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ABSTRACT

This paper introduces a neural network (NN) approach for fitting the
Lee-Carter (LC) and the Poisson Lee-Carter model on multiple populations.
We develop some NNs that replicate the structure of the individual LC models
and allow their joint fitting by simultaneously analysing the mortality data of
all the considered populations. The NN architecture is specifically designed to
calibrate each individual model using all available information instead of using
a population-specific subset of data as in the traditional estimation schemes.
A large set of numerical experiments performed on all the countries of the
Human Mortality Database shows the effectiveness of our approach. In par-
ticular, the resulting parameter estimates appear smooth and less sensitive to
the random fluctuations often present in the mortality rates’ data, especially
for low-population countries. In addition, the forecasting performance results
significantly improved as well.
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1. INTRODUCTION

In recent decades, the mortality of most developed countries was gradually
declining as a result of improvements in public health, medical advances,
lifestyle changes and government regulation. Although it is an obvious benefit
for society, this longevity improvement could also represent a risk for gov-
ernments and insurance companies. Indeed, if they do not properly consider
these improvements in retirement planning and the life insurance products’
pricing, they could get in financial trouble. The risk that future mortality and
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life expectancy outcomes turn out different than expected is typically called
longevity risk and, as pointed out in Barrieu et al. (2012), its management
requires stochastic mortality projection models. In this vein, a number of
stochastic mortality models were developed.

One of the first stochastic models describing the mortality of a single pop-
ulation was proposed by Lee and Carter (LC) (Lee and Carter, 1992). Their
model decomposes the age-time matrix of mortality rates into a bilinear com-
bination of age and period parameters using the principal component analysis
(PCA), and forecasting is performed by projecting the time index component
into the future with time-series models. A formal description of this model will
be presented in the next section.

Numerous extensions of the LC model have been developed and proposed
in the literature. For example, Brouhns et al. (2002) embedded the LC model
into a Poisson regression setting to overcome the homoskedastic error struc-
ture assumed into the original LC method. Renshaw and Haberman (2003a)
proposed a multi-factor version of the LC model to improve the goodness-
of-fit, and a few years later (Renshaw and Haberman, 2006) generalised the
Lee-Carter model including a cohort effect. Hyndman and Ullah (2007) pro-
posed a functional data approach in which the mortality curves are smoothed
for each year using constrained regression splines prior to fitting a model using
principal components decomposition and Hainaut and Denuit (2020) further
extended this method by using a wavelet-based decomposition.

Another very popular stochastic mortality model is the Cairns-Blake-Dowd
model proposed in Cairns et al. (2006), and many of its extensions have been
proposed. We refer to Cairns et al. (2009) for a review.

Since most of the drivers of the mortality improvements mentioned above
often spread quickly, mortality changes over time between different countries
appear, in some way, correlated. For this reason, the study of multi-population
mortality models has received increasing attention within the mortality fore-
casting’ literature. Extensive use of these models is typical in reinsurance, and
risk hedging (Enchev et al., 2017; Villegas et al., 2017). One of the simplest
approaches for forecasting mortality of multiple populations consists of using
Individual Lee-Carter (ILC) models (Li and Hardy, 2011). In this case, the
mortality of each population is described by an own LC model whose param-
eters are estimated separately from the other populations. This approach is
relatively accurate and easy to implement even for a large number of popula-
tions; however, it completely ignores the dependency among mortality of the
different populations. Some authors address this issue by introducing com-
mon terms in the individual models. A very popular model is the Augmented
Common Factor model developed by Li and Lee (2005) that proposes a dou-
ble log-bilinear mortality model augmenting common age and period effects
with sub–population-specific age and period effects. A second example is the
Common Age Effect model proposed by Kleinow (2015). It assumes that only
the age-specific LC parameters modulate the period effect are common to all
populations, while different time indices fit each population. However, these
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models were usually intended for forecasting the mortality of similar popula-
tions and not for large-scale mortality forecasting. The comparative analysis
in Richman andWüthrich (2021) highlights that these multi-population exten-
sions did not perform fully competitively against the ILC approach when a
large set of populations is considered.

Large-scale mortality forecasting is defined as the simultaneous produc-
tion of forecasts for many different and potentially unrelated populations
(Richman and Wüthrich, 2021). Examples of large-scale mortality forecasting
tasks are forecasting the mortality rates of all the populations of the Human
Mortality Database (HMD) or the United States Mortality Database simul-
taneously. Thanks to their ability to efficiently analyse large amounts of data;
neural networks (NN) represent a natural candidate to address this challenge.
Although NNs’ application to mortality modelling is quite recent, the sci-
entific contributions are increasing in number and intensity. Hainaut (2018)
proposed a NN approach to predict and simulate mortality rates of a single
population. The author developed a neural analyser to extract latent time pro-
cesses and directly predict mortality. This approach allows for detecting and
replicating non-linearities observed in the evolution of log-forces of mortal-
ity. The same intuition motivated the contribution in Nigri et al. (2019), in
which the authors introduced Recurrent Neural Networks (RNNs) into the
classical two-stage procedure of the LC approach. In particular, they employed
Long Short-Term Memory (LSTM) networks to model the time-related index
component. Furthermore, Lindholm and Palmborg (2021) explored the appli-
cation of the LSTM networks in the Poisson LC model framework. Richman
and Wüthrich (2021) has the merit of developing the first large-scale mortal-
ity model based on NNs. They provided a NN architecture based on fully
connected and embedding layers with notable forecasting accuracy. Perla
et al. (2021) further extended the model of Richman and Wüthrich (2021)
by introducing RNNs and convolutional neural networks (CNNs), specifically
designed to model sequential data such as time-series data. The use of con-
volutional networks for mortality modelling was also investigated in Wang
et al. (2020). Despite the models proposed in Richman and Wüthrich (2021)
and Perla et al. (2021) present more accurate forecasts than the ILC approach,
how to forecast uncertainty can be derived remains an open issue. This paper
proposes a different approach to perform large-scale mortality forecasting.
We use NNs for fitting some well-known mortality models without modi-
fying their forecasting scheme. The main idea consists of developing neural
network architectures that, on one side, replicate the model structure of the
single-population mortality models and, at the same time, take into account
and exploit the dependency among the mortality of different populations. To
this purpose, we embed the individual LCmodels into aNN in which the classi-
cal LC parameters are jointly estimated by processing the mortality data of all
populations simultaneously. Some authors have already discussed and pointed
out that the estimates of LC age-specific parameters obtained with the tradi-
tional approaches sometimes present random fluctuations over the age dimen-
sion producing irregular projected life tables (Camarda and Basellini, 2021).
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The most evident problems concern the estimates of the age-specific parame-
ters modulating the period effect (denoted as bx in the original paper), and pos-
sible solutions were explored in the literature. Renshaw andHaberman (2003b)
proposed to smooth those estimates using parametric or non-parametric meth-
ods without modifying the other parameters. Alternatively, Delwarde et al.
(2007) suggested imposing the smoothing within the estimation phase. The
authors introduced a roughness penalty term in the least squares function
(for the classical LC method) and log-likelihood function (for the Poisson LC
model proposed in Brouhns et al., 2002) to encourage the smoothness of the
parameters curve. The trade-off between goodness-of-fit and smoothness is
controlled through a smoothing hyper-parameter that penalises the fluctua-
tions. Currie (2013) further extend this approach imposing the smoothing of
both age-related parameters (ax and bx). In that case, the objective function
presents two penalty terms, and there are two hyper-parameters controlling the
cost of the fluctuations in the two parameter’s curves, respectively. A successful
application of these two methods requires a careful choice of the values of the
smoothing hyper-parameters. According to the original papers, the selection
of these values must be based on data, and the optimal values can be esti-
mated by employing time-consuming cross-validation procedures. Using these
two methods in a large-scale mortality forecasting context could be complex
from a computational perspective since the cross-validation procedure for esti-
mating the smoothing hyper-parameter should be applied individually to each
population. We address this issue by proposing a parsimonious NN architec-
ture specifically designed to calibrate each individual LC using all available
information instead of using a population-specific subset of data as in the tra-
ditional estimation schemes. Some cross-population parameters encourage the
information propagation among the individual model and produce estimates
less sensitive to the random fluctuations often present in mortality rates’ data.
Furthermore, the NN architectures developed present very few parameters to
optimise and are easy to interpret. These features could encourage the use of
NNs in mortality modelling also by practitioners who are wary of the use of
complex and hard-to-interpret models even if they have high predictive power.
Despite the simple structure of the NNs proposed, the forecasting performance
is highly competitive with respect to other NN-based approaches proposed in
the literature. The remainder of the paper is structured as follows: Section 2
provides a formal description of the LC model, Section 3 introduces the NN
architectures employed in this paper, Section 4 formally presents the NN-based
model, in Section 5 a large set of numerical experiments is illustrated, and
finally, Section 6 concludes.

2. LEE-CARTER MODEL

The Lee-Carter (LC) model (Lee and Carter, 1992) is an elegant and powerful
approach to forecast a single population’s mortality. Let X = {x0, x1, . . . , xω}
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be the set of the age categories and T = {t0, t1, . . . , tn} be the set of calendar
years considered. The LC model defines the logarithm of the central death rate
log(mx,t) ∈R at age x ∈X in the calendar year t ∈ T as

log(mx,t)= ax + bxkt + ex,t, (2.1)

where ax ∈R is the average age-specific pattern of mortality, kt ∈R is a time
index that summarises the development in the level of mortality over time, and
thus, it will capture the general time trend of the death rates, bx ∈R measures
the loadings to the particular age groups when the mortality index changes and
ex,t ∈R is the error term.

