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The sum score on a psychological test is, and should continue to be, a tool central in psychometric
practice. This position runs counter to several psychometricians’ belief that the sum score represents a
pre-scientific conception that must be abandoned from psychometrics in favor of latent variables. First,
we reiterate that the sum score stochastically orders the latent variable in a wide variety of much-used
item response models. In fact, item response theory provides a mathematically based justification for the
ordinal use of the sum score. Second, because discussions about the sum score often involve its reliability
and estimation methods as well, we show that, based on very general assumptions, classical test theory
provides a family of lower bounds several of which are close to the true reliability under reasonable
conditions. Finally, we argue that eventually sum scores derive their value from the degree to which they
enable predicting practically relevant events and behaviors. None of our discussion is meant to discredit
modern measurement models; they have their own merits unattainable for classical test theory, but the
latter model provides impressive contributions to psychometrics based on very few assumptions that seem
to have become obscured in the past few decades. Their generality and practical usefulness add to the
accomplishments of more recent approaches.

Key words: classical test theory, factor analysis model, item response theory, latent variable, lower bound
to reliability, network models, reliability, sum score.

Many psychometricians have banned the sum score to psychometrics’ mausoleum, where
it rests among concepts once thought useful but later replaced with alternatives holding greater
promise. Braun & Mislevy (2005) coined the term Intuitive Test Theory for ideas that are useful
at the level of having a sense of how things work but without the up-to-date knowledge of how
phenomena really function. This up-to-date knowledge is part of Scientific Test Theory. On their
list of ten phenomenological primitives or p-prims (diSessa, 1993) is “You Score a Test by
Adding up Scores for Items”. They explain that the sum score misses important information
when tasks are complex requiring several skills and abilities or when one is interested in how
students solve problems rather than whether they solve them correctly. According to Braun and
Mislevy, Scientific Test Theory involves probabilistic models that relate observed responses to
items provided by respondents to unobservable (i.e., latent; the authors SEB) variables that are
more convenient for the assessment of performance on tests and questionnaires. Although they
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do not claim that sum scoring is always inferior to scoring or assessment methods that are more
nuanced, putting it on the list of p-prims includes it in Intuitive Test Theory. Mislevy (personal
communication) notes that the sum score belongs to Intuitive Test Theory when it is used without
scientific justification but that it belongs to Scientific Test Theorywhen scientific arguments justify
this. In this contribution, we provide such arguments at a general level.

After more than a century, many psychometricians are struggling with the sum score as a
quantification of an individual’s performance on a test or a questionnaire and many reject it in
favor latent-variable scores scores implied by item response theory (IRT) models. For example,
Borsboom (2005) has argued that, from a realist perspective on measurement, the sum score can
be understood as a measure of an attribute, such as spatial-orientation ability or extraversion,
only if that attribute acts as a common cause of the item responses that make up the sum score,
which means that, from this perspective, its measurement properties depend implicitly on a latent-
variable model that adequately explains the item responses. Holland and Hoskens 2003 similarly
view inferences based on the sum score in classical test theory (CTT) as a first-order approximation
of the item response theory (IRT) model. Although these lines of thought do not disqualify the use
of sum scores, they do contribute to the view that the use of sum scores constitute a poor man’s
version of psychometrics.

In a more extreme articulation of this idea, McNeish and Wolf (2020a; 2020b) provided a
highly critical account of the sum score; from their point of view, the sum score should simply
be abandoned. Widaman and Revelle (2022) have countered their line of reasoning in defense
of the sum score; also, see McNeish (2023) and Widaman and Revelle (2023) for a continued
discussion. The point of view expressed by McNeish and Wolf (2020a, b), McNeish (2023)
and in similar phrasings by many other authors introduces a second criticism of the sum score,
predominantly voiced in the context of the factor analysis (FA) model. The idea then is that only
if the sum score is represented in a restricted 1-factor model explanation of the item responses
will CTT facilitate the unbiased estimation of sum score reliability, thus introducing reliability
into the discussion about the sum score. Because the critics consider a restricted 1-factor model
unrealistic as an explanation of item responses, they conclude that CTT will fail, and based on
that conclusion they claim reliability estimation must adopt the FA model in versions that explain
the item responses in particular instances.

These two criticisms, which are that the IRT latent variable is superior to the CTT sum
score and that CTT is too restrictive to provide reliability estimation methods unbiased for real
item responses, have made life difficult for the simple sum score, as is witnessed in many recent
publications. In this contribution, we argue that, even though there are certainly cases in which
the uncritical use of sum scores is suboptimal, this does not mean that the sum score is generally
useless. In contrast, we show that the sum score possesses some highly desirable properties and
that, in some instances, it can be superior to more advanced ways of scoring a test (e.g., through
latent-variable models). In addition, we show that, while it is true that the fit of a unidimensional
model (e.g., the 1-factor model) can support the interpretation of test scores, the fit of such amodel
is not necessary for the productive use of sum scores. In arguing this case, we will show that both
objections suffer from critics’ tendency to be dismissive of an older test theoretical model, in this
case, CTT, while they do not subject their preferred models, in our discussion either IRT or FA,
to the same level of scrutiny. In doing so, critics tend to overlook certain results contradicting or
at least mitigating their criticisms, and in the worst case, they may even try to find arguments in
favor of a foregone conclusion, abandonment of the sum score and CTT-based reliability.

In discussing the topic before us, we isolated the two criticisms as central in a discussion on
the sum score and concluded the sum score andCTT need a reappraisal. Hence, in this contribution
we discuss the usefulness of the sum score for ordering peoplewith respect to an attribute scale and
the correct use of CTT for estimating sum-score reliability.We notice two issues in advance. First,
because the psychometric literature has grown so huge and with it the number of critical papers,
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it is hopeless to try discussing all contributions that are related to the two topics we discuss here.
Thus, we limit ourselves to what we consider the most relevant references. Second, psychometrics
is plagued by misunderstandings that cloud, confuse, or even misdirect the discussion about the
sum score. We will touch upon such misunderstandings occasionally and try to identify them, but
we have refrained from an exhaustive discussion.

The structure of this paper is as follows. First, we show that in the IRT context the sum score
in principle can both be used as an approximation or estimate of the latent variable. In addition,
we discuss some first results of using sum scores in network models. Second, we discuss a general
formulation of CTT and argue that it is a general theory of measurement error or noise. Unlike IRT
and FAmodels and contrary to popular belief, CTT does not restrict the dimensionality of the test
and can be used in situations where the items do not measure the same attribute. Acknowledging
its limitations, we will also point out the elegance of CTT and the lower-bound methods for
reliability estimation it provides in such cases. Finally, we provide a few take-home messages in
the Discussion section. Throughout, we focus on standard tests where each person receives the
same set of items and we refrain from larger-scale testing programs involving equating of various
scales and adaptive testing.

1. The Sum Score and the Latent Variable: Two Sides of the Same Coin?

In this section, we discuss the relation between the sum score and the latent variable as we
know it from IRT. CTT and IRT are the main current psychometric theories that are used to
construct and analyze psychological and educational tests. Both utilize the sum score, but they do
so in different ways. In the current section, we examine the relation between these theories and
the role the sum score plays in each of them. We will assume that the reader is familiar with both
CTT and IRT, but because we noticed that knowledge of CTT in general is subject to wear and
tear, later we will discuss CTT in more detail, thus justifying the reliability results that often give
cause to discussion.

1.1. The Sum Score and the Latent Variable in IRT

A test consists of J items. Items are indexed j , so that j = 1, · · · , J . The score on an item
is denoted X j . For reasons of simplicity, we assume that integer item scores run from 0 to m; if
m = 1, then the item is dichotomously scored, and if m > 1, then it is polytomously scored. The
sum score is defined as

X+ =
J∑

j=1

X j .

Here, we need a few definitions in the context of CTT, anticipating a deeper discussion of CTT
in the next section. At the level of items, we define the CTT decomposition,

X j = Tj + E j ,

where score component E j correlates 0 with the score component Tj , as well as with the score
components Ek and Tk of all other items in the test. So, in addition to the definition of the sum
score we define the true score of the sum score as

T+ =
J∑

j=1

Tj .
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Score components E j are typically interpreted as random measurement errors. It is important
noticing that although item true scores are specific to the item, this does not preclude that some
or even all items measure the same attribute. At the other extreme, each item may measure a
completely different attribute. While this circumstance may be considered unlikely in practical
test construction, where researchers aim at a set of items that measure a common attribute, it is
important to note that CTT does not assume or require this. CTT allows for every possibility.

Test scores, as used in practice when all persons receive the same items, are typically trans-
formations of the sum score. Such transformations may take many forms, such as (normalized)
standard scores, stanines, percentiles, and IQ-scores. Because the sum score, often called the raw
score as well, is usually at the basis of test scores, we focus on the sum score without loss of
generality of the conclusions we draw, ignoring possible exceptions which will not undermine
the points we wish to make. The sum score has a long history going back at least to Binet and
Simon (1905). For a long time, even until today, its reliability and validity have been subject
of investigation, where CTT is vital for reliability estimation and together with a wide array of
multivariate methods, mostly regression modeling and factor analysis, also for validity research.

Dating back to the 1930s (Richardson, 1936) , 1940s (e.g., Brogden, 1946; Ferguson, 1942;
Finney, 1944; Lawley, 1943) and 1950s (e.g., Lord, 1952; Cronbach & Warrington, 1952), IRT
started flourishing in the 1960s and 1970s and gained an increasing popularity since the 1980s in
psychometrics where it pushed aside CTT. In the practice of test and questionnaire construction
outside large educational testing organizations like Educational Testing Service, this effect was
less pronounced; here, CTT and the accessible sum score held their dominant position for a
long time until today. Psychometricians appreciated IRT’s improvements to CTT, a circumstance
Lord (1980) confirmed in his seminal book but with the caveat (ibid., p. 7) that “nothing in this
book will contradict either the assumptions or basic conclusions of classical test theory,” a truth
ignored regularly in much of psychometrics. What precisely are these improvements? We think
an important improvement relative to CTT was that IRT added restrictions on the dimensionality
of the test score. In this sense, IRT is comparable to modern versions of FA (e.g., Bollen, 1989).
In both models, the score for item j is a function of one or more latent variables that the whole
set of J items share.

