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LEAST SQUARES AND IVX LIMIT
THEORY IN SYSTEMS OF PREDICTIVE

REGRESSIONS WITH GARCH
INNOVATIONS
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University of Southampton

The paper examines the effect of conditional heteroskedasticity on least squares
inference in stochastic regression models of unknown integration order and proposes
an inference procedure that is robust to models within the (near) I(0)–(near) I(1)
range with GARCH innovations. We show that a regressor signal of exact order
Op (nκn) for arbitrary κn → ∞ is sufficient to eliminate stationary GARCH effects
from the limit distributions of least squares based estimators and self-normalized
test statistics. The above order dominates the Op (n) signal of stationary regressors
but may be dominated by the Op

(
n2

)
signal of I(1) regressors, thereby showing that

least squares invariance to GARCH effects is not an exclusively I(1) phenomenon
but extends to processes with persistence degree arbitrarily close to stationarity.
The theory validates standard inference for self normalized test statistics based on
the ordinary least squares estimator when κn → ∞ and κn/n → 0 and the IVX
estimator (Phillips and Magdalinos (2009a), Econometric Inference in the Vicinity
of Unity. Working paper, Singapore Management University; Kostakis, Magdalinos,
and Stamatogiannis, 2015a, Review of Financial Studies 28(5), 1506–1553.) when
κn → ∞ and the innovation sequence of the system is a covariance stationary
vec-GARCH process. An adjusted version of the IVX–Wald test is shown to also
accommodate GARCH effects in purely stationary regressors, thereby extending the
procedure’s validity over the entire (near) I(0)–(near) I(1) range of regressors under
conditional heteroskedasticity in the innovations. It is hoped that the wide range of
applicability of this adjusted IVX–Wald test, established in Theorem 4.4, presents
an advantage for the procedure’s suitability as a tool for applied research.
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1. INTRODUCTION

The effect of conditional heteroskedasticity in autoregressive and stochastic regres-
sion models has been a topic of intense research activity since the introduction
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of ARCH and GARCH processes by Engle (1982) and Bollersev (1986). Limit
theory for stationary autoregressive moving average (ARMA) time series with
conditionally heteroskedastic innovations has been developed by Weiss (1986) and
Pantula (1989) in the case of ARCH innovations and Ling and McAleer (2003)
in the case of vector-valued processes with GARCH innovations. Early work
on least squares estimation of non stationary autoregressions with ARCH(1) and
GARCH(1,1) innovations can be found in Pantula (1989) and Ling and Li (1997a).
Asymptotic theory for quasi maximum likelihood estimation has been developed
for both stationary and nonstationary times series with GARCH innovations: see
Ling and Li (1997b), Ling and Li (1998), Ling and McAleer (2003) and refer-
ences therein. More recently, Andrews and Guggenberger (2012) and Andrews
and Guggenberger (2014) have established asymptotic theory for the ordinary
least squares (OLS) and (feasible) GLS estimator of autoregressive models with
conditionally heteroskedastic errors as well as a conditional-heteroskedasticity-
robust confidence interval for the parameter of an AR(1) process.

The literature on least squares estimation of autoregressive processes with
conditionally heteroskedastic innovations reports that the presence of GARCH
effects in the limit distributions of the OLS estimator and the associated t- and
Wald-test statistics depends on the stationarity properties of the autoregressive
process. In the case of stationary autoregressions, both the convergence rate and the
limit distribution of the OLS estimator are affected: the standard

√
n-consistency

rate requires finite fourth moments (a condition that imposes restrictions on the
GARCH coefficients) and, even when the

√
n rate is achieved, the asymptotic

variance of the OLS estimator depends on the GARCH parameters in a way
that invalidates standard t- and Wald-hypothesis tests. The situation is different
for models with nonstationary time series, where GARCH innovations make no
contribution to the limit distribution of the OLS estimator and the usual Dickey–
Fuller type t and Wald tests are asymptotically valid (Phillips, 1987b). This
asymptotic invariance continues to apply in models with near-integrated time series
with local to unity roots of the form ρn = 1 + c/n, where n is the sample size
(Phillips, 1987a; Chan and Wei, 1987) and their vector-valued extensions with
autoregressive matrix of the form Rn = I +C/n (Phillips, 1988).