Since the model in (2.1) is over-parameterised, to avoid identifiability
problems, the following constraints are imposed∑

x∈X
bx = 1

∑
t∈T

kt
| T | = 0. (2.2)

The ordinary least squared estimation of the model parameters in (2.1) can be
obtained by solving the optimisation problem

argmin
(ax)x,(bx)x,(kt)t

∑
x∈X

∑
t∈T

(
log (mx,t)− ax − bxkt

)2

. (2.3)

The (ax)x are estimated as the logarithm of the geometric mean of the crude
mortality rates, averaged over all t, for each x ∈X

âx = log

(∏
t∈T

(mx,t)1/|T |
)
,

while (kt)t and (bx)x are estimated as the first right and first left singular vectors
in the Singular Value Decomposition (SVD) of the centre log-mortality matrix
M = (

log(mx,t)− âx
)
x∈X ,t∈T ∈R|X |×|T |. In order to forecast, the parameters

(ax)x and (bx)x are assumed to be constant over time while the time index kt is
modelled as an ARIMA (0,1,0) process

kt = kt−1 + γ + et with i.i.d et ∼N
(
0, σ 2

ε

)
, (2.4)

where γ ∈R is the drift.
A simple way of modelling the mortality of a set of different populations I

is to describe each population separately with its own LC model

log
(
m(i)
x,t

)
= a(i)x + b(i)x k

(i)
t + e(i)x,t ∀i ∈ I. (2.5)

This approach is sometimes called ILC approach. In this case, the model fitting
is performed individually, and the population and time-specific terms k(i)t are
projected with independent ARIMA (0,1,0) processes. Although some multi-
population extensions of the LC model are being proposed, the numerical
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study provided in Richman and Wüthrich (2021) shows that these exten-
sions produce good forecasting performance only in some cases and, the ILC
approach remains highly competitive.

2.1. Poisson maximum likelihood estimation

The main drawback of SVD is the assumption of homoskedastic errors (Alho,
2000). This issue is related to the fact that, for inference, we are actually assum-
ing that the errors are normally distributed, which is quite unrealistic. Indeed,
appear reasonable to believe that the logarithm of the observed log-mortality
rates is much more variable at older ages than at younger ages because of the
much smaller absolute number of deaths at older ones.

In Brouhns et al. (2002), a maximum likelihood estimation based on a
Poisson death count D(i)

x,t is proposed to allow heteroskedasticity. In this case,
the ILC model for multiple populations reads

D(i)
x,t ∼Poisson

(
E(i)
x,tm

(i)
x,t

)
with m(i)

x,t = ea
(i)
x +b(i)x k(i)t , (2.6)

where E(i)
x,t is the number of exposure-to-risk in age x at time t in the popu-

lation i and the constraints in (2.2) still hold for each population. The model
parameters can be estimated by solving

argmax(
a(i)x
)
x
,
(
b(i)x
)
x
,
(
k(i)t
)
t

∑
x∈X

∑
t∈T

(
D(i)
x,t

(
a(i)x + b(i)x k

(i)
t

)
−E(i)

x,te
a(i)x +b(i)x k(i)t

)
+ ci, ∀i ∈ I,

(2.7)
where ci ∈R is a constant which only depends on the data. The meaning of
the parameters is essentially the same of the corresponding parameters in the
classical LC model. Furthermore, in Brouhns et al. (2002) the authors do not
modify the time-series part of the LC method.

3. FEED-FORWARD NEURAL NETWORKS

Feed-forward NNs are popular methods in data science and machine learning.
They can be considered high-dimensional non-linear regression models and
achieve excellent performance in several fields. A feed-forward NN consists of
a set of (non-linear) functions, called units, arranged in layers (input, output
and hidden layers), which process and transform data to perform a specific
task. How the units are connected configures different types of NNs. A brief
description of the NN blocks used in the paper is provided below.
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3.1. Fully connected neural networks

Fully connected networks (FCN) are probably the most popular type of feed-
forward NNs. In FCN, each unit of a layer is connected to every part of the
previous one. First, we describe a single FCN layer.

Let y= (y1, y2, . . . , yq0)
� ∈Rq0 be a q0-dimensional input vector, a FCN

layer with q1 ∈N hidden units is a function that maps the input y to a new
q1-dimensional space

z :Rq0 →Rq1 , y �→ z(y)= (
z1(y), z2(y), . . . , zq1(y)

)� . (3.1)

Each new feature component zj(x) is a non-linear function of x

y �→ zj(y)= φ

(
wj,0 +

q0∑
l=1

wj,lyl

)
= φ

(
wj,0 + 〈

wj, y
〉)
, j= 1, . . . , q1,

(3.2)
where φ :R→R is a (non-linear) activation function, wj,l ∈R represent the
network parameters and 〈·, ·〉 denotes the scalar product in Rq0 .

When the FCN is shallow, it presents a single hidden layer followed by the
output layer. Differently, a deep FCN provides several stacked FCN layers
and the output of each layer becomes the input of the next one and so for the
following layers. Let q= {qk}1≤k≤m ∈Nm be a sequence of integers defining the
size of each layer where m ∈N is the number of hidden layers also called depth.
A deep FCN can be formalised as:

y �→ z(m : 1)(y)=
(
z(m) ◦ · · · ◦ z(1)

)
(y) ∈ Rqm , (3.3)

where all mappings z(k) :Rqk−1 →Rqk adopt the structure in (3.1) with weights

W (k) =
(
w(k)
j

)
1≤j≤qk

∈Rqk×qk−1 and biases w(k)
0 ∈Rqk , for 1≤ k≤m. φk are the

activation functions of each layer which could also differ from each other.
Both shallow and deep FCNs include a final output layer that computes

the variable of interest v as a function of the features extracted of the last hid-
den layer z(m : 1)(y). This layer is a mapping g :Rqm → V that must be chosen
according to the domain of the response variable.

Given a specific prediction task, the performance of a deep FCN strongly
depends on the weights w(k)

j.l that must be properly calibrated. Given a specific

loss function L(g(z(m : 1)(y)), v), which measures the quality of the predic-
tions produced by the network g(z(m : 1)(y)) against the observed values v
of the response variable V , network training (or fitting) consists in finding
the weights that minimise L(g(z(m : 1)(y)), v). It is generally performed via the
Back-Propagation (BP) algorithm where the weights are updated iteratively
to step-wise decrease the objective function, with each update of the weights
based on the gradient of the loss function. An extensive description of network
fitting and the BP algorithm is found in Goodfellow et al. (2016).
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3.2. Locally connected neural networks

The traditional FCN layers do not consider the spatial structure of the data
since they treat elements of the input data that are far or close to each other
without distinction. The locally connected network (LCN) layers overcame
this problem. They are characterised by the local connectivity since each unit of
the layer is connected only with a local area of the input, called receptive field.
The resulting weight matrices (called filters) present a smaller size than the
input data, and the features extracted are functions of a small part of the input
data. This induces a significant reduction of the parameters to optimise with
respect to the traditional FCN layers. The feature map extracted by an LCN
layer depends, among the other hyper-parameters, on the kernel filter’ size
m ∈N and the stride s ∈N. The kernel size refers to the dimension of the net-
work filters and determines the number of parameters, while the stride defines
the distance between two adjacent receptive fields. In the standard setting, the
LCN layers use s= 1. However, this choice induces a big overlap between adja-
cent receptive fields and much information is repeated. Alternatively, a stride
s> 1 could be considered. It would reduce the overlap of receptive fields and
lead to computational benefits. Typically, LCNs work on tensors and the local
connectivity can also be applied to multiple dimensions. For simplicity, we
only describe a 1-dimensional LCN layer where m, s ∈N are suitable chosen
such that (d −m)/s ∈N.

Let yi ∈Rb, 1≤ i≤ d be an ordered sequence of data input. A 1d locally
connected layer with q ∈N filters is a mapping

z :R1×d×b →R((d−m)/s+1)×q,

y= (y1, . . . , yd)
� �→ z(y)=

(
z(j)k (y)

)
1≤k≤((d−m)/s+1),1≤j≤q . (3.4)

We keep the “1” in the following notation to highlight that this is a 1d-LCN

layer. Denoting by W (j)
k =

(
w(j)
k,1,w

(j)
k,2, . . . ,w

(j)
k,m

)
∈Rb×m the kernel filters and

w(j)
k,0 ∈R the bias terms for k= 1, . . . , ((d −m)/s+ 1) and j= 1, . . . , q, each

component of the new mapping can be expressed as

y �→ z(j)k = z(j)k (y)= φ

(
w(j)
k,0 +

m∑
l=1

〈
w(j)
k,l, ym+1+(k−1)·s−l

〉)
. (3.5)

Unlike those obtained using a FCN layer, the features extracted from a LCN
layer are functions of only a small part of the input data.

3.3. Convolutional Neural Network

CNNs introduced by LeCun et al. (1990) are variants of the locally con-
nected NNs. They result even more popular than the previous ones owing
to the impressive results achieved in image recognition and time-series fore-
casting tasks. In addition to sparse connectivity, CNN layers exploit the
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FIGURE 1. Layer architecture and number of parameters for the fully connected (left), locally connected
(middle) and convolutional (right) NNs. The total number of parameters does not include the bias terms for

all three layers.

parameter sharing. Indeed, while in the LCN layer, each filter is used exactly
once, the CNN layer is based on the idea that the same filter can be used
to compute many different features. More in detail, the same filter slides
along the input surface and, multiplying different receptive fields, extracts
different new features. This means that, instead of learning a separate set of
parameters for every location, only one set of parameters must be calibrated,
inducing a further reduction of the parameters to learn with respect to the
LCN layers. Furthermore, similarly to LCNs, kernel size and stride are two
hyper-parameters that influence the feature maps extracted from a CNN layer.

In notation, a CNN layer uses W (j) =W (j)
k , ∀k : 1≤ k≤ ((d −m)/s+ 1) for

each j= 1, 2, . . . , q. It is a mapping with the same structure of (3.4) and each
component is given by

y �→ z(j)k = z(j)k (y)= φ

(
w(j)
0 +

m∑
l=1

〈
w(j)
l , ym+1+(k−1)·s−l

〉)
. (3.6)

Also in this case, the features extracted by a CNN layer are functions of only
a small part of the input data.