IRT models are nonlinear. For example, for the unidimensional 2-parameter logistic model
for dichotomous items (e.g., correct/incorrect or 1/0 scoring), the score on item j is modeled by
the increasing item response function,

P
(
X j = 1 | θ) = exp[α j (θ−δ j )]

1 + exp[α j (θ−δ j )] ,

with θ being the latent variable common to the J items, α j the slope or discrimination parameter,
and δ j the location or difficulty parameter. Many different IRT models have been proposed for
dichotomous itemscores andpolytomous itemscores, unidimensional andmultidimensional latent
structures, different mathematical response functions, parameter decompositions, and various
other possibilities; see Van der Linden andHambleton (1997), Van der Linden (2016), and Sijtsma
and Van der Ark (2021) for extensive overviews.

Considering IRT models, it is understandable why they appealed more to psychometricians
than CTT—because of their greater complexity, they provide more possibilities for instrument
construction than CTT alone does. It is interesting that monotone unidimensional IRT models
like the 2-parameter logistic model, restrict the correlations between the J items to be positive
(Holland & Rosenbaum, 1986; Ligtvoet, 2022) whereas CTT does not imply this restriction due
to the absence of dimensionality restrictions; recall that each item is allowed to have its unique
true score. CTT has no dimensionality restrictions, but on the other hand, it does not exclude
dimensionality restrictions either. Thus, CTT contains models with dimensionality restrictions as
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special cases, a situation that readily invites confusion as we will see when we discuss reliability
in the next section.

Anearly IRTmodel that gainedmuchpopularity in the 1960s to 1980s inAustralia andEurope
and less in the USAwas the 1-parameter logistic model or Rasch model (Rasch, 1960, 1968). The
defining characteristic of the model is that the sum score X+ is a minimally sufficient statistic
for the estimation of the one common latent variable the Rasch model assumes. In nonstatistical
terms, this means that the sum score contains all the information needed for estimating the latent
variable and that one can ignore which items a person succeeded or failed. This important property
should give any critic of the sum score pause for thought.

In fact, Fischer (1974, 1995) derived the Raschmodel from the assumption that the sum score
X+ should be sufficient for the estimation of θ , togetherwith the assumptions of unidimensionality
(one latent variable θ), conditional independence (the J marginal item-score distributions given
θ imply the joint distribution given θ), and monotonicity (the higher θ , the higher the probability
of obtaining a score of 1—correct or affirmative response—on the item), and differentiable item
response functions with range (0, 1). Under these assumptions, the item response function which
defines the Rasch model for item j can be derived to equal,

P
(
X j = 1 | θ) = exp(θ − δ j )

1 + exp(θ − δ j )
,

and is monotonically increasing in latent variable θ . Inserting α j = 1 in the equation for the
2-parameter logistic model yields the equation for the Rasch model.

Since E(X j |θ) = P
(
X j = 1 | θ)

, we alternatively define the true score on item j as

Tj (i) = E(X j |θ = θi ) = P
(
X j = 1 | θ = θi

)
.

For a randomly selected θ value, the true score on item j is denoted Tj . The test response function
is defined as the sum of the item true scores, so that,

T+ =
∑J

j=1
Tj .

Figure 1 shows a test response function for a J -item test based on the 2-parameter logistic model.
Because each item response function is monotonically increasing, the relationship between latent
variable θ and true sum score T+ is also monotonically increasing. Moreover, depending on the
choice of the item parameters, the test response function approximates linearity in the middle of
the θ distribution, while nonlinearities appear in the tails of the distribution. One can manipulate
the location of the items to produce test response functions that deviate more from linearity, but
these choices are not typically encountered with real items. Here, what matters especially is that
the latent variable and the true sum score are monotonically related under the assumption that the
latent-variable model holds, a result that generalizes to other monotone IRT models as well, for
both dichotomous and polytomous item scores (Sijtsma & Van der Ark, 2021).

Given the monotone relationship between the latent variable and the true sum score, it is
surprising how little attention psychometricians studying the Rasch model granted the true sum
score and its estimate, the sum score, a circumstance applying to IRT theorists in general. The
minimal sufficiency property of the sum score in the Rasch model rather played a role as a
steppingstone to the more appreciated latent variable and its statistically well-founded estimate,
which left no room for the true sum score and its estimate, the sum score. However, Fig. 1 already
hints at the close relationship between the latent variable and CTT’s true sum score, suggesting
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Figure 1.
Test response function for a J -item test based on the 2-parameter logistic model.

the difference may not be that great and even raising the issue whether one should prefer a
less well interpretable latent-variable estimate to a true sum-score estimate—the sum score—that
researchers and laypeople experience as less alienating and better suited for communication of test
results (Hemker, 2023) . Clearly, a psychometrician who appreciates IRT need not be dismissive
of the sum score. Instead, one can view the IRT model as furnishing an important justification
for the use of the sum score, because if the IRT model holds, we know that the sum score has the
important property of being monotonically related to the latent variable. This property remains
true for item subsets and equivalently, different item sets constituting different scales but each
measuring the same attribute.

For a long time, it appeared as if the sum score could only be used if a Rasch model holds,
because the sufficiency property does not typically apply to other IRTmodels. As a result, because
the restrictive Rasch model rarely fits item response data adequately, many psychometricians
abandoned the Rasch model (or never supported it) in favor of more flexible IRT models such as
the 2- and 3-parameter logistic models (Birnbaum, 1968) and their normal-ogive versions (Lord,
1952, 1980). The same is true of the polytomous-item Rasch model and more flexible models for
polytomous items. Since then, the number of IRT models grew at an astonishing speed (e.g., Van
der Linden & Hambleton, 1997; Van der Linden, 2016; Sijtsma & Van der Ark, 2021). The sum
score lost ground quickly, and its decline was not interrupted by a paper (Grayson, 1988) that
might have opened some eyes were it not that it was largely ignored.

1.2. General IRT and the Sum Score

The value of Grayson’s (Grayson, 1988; also, see Hemker et al., 1996, 1997; Huynh, 1994;
Junker, 1993; Unlü, 2008; Van der Ark, 2005; Van der Ark & Bergsma, 2010) contribution is
considerable: Grayson proved that for binary items, under milder assumptions than those of the
Rasch model, the 2- and 3-parameter logistic models, and less restrictive models, the sum score
and the latent variable have monotone likelihood ratio. This means that for all x+1, x+2 with
0 ≤ x+1 < x+2 ≤ J , the ratio P(X+ = x+2 | θ) /P(X+ = x+1|θ) is a nondecreasing function of
θ . Hemker et al. (1996) pointed out that this implies that the posterior distributions of the latent
variable given the sum score are consistently ordered in the sense that P(θ ≤ t |X+) is decreasing
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in X+ for each t in the range of θ . Hemker et al. (1997) call this property stochastic ordering of
the latent variable (SOL). We focus on this property in this section because it is easier to interpret
than the stronger monotone likelihood property. Importantly, this established that highly favorable
measurement properties of the sum score are not limited to the Rasch model but generalize to
many other models in the IRT family.

Stochastic ordering refers to a property of cumulative distributions, but we start with the
implication for latent variablemeans that, when conditioned on the sum score, these latent variable
means increase as the sum score increases. Therefore, the discrete sum score can be viewed as
a robust ordinal approximation of the continuous latent variable. Thus, Grayson provided a new
raison d’être for the sum score, now based on IRT assumptions, and not simply assumed as in
CTT. To enhance its recognition, we will discuss the stochastic ordering property differently from
the mathematical treatments given in the relevant literature. Figure1 may help to attain our goal
but first we notice that it is based on the assumptions of unidimensionality (one latent variable θ),
conditional independence (of the joint distribution of the items given θ), and monotonicity (item
response functions nondecreasing in θ), but not on the sufficiency of the sum score X+ for the
estimation of θ , which is the fourth assumption of the Rasch model. Item response functions thus
can have any functional formprovided that the function ismonotone,meaning that it does not show
any local decreases. This model is known in the psychometric literature under various names (e.g.,
Ellis & Sijtsma, 2023). We use the name of monotone homogeneity model (Sijtsma &Molenaar,
2002) , because under this name the model has been used the most for scale construction.

The 2- and 3-parameter logisticmodels, their normal-ogive versions, and othermonotone uni-
dimensional IRTmodels havingmore item parameters are all special cases of themonotone homo-
geneity model. Because the monotone homogeneity model formulation involving P(X j = 1|θ)

only restricts this response function ordinally but does not define a parametric monotone function
including parameters that might be estimated from themodel’s likelihood or via a Bayesian proce-
dure, it does not enable numerical estimation of θ from the data. Instead, for the special case of the
2-parameter logistic model, chosen only because it facilitates computation, Fig. 2 shows a pattern
that is generally correct for the monotone homogeneity model and all its special cases. (The figure
is based on J = 25, location parameters between −2 and 2, slope parameters between 0.1 and
2.5, and θ ∼ N (0, 1) with 100,000 random draws, and shows the conditional distributions of θ

given sum score X+, f (θ |X+).)
The fascinating observation concerning the pattern is that as the sum score increases, the

conditional distribution of the latent variable, f(θ |X+), moves up and it does this in a most
interesting way, but first we notice that the means of the distributions also increase. For the
population case, we consider two realizations of X+ and call them x+v and x+w, and assume
arbitrarily that 0 ≤ x+v < x+w ≤ J . Then,

E(θ |X+ = x+v) ≤ E(θ |X+ = x+w), all x+v < x+w,

and Fig. 2 shows the result for a large sample approximating the population. The meaning of this
result may not be immediately clear. It is that if we divide the population into subpopulations
each having the same sum score X+ and then order them by increasing sum score, we have also
ordered them by increasing mean latent variable in the homogeneous sum-score subpopulations.
The meaning is that the regression of θ on X+ is monotone increasing, which complements the
earlier conclusion that the regression of X+ on θ is monotonically increasing (the test response
function of Fig. 1).

