗r (ϕM) sin ϕM =G∗m
B
. (4.7)

Assuming that there are only two observable mirror states for the wake, then the
gradient orientation will take two values, ϕM for state P and π− ϕM for state N with
respective probability denoted by κ and 1− κ . The mean matched minor component
(4.7) simply becomes G∗m

B
= G∗m = g∗r (ϕM) sin ϕM which, with (4.4) fully determines

ϕM and hence the two possible wake orientations as depicted in figure 25(a,c).
Consequently, the mean major component is:

G∗M = g∗r (ϕM)(2κ − 1) cos ϕM, (4.8)

with fluctuation G∗M
′
= 2
√
κ(1− κ)g∗r (ϕM) cos ϕM. There are two distinctive cases to

consider for wake orientation selections whether the minor axis corresponds to a
reflectional symmetry or not.

For the y-instability (figure 25a), the minor axis is a reflectional symmetry axis
when the ground clearance and pitch angle are varied. The symmetry implies equal
exploration of both states, i.e. κ = 1/2. Because of unavoidable symmetry defects
coming from different sources, equal exploration is not always observed for ground
clearance (figure 3), and pitch angle (figure 5) variations. Making use of the adaptation
mechanism (4.7), we can see for the ground clearance variation in figure 3, how both
the ground and body supports produce the minor component in figure 3(b) on which
the unstable wake adapts to provide the wake orientation ϕM in figure 3(d). Note that
because of the body supports, large ground clearances never restore the reflectional
symmetry with respect to the major axis (i.e. top/bottom symmetry), there is then
no reason for the vertical gradient component to vanish at large ground clearances
in figure 3(b). Similarly for the pitch variation in figure 5, the minor component
that varies monotonically in figure 5(b) with the angle α imposes through relation
(4.7) the two states orientations of the bistable dynamics ϕM and π− ϕM that change
continuously from ϕM=+π/2 to approximately 0. The same global orientation change
of the unstable wake was observed in Barros et al. (2017), referred to as symmetry
exchange, by increasing the size of a small disturbing body placed between the
ground and the Ahmed body. In the context of the adaptive mechanism, it is likely
that the disturbing body modifies the minor component of the base pressure gradient.
An interesting consequence of the adaptation condition is that bistability occurs only
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if the intensity of the minor component is smaller than the modulus g∗r (ϕM). When
they are both equal, the unstable wake orientation becomes aligned with the minor
component. This effect is clearly seen for the pitch sensitivity with y-instability in
figure 5(b) when α ' −1◦. It seems that the gradient modulus saturates to that of
the unstable wake even for larger pitch. For nose-up configurations with pitch angles
α > 0.5◦ the bistable dynamics turns into a random wake rotation similar to the
dynamics described in Rigas et al. (2014, 2015) but whose phase dynamics still
fulfils the condition (4.7) as depicted by the schematic drawing in figure 25(b).

In the second case for which the minor axis is not a reflectional symmetry,
κ 6= 1/2. The probability κ can either remain in the range ]0, 1[ for small reflectional
symmetry breaking as in yaw experiment for the y-instability with |β|< 0.5◦ (figure 4)
or more simply be κ = 1 or 0, respectively associated with permanent state P or state
N lock-in. These lock-ins, related to a lack of symmetry, are observed with the
z-instability for all explored ground clearances (figure 15), yaw (figure 16) and
pitch angles (figure 17). In each of these sensitivity maps, a discontinuous transition
accompanied by a bistable behaviour between the two states is observed. It is likely
that a symmetry compensation occurs to satisfy equal exploration of the two states
by restoring an effective κ = 1/2. Although this might imply several geometrical
defects, we attempt in the following to give the main ones. For bistability obtained at
c∗ = 0.080 in figure 15, we believe that the ground proximity and the supports are
involved. For the two other bistable dynamics observed at larger ground clearance in
figures 16 and 17, we believe that the ground proximity plays a minor role compared
to those of the supports and the body inclination. In figure 17, the supports and the
pitch inclination should compensate. For the bistability observed in figure 16, the
change of the support configurations in yaw introduces the compensation due the
wake of the front leeward support. As an attempt to summarize the origin of the
observed wake locks-in, our results suggest that supports are favourable to state N
when the body has no yaw, to state P with yaw, that ground proximity is favourable
to state P and pitch down to state P. Figure 20(a) gives a consistent overview of the
state selection in yaw angle and ground clearance variations.