This I(0)–I(1) dichotomy has a signal-to-noise ratio interpretation: a near-
I(1) regressor has sufficient signal, of order Op

(
n2
)
, to asymptotically eliminate

stationary GARCH effects; such elimination cannot be achieved by the weaker
Op (n) signal of a stationary regressor, resulting in the contribution of GARCH
effects to the least squares limit distribution. This insight raises the issue of the
existence of a minimal order of regression signal required to eliminate GARCH
effects, leading naturally to the investigation of intermediate regression signals
arising from near stationary time series. The class of near stationary time series,
introduced by Phillips and Magdalinos, 2007a, 2007b (Phillips and Magdalinos,
2007a & Phillips and Magdalinos, 2007b) in the case of scalar autoregressions
and Magdalinos and Phillips (2009), henceforth MP (2009), in the case of vector
autoregressions and systems of regression equations, has intermediate I(0)–I(1)
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persistence rate driven by an autoregressive root of the form ρn = 1+c/kn, where
c < 0, kn → ∞ and kn/n → 0. The signal generated by such processes is of order
Op (nkn) and may approach the stationary Op (n) signal for sequences kn diverging
to ∞ at sufficiently slow rate.

The present work develops a limit theory for near-stationary predictive regres-
sion systems with covariance stationary GARCH innovations. We show that,
for arbitrary kn → ∞, GARCH effects are eliminated from the limit distri-
bution of the least squares estimator, thereby establishing that any regressor
signal strictly dominating the Op (n) signal of stationary processes is sufficient
to asymptotically eliminate GARCH effects. The OLS estimator has an iden-
tical Gaussian limit distribution to that established by MP (2009) under con-
ditionally homoskedastic innovations and the usual Wald statistic (without het-
eroskedasticity correction) for testing restrictions on the regression coefficient
matrix has a standard chi-squared limit distribution. Subsequent to the result
of Andrews and Guggenberger (2012) for a (scalar) AR(1) process, the current
paper provides the first instance of standard Gaussian and chi-squared asymptotics
applying respectively to the OLS estimator and the Wald statistic in a vector
autoregression or predictive regression model with conditionally heteroskedastic
innovations.

The development of least squares limit theory for the case of near stationary
regressors is the key step toward extending the validity of the IVX endogenous
instrumentation procedure, introduced by Phillips and Magdalinos (2009a) and
further developed by Kostakis et al. (2015a) (henceforth PM (2009a) and KMS
(2015a)) to accommodate the presence of conditional heteroskedasticity in the
innovations. In the current predictive regression context, KMS (2015a) show that
the IVX procedure is robust to different types of persistence, including purely
stationary, near stationary and near integrated time series regressors. In the current
paper, the method is shown to be robust to GARCH effects near stationary and
near integrated systems. In predictive regression with purely stationary regressors,
KMS (2015a) show that the IVX and OLS procedures are asymptotically equiva-
lent; as a result, the IVX estimator inherits the usual GARCH effects present in the
asymptotic variance of the least squares estimator. A White (1980) type correction
is shown to make the IVX procedure operational for all persistence regimes in
the I(0)–I(1) range under conditional heteroskedasticity. The adjusted IVX–Wald
test, presented in Theorem 4.4, is the paper’s main methodological contribution,
accommodating a sufficiently general class of models to provide a tool for applied
research.

The paper is organized as follows. Section 2 outlines a general modeling
framework for a system of predictive regressions with unknown persistence
properties and conditionally heteroskedastic innovations of a covariance stationary
vec-GARCH type. Section 3 develops a limit theory for the OLS estimator in the
near stationary case and shows that GARCH effects are asymptotically eliminated
and do not affect least squares based estimation and hypothesis testing procedures.
Section 4 develops a limit theory for the IVX estimator and the associated Wald
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statistic for systems of predictive regressions of arbitrary integration order and
GARCH innovations. Section 5 provides some further discussion and concluding
remarks and Section 6 includes all proofs.

2. PREDICTIVE REGRESSION AND VECTOR AUTOREGRESSION
WITH GARCH INNOVATIONS

We consider a first-order vector autoregression

xt = Rnxt−1 +ut, t ∈ {1,...,n} (1)

with conditionally heteroskedastic innovations ut and autoregressive matrix Rn that
induces persistence characteristics ranging from stability to unit root nonstation-
arity and includes intermediate integration regimes, as specified by Assumption P
below. The VAR process in (1) may be regarded as the statistical model of interest
or as a data generating mechanism for a predictive regression

yt = μ+Axt−1 + εt, (2)

where A is an m× r coefficient matrix. In the former case, a multivariate GARCH
parametrization will be imposed on the innovations in (1) and inference will
be conducted on the autoregressive matrix in (6). In the predictive regression
case, the coefficient matrix A in (2) is the parameter of interest and a GARCH
parametrization will be assumed for the innovations of (2), while no parametric
specification of the conditional heteroskedasticity of the innovations of the VAR
process in (1) will be required. For clarity of exposition, we provide the form of the
vec-GARCH parametric specification for a generic sequence (εt), ahead of stating
the assumptions on the innovations ut and εt of (1) and (2).