Thus, the monotone homogeneity model implies that the sum-score ordering and the ordering
by mean latent-variable score are equal except for random error in the sum score, and that sum
scores yield consistently ordered posterior distributions of the latent variable. It is worthwhile
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Figure 2.
Distribution of latent variable θ conditional on sum score X+ assuming the 2-parameter logistic model.

realizing this is true even if one cannot estimate the latent variable: The latent variable itself
remains unknown but ordering groups that are homogeneous with respect to the sum score by the
sum score guarantees ordering by mean latent variable. Like the latent variable, the true score is
continuous but its estimate, the sum score is discrete. Figure1 shows the test response function and
by interchanging the two axes we have the inverse relationship mapping the true score (abscissa)
on the latent variable (ordinate). The point is that the relationship is a monotone curve without
scatter representing a conditional distribution. Figure2 shows that replacing the true score on the
abscissa with the coarser sum score implies that the monotone curve relating true score and latent
variable is replaced with J + 1 conditional distributions of which the means are increasing with
the sum score.

Returning to the conditional distributions in Fig. 2 and wondering what is special about their
ordering, we must consider the cumulative distributions, F(θ |X+), or better, the complementary
cumulative distribution, 1 − F(θ | X+) = P(θ > t |X+), where t is a realization of θ . Figure3
shows these complementary cumulative distributions corresponding to the conditional distribu-
tions in Fig. 2. What they show is the property of SOL (Hemker et al., 1997),

P(θ > t |X+ = x+v) ≤ P(θ > t |X+ = x+w), all t, all x+v < x+w.

What does SOLmean? Figure3 shows the 26 complementary cumulative distributions, F(θ |X+),
corresponding to the distributions f(θ |X+) in Fig. 2. We see that SOL means that the comple-
mentary cumulative distributions shift to the right as sum score X+ increases, even though their
shape may change somewhat but never enough to force intersecting curves. Hence, SOL means
that as the sum score X+ increases, more fixed latent variable scores θ from f(θ |X+) exceed a
fixed value θ = t ; not just one t-value but any t-value! For a fixed sum score X+, the proportion
P(θ > t |X+) decreases as t increases. Another way of expressing the latter result is that a higher
bar t makes it more difficult to jump over it so that a smaller proportion of the subgroup with
fixed X+ succeeds.
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Figure 3.
The 26 complementary cumulative distributions, F(θ |X+), corresponding to the distributions f (θ |X+) in Fig. 2. Based
on N = 106 to have sufficient precision.

This result is just what one would expect of the sum score, and it should be reassuring
to psychometricians and researchers that by using IRT models they can justify the use of the
intuitively so much more appealing and transparent sum score.

The theory-based, confirmatory approach justifying a monotone unidimensional measure-
ment model implies that an acceptable fit of the monotone homogeneity model or more specific
IRT models to the data facilitates ordering people according to their sum scores, which in turn
implies ordering them according to the mean latent variable in the sum-score group, but without
the necessity of estimating the latent variable.

The reader might tend to believe that an estimator of θ that is optimized according to some
explicit statistical criterion, such as a maximum likelihood estimator, is always superior to the
“one size fits all” simple sum score, since the latter does not fully capitalize on the information
in the data. However, in the derivation of the optimization it is usually assumed that the item
response functions are completely known. That is, the shapes of the item response functions
should be completely specified (e.g., logistic), and the specification should be entirely correct
while the item parameters should be known exactly. We do not know of a realistic situation in
which these requirements are satisfied. Even if themodel is correctly specified, the itemparameters
are always estimated from a finite sample, and therefore not known exactly. Therefore, we expect
that the presumed superiority of formal estimators of θ may fail if the item response functions are
incorrectly specified or if the sample size is small.

We studied the latter situation using a simulation study in which we generated data using
the 2-parameter logistic model, computed the sum score X+ for each person, and estimated the
latent variable θ using weighted maximum likelihood (WML; Warm, 1989; software package
mirt, Chalmers, 2012) resulting in θ̂ , repeated the procedure 100 times, and for each data set
computed the correlations r1 = r(X+, θ) and r2 = r(θ̂ , θ). We compared r1 with r2 to determine
whether X+ or θ̂ was the better predictor of θ . The choice of true θ as the criterion to be predicted
maximally favors estimate θ̂ and puts X+ at a disadvantage; thus, we used the criterion that favors
the opponents of our claim that the sum score wins. We studied this for various ranges of item

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 10:33:56, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


KLAAS SIJTSMA ET AL. 93

parameters, sample sizes, test lengths, and model misspecifications. In many cases, we found that
X+ was superior to θ̂ in the sense that r1 > r2 in most of the samples. Specifically, in some cases
r1 was somewhat larger than r2 but in other cases, θ̂ (r2) never blew away X+ (r1) as a predictor
of θ , as one might have expected. For violations of logistic item response functions, for various
sample sizes and test lengths, we often found r1 > r2 with quite large mean differences. Appendix
A gives detailed results.

Two additional comments with respect to SOL are the following. First, for polytomous-item
IRT models, ordering properties such as SOL do not hold analytically (Hemker et al., 1997),
but Van der Ark (2005) provided mitigating circumstances by demonstrating, by means of data
simulated with a variety of IRT models for polytomous items, that ordering persons by means
of their sum scores usually results in an ordering by latent-variable scores that either reflects the
correct ordering (in most cases) or only shows minor deviations concerning (nearly) neighboring
scores, so that no grave ordering errors are made. In addition, Van der Ark and Bergsma (2010)
proved analytically that, for a wide range of polytomous-item IRT models, a weaker ordering
property than SOL holds for a division of the total group into two subgroups, one containing only
lower sum scores and the other only higher sum score (e.g., defined by X+ ≤ x+ and X+ > x+).
Ligtvoet (2022b) showed that the sum score stochastically orders the factor in the linear normal
1-factor model.

Second, Stout (1990, p. 309, theorem 3.2) proved ordering properties for an IRTmodel based
on assumptions that are even weaker than those on which the monotone homogeneity model
is based and of which almost all unidimensional parametric IRT models are special cases. He
proved that his model of essential unidimensionality for dichotomously scored items enables that
“the number correct score consistently estimates ability on the latent true score scale” (Stout,
2002, p. 491). In this quote, total test score and number correct score are equivalent with the
sum score. The latent true-score scale refers to the mean of the sum of the response probabilities,∑J

j=1 P
(
X j = 1 | θ)

/J , which we recognize as the test response function (Fig. 1) and which
is nondecreasing in θ , with the difference with previous models that individual item response
functions may be nonmonotone. Now assume that the test response function is strictly increasing
and that its derivative exists and is bounded away from0 ( (Stout used a slightlyweaker assumption
than this, but the difference is not important here). The consistency Stout described means that if
we set X̄ J = ∑J

j=1 X j/J and T̄J (θ) = ∑J
j=1 P

(
X j = 1 | θ)

/J and T̄−1
J is the inverse of T̄J ,

then T̄−1
J (X̄ J ) converges in probability to θ . That is, if the sum score is properly transformed,

then the transformed sum score goes to θ . It is customary to assume a continuous distribution for
θ , and since ordinal scale transformations are admissible in this model, we may choose a scale
version of θ that has a uniform distribution on (0, 100). With this scale of θ , our interpretation
of Stout’s theorem is that under said conditions of essential unidimensionality and derivatives
bounded away from zero, the percentile ranks of the sum score converge to θ.We call this ordinal
consistency of the sum score. We refrain from discussing other relaxations of assumptions of the
monotone homogeneity model.

Stouts’ result is remarkable because it is obtained under a general class of IRT models which
do not even need to be unidimensional and conditionally independent, and have a mean item
response function—a test response function—that is monotone without imposing monotonicity
on individual item response functions, while including 1-, 2-, and 3-parameter logistic and normal-
ogive models as well as nonparametric models assuming monotone functions that may or may
not intersect. Junker (1991) generalized the result of Stout to items with polytomous scores.

We conclude that “You Score a Test by Adding up Scores for Items” may have been intuitive
at the start of psychometrics more than a century ago but also note that, if based on intuition, it
proved a highly fortunate hunch that has been substantiated through a century of psychometric
theory formation. The sum score is not just a poor man’s test score but provides a defensible
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ordinal approximation of the latent variable under surprisingly general conditions. This claim is
supported by investigations concerning a wide range of IRT models, in each of which the sum
score stochastically orders the latent variable (or closely approximates the stochastic ordering)
defined in these models. This gives the sum score a solid mathematical basis and justifies its use
in measurement practices. In an even wider range of essentially unidimensional IRT models, the
sum score is a consistent ordinal estimator of the latent variable, as explained previously.

1.3. Network Models and the Sum Score

Both CTT and IRT have traditionally been developed and applied in situations in which
researchers think of psychometric attributes such as intelligence, depression, or attitudes as latent
attributes that determine people’s responses to specific items, such that the latent variable in
an IRT model plays the role of a common cause of the item responses (e.g., see Bollen, 1989;
Bollen & Pearl, 2013; Van Bork, Rhemtulla, Sijtsma, & Borsboom, 2022). While such a causal
interpretation should not be seen as part of the statistical axioms that characterize the model, it
does provide a sensible reason for using it: If one believes that the item responses depend on the
same psychological attribute, then it makes sense to test that hypothesis with a latent-variable
model, and if that model is adequate this provides a justification for the interpretation of the test
score as an estimate of the latent variable.

However, analyses of psychological attributes like general intelligence (van der Maas et al.,
2006), depression (Cramer et al., 2016) , and attitudes (Dalege et al., 2016) have suggested
an alternative point of view, in which the correlation between observables arises from direct
causal interactions in a complex system. For instance, in the case of depression, symptoms like
insomnia, fatigue, and concentration problems may at least in part result from direct interactions
(e.g., insomnia can lead to fatigue and concentration problems) rather than from a dependence
on a common latent variable (Borsboom & Cramer 2013). In such cases, network models have
been proposed as an alternative psychometric representation of the relation between constructs
and observables (Marsman & Rhemtulla, 2022) .