Figure 1 graphically shows how the three different layers work. For illustra-
tive purposes, we consider a 6-dimensional input vector (which can be seen as
an array of size 1× 6× 1 when we apply LCN and CNN layers). For the FCN,
we set the layer’s size equal to 3, while for the LCN and CNN network, we set
the kernel size and stride equal m= s= 2 and the number of filters q= 1. In
the FCN layer, each unit is connected to all input units, and the total number
of parameters to learn in the layer (excluding bias terms) is 18. The LCN layer
introduces local connectivity, and each unit is connected to only two units of
the input layer without overlapping. In this case, the number of parameters
is 6. CNN imposes also parameter sharing, and the weights are the same for
all the units. In this case, the layer has only 2 parameters. A more detailed
description of these layers can be found in Goodfellow et al. (2016).

3.4. Embedding network

Data often present categorical variables. Examples in mortality modelling con-
text are the region r ∈R and the gender g ∈ G to which a particular mortality
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rate refers. Dummy coding or one-hot encoding are popular approaches to
deal with categorical variables among statisticians and the machine learning
community, respectively. However, when observations present many cate-
gorical variables or when the variables have many different labels, these
coding schemes produce high-dimensional sparse vectors, which often causes
computational and calibration difficulties.

Embedding layers provide an elegant way to deal with categorical input
variables. They are already intensively employed in Natural Language
Processing (Bengio et al., 2003) and recently are introduced in the actuarial
literature by Richman, see Richman (2020a); Richman (2020b). In essence,
they allow learning a low-dimensional representation of a categorical vari-
able. Thereby, every level of the considered categorical variable is mapped to
a vector in RqP for some qP ∈N. These vectors are then simply parameters of
the NN that have to be trained (Guo and Berkhahn, 2016). In the new space
learned by the embedding layer, labels similar for the task of interest present a
small Euclidean distance while different labels present a larger one.

Formally, let P = {p1, p2, . . . , pnP } be the (finite) set of categories of the
qualitative variable and nP = |P | be its the cardinality. An embedding layer
is a mapping

zP :P →RqP , p �→ zP (p),

where qP ∈N is a hyper-parameter denoting the size of the embedding layer.
The number of embedding weights that must be learned during training is
nPqP and the embedding size is typically qP  nP .

4. THE NEURAL NETWORK APPROACH FOR ILC MODELS FITTING

In this section, we introduce the proposed general NN architecture for the
ILC models fitting. In this regard, we keep the same notation introduced in
Section 2 and consider different populations indexed by i ∈ I, where popula-
tions may differ in gender g ∈ G = {male, female} and country r ∈R such that
i= (r, g) ∈ I =R× G.

4.1. Model formalisation

We develop a N that models the mortality of many populations by replicating
the ILC models’ structure. The mortality of each population is modelled by
an own LC model; however, unlike the standard approach, the model fitting is
performed in a single stage using all available mortality data. Each mortality
experience processed by the network consists of the curve of the log-mortality

rates for all ages log
(
m(i)
t

)
=
(
log
(
m(i)
x,t

))
x∈X and the gender and region

labels, respectively, r ∈R and g ∈ G, that identify uniquely the population
i= (r, g) ∈ I.
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FIGURE 2. Graphical representation of the neural network architecture for ILC models fitting.

The network architecture, based on the blocks described in Section 3,
can be conceptually divided into three subnets which process the data
inputs separately. Each one of these subnets aims to extract one compo-
nent of the model in (2.5). More in details, the outputs of first two subnets

substitute a(i) =
(
a(i)x
)
x∈X ∈R|X | and b(i) =

(
b(i)x
)
x∈X ∈R|X |. Since these LC

parameters depend only on the population i, these subnets process only the
region and gender labels. The outputs of these two subnets are two time-
independent vectors that present as many components as the ages considered.
The third subnet aims to extract the factor k(i)t ∈R, which summaries the
mortality dynamics at time t in the population i. In this case, the sub-
net takes as input the curve of log-mortality rates log(m(i)

t ) ∈R|X | in the
population i at time t and produces as output a single value. In other
words, this subnet encodes the curve of the log-mortality rates into a real
value. Finally, the extracted factors are combined to provide an approxima-
tion of the log-mortality rates’ curve using the functional form of the LC
model.

A pictorial representation of the network architecture is illustrated in
Figure 2, while a formal description is provided below.

In details, the first subnet, (confined within the red diagram) is called a(i)-
subnet and consists of two embedding layers and a FCN layer. Formally,
let q(a)R , q(a)G ∈N be the hyper-parameter values defining the size of the two
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embedding layers, they map r ∈R and g ∈ G into real-valued vectors:

z(a)R :R→Rq(a)R , r �→ z(a)R (r)=
(
z(a)R,1(r), z

(a)
R,2(r), . . . , z

(a)

R,q(a)R
(r)
)�

,

z(a)G : G →Rq(a)G , g �→ z(a)G (g)=
(
z(a)G,1(g), z

(a)
G,2(g), . . . , z

(a)

G,q(a)G
(g)
)�

.

Since z(a)R (r) is a new set of features representing the region r and z(a)G (g) is a

new representation of the gender g, the vector z(a)I = z(a)I (r, g)=
((
z(a)R (r)

)�
,(

z(a)G (g)
)� )� ∈Rq(a)I (with q(a)I = q(a)R + q(a)G ), obtained concatenating the out-

put of these two embedding layers, can be understood as a learned represen-
tation of the population i= (r, g). It is then processed by a FCN layer which
provides as many units as the age considered. This layer maps z(a)I in a new
|X |-dimensional real-valued space

f (a) :Rq(a)I →R|X |,

z(a)I �→ f (a)
(
z(a)I

)
=
(
f (a)x0

(
z(a)I

)
, f (a)x1

(
z(a)I

)
, . . . , f (a)xω

(
z(a)I

))�
.

Each new feature f (a)x

(
z(a)I

)
is a age-specific function of the vector z(a)I

z(a)I �→ f (a)x (z(a)I )= φ(a)

⎛
⎜⎝w(a)

x,0 +
q(a)I∑
l=1

w(a)
x,l z

(a)
I,l

⎞
⎟⎠

= φ(a)
(
w(a)
x,0 +

〈
w(a)
x , z(a)I

〉)
, x ∈X , (4.1)

where φ(a) :R→R is a (non-linear) activation function, w(a)
x,l ∈R are the

network parameters.
The output of this layer is a vector that contains as many components

as the ages considered. Although all the units in the FCN layer process
the population-specific features z(a)I , the coefficients w(a)

x,0 and w(a)
x differ from

neuron to neuron and are age-specific. This means that the output of each

neuron f (a)x

(
z(a)I

)
is, in fact, an age and population-specific function as the

a(i)x parameter of the LC model. The output of the whole layer f (a)
(
z(a)I

)
=(

f (a)x

(
z(a)I

))
x∈X , obtained by concatenating the output of all the age-specific

units, is similar to the vector a(i) =
(
a(i)x
)
x∈X and can be considered as a

population-specific term only.
The second subnet (confined within the orange diagram) is called b(i)-

subnet and presents the same architecture of the first one. We will use the
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upper index (b) to denote the quantities referring to this subnet for distin-
guishing them from the previous one. It provides two embedding layers of
size q(b)R , q(b)G ∈N and a |X |-dimensional FCN layer which takes the vector

z(b)I = z(b)I (r, g)=
((
z(b)R (r)

)�, (z(b)G (g)
)�)� ∈Rq(b)I

(
with q(b)I = q(b)R + q(b)G

)
. It is

important to remark that, despite the first two subnets present the same
architecture, the weights to learn in each layer are different.

Denoting by w(j)
0 = (w(j)

x,0)x∈X ∈R|X | and W (j) = (w(j)
x,l)x∈X ,l=1,...,q(j)I

∈
R|X |×q(j)I , ∀j ∈ {a, b}, the output of the first two subnets can be written in
compact form

f (a)
(
z(a)I
)= φ(a)

(
w(a)
0 +

〈
W (a), z(a)I

〉 )

= φ(a)
(
w(a)
0 +

〈
W (a)

R , z(a)R (r)
〉
+
〈
W (a)

G , z(a)G (g)
〉 )

, (4.2)

f (b)
(
z(b)I
)= φ(b)

(
w(b)
0 +

〈
W (b), z(b)I

〉 )

= φ(b)
(
w(b)
0 +

〈
W (b)

R , z(b)R (r)
〉
+
〈
W (b)

G , z(b)G (g)
〉 )

, (4.3)

where one could carry out the decomposition W (j) = (
W (j)

R ,W (j)
G
)
of the

matrices of the FCN layers to distinguish the weights which refer to the
gender-specific and the region-specific features.

The architecture of the third subnet (inside the grey diagram) is different
from the previous ones. We call it k(i)t -subnet. It consists of some stacked feed-
forward NN layers that process the log-mortality rates curve. In this case, a
large discretionary in the number and type of NN layers to employ is left to
the modeller. For the sake of simplicity, we described the model considering
two FCN layers and postponed a comparative discussion with the LCN and
CNN layers to the numerical experiments’ section. Let qz1 ∈N and qz2 = 1 be
two hyper-parameters defining the size of two FCN layers. The first FCN layer
maps log(m(i)

t ) into a qz1 -dimensional real-valued space:

f (k1) :R|X | →Rqz1 ,

log
(
m(i)
t

)
�→ f (k1)

(
log
(
m(i)
t

))
=
(
f (k1)1

(
log
(
m(i)
t

))
, . . . , f (k1)qz1

(
log
(
m(i)
t

)))�
,

where each new feature component f (k1)s ( log(m(i)
t )) is function of the mortality

rates of all ages

log
(
m(i)
t

)
�→ f (k1)s

(
log(m(i)

t )
)

= φ(k1)
(
w(k1)
s,0 +

〈
w(k1)
s , log(m(i)

t )
〉)

,

s= 1, . . . , qz1 , (4.4)
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where w(k1)
s,0 ∈R and w(k1)

s ∈R|X | are parameters. Otherwise, by using LCN
layer we would obtain new features which are functions of a segment of the
log-mortality curve. The second FCN layer of size qz2 = 1 is a mapping

f (k2) :Rqz1 →R,

f (k1)
(
log(m(i)

t )
)

�→ f (k2)
(
f (k1)

(
log(m(i)

t )
))

=
(
f (k2) ◦ f (k1)

) (
log(m(i)

t )
)
.