The adaptation of the mean minor component of the base pressure gradient to that
of the basic flow (assumed to be steady) suggests the following expressions for the
instantaneous base pressure gradient of the unstable wake:

g∗m(t)=G∗m
B
+ g′m(t), (4.9a)

g∗M(t)=G∗M + g′M(t). (4.9b)

These relations can be used to estimate the cross-flow force coefficients for which we
assume two contributions. A first one results from the flow without the instability:
the basic flow. The basic flow force coefficients have a continuous evolution with
inclination and ground clearance. The second contribution accounts for the unstable
wake:

cm(t)=Cm
B
+ Ag∗′m(t), (4.10a)

cM(t)=CM
B
+ Ag∗M(t). (4.10b)

Notice that because of the unstable wake adaptation (4.7), the mean minor gradient is
absent in (4.10a) since it equals those of the basic flow and then taken into account in
Cm

B. These two relations are the ones found experimentally in (3.2) and (3.4) for the
y-instability and (3.7) for the z-instability confirming that the adaptation mechanism
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is consistent with all lateral force measurements. The coefficient A is found to be
1/10 for the square-back body and 1/5 for the boat-tailed after-body. We attribute
the discrepancy to the difference in the geometries. However, the contribution of the
wake instability to the side force coefficients is given by A|G∗M(ϕM = 0, π)| ' 0.02
for both after-bodies where M = y for the square-back after-body subjected to the
y-instability and M = z for the boat-tailed after-body subjected to the z-instability. It
is a substantial contribution to the total aerodynamics loading of the bodies since
it represents approximately 7 % of the drag coefficient and approximately 12–16 %
(depending on the geometry) of the lift coefficient of the baselines.

5. Conclusion
The unstable turbulent wake of two flat-backed Ahmed bodies with different

rectangular base aspect ratios have been investigated varying three geometrical
parameters: ground clearance, pitch and yaw angles. The experimental results are
presented as sensitivity analyses of the modulus and phase of the base pressure
gradient to these geometrical parameters. For any ground clearance above a critical
value of c∗S ' 0.1 and for any pitch or yaw angles explored, the large modulus
indicates the permanent presence of the static symmetry-breaking instability reported
in Grandemange et al. (2012).

The strength of the instability is larger when the wake is orientated along the major
axis of the vertical base rather than along its minor axis in a proportion equal to the
base ratio. A simple model that only depends on the vertical base shape is provided
for the base gradient. The model gives an elliptical modulation of its modulus with
its orientation. The global property of the unstable wake then simplifies into a single
mode defined from this modulus and a phase orientation that is the key ingredient of
the dynamics.

When changing the body inclination or ground clearance, it is found that the minor
component of the base pressure gradient always matches that of the flow with no
instability which, for a given modulus, constrains the possible phase dynamics. For
most cases, two possible phase orientations are found corresponding to the two flow
states belonging to the branch solutions P or N.

The probability of each flow state is sensitive to the geometrical environment of
the wake such as the ground proximity, the body supports and the body inclination.
Bistable dynamics is observed during transitions in which the probability of each
flow state is equal. This happens in symmetrical configurations as for the y-instability
or in asymmetrical configurations as for the z-instability. The latter case involves
compensation effects between two different origins of the asymmetry. An experimental
derivation of the cross-flow force from the base pressure gradient dynamics has been
proposed emphasizing the major impact of the unstable wake dynamics.

Eventually, a natural perspective on this work is the application to industrial car
aerodynamics. A transition in yaw similar to that observed for the body subjected
to the z-instability (§ 3.2.2) has been reported for a Renault Kangoo by Cadot
et al. (2016) and Bonnavion et al. (2017). Similar analyses as those presented in
this paper will be investigated for real cars to confirm the presence of the static
symmetry-breaking instability in the wakes.
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