An interesting question is what the status of the sum score is in such models. One possible
way of addressing this issue is by examining the use of sum scores in models taken from statistical
mechanics, such as the Ising model (Marsman et al., 2017). Such models concern the question
how a conglomerate of interacting components (in this case, particles) behaves at the macro-level;
for instance, how does magnetism arise from interactions between ferromagnetic particles and
how does pressure arise from collisions between the atoms that make up a gas. In such cases, it
turns out that the average state of the components of the system is routinely used to approximate
the global behavior of the model as a first-order (i.e., the mean-field approximation; Finnemann,
Borsboom, Epskamp, & Van der Maas, 2021). Of course, for a system of a given number of
components, the average state of the components is a linear transformation of the sum score. This
suggests that the sum score may be useful for tracking the global behavior of a network (Van
Bork, Lunansky, & Borsboom, 2024).

In such cases, the sum score need not be interpreted as a measurement of a latent variable.
Alternatively, it can be thought of as an index, which can be used to assess the overall state of the
system (Van der Maas, Kan, & Borsboom, 2014). Such indices are used throughout the sciences.
Outside of psychometrics, for instance, similar applications are the so-called AEX index, which
expresses the value of the total Amsterdam Stock Exchange based on the stocks of the 25 biggest
companies freely available for trading, and the h-index (Hirsch, 2005) expressing a researcher’s
productivity in combination with impact. Although not based on IRT or other models, a large
array of validated psychological tests derive their usefulness from their ability to track or predict
other indices or behaviors considered useful from a practical rather than a psychometric point of
view, by using the sum score.
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To illustrate this point, we can investigate how the use of the sum score would fare in the
well-known Ising model (Ising, 1925). In the Ising model, the behavior of a system is modeled
as a function of symmetric pairwise interactions between its components, which can be in one
of two states (e.g., 0 or 1). These interactions are commonly represented in a network, in which
each component is a node, and each interaction is an edge. Each of the J components follows
a probability distribution which is controlled by two factors: the autonomous tendency of the
state variable Xj for component j to take the value 1 (known as a threshold τ j ) and the state of
other components to which j is connected through a set of interaction parameters (known as edge
weights ω jk that represent the strength of the interaction between nodes j and k).

The configuration of the states of all components defines a random vector X, taking on
values x. The Ising model then represents the probability of any configuration X = x, given a
vector of thresholds τ and a matrix of edge weights ω, as:

P(X = x | τ,ω) = exp(−βH (x))
Z

.

In this equation, β is a so-called temperature parameter that controls how much randomness the
system exhibits. In the present context, this parameter does not matter, and we can set it to unity
without loss of generality. Z acts as a normalizing constant, as it equals the sum of the values
−βH (x) over all configurations (Finnemann et al., 2021). The second summation, < j, k >, is
across all combinations of j and k, with j �= k. The function H (x) is known as the Hamiltonian
and has the form,

H(x) = −
∑

j

τ j x j −
∑

< j,k>

ω jk x j xk .

Because the Ising model generates a distribution over all states x, it also generates a distribution of
the sum score variable X+. The summation, x→x+, is across all vectors x of which the elements
sum to x+. This distribution has the form:

P(X+ = x+|τ,ω) =
∑

x→x+
P(X = x | τ,ω) .

Thus, the probability of observing a given sum score equals the sum of the probabilities of the
network states that produce this sum score.

This type of system may be taken to characterize the network of an individual person i .
Similar to CTT, that person would thus be characterized by a probability distribution of the sum
score as given above (cf. a propensity distribution; Lord & Novick, 1968, 1974). Any observation
of the system, which can be conceptualized as a sample from the distribution, constitutes an
observed sum score. Analogous to the CTT setup, for the individual we may then break up this
sum score into a true network score for person i , which we may take to equal E(X+|person = i),
and a random component, which we may define as X (i)

+ − E(X+|person = i). This is exactly
parallel to the setup in Lord andNovick (1968, 1974) but note that the individual components need
not correspond to any IRT model. Although there generally will be some statistically equivalent
multidimensional IRT model (Epskamp et al., 2016; Marsman et al., 2018) that describes the
system, the interaction matrix of edge weights may feature zeros (conditional independencies),
negative entries (violations of positivity), and clustering (violations of unidimensionality).

Now suppose that individuals differ in the structure and parameterization of their networks.
We may, for instance, imagine a small attitude network (Dalege et al., 2016) representing the
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Figure 4.
Results of the network simulation. Different network structures are generated for each individual, after which the implied
distribution of the sumscore for these networks is determined (left andmiddle panel). The expected value of this distribution
characterizes the expected overall state of the network. The statistical relation between the expected overall states and
observed sum scores suggests a stochastic ordering relation (right panel).

attitude toward, say, organ donation. Suppose the network contains three nodes that represent a
cognitive state (e.g., “organ donation is useful”), an affective state (e.g., “organ donation is scary”),
and a motivational state (e.g., “I want to be a donor”). Individuals may differ in the tendency of
these nodes to take a value (e.g., John may be an apprehensive person who finds things scary,
while Mary is not easily scared, representing a different threshold τ for the affective node) and
the tendency of the nodes to align (e.g., John’s affective node may have a stronger influence on his
behavior than Mary’s, representing a stronger interaction parameter ω between the affective and
behavioral nodes). Given such individual differences in network structure, there will be individual
differences in the true network score.We can take this true network score to represent the expected
overall state of the system, and this may be a plausible target for measurement in a network context
(VanBork et al., 2024).Of course, on any specific assessment occasion,we only obtain an observed
sum score. Hence, as in CTT and IRT, we can now ask the question: How well will the observed
total score track the true network score in this context?

Although a detailed mathematical investigation of this question is beyond the scope of this
discussion, a tentative simulation study suggests that the correspondence between the expected
overall state and the observed sum score may be considerable. We simulated N = 500 network
structures of 10 nodes, with parameters for each network randomly drawn for each individual
(see Appendix B for details). We then calculated the expected overall state for each person and
simulated a single measurement occasion to obtain an observed sum score. Finally, we assessed
the distributions of the expected overall states for each of the levels of the sum score. Results, as
displayed in Fig. 4, show that in this case the ordering of the expected overall state by the sum
score on the test resembles results obtained in the earlier IRT case.

Thus, some preliminary results, however modest and speculative, suggest that in complex
networks, as in IRT, the sum score can be useful to assess the expected overall state of the network.
Note that this is the case even though the individual networks nor the individual differences on
the items should be expected to satisfy the axioms of the monotone homogeneity model. Further
investigation is necessary to establish the precise psychometric properties of the sum score in

Downloaded from https://www.cambridge.org/core. 06 Feb 2025 at 10:33:56, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


KLAAS SIJTSMA ET AL. 97

network models. The simulation study suggests that in the assessment of psychological attributes,
which are governed by a network structure rather than a latent variable, the sum score may play
an important psychometric role.

1.4. Sum Score in Retrospect

When it comes to the sheer ordering of persons, given amonotone unidimensional IRTmodel,
one might very well use the sum score X+ as the estimated latent variable θ̂ , where the sum score
seems to be amore robust ordinal estimator of the true ordering on θ than theWML estimate θ̂ . For
dichotomous item scores, the results are theoretically solid, and for polytomous item scores the
results hold by approximation. In addition, the expected overall state of network constructs may
also be assessed using sum scores. The fact that the sum score, by many psychometricians banned
to the museum of psychometric history, is such a relevant alternative for the latent variable, if
only for its simplicity and accessibility, raises the question why this ban could happen. Historical
developments are difficult to explain, and speculation lurks around every corner. Could it be that
the temptation of what is new blinds people for the merit of what exists and is available? We do
not know for certain.

We are not saying that IRT models, other latent-variable models, or network models, must
make way for the good old sum score, but rather that it would be a mistake to ban this simple
performance measure in the presence of the proof of its usefulness. A simple explanation for the
blind spot psychometrics seems to have for themerits of the sum score is that the papers discussing
theoretical results are rather impenetrable due to their high math density, presumably clouding
their results and what they mean. The simple fact is this. IRT provides the theoretical basis for
the sum score that CTT does not give, CTT restricting itself to measurement by fiat (Torgerson,
1958). What CTT did right, however, is provide a solid theoretical framework for determining the
degree to which test scores, in fact any scores, are influenced by random error. As we will see,
this has not withheld part of psychometrics to be highly critical of the merits of CTT.

2. The Sum Score and Reliability: A Relationship Made Confusing

We enter a field where the misunderstandings about what CTT is and what it accomplished
are ubiquitous. We will discuss them at the end of this section. In addition, CTT seems to be
incompletely or even incorrectly understood, a problem that stands apart from the misunderstand-
ings but is of course serious and worrisome. Thus, we will start this section by defining CTT,
followed by a discussion of the relation between CTT and the FAmodel, mainly because criticism
on CTT and its reliability methods mainly come from that direction.

2.1. Classical Test Theory Unchained and Revitalized

Since CTT has developed starting from the late 1800s (Edgeworth, 1888) , different defini-
tions of true scores and error scores have been associated with it. This has created several versions
of CTT, based on assumptions ranging from weak to highly restrictive. The restricted versions
impose limitations on results derived from CTT, especially with respect to sum-score reliability.
These restricted CTT versions have become the center of attention in the previous few decades,
conveying the incorrect impression that CTT and CTT-based reliability are too restrictive to be of
much practical use andmust be replacedwith alternativemodels andmethods. One such nowadays
popular alternative is the FA approach to reliability. Here, using the seminal book by Lord and
Novick (1968, 1974) as the primary source, we take the opposite approach. Instead of presuming
a latent-variable model in the background, we present a maximally unrestricted version of CTT
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and show how it can be used as a generic theory of measurement error that can be of use in the
absence of the restrictions typically imposed by IRT and FA.