It extracts a single new feature

(f (k2) ◦ f (k1))
(
log
(
m(i)
t

))
= φ(k2)

(
w(k2)
0 +

〈
w(k2), φ(k1)

(
w(k1)
0 +W (k1) log

(
m(i)
t

))〉)
,

(4.5)

where w(k2)
0 ∈R,w(k1)

0 = (w(k1)
s,0 )1≤s≤qz1 ∈Rqz1 ,w(k2) ∈Rqz1 ,W (k1) = (w(k1)

s )�1≤s≤qz1
∈Rqz1×|X | are network parameters and φ(j)(·) :R→R for j ∈ {k1, k2} are
activation functions. Basically, the first FCN layer encodes the log-mortality
curve into a qz1-dimensional real-valued vector, the second layer further
compresses this results into in a single real value.

Finally, an approximation of log-mortality curve at time t in the population
i can be obtained as

̂
log
(
m(i)
t

)
= f (a)

(
z(a)I

)
+ f (b)

(
z(b)I

)
(f (k2) ◦ f (k1))

(
log
(
m(i)
t

))
, (4.6)

where each age component is given by

̂
log(m(i)

x,t)= f (a)x

(
z(a)I

)
+ f (b)x

(
z(b)I

) (
f (k2) ◦ f (k1)

) (
log
(
m(i)
t

))
. (4.7)

A simple interpretation of all terms in (4.7) can be provided:

• f (a)x

(
z(a)I

)
∈R is a population and age-specific term that plays the same

role of a(i)x in the LC model.

• f (b)x

(
z(b)I

)
∈R is a population and age-specific term that plays the same

role of b(i)x in the LC model.

•
(
f (k2) ◦ f (k1)

) (
log
(
m(i)
t

))
∈R is a population and time-specific term

that plays the same role of the k(i)t in the LC model.

Similarly, Equation (4.6) is the LC model written in compact form where

the output of the first subnet f (a)
(
z(a)I

)
∈R|X | plays the same role of the vector

of parameters a(i) =
(
a(i)x
)
x∈X and the output of the second subnet f (b)

(
z(b)I
) ∈

R|X | plays the same role of the vector b(i) = (
b(i)x
)
x∈X .
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In addition, setting linear activation φ(j)(x)= x, ∀j ∈ {a, b} and expanding
all the terms in (4.7), the model can be written as

̂
log(m(i)

x,t)=
(
w(a)
x,0 +

〈
w(a)
x , z(a)I

〉 )
+

+
(
w(b)
x,0 +

〈
w(b)
x , z(b)I

〉 )
· φ(k2)

(
w(k2)
0 +

〈
w(k2), φ(k1)

(
w(k1)
0 +W (k1) log(m(i)

t )
)〉 )

.

(4.8)

In this case, some further interpretations can be argued. The term
(
w(a)
x,0 +〈

w(a)
x , z(a)I

〉 )
can be further decomposed into w(a)

x,0, which can be interpreted

as a population-independent ax parameter, and
〈
w(a)
x , z(a)I

〉
=
〈
w(a)
x,R, z(a)R (r)

〉
+〈

w(a)
x,G , z

(a)
G (g)

〉
, which can be interpreted as a population-specific ax correction.

In particular, it is the sum of the region-specific correction term
〈
w(a)
x,R, z(a)R (r)

〉
and the gender-specific correction term

〈
w(a)
x,G , z

(a)
G (r)

〉
. The same decomposition

can be applied to
(
w(b)
x,0 +

〈
w(b)
x , z(b)I

〉 )
.

4.2. Model fitting and forecasting

As anticipated in the previous sections, the NN model’s performance depends
on the network parameters that must be appropriately calibrated. Denoting
by ψ the full set of the network model’s parameters described above, it can
be split into two groups. The first group concerns the population-specific
parameters, namely the embedding parameters, z(a)R (r), z(b)R (r) and z(a)G (g), z(b)G (g)
which contribute only to the population-specific LC model. The remaining
w(j)
0 ,W (j),w(k2)and w(k2)

0 are cross-population parameters which contribute to
all the individual LC models. These parameters are iteratively adjusted via
the BP algorithm to minimise a given loss function. During the training, we
also apply the dropout (Srivastava et al., 2014) in some layers of the networks
to regularise. The dropout is a powerful regularisation technique which has
produced notable results in several applications such as image processing and
speech recognition (Pham et al., 2014). It consists of ignoring some randomly
chosen units during the network fitting. The use of the dropout during the
NN training allows to extract more robust features from the data and avoid
overfitting (Srivastava et al., 2014). In our application, it contributes to obtain
more robust estimates of LC parameters which appear smoother over the age
dimension and less sensitive to the fluctuations often present in the mortality
data compared to traditional fitting schemes.
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This technique forces a NN to learn more robust features and prevent
overfitting. Once the model training was completed, and an estimation of the
optimal set of parameters ψ̂ was obtained, population-specific parameters and
cross-population parameters can be used to compute the terms in the model
presented in (4.7). Since these quantities have the same meaning as the LC
model terms, we could consider them as NN estimates of the LC parameters:

â(i)x,NN = φ(a)
(
ŵ(a)
x,0 +

〈
ŵ(a)
x,R, ẑ(a)R (r)

〉
+
〈
ŵ(a)
x,G , ẑ

(a)
G (g)

〉 )
, ∀x ∈X , ∀i ∈ I, (4.9)

b̂(i)x,NN = φ(b)
(
ŵ(b)
x,0 +

〈
ŵ(b)
x,R, ẑ(b)R (r)

〉
+
〈
ŵ(b)
x,G , ẑ

(b)
G (g)

〉 )
, ∀x ∈X , ∀i ∈ I, (4.10)

k̂(i)t,NN = φ(k2)
(
ŵ(k2)
0 +

〈
ŵ(k2), φ(k1)

(
ŵ(k1)
0 + Ŵ (k1) log(m(i)

t )
)〉 )

, ∀t ∈ T , ∀i ∈ I.
(4.11)

The classical LC constraints (Lee and Carter, 1992) are applied to the NN
estimates of the LC parameters individually for each population. We do not
modify the time-series part of the ILC approach; forecasting is performed
assuming that â(i)x,NN and b̂(i)x,NN are constant over time while k̂(i)t,NN is pro-
jected with a random walk with drift for each population. It is interesting to

note that often the number of LC parameters
(
a(i)x
)
x
,
(
b(i)x
)
x
,
(
k(i)t
)
t
, for each

population, can be larger than the number of network weights.

5. NUMERICAL EXPERIMENTS

In this section, some numerical experiments to validate the proposed approach
are conducted.

The data source is the HMD, which provides mortality data for male and
female populations of a large set of countries. Following the experiments’
scheme in Perla et al. (2021), Richman and Wüthrich (2021), we only consider
mortality data from 1950 onwards, and we set 1999 as the final observation
year.

Let T = {t ∈N : 1950≤ t≤ 2019} be the full set of available years and T1 =
{t ∈ T : t< 2000} , T2 = {t ∈ T : t≥ 2000} such that T1 ∪ T2 = T . The aim is to
forecast, as accurately as possible, the mortality rates of calendar years in
T2 using a model fitted on mortality data of calendar years in T1. Using the
machine learning terminology, the mortality rates of calendar years in T1 rep-
resent the training set, while themortality rates of calendar years in T2 represent
the testing set.

First, a careful round of data pre-processing was carried out. We consider
only male and female populations of countries for which at least 10 calen-
dar years of mortality data before 1999 are available. We define R as the
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set of selected countries and, in our experiments, we observe that |R| = 40
and |I| = 80 since I =R× G =R× {male, female}. The full list of countries
in R can be found in Table A.1 in Appendix A. Furthermore, only ages in
X = {x ∈Z : 0≤ x< 100} were considered (with |X | = 100) and, following the
scheme adopted in Perla et al. (2021), Richman and Wüthrich (2021), mortal-
ity rates recorded as zero or missing were imputed using the average rate at
that age across all countries for that gender in that year.

After the pre-processing stage, we discuss the NN models that we experi-
mented with. Since no golden rules exist for NN design, several architectures
were investigated and compared. The first difference among them concerns
the architecture of the third subnet, which processes the log-mortality curve

log
(
m(i)
t

)
:

• The first group of networks, called LC_FCN networks, use two FCN
layers as the architecture described in Section 4.

• The second class of networks replaces the first FCN layer in the third

subnet with an LCN layer. In this case, the curve log
(
m(i)
x

)
is pro-

cessed by an LCN layer where the local connectivity is applied to the
age-related dimension. It appears reasonable to believe that a successful
features extraction can be obtained by processing separately small seg-
ments of the log-mortality curve. We set the number of filters q= 1 and
the kernel size equal to the stride m= s=G. In this setting, there is no
overlap between adjacent receptive fields, and the layer extracts a fea-
ture from each group of G adjacent ages (e.g., if we have G= 4 the age
groups are 0− 3, 4− 7, . . . , 96− 99). The size of the output of this layer
qz1 can be controlled throughG since qz1 = |X |/G. An FCN further pro-
cesses the output of this layer as in the LC_FCN model. The adoption
of the LCN layer involves a significant reduction of the parameters to
optimise due to the local connectivity. We call this variant LC_LCN.

• The latest group of architectures substitutes the first LCN layer of the
third subnet with a CNN layer keeping the same hyper-parameter set-
ting of the LCN layer-based model. In this case, the features extracted
from the different G-sized age groups are obtained using the same set
of parameters. This further reduces the number of parameters to learn
with respect to the LCN layer since the CNNs are characterised by local
connectivity and weight sharing. This variant is named LC_CNN.

We also explore the role of other hyper-parameters:

• the size of the embedding layers qe ∈ {5, 10}, where qe = q(a)R = q(a)G =
q(b)R = q(b)G ;

• the dimension of the first layer of the third subnet qz1 ∈ {10, 25, 50}1;
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TABLE 1.

NUMBER OF NETWORK PARAMETERS FOR THE NEURAL NETWORK
MODELS CONSIDERED.

qz1 = 10 qz1 = 25 qz1 = 50

LC_CNN qe = 5 2.642 2.651 2.674
qe = 10 5.062 5.071 5.094

LC_LCN qe = 5 2.741 2.771 2.821
qe = 10 5.161 5.191 5.241

LC_FCN qe = 5 3.641 5.171 7.721
qe = 10 6.061 7.591 10.141

LC 19.598

• the activation function of the first layer of the third subnet φ(k1) ∈{′linear′, ′ReLU ′, ′tanh′}.
Overall, 54 different architectures are considered. We consider linear acti-

vation for the FCN layer in the first two subnet and the second layer of the
k(i)t -subnet, φ(j)(x)= x ∀j ∈ {a, b, k2}. All the analyses are carried out in the
R environment, and the NN models considered were developed using the R
package keras (Chollet, 2018).

Table 1 reports the total number of network weights for each NN model
defined above. First, we observe that the differences between the number of
parameters of the LC_FCN and LC_LCN networks are pretty significant.
This means that by introducing local connectivity in the first layer of the third
subnet, a large part of the parameters can be saved. On the contrary, the dif-
ferences between LC_LCN and LC_CNN networks are generally small. Then,
the further reduction of the number of weights induced by the weight shar-
ing mechanism is quite limited. In addition, it can be noted that the number
of parameters increases for all the three network categories when qe and qz1
increase.

5.1. MSE minimisation

All the network models are fitted in the first stage, minimising the Mean
Squared Error (MSE). The training sample includes 3598 mortality examples
which are processed for 2000 epochs. We do not use any strategy to fight the
overfitting since all the network models considered present very few parame-
ters to optimise, and the risk of overfitting is absent. The choice of the MSE
as loss function can be motivated by arguing that the original paper suggests
fitting the LC model using the SVD to perform the PCA. Since the PCA can
be expressed as an optimisation problem, in which the MSE between the orig-
inal data and the data reconstructed using an approximating linear, the use of
the MSE as loss function appears reasonable. Furthermore, it is remarkable
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that the MSE minimisation is equivalent to the likelihood maximising in the
Gaussian assumption of the mortality rates (Richman and Wüthrich, 2021).

In this setting, the network training involves the minimisation of the
following loss function

L(ψ)=
∑
x∈X

∑
i∈I

∑
t∈T

(
log(m(i)

x,t)− ̂
log(m(i)

x,t)
)
2,

where
̂

log(m(i)
x,t) is defined by (4.8). The Adam optimiser algorithm (Kingma

and Ba, 2014) with the parameter values taken at the defaults is used. When
we use the MSE loss function to train the networks, we add the label “_mse”
to of all the NN models’ names.

Once the network fitting is completed, and the set of the optimal network
parameters is estimated, the corresponding NN estimations of the LC param-
eters can be computed accordingly with Equations (4.9), (4.10) and (4.11).2

Forecasting is performed as described in Section 4, and the performance of the
different models is measured by theMSE between the predicted mortality rates
and the actual ones.

In this setting, we define the response variable scaled in [0, 1] as in Perla
et al. (2021). This does not modify the general model but induces some changes
in the formulas for the NN estimates of LC parameters. Details can be found
in Appendix B.

5.1.1. Results
In this section, we discuss the results of the numerical experiments. Since the
out-of-sample results of the NNmodels can vary among training attempts due
to the randomness of some elements of the training process (i.e., the random
selection of batches of training data, dropout, the initial value of optimisa-
tion algorithm and others), we first analyse and measure the variability of
these results. For this purpose, 10 different model fittings for each one of the
54 network models considered are performed and the boxplots of the corre-
sponding forecasting MSEs are visualised in Figure 3. In particular, this figure
provides three groups of subplots, one of each group of networks investi-
gated and a dashed line indicating the forecasting performance of the standard
LC methodology via SVD henceforth indicated as LC_SVD. Some interest-
ing comments can be made. First, we observe that most boxplots lie below
the dotted line suggesting that the corresponding network models produce
forecasting MSEs significantly lower than the LC_SVD model. In addition,
the variability among training attempts appears to be quite limited in most
cases. Second, comparing the networks models among them, we note that
the LC_LCN_mse and LC_FCN_mse models, which produce very similar
results, overperform the LC_CNN_mse models. This result probably suggests
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FIGURE 3. Box plots of the forecasting MSEs of the different NN models; forecasting period 2000–2018;
MSEs values are in 10−4. The names of the networks on the horizontal axis are written concatenating the

values of qz1 , qe and the activation φ(k1).

that some of the network parameters employed by the LC_FCN_mse mod-
els are redundant and the reduction in the number of parameters induced by
the local connectivity does not deteriorate the performance. On the contrary,
the further reduction induced by the weight sharing mechanism, on which
the LC_CNN_mse models are based, produces a slight deterioration in per-
formance. We believe this may be because using the same set of parameters
for all the age groups we could reduce the quality of the feature extraction.
This argument appears plausible since the mortality rates in different ages
present different features. Third, analysing the robustness with respect to the
hyper-parameters, we observe that the performances of the networks models
do not change significantly varying the size of embeddings and the hidden layer
while the results are rather sensitive to the activation function. The linear and
tanh activation functions produce better results than the ReLU function in
terms of average performance and variability among the training attempts.
This evidence is stronger for the CNN-type models where the range of vari-
ation of the forecasting performance is very large when the ReLU function is
employed.

Overall, we conclude that the most of the network models, in particular the
LCN and the FCN models, appear competitive against the LC_SVD. In order
to make further comparisons, we select a single model from each group of
networks architectures considered. For CNN, we select the architecture that
produces the lowest average forecasting MSE. For the LCN and FCN mod-
els, since the forecasting performance is virtually identical for several network
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TABLE 2.

RESULTS OF ALL THREE NETWORK ARCHITECTURES CONSIDERED: FORECASTING
MSE, NUMBER OF POPULATIONS AND AGES IN WHICH EACH NETWORK BEATS THE
LC_SVD MODEL; FORECASTING PERIOD 2000–2018; MSES VALUES ARE IN 10−4.

Model # MSE # Populations # Ages

LC_CCN_mse 3.37 54/80 83/100
LC_LCN_mse 3.18 61/80 84/100
LC_FCN_mse 3.24 57/80 84/100

architectures with linear and tanh activation functions, we select the most
parsimonious architecture and we use the activation function with the lowest
forecasting MSE. The selected models are respectively:

• the CNN network with linear activation, qz1 = 50 and qe = 5 from now
called LC_CNN_mse;

• the LCN model with tanh activation, qz1 = 10 and qe = 5 from now
called LC_LCN_mse;

• the FCN network with linear activation, qz1 = 10 and qe = 10 from now
called LC_FCN_mse.

Table 2 compares the forecasting results of a single run for the network
models described above.

We observe that all the network models produce better global performance
than LC_SVD, which produces an MSE equal to 6.12× 10−4. Table 2 also
lists, for each network, the number of populations and ages in which the MSE
produced is lower than that obtained through the LC_SVD model. Also in
this case, we observe that LC_LCN_mse and LC_FCN_mse models produce
a good performance. They beat the LC_SVD model in 75% of the populations
considered and in almost 85% of the age considered. Considering the fore-
casting performance and the number of parameters, we select LC_LCN_mse
model as the best one and focus on it for the next section.

5.1.2. Estimates comparison
This section analyses the estimates of the LC parameters obtained via
the LC_LCN_mse model, comparing them against the LC_SVD approach.
Figures 4, 6 and 7 compare the estimates of (a(i)x )x, (b

(i)
x )x and (k(i)t )t for all pop-

ulations. These three figures provide some country-specific subplots in which
the curves of the parameters are represented distinguishing by gender: the male
population’s parameters are presented in blue, while the female population’s
parameters are reported in red. The subplots are sorted in descending order
with respect to the population size in the year 2000, the first year of the testing
set. In each subplot, the solid lines refer to the LC_LCN_mse estimates while
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FIGURE 4. Comparison of the LC_LCN_mse and LC_SVD estimates of
(
a(i)x
)
x∈X for all the populations considered; fitting period 1950–1999; countries are

sorted by population size in 2000.
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FIGURE 5. Comparison of the LC_LCN_mse and LC_SVD estimates of
(
a(i)x
)
x∈X distinguishing by model;

fitting period 1950–1999.

the dashed lines denote those obtained via LC_SVD. We discuss these figures
one by one in the following.

Figure 4 compares the estimations of the
(
a(i)x
)
x
for all populations con-

sidered. First, we observe that all the curves present the classical life-table
shape and the female curves are located below the male ones. Furthermore,
since the dotted and solid lines seem almost coincide, we conclude that both
approaches produce similar a(i)x estimates. To better understand the differences
between these estimations, we analyse them more closely by representing the(
a(i)x
)
x
curves simultaneously on the same plot. Figure 5 shows this compari-

son on two different subplots; the first one concerns the LC_SVDmodel (right)
while the second one represents the LC_LCN_mse model (left). Looking at

the
(
a(i)x
)
x
estimations from this point of view, we observe that the LC_SVD

curves present some erratic fluctuations while the LC_LCN_mse estimates
appear to be smooth. This could due to the random fluctuations often present
in the mortality data which also affect the parameters estimates. We could
explain this evidence by arguing that the LC_SVD works on a population-
specific subset of data, and then its estimates, could be more sensitive to the
random fluctuations present in that data. On the contrary, the LC_LCN_mse
model, which uses a large amount of data to fit and allows the information

https://doi.org/10.1017/asb.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.5


542
S.SC

O
G
N
A
M
IG

L
IO

FIGURE 6. Comparison of the LC_LCN_mse and LC_SVD estimates of
(
b(i)x
)
x∈X for all the populations considered; fitting period 1950–1999; countries are

sorted by population size in 2000.
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FIGURE 7. Comparison of the LC_LCN_mse and LC_SVD estimates of
(
k(i)t
)
t∈T for all the populations considered; fitting period 1950–1999; countries are

sorted by population size in 2000.
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sharing among the populations through cross-population parameters, prevents
population-specific overfitting and produces estimates less sensitive to these
fluctuations.

Figure 6 compares the
(
b(i)x
)
x
estimates (individually scaled in [0, 1]). Here,

we observe that the two approaches involve quite different
(
b(i)x
)
x
estimations.