In several treatments of CTT, the true score is defined based on a model that explains how
observable scores on items and tests are generated from population distributions. Lord andNovick
(1968, 1974, chap. 2) discuss three suchmodels but also notice that these score-generating models
are not needed to formulate CTT and derive its results. We align with their conclusion and
formulate a modern version of CTT with as few restrictions as possible, thus ignoring a score-
generatingmodel, that also includes the relation between reliability and thewell-known coefficient
α (Cronbach, 1951) as well as other lower-bound methods of approximating reliability. The
important thing to note here is not the conclusion, but the fact that we are able to derive the relation
in the absence of prior assumptions of the appropriateness or fit of a latent-variable model.

Our approach is based on Ellis (2021), who argues that multiple true score variables may
exist for the same observable variable. We propose the following definitions, adapted from Ellis
(2021, p. 873):

Definition 1. Consider a vector of random variables X = (X1, · · · , X J ) with finite second
moments. A set of random variablesT = (T1, · · · , TJ )with finite secondmoments is called a true
score representation ofX if the variable vectorE = (E1, · · · , EJ ) defined byE = X−T satisfies
covariance σ

(
E j , Tk

) = 0 for all j, k = 1, · · · , J . The variables in X are called observable
scores, the variables in T are called true scores, and the variables inE are called error scores. CTT
is the study of relations between these variables.

Note that we do not commit to a particular specification of the nature of the observed, true,
and error scores. For example, we do not assume that the true score is defined as a long run
frequency, as in Lazarsfeld’s (1959) thought experiment in which a person is brainwashed in
between test administrations to generate a long run frequency of test scores that underpins the
person’s propensity distribution (Borsboom,Mellenbergh, &VanHeerden, 2004; Lord&Novick,
1968, 1974). While such an interpretation is consistent with the formal CTT assumptions, other
interpretations that are consistent with the relevant relations between true and observed scores
might be better defensible (see e.g., Rozeboom, 1966, and Van Bork et al., 2022, for some
alternatives).

We will furthermore use the following definition:

Definition 2. Wesay that the errors are uncorrelated ifσ
(
E j , Ek

)=0 for all j, k=1,· · ·, J ; j �=k.

We continue using the definitions of the observable sum score and the true score of the sum score
we introduced previously (i.e., X+ = ∑J

j=1 X j and T+ = ∑J
j=1 Tj ), and define the reliability of

the observable sum score as the ratio of true and observed score variances, with variance denoted
as σ 2, so that,

ρX+ = σ 2(T+)

σ 2(X+)
= 1 − σ 2(E+)

σ 2(X+)
.

Finally, as an example of a method that approximates the reliability, we define coefficient α as

α = J

J − 1

(
1 −

∑J
j=1 σ 2(X j )

σ 2(X+)

)
.

Importantly, reliability depends on the variance of true scores, which is unobservable. In contrast,
coefficient α is a direct function of the observed variables. If α approximates ρX+ , the question
is how they are related. One of the main results of CTT in this respect is the following theorem:
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Theorem. For any true score representation with uncorrelated errors, α ≤ ρX+ .

This is the well-known result stating that coefficient α is a lower bound to the reliability (Lord
& Novick, 1968, 1974; they attribute this result to Guttman, 1945). This is not a hypothesis, but
a mathematical result that can be derived without any further assumptions, as has been shown
repeatedly (e.g., Novick & Lewis, 1967; Ten Berge & Sočan, 2004) and that we will reiterate
later because it may not always have been understood completely. The theorem is correct given
the Definitions 1 and 2, which must be considered mathematical tools needed to arrive at this and
other CTT results. The interpretation of what the true score and the error scores might represent
in the real world must be ignored. All that is needed to prove the theorem is to assume that the
error scores do not correlate with the true scores and that they do not correlate with each other,
but it is convenient to stay away from assigning meaning to these variables even though we call
them true score and error to maintain the connection to CTT.

Mainly because the psychometric literature is so confusing about CTT, we explicate ten
propositions that we do not assume here. We do not assume:

1. that the true score is equal to some expected value of an observable score; it might be, but
it does not need to be;

2. replications of any kind;
3. the existence of parallel tests;
4. that the observable scores satisfy a 1-factor model or any other dimensional model;
5. that the observable scores reflect the same attribute, that they have anything in common,

or that they have any meaning at all;
6. that the errors are independent; we assume merely that they are uncorrelated;
7. that the errors, the true scores, or the observable scores have a normal distribution; nor

do we assume any other distribution for these variables;
8. that the errors have identical variances, that their variance is the same for every person,

or that their variance is the same for two persons with the same true scores, nor do we
assume any form of homoscedasticity; and

9. that the error scores are unpredictable; we merely assume that they cannot be predicted
using linear regression from the true scores and other error scores of the test, but they
might be predictable with nonlinear regression or from variables outside the test.

10. that the adjective “true” in “true score” implies that the theory correctly describes reality,
that true scores coincide with psychological attributes, or that uncovering true scores is
necessarily a target of psychological testing.

An example may illustrate our point. Suppose that some IRT model with latent-variable
vector θ holds for X, such that components of X are conditionally independent given θ. If
we define Tj = E

(
X j | θ

) ; j = 1, · · · , J , then T is a true score representation of X (see
Definition 1) with uncorrelated errors(see Definition 2; that is, σ

(
X j − Tj , Xk − Tk

) = 0, for
j, k = 1, · · · , J ; j �= k). Consequently, we may conclude that α ≤ ρX+ with these true score
variables. Here,θ is not necessarily unidimensional; it may just as well bemultidimensional. Even
if θ is unidimensional, its relationship with the observable variables is not necessarily linear, as
in a linear factor model; it may just as well be logistic or nonmonotone. The conclusion α ≤ ρX+
would be valid nonetheless in all these cases. See the next section for a more elaborate formulation
of this.

From the above exposition, clearly CTT can be formulated as a measurement error theory and
nothing else. It applies to any set of random variables for which one assumes that their observed
values have a representation with underlying true scores Tj such that the resulting measurement
errors E j correlate 0 with the true scores Tk ( j, k = 1, · · · , J ) and the other error scores Ek

( j, k = 1, · · · , J ; k �= j) in the representation. The representation of error scores thus captures
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an important property of how one would expect measurement error to behave. It is a remarkable
feature of CTT that the theory manages to derive useful results from this set of assumptions.
The results discussed thus far follow from the mathematics of the model and are independent
of how one wishes to interpret the model, an observation valid for any measurement model. In
addition, compared to IRT (and FA), CTT is a truly minimal model in terms of assumptions; for
example, because it does not restrict dimensionality, the sum score of “blood pressure”, “driving
speed”, “arithmetic test score”, and “anxiety score” is admissible in CTT, in the sense that relevant
theorems, such as those concerning lower bounds, apply to this sum score as they would to any
other score. Different scoring formats are allowed as well as different variable weighting. While
many colleagues may object that such a weird test does not make sense—and they may be right
from a practical point of view—the crucial insight is that CTT can operate in the absence of
assumptions regarding the test’s dimensionality or factorial composition (Mellenbergh, 1994;
Sijtsma & Pfadt, 2021).

2.2. Classical Test Theory and Factor Analysis

Because it is reasonable to interpret CTT as a theory about measurement error, the most CTT
can do is provide results concerning the influence of measurement error on sum scores. Thus,
CTT is utilized to estimate the reliability of the sum score but also addresses topics depending
on the reliability (and using some additional assumptions), such as the effect of lengthening (or
shortening) the test on reliability, correcting the attenuation of correlations due to measurement
error, and correcting for restriction of range in selection problems. Because CTT does not restrict
the dimensionality of the measurement, psychologists and other researchers recognizing CTT’s
limitations additionally use corrected item-total correlations (and the oblique multiple group
method), principal component analysis, and FA (Sijtsma & Van der Ark, 2021). CTT’s reliability
and the dimensionality methods such as FA became inseparable and gradually the idea developed
that FA and CTT are two sides of the same coin. Indeed, given that CTT does not allow the
assessment of dimensionality simply because this is not part ofCTTand that, therefore, researchers
need to use dimensionality assessment methods from outside of CTT, one could argue that there
is a relation between CTT and FA, but we emphasize that this relation is not that one necessitates
the other. Let us describe what this relation is, and what it is not:

1. CTT and FA have a common history in the work of such authoritative psychometricians
as Spearman, Guttman and Cronbach, who often assumed a factor model when studying
CTT. However, the fact that twomodels are studied by the same people for some decades
does not make them the same model and it does not logically imply that they should
always be used together.

2. Factor models usually assume uncorrelated errors, and therefore they imply a true score
representation with uncorrelated errors. However, the converse is not true. In other
words,

“FA ⇒ CTT” is true, but “CTT ⇒ FA” is false.

3. Furthermore, if the items are essentially τ -equivalent (τ stands for true score), a mathe-
matical equivalence condition on the items that is unrealistic for real data (and defined
later), then the stronger relation α = ρX+holds, and essential τ -equivalence implies that
the item covariance matrix satisfies a 1-factor model with equal loadings. However, the
inequality α ≤ ρX+ does not require any dimensional model and is useful even ignoring
dimensionality altogether.

4. Similarly, for the Spearman-Brown prophecy formula, one would need parallel items, a
mathematical equivalence condition even more restrictive than essential τ -equivalence,
which again implies a one-factor model. However, the Spearman-Brown formula is not
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necessarily usedwhen one usesCTTbecause the test length is not necessarily changed. If
the test length is changed, one can simply add or remove items until the desired reliability
is obtained. Ellis and Sijtsma (2024) discuss conditions different from parallelism under
which the Spearman-Brown formula functions reasonably well.

5. As we pointed out, users of CTT often use corrected item-total correlations, principal
component analysis, or FA to assess whether the items relate strong enough with the
other items to maintain them in the test. The use of these methods in combination with
CTT by the same persons, does not entail a logical necessity, however. Onemight as well
use nonlinear FA or IRT to study dimensionality, and still have a logically consistent
analysis.

To summarize, CTT can be formulated as an error theory based on weak assumptions, which
nevertheless allows for the derivation of interesting and even strong results. Methods such as FA
but also IRT that, unlike CTT, address the dimensionality of an item set, can be used in addition
to CTT but are not a mathematical part of CTT.

FA theorists interested in reliability estimation sometimes argue that the use of sum scores
requires one to assume the highly restrictive 1-factor model so that the sum score is almost useless
in the numerous practical test applications where this restrictive model is inconsistent with the
data collected by means of the test. We already know from the previous section that this alleged
implication is incorrect, but in this section, we take a closer look at the FA approach. A recent
example comes from McNeish and Wolf (2020a; 2020b), who claimed that the use of the sum
score implies explicitly or implicitly assuming a 1-factor model with equal item loadings. Their
parallel test model (ibid., p. 2290) translates to a 1-factor model assuming (1) that one latent
variable, here a common true score, underlies all items, and (2) that the sum score can be written
as the sum of J item scores weighted by equal item loadings, a = 1, so that in FA notation we
have

X+ =
∑J

j=1
aX j =

∑J

j=1
X j =

∑J

j=1
(T + E j ), all σ 2(E j ) = σ 2.

The restriction that all item-error variances are equal,σ 2(E j ) = σ 2, however, is not an assumption
that is necessary in CTT. A difference that is more important is that CTT is a nondimensional
error model leaving entirely free which random variables to include in the sum score, each with
their own true score. Again, we emphasize that we do not imply that tests be unintelligible blends
of unrelated items. However, the point is that CTT allows this, and it is crucial in this discussion
that we judge models by what they are, not by what people think or claim they are. Sijtsma and
Van der Ark (2021, chap. 2) discuss the use of principle component analysis and FA (but IRT
is also feasible) for assessing item set dimensionality, a practice familiar since decades in test
construction.

Clearly, we disagree with the conclusion McNeish and Wolf (2020a; 2020b) drew that using
the sum score requires a restrictive 1-factor model with equal item loadings. Our conclusion is also
evident from our discussion that a broad class of essentially unidimensional IRT models, much
weaker than the parallel test model, justifies the use of the sum score. The parallel test model
or the 1-factor model with equal loadings and equal item-error variances certainly implies that
the sum score is usable. However, the opposite does not hold, because the 1-factor model merely
defines one of the many sufficient conditions for sum score use but not a necessary condition.
Another example of the broader support for use of the sum score comes from the network example
discussed earlier in which the sum score is a useful summary of the expected network state, and
no factor model was involved.

Interestingly, discussions of the sum scoremove quickly to discussions aboutwhich reliability
method must be preferred (McNeish & Wolf, 2020a; 2020b; Widaman & Revelle, 2022) and
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whether that reliability method must have its roots in CTT or in FA. This move is understandable
in the context of an error model like CTT. Although reliability has been developed in the context
of CTT and the sum score, there is no logical necessity to chain reliability to sum scores, simply
becauseCTT is not limited to sumscores:Reliability andmethods for estimating it fromobservable
statistics are valid for any test score, which may include many other ways of forming a composite.
Moreover, discussions about reliability divert attention from the issue whether the sum score
is useful for assessment of psychological attributes. Next, we discuss the persistent problem of
reliability lower bounds applied to the sum score.

2.3. Reliability and Lower Bounds

In discussing the origin of lower-bound approximations to reliability, we skip much of the
material reported in the literature but for more details, see Novick and Lewis (1967), Jackson
and Agunwamba (1977), Ten Berge and Zegers (1978), Woodward and Bentler (1978), Bentler
and Woodward (1980), Ten Berge and Sočan (2004), Sijtsma and Pfadt (2021), Sijtsma and Van
der Ark (2021, chap. 2), and of course the seminal book by Lord and Novick (1968, 1974). We
start by sharing our impression that in the critical literature on CTT reliability and coefficient
α in particular, in addition to incompletely or incorrectly understanding CTT it is not always
well understood where lower bounds such as coefficient α originate. A complicating factor in
the critical discussions seems to be that it is not widely known that α is only one member of
a large family of lower bounds, not even the best one in terms of its discrepancy defined as
α − ρX+ (Sijtsma, 2009; Sijtsma & Pfadt, 2021). Such knowledge gaps may cause confusion
leading discussions the wrong way.

We will sketch briefly what the assumptions underlying its derivation are, mainly following
Novick and Lewis (1967). We derive an inequality, L ≤ ρX+ , where L is a generic notation that
stands for lower bound and is a function of parameters that can be estimated from the data. The six
reliabilitymethods Guttman (1945) proposed under the names of λ1, · · · , λ6, are all mathematical
lower bounds (proofs in Jackson & Agunwamba, 1977; Sijtsma & Van der Ark, 2021, chap. 2),
and more lower bounds based on CTT exist (see the references provided at the beginning of this
subsection). Notation L can stand for any of them. Guttman’s λ3 equals coefficient α. Because
α≤ λ2, the latter method is closer to the reliability and, based on that knowledge alone, may be
preferred to α (e.g., Sijtsma, 2009). The specific inequality we will derive will show that L = α,
so that we have shown that α is a lower bound. Some authors claim that the lower-bound theorem
for α is false and that α can exceed the reliability. We note this is only possible when one departs
from the CTT assumptions necessary to derive the lower bound. This triviality is true in all of
mathematics: Abandoning the assumptions needed to arrive at a result will make it impossible to
get there.

Recalling that the CTT model applies to any random variable, we focus on item scores and,
as before, decompose them as X j = Tj + E j , in which X j , Tj , and E j are random variables,
and assume errors correlate 0 with true scores on all J items and errors on the other J − 1 items
except item j . Then, for sum score X+ = ∑J

j=1 X j , the corresponding sum of true scores equals

T+ = ∑J
j=1 Tj . We use the property of the variance of any variable that it is nonnegative. Hence,

this is also true for the difference between two item true scores, so that σ 2(Tj −Tk) ≥ 0. Because
σ 2(Tj − Tk) can be written as

σ 2(Tj − Tk
) = σ 2(Tj ) + σ 2(Tk) − 2σ(Tj , Tk),

the fact that the left-hand side must be nonnegative implies that,

σ 2(Tj ) + σ 2(Tk) ≥ 2σ(Tj , Tk).
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Two remarks are important. First, this property is true for the difference of any pair of random
variables, not just item scores. Second, so far, we have used item true scores depending on one
item and have assumed nothing about the dimensionality of the whole set; that would require an
item true score T independent of specific items. This remains the same throughout the derivation.
Thus, the inequality holds irrespective of whether a unidimensional model is assumed or not. We
refer the reader to details to be found in the sources mentioned, especially, Novick and Lewis
(1967), but we will give a few steps of the longish derivation meanwhile urging the reader to flesh
out the details for themselves. Then, the derivation involves the summation of both sides of the
inequality across all item pairs, j �= k, including both pairs ( j, k) and (k, j) but excluding ( j, j),
all j , resulting in

∑ ∑
j �=k

[
σ 2(Tj ) + σ 2(Tk)

]
≥ 2

∑ ∑
j �=k

σ(Tj , Tk). (1)

We use two intermediate steps to rewrite the previous inequality. First, we take the sum of all
combinations of

[
σ 2(Tj ) + σ 2(Tk)

]
including j = k, so that all variances appear 2J times; that

is,

∑J

j=1

∑J

k=1

[
σ 2(Tj ) + σ 2(Tk)

]
= 2J

∑J

j=1
σ 2(Tj ). (2)

Second, we rewrite the left-hand side differently, splitting terms for which j = k and terms for
which j �= k, so that,

∑J

j=1

∑J

k=1

[
σ 2(Tj ) + σ 2(Tk)

]
= 2

∑J

j=1
σ 2(Tj ) +

∑ ∑
j �=k

[
σ 2(Tj ) + σ 2(Tk)

]
. (3)

Equating the right-hand sides of equations (2) and (3), we derive that,

∑ ∑
j �=k

[
σ 2(Tj ) + σ 2(Tk)

]
= 2(J − 1)

∑J

j=1
σ 2(Tj ). (4)

We replace the left-hand side of Equation (1) by the right-hand-side of Equation (4) and divide
both sides of Equation (1) by 2(J − 1), so that,

∑J

j=1
σ 2(Tj ) ≥

∑∑
j �=k σ(Tj , Tk)

J − 1
. (5)

Now, we use the well-known variance decomposition for linear combinations,

σ 2 (T+) =
∑J

j=1
σ 2(Tj ) +

∑∑
j �=k

σ(Tj , Tk). (6)

Substituting the right-hand side of Equation (5) for the first term on the right in Equation (6)
yields,

σ 2 (T+) ≥ J

J − 1

∑ ∑
j �=k

σ(Tj , Tk). (7)

A well-known result in CTT is that σ
(
Tj , Tk

) = σ(Xj , Xk), so here we introduce observable
variables. Substituting for σ(Tj , Tk) in Equation (7) and dividing both sides by the observable
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variance σ 2 (X+), yields the result L containing consisting of observables only, we hinted at
before starting the derivation. The result is,

σ 2 (T+)

σ 2 (X+)
≥ J

J − 1

∑ ∑
j �=k σ(Xj , Xk)

σ 2 (X+)
. (8)

The reader will recognize reliability ρX+ on the left-hand side and a function L that contains only
observables on the right-hand side from which coefficient α can be recognized. This completes
the derivation of the lower-bound theorem, which we note as

α ≤ ρX+ . (9)

We consider the lower-bound theorems a beautiful result obtained in an error theory with
few assumptions. An interesting question is when the inequality in the lower-bound theorem
becomes an equality. This happens when we consider a boundary case of CTT in which all the
items do share the same true score, a case CTT allows to happen but is not representative of CTT.
This boundary case is known as essential τ -equivalence (Lord & Novick, 1968, p. 50, Definition
2.13.8). This is a mathematical form of equivalence, defined as follows. Two items with scores
X j and Xk are essentially τ -equivalent if, for every person i and some scalar d jk ,

Tj (i) = Tk(i) + d jk .

Essentially τ -equivalent items do not necessarily have the same item-score variances (recall
McNeish & Wolf’s assumption of equal variances), so that in general albeit not necessarily,
σ 2(X j ) �= σ 2(Xk). It can be proven that for J items that are all essentially τ -equivalent, we have
that,

α = ρX+ .