This is especially evident for low-population countries, which are represented
at the bottom of the figure. In particular, we note that the LC_SVD estimates
appear to be smooth for high-population countries (e.g., USA and JPN) while
they present irregular patterns for low-population countries (e.g., LUX and
ISL). This evidence was already discussed in the literature; see Delwarde et al.
(2007). Also in this case, this could be due to the random fluctuations present in
the mortality rates, which appears more pronounced for low-population coun-
tries (Jarner and Kryger, 2011). We believe this is related to the law of large
numbers, which makes volatility in mortality rates larger for low-population
countries. On the contrary, the LC_LCN_mse curves are quite smooth for all

countries. This can be justified with the same arguments given for the
(
a(i)x
)
x

estimates.
Figure 7 compares the LC_LCN_mse and LC_SVD estimates of

(
k(i)t
)
t

for all populations considered. Overall, the estimates appear rather similar;
however, one might notice that the LC_LCN_mse model, in some cases,

presents
(
k(i)t
)
t
series with more pronounced peaks than the classic LC_SVD

model. This evidence is particularly visible in countries such as RUS (espe-
cially for females), UKR, POL, GRC, HUN, BLR (especially for females),
BGR, LTU and LVA. It seems to suggest that the NN k(i)t estimates are able
to capture mortality fluctuations over time better, allowing a more appropriate
measurement of the uncertainty when forecasting is involved.

5.2. Poisson loss minimisation

As emphasised in Section 2.1, the assumption of homoskedastic error struc-
ture, which follows the ordinary least squares estimation, often appears unre-
alistic. In this section, assuming a Poisson number of death D(i)

x,t, we explore
the use of the Poisson loss function to train the NN models. In particular, we
consider

D(i)
x,t ∼Poisson

(
E(i)
x,te

m(i)
x,t

)
, (5.1)

where

m(i)
x,t =

(
w(a)
x,0 +

〈
w(a)
x , z(a)I

〉 )
+
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TABLE 3.

RESULTS OF ALL THREE NETWORK ARCHITECTURES CONSIDERED: FORECASTING MSES,
NUMBER OF POPULATIONS AND AGES IN WHICH EACH NETWORK BEATS THE LC_POISSON, THE
LC_SVD AND THE RH MODELS; FORECASTING PERIOD 2000–2018; MSES VALUES ARE IN 10−4.

LC_Poisson LC_SVD RH

# # # # # #
Model MSE Populations Ages Populations Ages Populations Ages

LC_CNN_Poisson 3.03 57/78 83/100 64/78 83/100 58/69 86/100
LC_LCN_Poisson 2.91 62/78 83/100 64/78 83/100 61/69 86/100
LC_FCN_Poisson 3.10 53/78 83/100 63/78 83/100 54/69 85/100

+
(
w(b)
x,0 +

〈
w(b)
x , z(b)I

〉 )
·
(
w(k2)
0 +

〈
w(k2), φ(k1)

(
w(k1)
0 +W (k1) log

(
m(i)
t

) )〉 )
.

(5.2)

In this setting, the NNs model fitting involves the minimisation of

L(ψ)=
∑
x∈X

∑
i∈I

∑
t∈T

(
E(i)
x,te

m(i)
x,t −D(i)

x,tm
(i)
x,t

)
+ c (5.3)

which corresponds to maximise the log-likelihood function under the assump-
tion (5.1) and c ∈R. We use the same data of Section 5.1; however, this time
we exclude the Canadian populations since there are several missing values in
the data related to the exposure-to-risk and number of deaths. Here, we have
|I| = 78.

The NN architectures previously selected are trained in the same setting:
mortality experiences concerning calendar years in T1 are used for training,
the number of epochs was set equal to 2000, and the same training algorithm
is employed. This time, the training sample contains 3498 examples since the
100 mortality experiences concerning Canadian populations are removed. The
names of all the NN models are suitably modified by replacing “mse” with
“Poisson.” The Keras code that defines the network architectures is provided
in the Appendix C. In these experiments, we also included in the comparisons
the ILC approach based on the Poisson maximum likelihood estimation (we
refer to the results of this approach as LC_Poisson) and the results of individ-
ual Renshaw and Haberman (RH) models (Renshaw and Haberman, 2006).
We estimate these two sets of models using the StMoMo R package. In partic-
ular, for the individual RH models, we observed that the fitting procedure for
some populations does not converge. This result had already been highlighted
in Perla et al. (2021). Consequently, for the RH model, we report the results
for 69 populations for which the fitting procedure was completed successfully.
Again, we use the MSE between predicted mortality rates and the actual ones
to measure the performance. Table 3 lists the forecasting MSE for each NN
model and the number of populations and ages in which each network model
beats the three benchmarks. The LC_SVD and the LC_Poisson. respectively

https://doi.org/10.1017/asb.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.5


546 S. SCOGNAMIGLIO

FIGURE 8. Comparison error among the LC_LCN_Poisson, the LC_Poisson, the LC_SVD and the RH
models for years in 2000–2018 for different ages and genders, MSE values are in 10−4 and on log-scale.

obtain MSEs equal to 6.02× 10−4 and 5.19× 10−4(on 78 populations) while
RH produces a MSE equal to 25.12× 10−4 (on 69 populations).

First, we observe that all three NNs models overperform very well.
In particular, the LC_LCN_Poisson produces the best performance,
LC_CNN_Poisson is the second one and LC_FCN_Poisson is the least accu-
rate. Comparing them against the benchmarks, we note that they overperform
the LC_SVD, LC_Poisson and RH models in most of the populations and
ages. Overall, we select the LC_LCN_Poisson model as the best model, and
further comparisons against the benchmarks are provided below.

Figure 8 compares the LC_LCN_Poisson against the LC_SVD,
LC_Poisson and RH models by analysing the error by age for both gen-
ders on a logarithmic scale. In all cases, the curves show the shape of
a mortality table. Furthermore, we observe that, for both genders, the
LC_LCN_Poisson model produces the lowest forecasting error for ages x> 20
and this improvement is more evident for males. On the contrary, for ages
x≤ 20 the LC_Poisson and the LC_SVD perform better.

Table 4 reports the performances in terms of MSE, MAE (Mean Absolute
Error) and MAPE (Mean Absolute Percentage Error) of these four models
in the age ranges 0–99 and 55–90 for both genders in the 69 populations in
which the RH model converges. The LC_LCN_Poisson model produces the
best performance in all cases except for the MAPE on males aged 0–99. This
is not surprising since the MAPE is the mean of the residuals (in absolute
value) divided by the respective actual mortality rates. Therefore, they may
be more sensitive to errors made on ages with low mortality rates. Indeed, as
illustrated by Figure 8, the LC_LCN_Poisson model is less accurate for ages
x≤ 20 where mortality rates are very small and there the global MAPE on the
age range 0–99 results higher. On the contrary, it appears the best also from
a MAPE perspective when the age range 55–90 is considered. Furthermore,
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TABLE 4.

MSE, MAE AND MAPE OF LC_SVD, LC_POISSON, RH AND LC_LCN_POISSON IN THE AGE
RANGES 0–99 AND 55–90 FOR EACH GENDER; MSE AND MAE VALUES ARE IN 10−4 ON THE 69

POPULATIONS IN WHICH THE RH MODEL CONVERGES; THE BEST PERFORMANCE IS REPORTED IN
BOLD.

MSE MAE MAPE

Age range Model Female Male Female Male Female (%) Male (%)

0–99 LC_SVD 2.6103 5.1177 55.0237 94.9656 25.3196 35.8088
LC_Poisson 2.3962 4.7243 49.7804 81.8419 25.4649 34.6300
RH 41.3951 6.7771 95.9712 89.7170 27.4428 32.0161
LC_LCN_Poisson 1.7988 2.8346 42.4132 60.9455 23.5324 35.9236

55–90 LC_SVD 1.1918 3.3327 61.7312 119.9267 17.7076 25.3430
LC_Poisson 1.1272 2.8842 53.5945 110.0120 15.8867 22.0608
RH 3.0516 4.1034 65.8552 107.2838 16.1086 16.8226
LC_LCN_Poisson 0.4682 1.3546 40.7667 76.9406 12.1228 15.4465

Table 4 appears to confirm that the LC_LCN_Poisson model induces a more
significant improvement for males.

Table 5 reports the LC_LCN_Poisson and LC_Poisson models’ MSE and
MAPE in all countries under investigation distinguishing by gender. The best
performance in each population is reported in bold. From a MSE perspec-
tive, we observe that, in the most of the cases, LC_LCN_Poisson beats the
LC_Poisson and this evidence appears especially evident for male popula-
tions. In addition, in some of these cases, the improvement produced by
LC_LCN_Poisson model results quite large (see e.g., the male populations
of LUX, SVN, SVK, BLG, UKR and others). Many of these countries are
low-population countries since they are located in the bottom of Table 5. This
evidence suggests that LC_LCN_Poisson model could improve the forecasting
in low-population countries whose data are often affected by random fluctua-
tions. On the contrary, in the cases in which the LC_Poisson model beats the
LC_LCN_Poisson model, the difference is often quite limited; the only cases in
which this difference appears significant are the female populations of JPN and
LTU. Analysing theMAPEs, the superiority of the LC_LCN_Poisson over the
LC_Poisson is less evident, the first model beats the second one only in 60% of
the cases. This can be explained by arguing again that the MAPE is more sen-
sitive to errors made in ages with low mortality rates such as the young ages
where the LC_LCN_Poisson is less accurate. The LC_LCN_Poisson beats the
LC_Poisson again in 60/78 populations considering the age range of 55–90.
Also in the MAPE case, it is evident that the LC_LCN_Poisson produces bet-
ter performances with respect to the LC_Poisson in several low-population
countries such as NZL_NM, LVA, SVN, GBR_NIR, EST, LUX and ISL.

We conclude that the LC_LCN_Poisson model presents an overall forecast-
ing performance higher than the other competitors.

Table 5 reports the LC_LCN_Poisson and LC_Poisson models’ MSE and
MAPE in all countries under investigation distinguishing by gender. The

https://doi.org/10.1017/asb.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.5


548 S. SCOGNAMIGLIO

TABLE 5.

FORECASTING MSES OF THE LC_LCN_POISSON (LC_LCN) AND THE LC_POISSON (LC) MODELS
ON DIFFERENT POPULATIONS; FORECASTING PERIOD 2000–2018; MSES VALUES ARE IN 10−4; THE

BEST PERFORMANCE IS REPORTED IN BOLD.

MSE MAPE

Male Female Male Female

LC LC_LCN LC LC_LCN LC LC_LCN LC LC_LCN

1 USA 1.42 1.22 0.50 0.25 12.84 15.03 11.50 10.64
2 RUS 8.35 2.09 5.89 2.39 28.85 30.97 20.34 25.18
3 JPN 0.45 0.94 0.40 3.33 15.99 11.86 35.05 28.67
4 DEUTW 0.80 0.63 0.35 0.21 15.75 25.15 11.09 10.57
5 FRATNP 0.52 0.78 0.34 0.54 26.67 25.23 16.90 15.44
6 ITA 0.58 0.38 0.24 0.85 26.48 24.78 11.13 12.98
7 GBRTENW 1.11 0.68 0.38 0.69 17.71 25.61 15.47 11.92
8 UKR 7.19 2.19 3.72 4.05 23.51 31.78 19.71 24.62
9 ESP 1.72 0.74 1.27 0.83 30.97 27.62 17.60 15.11
10 POL 4.69 2.36 3.29 0.66 42.84 40.37 18.89 22.92
11 TWN 10.49 4.87 0.95 1.33 30.86 26.31 19.37 15.06
12 AUS 1.14 0.86 0.41 0.31 21.21 21.46 15.08 16.16
13 NLD 1.76 1.11 0.35 0.37 26.92 47.96 23.12 19.44
14 DEUTE 2.71 1.66 1.45 0.53 42.24 36.85 22.18 18.85
15 GRC 3.16 1.61 1.97 0.57 24.18 29.32 24.52 24.48
16 HUN 6.01 3.46 1.38 1.18 61.47 73.69 26.86 47.15
17 PRT 2.42 1.30 2.01 0.94 51.51 36.86 23.85 21.35
18 BLR 12.76 3.35 10.24 3.94 52.40 69.51 35.77 54.96
19 CZE 4.68 2.92 2.27 1.03 28.61 32.53 22.01 19.24
20 BEL 2.31 1.57 0.51 0.41 24.76 27.74 19.44 17.12
21 SWE 1.13 1.22 0.38 0.19 23.92 33.54 19.72 17.68
22 AUT 2.57 1.44 0.61 0.35 25.68 27.62 19.15 19.31
23 BGR 11.30 5.86 6.14 3.28 22.56 37.67 22.35 20.44
24 CHE 1.81 1.34 0.32 0.29 40.31 33.88 34.75 23.14
25 ISR 1.85 1.81 1.81 1.96 22.08 18.05 21.26 18.50
26 SVK 13.27 7.24 2.54 3.21 41.16 39.80 22.30 24.32
27 DNK 2.27 2.06 0.41 0.52 54.92 54.66 53.77 43.05
28 FIN 3.73 3.70 1.10 0.79 23.68 33.65 22.94 25.34
29 GBR_SCO 1.97 1.68 0.67 0.38 28.83 32.49 26.29 20.08
30 NOR 3.50 2.11 0.51 0.55 33.68 49.36 23.61 21.28
31 IRL 7.82 3.26 2.23 1.18 41.61 45.37 31.77 29.67
32 LTU 9.37 6.84 7.60 9.58 52.30 48.39 34.76 35.20
33 NZL_NM 4.19 2.56 1.19 0.62 28.92 26.32 33.83 24.42
34 LVA 11.37 10.62 3.57 3.16 73.33 52.25 63.26 43.23
35 SVN 69.32 10.39 4.77 1.93 39.24 26.88 38.29 23.37
36 GBR_NIR 8.21 5.63 1.80 1.40 32.61 27.01 27.84 22.12
37 EST 19.41 16.77 6.06 3.33 85.17 60.33 57.24 39.01
38 LUX 43.12 15.93 6.74 5.62 52.33 48.47 41.13 32.26
39 ISL 19.98 19.28 7.40 7.52 45.16 43.27 44.09 36.76

best performance in each population is reported in bold. From a MSE per-
spective, we observe that, in most of the cases, LC_LCN_Poisson beats the
LC_Poisson, and this evidence appears especially evident for male popula-
tions. In addition, in some of these cases, the improvement produced by
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TABLE 6.

FORECASTING MSES OF THE LC_LCN_POISSON, DEEP5, LCCONV AND
LC_POISSON MODELS ON THE 78 POPULATIONS; FORECASTING PERIOD

2000–2018; MSES VALUES ARE IN 10−4.

Model MSE # Parameters

LC_LCN_Poisson 2.91 2.741
DEEP5 3.05 73.676
LCCONV 2.39 27.120
LC_Poisson 5.19 19.098

LC_LCN_Poisson model results quite large (see e.g., the male populations
of LUX, SVN, SVK, BLG, UKR and others). Many of these countries are
low-population countries since they are located in the bottom of Table 5. This
evidence suggests that LC_LCN_Poisson model could improve the forecasting
in low-population countries whose data are often affected by random fluctua-
tions. On the contrary, in the cases in which the LC_Poisson model beats the
LC_LCN_Poisson model, the difference is often quite limited; the only cases in
which this difference appears significant are the female populations of JPN and
LTU. Analysing theMAPEs, the superiority of the LC_LCN_Poisson over the
LC_Poisson is less evident; the first model beats the second one only in 60% of
the cases. This can be explained by arguing again that the MAPE is more sen-
sitive to errors made in ages with low mortality rates such as the young ages
where the LC_LCN_Poisson is less accurate. The LC_LCN_Poisson beats the
LC_Poisson again in 60/78 populations considering the age range of 55–90.
Also, in the MAPE case, it is evident that the LC_LCN_Poisson produces bet-
ter performances with respect to the LC_Poisson in several low-population
countries such as NZL_NM, LVA, SVN, GBR_NIR, EST, LUX and ISL.
These results suggest that the LC_LCN_Poisson model presents an overall
forecasting performance higher than the other competitors.

We conclude this paragraph comparing the LC_LCN_Poisson and the
LC_Poisson against other well-known NNmodels used for large-scale mortal-
ity forecasting. In particular, we consider the DEEP5 architecture proposed in
Richman and Wüthrich (2021) and the LCCONV model proposed by Perla et
al. (2021). Table 6 lists the forecasting MSE and the number of parameters for
each NN model and the LC_Poisson model. We observe that the performance
of the LC_LCN_Poisson is the second from a forecasting accuracy perspective:
it is more accurate than the DEEP5 and LC_Poisson models but less accurate
than the LCCONV model. However, the LC_LCN_Poisson is the most parsi-
monious model: it presents around 1/10 of the weights of the LCCONVmodel,
1/25 of the weights of the DEEP5 model and around 1/7 of the LC_Poisson.
In conclusion, the LC_LCN_Poisson model presents two important advan-
tages. First, as discussed in Section 4, it is easy to understand as the network
components can be interpreted. Second, the LC_LCN_Poisson model does not
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TABLE 7.

FORECASTING MSES OF THE LC_LCN_POISSON, LC_POISSON,
LC_SVD MODELS ON IHP AND ILP; FORECASTING PERIOD 2000–2018;

MSES VALUES ARE IN 10−4.

LC_LCN_Poisson LC_Poisson LC_SVD

ILP 4.23 7.46 8.97
IHP 1.47 2.74 2.86

modify the time-series part of the LC model and it is therefore possible to
derive interval estimates for the forecast mortality rates.

5.3. Some sensitivity tests

In this section, the LC_LCN_Poisson model is submitted to some sensitivity
checks. First, we analyse the sensitivity of the LC_LCN_Poisson model with
respect to the set of populations considered I. The forecasting performance
should not roughly change when a smaller set of populations is considered.
To this aim, we split the full set of populations I into two subsets, the first
one, IHP, contains the male and female populations the 20 highest population
countries (from 1-20 of Table 5) while the second set, ILP, includes the male
and female populations of the remaining 19 the lowest population countries
such that I = ILP ∪ IHP.

The model LC_LCN_Poisson model is run separately on these two sets, and
the results have been collected in Table 7. Again, the results for the LC_SVD
and LC_Poissonmodels are reported to make comparisons.We observe that in
the high-population countries, all the models produce lower MSEs than that
obtained on the full set I. On the contrary, we observe that the respective
MSEs are significantly higher in the low-population countries. We note that
the LC_LCN_Poisson model still overperforms the two benchmarks in both
cases. Therefore, we conclude that the LC_LCN_Poisson model is competitive
even when smaller populations are considered. Nevertheless, it is reasonable to
believe that the LC_LCN_Poisson model benefits from using as much data as
possible for the training.

In the second part of this section, we investigate how much the
LC_LCN_Poisson model’s results change in the different training attempts.
As highlighted in Section 3, the results of training a NN are somewhat vari-
able, and, therefore, the estimation of the optimal network parameters ψ̂ can
vary between training attempts. This also affects the NN estimations of the LC
parameters which vary themselves between training attempts. In this section,
we investigate the variability of these estimates keeping in mind that a small
variability means that the results produced by the NN model are stable. On
the contrary, a large variability could highlight that the results produced by
the network change significantly between the different training attempts and
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FIGURE 9. Variability in the estimates of
(
a(i)x
)
x
,
(
b(i)x
)
x
and

(
k(i)t
)
t
obtained by the LC_LCN_Poisson

model in 10 training attempts for Italian populations; fitting period 1950–1999.

then they are not stable. To investigate this point, we consider the NN esti-
mations of the LC parameters obtained in the ten different training attempts
of the LC_LCN_Poisson model. Figure 9 represents the full ranges of varia-
tion of the NN estimations of the LC parameters for the Italian populations. It

includes three subplots which refer to the
(
a(i)x
)
x
,
(
b(i)x
)
x
and

(
k(i)t
)
t
parameters

respectively.
Two lines are visualised for each parameter curve; the higher curve repre-

sents the maximum values observed in the different training attempts while
the lower one represents the minimum values. Intuitively, the area between
these two bounds is the range of observed values in the ten different runs. The
graphical elements in blue refer to the male population’s parameters, while
those in red refer to the female population’s ones. Overall, the estimates of the
LC parameters obtained seem to vary not so much. First, we observe that the
maximum and minimum values obtained for the parameters ax for the Italian
populations are almost overlapped. This evidence means that the estimates

obtained in the ten training attempts are almost identical. About the
(
b(i)x
)
x

parameters, we note that the variability appears marginally greater than the
other two parameters for the middle ages. Nonetheless, since the area between
the two curves is very limited in these cases, we can conclude that the esti-
mates obtained via the LC_LCN_Poisson model are stable. A similar evidence
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is visible in the
(
k(i)t
)
t
estimates. It should be remarked that these graphs only

consider the uncertainty due to network training.
In Appendix D, Figures D.1, D.2, D.3 extend this analysis to all the other

populations. Figure D.1 depicts the ranges of the (a(i)x )x estimates for the differ-
ent populations; Figures D.2 and D.3 analyse respectively the estimates (b(i)x )x
and (k(i)t )t.