We emphasize that this is a boundary case in CTT in which unidimensionality is satisfied. It
does not specify a necessary assumption for interpreting and usefully employing coefficient α

as a lower bound. Apparently, however, the fact that a unidimensional model is required for
coefficient α to be a point estimate of reliability has given rise to the incorrect idea that, for lower
bounds to reliability to be useful, the items in the test must satisfy essential τ -equivalence. Next,
some authors have equated this condition with a 1-factor model the items must satisfy or else the
lower bound is useless (Cho, 2016; Cho & Kim, 2015; Dunn et al., 2014; Graham, 2006; Green
& Yang, 2009; Miller, 1995). This conclusion is at least an exaggeration, because CTT is not a
restricted 1-factor model (Hessen, 2023; Mellenbergh, 1994) but a much more general model that
has proven highly useful for constructing tests and estimating the reliability of the test score used
and applications thereof that are based on the reliability.

On a practical note, researchers often do not expect their item sets to be unidimensional but
expect small deviations due to language and other skills needed to answer the items. In these
cases, coefficient α or any other lower-bound methods are a little smaller than the CTT reliability,
discrepancy L − ρX+ depending on the degree to which the data are multidimensional. However,
researchers will often do their best to assemble their test such that auxiliary skills and other
influences have small effects on test performance, for example, by using language that is fully
comprehensible to the complete population for which the test is meant. Because some degree
of multidimensionality should always be expected, inferences based on the truth of the single
factor model can be problematic, but lower-bound interpretations of coefficient α are always
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justified. This is precisely the situation in which lower bounds prove their usefulness. In addition,
unless the test is very strongly multidimensional, lower bounds are not further off-target than
a few hundredths at most (e.g., Sijtsma & Pfadt, 2021). Conservative reliability estimates do
little damage (Widaman & Revelle, 2022): Knowing that the real reliability may be (a little)
higher than the lower-bound value .87 hurts no-one but beware of overcorrection for attenuation
of correlations if coefficient α (or another lower bound) is used.

2.4. Lower Bounds in Retrospect

Some remarks seem to be in order. First, critics of lower bounds to the reliability, especially
coefficient α, apparently because it is the most popular method, seem to narrow CTT down to one
of its boundary cases, which is the essential τ -equivalence condition under which lower-bound
methods theoretically equal reliability, L = ρX+ . This condition is then defined as a restricted
1-factor model and rejected because of its minimal chances of explaining real data well, and the
conclusion is drawn that the lower bound, usually coefficient α, is useless. What is ignored or
perhaps not well understood, is that it is precisely in all the other, more realistic situations in which
the data are inconsistent with an unrealistically restrictive 1-factor model, that reliability lower
bounds prove their value by identifying an interval in which the true reliability lies: ρX+ ∈ (L; 1].
If deviations from unidimensionality are not too large, then discrepancy L − ρX+ is small, for
lower bounds such as α no more than a few hundredths, but because such results are based on
simulations, results may vary somewhat across different design choices (e.g.,Malkewitz, Schwall,
Meesters, & Hardt, 2023; Pfadt & Sijtsma, 2022). Sijtsma and Pfadt (2021) recommend using
lower bounds when data are approximately unidimensional but notice that multidimensionality
depends in complex ways on several item, test, and population features, making unambiguous
conclusions difficult to attain. Because test constructors usually aim at measuring one attribute per
test, we expect that especially in well-constructed tests unidimensionality is well approximated.
This means that a lower-bound value of, say, .85, assures the researcher that reliability is anywhere
between this value and 1. This is truly helpful information.

Second, criticism usually is targeted at coefficient α, which can be understood because this is
the most popular method of reliability estimation among a large array of lower-bound methods,
and not the best method in terms of discrepancy (e.g., Sijtsma, 2009; Sijtsma & Pfadt, 2021). But
what is difficult to understand is that critics have repeatedly claimed that, theoretically, α can be
larger than ρX+ . Given the proof of the lower-bound theorem, α ≤ ρX+ , such a claim is simply
incorrect. Derivations of the opposite conclusion, which is that α > ρX+ , can only be successful
if one changes the assumptions under which the lower-bound theorem was derived previously. Of
course, changing assumptions to define a model different from the CTT true-score-plus-random-
error model is permissible if the math of the new model is correct, and reliability is redefined to
adapt it to the variables of interest. For example, in FA one often replaces the CTT true score
with the first common factor and then estimates the ratio of its variance to the variance of the sum
score. In the presence of additional factors, such as correlated errors, this creates a situation in
which one needs reliability estimation methods such as coefficient ω and not coefficient α or any
of the other CTT lower bounds.

Third, it is seductive to interpret CTT as a measurement model. In particular, the infelicitous
use of the adjective “true” in the true score component of the model suggests that the true score
should coincide with a meaningful psychological attribute (Borsboom, 2005). However, since
the critical assumptions of the model only relate to the behavior of errors, it is more useful to
view CTT as a noise model rather than a measurement model. Interpreted this way, it is clear
how CTT is useful to assess the reliability of sum scores, even in cases where one would not be
inclined to interpret these as measurements in the usual sense of the term. This also broadens
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the applicability of CTT beyond the special case where a latent-variable model is indicated, for
instance in the context of network constructs.

3. Discussion and Take-Home Messages

The sum score is formally supported by a general class of essentially unidimensional IRT
models, while other uses of sum scores, not founded in psychometric theory, are supported by
their predictive power for job, school, and therapy performance, or stock exchange value (e.g., the
Amsterdam Exchange Index) and scientific performance (e.g., the h-index, Hirsch, 2005). These
other uses of sum scores do not employ a formal measurement model for their justification but
rely solely on their practical usefulness, an approach originating decades ago (e.g., Cronbach &
Gleser, 1957, 1965;Wiggins, 1973) when latent variables had a far less prominent role than today,
and FA provided evidence for item set homogeneity followed by CTT reliability assessment. This
is not to say that we must return to the days before latent-variable modeling became popular but
rather that with the advent of a new approach the older approach does not automatically becomes
obsolete, useless, or even reproachable. Criticisms of sum scores based on the idea that they are
intuitive rather than scientific are premature and arguably incorrect. Even though we would rather
wish that psychology and other disciplines that use tests and questionnaires had developed theories
about attributes leading to well-founded measurement instruments, it is important to notice that
researchers do their best to assemble item sets they believe to share the common core of the
attribute of interest. They use psychometric methods such as corrected item-total correlations,
principal component analysis, and FA to assess the homogeneity of their experimental item sets
before estimating the sum score’s reliability and other psychometric properties. If an IRT model
supports the resulting item set, the question is whether the latent variable can be used for the
application envisaged. The stochastic ordering results concerning the sum score clarify that both
the latent variable and the sum score can do about the same job when it comes to predicting
behavior external to that producing the test results. Our preliminary results suggest that a similar
case could be made based on network models.

We do not oppose alternative approaches to reliability determination and rather support any
approach that aligns with the assumptions of the underlying psychometric model (e.g., Sijtsma
& Pfadt, 2023). IRT is a convenient example. First, IRT allows estimating a standard error con-
ditional on the latent variable depending on the suitability of the items at the latent variable
location of interest. CTT also facilitates a sum score-dependent standard error but this knowl-
edge, already dating back to the 1940s and 1950s has not become generally known (Mollenkopf,
1949; Thorndike, 1951; also, see Emons, 2023; Lek & Van der Schoot, 2018; Mellenbergh, 1996;
Pfadt et al., 2023). We are not aware of a similar FA approach. FA and the broader structural
equation modeling context focus on theory testing but not on test performance of individuals.
This is more prominent in applications of CTT and IRT. Second, IRT models enable integrating
different scales for the same attribute, such as in education where different school years made
different exams having different items causing unequal difficulty levels. CTT using the sum score
could also be used (Kolen & Brennan, 1995, 2004), but IRT is statistically better equipped.

Finally, our discussion of CTT, the sum score, and reliability lower bounds is not meant to
downplay the value of alternative and more recent measurement models, but rather to provide
an attempt to redirect attention to the value of older approaches that assume little and offer a
lot, like CTT. We see two reasons why more recent measurement models provide an asset to
the human sciences and psychology especially, and both reasons are highly persuasive. First,
IRT offers the statistical tools that elegantly enable the equating of different scales for the same
attribute and facilitate such impressive applications as adaptive testing, but also applications such
as differential item function and person-fit research are easier using IRT in a way that CTT
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could not realize. Second, although still predominantly in the future, the substantive theory of the
attribute one wishes to measure must dictate the psychometric model to be used for constructing
the attribute’s scale (Sijtsma & Van der Ark, 2021). The many IRT models provide a wealth of
possibilities, but different substantive theories might require approaches like networks and latent
classes (Hagenaars & McCutcheon, 2002), with diagnostic classification models as interesting
hybrids between latent class models and IRT.

The take-home messages of this article are the following:

• Abroad class of IRTmodels formally justifies and supports the sum score, and thus supplies
the foundation that CTT leaves open.

• The sum score may be useful in network models as well, even under conditions that do not
correspond to the axioms of the monotone homogeneity model.

• Lower-bound methods for estimating reliability are derived with the minimum of assump-
tions and are perfectly in place in a theory-poor research area.

• Sum scores eventually derive their value from the degree to which they contribute to the
prediction of societal relevant criterion events or behaviors.
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Appendix A

In this appendix, we discuss a simulation study in which we compared the sum score X+ with
parametric estimates of latent variable θ in cases where the model is incorrectly specified, or
the sample size is small. Table 1 shows the outcomes. The parametric estimation methods that
we studied were weighted maximum likelihood (WML) and expected a posteriori (EAP); see
column est of Table 1. The estimates were obtained with the R-package mirt (Chalmers, 2012) ,
assuming a 2PLmodel. The datawere generatedwith item response functions thatmaybe specified
incorrectly, which was controlled by two parameters named pow and norm. These parameters
defined the item response functions as follows:

• If pow = 1, then the data are generated with a 2PL model, which implies that the model
is correctly specified in the estimation. In these cases, the model is
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P
(
X j = 1 | θ) = exp[α jθ+β j ]

1 + exp[α jθ+β j ] .

• If pow �= 1, then the data are generated using item response functions inconsistent with
the 2PL model, so that the model is incorrectly specified in the estimation. In these cases,
we defined the intermediary parameter

p j (θ) = exp[α jθ+β j ]
1 + exp[α jθ+β j ] ,

and the IRFs are now given by

P
(
X j = 1 | θ) = min

(
0.95,max

(
0.05,

sgn(pj (θ) − 0.5)
∣∣pj (θ) − 0.5

∣∣pow

norm

))

Figure 5 shows examples of possible item response functions. The item parameters were drawn
fromuniformdistributionswithα j ∼Uni f orm(αmin, αmax ),β j ∼Uni f orm(βmin, βmax ), where
αmin, αmax , βmin, βmax are meta-parameters given in Table 1. The person parameters were drawn
from a standard normal distribution. The number of items was J = 10, J = 20 or J = 40. The
number of persons was N = 100, N = 500 or N = 1000.

Each row of Table 1 is defined by N , J, αmin, αmax , βmin,βmax , est, pow, norm. For each
row, we simulated 100 samples, and for each sample we computed the correlations r1 = r(X+, θ)

and r2 = r(θ̂ , θ). Table 1 displays the means of r1 and r2, and the proportion of samples with
r1 > r2. We did not study all possible combinations of parameters but focused on WML with
N = 500 or N = 1000 and J = 10 or J = 40. EAP presumes that the mean and variance of θ

are known – which is often not true, and therefore we consider WML more interesting.
In all rows where the proportion of r1 > r2 exceeds 0.50, the mean of r1 also exceeds the

mean of r2, even though that may not be visible in the decimals displayed in Table 1. In these
rows, the sum score may be viewed as superior to the parametric estimation method in column est.
This happens in 78% of the rows, but note that we were searching for such cases, and we do not
claim that this percentage is representative for all real situations. The point is that the sum score
sometimes outperforms a parametric estimator, particularly if the model is incorrectly specified
or if the sample size is small.

Appendix B

This simulation study, executed in R, was designed to analyze how informative the observed sum
score is with respect to the expected sum score in a network context. In the simulation, each
individual is characterized by a fully idiosyncratic network model. We parameterize this as an
Ising model to obtain a probability distribution over all item-score patterns. Because different
individuals have different networks, this distribution is different for each individual. The network
model thus creates a probability distribution over the different possible sum scores. The true
network sum score is defined as the expectation of this distribution. The observed item scores are
conceptualized as a single realizationof the item responses fromaperson’s probability distribution.
The observed network sum score is the sum of these item scores. This setup allows us to assess
how well differences in the observed sum score track differences in the expected sum score. The
R markdown file to execute the simulation code is available at: http://bit.ly/3u94WdX. The next
code shows how to create a small world network for one individual:
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Table 1.
Comparison of WLE or EAP with sum score X+ as predictor of latent variable θ if item response functions are estimated.

Case est N J αmin αmax βmin βmax pow norm Mean r1 Mean r2 r1 > r2

1 WLE 500 10 0.5 1.5 −1.5 1.5 1 1 0.792 0.788 0.65
2 EAP 500 10 0.5 1.5 −1.5 1.5 1 1 0.794 0.802 0.07
3 EAP 100 10 0.5 1.5 −1.5 1.5 1 1 0.795 0.783 0.66
4 WLE 1000 10 0.5 1.5 −1.5 1.5 1 1 0.796 0.796 0.53
5 WLE 500 20 0.5 1.5 −1.5 1.5 1 1 0.876 0.875 0.54
6 WLE 1000 20 0.5 1.5 −1.5 1.5 1 1 0.881 0.880 0.56
7 WLE 500 10 0.25 2 −2 2 1 1 0.783 0.792 0.21
11 WLE 500 10 0.25 2 −2 2 0.2 1 0.898 0.824 0.95
12 WLE 1000 10 0.25 2 −2 2 0.2 1 0.895 0.836 0.95
13 WLE 500 40 0.25 2 −2 2 0.2 1 0.962 0.894 1.00
14 WLE 1000 40 0.25 2 −2 2 0.2 1 0.963 0.896 1.00
15 WLE 500 10 0.25 2 −2 2 2 1 0.416 0.318 0.95
16 WLE 1000 10 0.25 2 −2 2 2 1 0.415 0.368 0.84
17 WLE 500 40 0.25 2 −2 2 2 1 0.684 0.677 0.57
18 WLE 1000 40 0.25 2 −2 2 2 1 0.682 0.692 0.20
21 WLE 500 10 0.25 2 −2 2 0.2 0.50.2 0.898 0.822 0.96
22 WLE 1000 10 0.25 2 −2 2 0.2 0.50.2 0.895 0.835 0.96
23 WLE 500 40 0.25 2 −2 2 0.2 0.50.2 0.962 0.891 1.00
24 WLE 1000 40 0.25 2 −2 2 0.2 0.50.2 0.963 0.897 1.00
25 WLE 500 10 0.25 2 −2 2 2 0.50.2 0.822 0.818 0.52
26 WLE 1000 10 0.25 2 −2 2 2 0.50.2 0.817 0.815 0.59
27 WLE 500 40 0.25 2 −2 2 2 0.50.2 0.939 0.944 0.09
28 WLE 1000 40 0.25 2 −2 2 2 0.50.2 0.939 0.944 0.05

Figure 5.
Examples of item response functions in the simulation study.
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Figure 6.
Small world network for one individual.

k=10
n_nodes <- k
sw_network <- igraph::sample_smallworld(dim = 1,

size = n_nodes,
nei = 5,
p = 0.4) %>%

as_adjacency_matrix() %>% as.matrix() %>%
apply(c(1,2),func�on(x) x*runif(1, -3,3))
sw_network[lower.tri(sw_network)] 
t(sw_network)[lower.tri(sw_network)] 
tholds=array(data=rnorm(n_nodes,0,10))
bta=1
qgraph(sw_network, layout="spring")

Figure 6 shows the resulting network.
For a single network,we can compute the expected sum score from the probability distribution

specified by the Ising model using the function IsingSumLikelihood in the package IsingSampler.
Here, and in the sequel, lines that start with ## contain the output of the preceding code:

Figure 7.
Full probability distribution over all sum scores.
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sumprobs=IsingSumLikelihood(graph = sw_network,
thresholds = tholds,
beta = bta,
responses = c(0L,1L))

prodprobs=sumprobs$Sum*sumprobs$P
t_sumscore=sum(prodprobs)
t_sumscore

For this network, the expected sumscore equals 6,25:
## [1] 6.256436

The full pro bability distribu�on over all sum scores can be visualized as follows:

plot(IsingSumLikelihood(graph = sw_network,
thresholds = tholds,
beta = bta,
responses = c(0L,1L)),type="line")

Subsequently, we draw a single sample from this distribution, which we can think of as a
single observation of the network:

samp <- IsingSampler(n = 1,
graph = sw_network,
thresholds = tholds,
beta = 1,
responses = c(0L, 1L))

samp

##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]    1    1    0    1    1    1    0    0    1     1

In this sample, the person’s observed sum score equals 7.
Note that, at the level of the individual person, the true network sum score is a constant. The

observed network sum score and the error scores are random variables over repeated draws from
the distribution. As in CTT, we create the true network sum score to be a random variable by
drawing individuals from a distribution.We do this by creating for each individual an entirely new
network structure with new parameters. In the simulation reported in the main text, we simulated
500 individuals with different networks, and for each individual we recorded both the true network
sum score and a single realized observed network sum score. Here, we (a) create a network for
every individual in accordance with the code discussed earlier, (b) draw the edge weights for the
present edges from a uniform distribution between 0 and 1, and (c) draw the thresholds from a
normal distribution with a mean of −2 and a standard deviation of 10.
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N=500
results=data.frame("t_sumscores"=as.numeric(array(NA, dim=c(N,1))), "o_sumscores"=as.num
eric(array(NA, dim=c(N,1))))
observed_network_items=data.frame(array(NA, dim=c(N,k)))

for (i in 1:N)
{
n_nodes <- k
sw_network <- igraph::sample_smallworld(dim = 1,

size = n_nodes,
nei = 5,
p = 0.4) %>%

as_adjacency_matrix() %>% as.matrix() %>%
apply(c(1,2),func�on(x) x*runif(1, 0,1))
sw_network[lower.tri(sw_network)] <-
t(sw_network)[lower.tri(sw_network)] 
tholds=array(data=rnorm(n_nodes,-2,10))
samp <- IsingSampler(n = 1, 

graph = sw_network,
thresholds = tholds,
beta = 1,
responses = c(0L, 1L))

sumprobs=IsingSumLikelihood(graph = sw_network,
thresholds = tholds,
beta = bta,
responses = c(0L,1L))

prodprobs=sumprobs$Sum*sumprobs$P
t_sumscore=sum(prodprobs)
results$o_sumscores[i]=rowSums(samp)
results$t_sumscores[i]=t_sumscore
observed_network_items[i,]=samp
}

This simulation results in a joint distribution of the observed and true network sum scores.
Figure 8 shows the univariate distributions for the observed and true network sum scores.

Now that we have a true network sum score as well as an observed sum score over the five
items we assessed, we can investigate how they are related. First, we investigate whether the
expectation of the true network sum scores increases in the observed network sum score. It turns
out that this is the case here (Fig. 9).

To investigate stochastic ordering, we evaluate the cumulative distribution functions of the
true network scores for different sum scores (Fig. 10). In this case, the observed sum score
stochastically orders the true network sum score. Because we know the true network sum scores
and the observed sum scores, we can define the network score reliability of the observed network
score as the squared correlation between the observed and the true network sum scores. In this
case, the network sum score has a reliability of. 87.

Note that this simulation is merely a proof of concept. In the current study, we have not
evaluated model behavior across a wide range of conditions, nor did we provide a formal proof
of stochastic ordering results.
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Figure 8.
Univariate distributions for the observed (upper panel) and true (lower panel) network sum scores.
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Figure 9.
Expected overall state as function of observed sum score.

Figure 10.
Cumulative distribution functions of the true network scores for different sum scores.
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