The findings obtained for the Italian populations appear to work for all
other countries. The estimates obtained for the LC parameters a(i)x and k(i)t
results are not very variable for all the populations considered. The estimates
of the b(i)x result more variables than the other parameters, especially for
low-population countries. However, as shown in Figure D.2, the variability
increases only for some ages and in a marginal way.

6. CONCLUSIONS

This paper proposes a NN approach for calibrating the ILC models of mul-
tiple populations. The parameters of the ILC models are jointly estimated
through a NN that simultaneously processes the mortality data of all popu-
lations. In this way, each individual LC model is calibrated by exploiting all
the available information instead of using a population-specific subset of data
as in the traditional fitting approaches. We experiment with our approach on
the HMD data considering different network architectures and loss functions,
analysing the reasonableness of the parameters estimates and the resulting
forecasting performance. From a forecasting perspective, the numerical results
show that all the network models considered overperform the traditional
LC_SVD, LC_Poisson, RH approach for a large set of populations. The best
performance is obtained from the LC_LCN_Poisson model, which employs
locally connected layers to extract features from the mortality rate curves.
In particular, the forecasting performance of the LC_LCN_Poisson model
results comparable to the DEEP5 model proposed in Richman and Wüthrich
(2021) and marginally poorer than the LCCONV model proposed Perla
et al. (2021). The LC_LCN_Poisson model, in addition, is very efficient from
the number of parameters perspective presents two important advantages.
First, it is easy to understand as the network components can be interpreted.
Second, the LC_LCN_Poisson model does not modify the time-series part of
the LC model, and it is possible to derive interval estimates for the forecast
mortality rates. Numerical experiments also show that, differently from the
traditional fitting schemes, our approach produces smoother estimates of the
age-specific LC parameters curves. This result appears evident for the low-
population countries in which the random fluctuations in mortality rates affect
the LC_SVD and the LC_Poisson estimates. This could also be the case of
annuity portfolios or pension funds’ data often collected considering small
populations (Hunt and Blake, 2017). Interesting effects are also visible in the
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k(i)t estimates which appear more flexible and able better to capture the varia-
tions of the population-specific mortality dynamics. This could allow a more
appropriate measurement of the uncertainty when forecasting is involved.
Furthermore, the numerical experiments performed in the paper also show
that NN architectures based on linear and tanh activation overperform the
ReLU networks similarly to Perla et al. (2021). However, this result depends
on the data and the best activation function could change when a different set
of data is considered. In this sense, the NNs represent flexible modelling tools
since they can analyse the data with linear and/or non-linear transformations.
The activation function should be considered a hyper-parameter to choose on
the basis of the data carefully. Future research will proceed in different direc-
tions. First, we intend to analyse the performance of the proposed model on
other available data sources such as the (USMB) and insurance portfolio’s
data. Second, we will investigate the use of NNs for fitting other stochastic
mortality models. Both the single-population models belonging to the fam-
ily of Generalised Age Period Cohort (GAPC) models (Villegas et al., 2018)
and the multi-population extensions of the LC model such as Li–Lee (Li and
Lee, 2005) and Kleinow (2015) models could be considered. Third, we aim to
explore approaches to derive the confidence interval of the NN estimates LC
parameters. Simulation-based techniques, such as bootstrap, would be difficult
to apply in our setting since NN training is computationally expensive. A pos-
sible alternative would be to use the pinball loss function to train the NN as
suggested in Richman (2021). Finally, we intend to explore the potential of the
proposed large-scale mortality model in actuarial evaluations and longevity
risk management.
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NOTES

1 The dimension qz1 is defined by the number of units in the layer for the FCN networks and
by the value of G for the LCN and CNN networks;

2 It should be noted that (4.11) expresses k̂(i)t,NN for the LC_FCNmodel. This formula must be
suitably modified according to Sections 3.2 and 3.3 when considering the LC_LCN respectively
and LC_CNN models.
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APPENDIX A. DATA DETAILS

TABLE A.1.

LIST OF SELECTED COUNTRIES IN R WITH THE RESPECTIVELY INITIAL AND FINAL YEARS
CONSIDERED.

Country Starting year Final year Country Starting year Final year

1 AUS 1950 2018 21 IRL 1950 2017
2 AUT 1950 2017 22 ISL 1950 2018
3 BEL 1950 2018 23 ISR 1983 2016
4 BGR 1950 2017 24 ITA 1950 2017
5 BLR 1959 2018 25 JPN 1950 2019
6 CAN 1950 2018 26 LTU 1959 2019
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TABLE A.1.

CONTINUED.

Country Starting year Final year Country Starting year Final year

7 CHE 1950 2018 27 LUX 1960 2019
8 CZE 1950 2018 28 LVA 1959 2017
9 DEUTE 1956 2017 29 NLD 1950 2018
10 DEUTW 1956 2017 30 NOR 1950 2018
11 DNK 1950 2019 31 NZL_NM 1950 2008
12 ESP 1950 2018 32 POL 1958 2018
13 EST 1959 2017 33 PRT 1950 2018
14 FIN 1950 2019 34 RUS 1959 2014
15 FRATNP 1950 2018 35 SVK 1950 2017
16 GBRTENW 1950 2018 36 SVN 1983 2017
17 GBR_NIR 1950 2018 37 SWE 1950 2019
18 GBR_SCO 1950 2018 38 TWN 1970 2019
19 GRC 1981 2017 39 UKR 1959 2013
20 HUN 1950 2017 40 USA 1950 2018

APPENDIX B. MODEL SPECIFICATION FOR RESPONSE VARIABLE IN
[0, 1]

Sometimes, machine learning models are developed defining the response vari-
able scaled in [0, 1] by applying the MinMax scaling. In this case, the model in
(4.6) can be rewritten as

̂
log(m(i)

x,t)− ym
yM − ym

= f (a)
(
z(a)I

)
+ f (b)

(
z(b)I

) (
f (k2) ◦ f (k1)

) (
log
(
m(i)
t

))
, (B.1)

where

ym = min
x∈X ,t∈T1,i∈I

log
(
m(i)
x,t

)
yM = max

x∈X ,t∈T1,i∈I
log

(
m(i)
x,t

)
.

The network parameters are calibrated minimising the MSE between the
scaled actual mortality rates and the predicted ones and the corresponding NN
estimates of the LC parameters in the original scale can be computed as

â(i)x,NN = φ(a)
(
ŵ(a)
x,0 +

〈
ŵ(a)
x,R, ẑ(a)R (r)

〉
+
〈
ŵ(a)
x,G , ẑ

(a)
G (g)

〉 )(
yM − ym

)
+ ym, (B.2)

b̂(i)x,NN = φ(b)
(
ŵ(b)
x,0 +

〈
ŵ(b)
x,R, ẑ(b)R (r)

〉
+
〈
ŵ(b)
x,G , ẑ

(b)
G (g)

〉 )
, (B.3)

k̂(i)t,NN = φ(k2)
(
ŵ(k2)
0 +

〈
ŵ(k2), φ(k1)

(
ŵ(k1)
0 + Ŵ (k1) log

(
m(i)
t

) )〉 )(
yM − ym

)
.

(B.4)
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APPENDIX C. KERAS CODE OF THE NEURAL NETWORK MODELS

In this section, we report the keras R code defining the NN architectures used.
A brief description of the key variables is as follows.

The variable act controls the activation function φ(k1) of the k(i)t -subnet. The
activation of the a(i)-subnet and b(i)-subnet is set equal to the linear function
but other alternatives could be considered as covered in the general framework
provided in Section 4. The variable mod_type defines the architectures of the
k(i)t -subnet. It is possible to provide one of the following layers as hidden layer
of the k(i)t -subnet:

• a fully connected layer when mod_type = ’FCN’,
• a 1D locally connected layer when mod_type = ’LCN’,
• a 1D convolutional layer when mod_type = ’CNN’.

The variable q_z controls the size of this hidden layer. For the FCN layer,
it defines the number of units provided in the layer, while for the LCN and the
CNN layers, it controls the size of the output through the stride and the kernel
size G since qz1 = |X |/G= 100/G.

Finally, the variable q_e controls the size of the embeddings qe = q(a)R =
q(a)G = q(b)R = q(b)G in the first two subnets.

Listing 1: Keras code of the NNModels.
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APPENDIX D. ROBUSTNESS OF THE RESULTS
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FIGURE D.1. Variability in the
(
a(i)x
)
x
estimates obtained by the LC_LCN_Poisson model in 10 training attempts for all the populations considered; fitting period

1950–1999; countries are sorted by population size in 2000.
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FIGURE D.2. Variability in the
(
b(i)x
)
x
estimates obtained by the LC_LCN_Poisson model in 10 training attempts for all the populations considered; fitting period

1950–1999; countries are sorted by population size in 2000.
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FIGURE D.3. Variability in the
(
k(i)t
)
t
estimates obtained by the LC_LCN_Poisson model in 10 training attempts for all the populations considered; fitting period

1950–1999; countries are sorted by population size in 2000.
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