Assumption G. Let (Ft)t∈Z be a filtration and (ηt)t∈Z be anFt-adapted sequence
of i.i.d. random vectors with E(η1) = 0 and E

(
η1η

′
1

)= I. Let (εt)t∈Z be a sequence
admitting the following covariance stationary vec-GARCH (p,q) representation:

εt = H1/2
t ηt, vech (Ht) = ϕ +

q∑
i=1

Aivech
(
εt−iε

′
t−i

)+
p∑

k=1

Bkvech (Ht−k) (3)

with E‖ε1‖4 < ∞, where ϕ is a constant vector, Ai,Bk are positive semidefinite
matrices for all i,k, and the spectral radius of the matrix � = ∑q

i=1 Ai +∑p
k=1 Bk

satisfies ρ (�) < 1.

Assumption G accounts for conditionally heteroskedastic innovations of a very
general parametric form: the vec-GARCH process is the most general multivariate
GARCH specification (see Chapter 11 of Francq and Zakoian (2010)). The positive
semidefinite condition on the matrices Ai,Bk of (3) and the condition on the spectral
radius of their sum are related to the standard Boussama (2006) conditions for the
existence of a stationary ergodic solution of the vec-GARCH process; see Theorem
11.5 of Francq and Zakoian (2010). The independence of the sequence (ηt)t∈Z and
the adaptation property of the GARCH recursion equation in (3) imply that (εt,Ft)
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is a martingale difference sequence satisfying

EFt−1

(
εtε

′
t

) = Ht. (4)

The most restrictive condition of Assumption G is the requirement of finite fourth
moments, which has well-documented implications on GARCH parametrization.

The stochastic properties of the innovation sequences (εt) and (ut) are summa-
rized by the following assumption.

Assumption M.

(i) Let the statistical model be given by the predictive regression system (1)–(2)
with vt = [

u′
t,ε

′
t

]′
a strictly stationary process satisfying Ev1v′

1 = 	vv > 0. The
sequence εt in (2) satisfies Assumption G with εt = εt and εt given by (3). The
sequence ut in (1) is a linear process

ut =
∞∑

j=0

Fjet−j

∞∑
j=0

j
∥∥Fj

∥∥2
< ∞, (5)

where (et)t∈Z is a strictly stationary and ergodic Ft -martingale difference
sequence satisfying E‖e1‖4 < ∞,

(
Fj
)

j≥0 is a sequence of constant matrices

such that F (1) = ∑∞
j=0 Fj has full rank and F0 = Ir.

(ii) Let the statistical model be given by the VAR process (1). The sequence ut in
(1) satisfies Assumption G with ut = εt and εt given by (3).

Assumption M provides two separate sets of assumptions according to the
statistical model under consideration: when the latter is given by the VAR(1)

process in (1), the sequence of innovations (ut) is assumed to be a vec-GARCH
process of the form (3) of Assumption G. On the other hand, when considering a
predictive regression system (1)–(2) as the statistical model, a parametric GARCH
specification is imposed only the innovation sequence (εt) of the model equation
(2); the innovation sequence (ut) may exhibit conditional heteroskedasticity as a
result of the potential conditional heteroskedasticity of the sequence (et) in (5),
but there is no need to model this parametrically. The stationarity and ergodicity
assumption of (et) ensures the validity of a strong law of large numbers for
n−1 ∑n

t=1 ete′
t and is satisfied when (et) is a stationary GARCH process of the

form (3). We denote the autocovariance matrix of ut by �u (j) =E

(
u1u′

1−j

)
and the

associated long run covariance 
uu = ∑∞
j=−∞ �u (j) > 0, the positive definiteness

of 
uu ensured by Assumption M.
The persistence properties of the vector autoregression xt are characterized

through assumptions on an adjusted version of the autoregressive matrix Rn,
that generalizes the parametrization employed by MP (2009) and PM (2009a),1

introduced by Magdalinos and Phillips (2020), henceforth referred to as MP

1The original parametrization of the autoregressive matrix in MP (2009), PM (2009a), and KMS (2015a) took the
form Rn = Ir +C/nα with C a diagonal matrix and α ≥ 0. The current parametrizaton in Assumption P employs the
more general parametrization of Magdalinos and Phillips (2020).
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(2020), to systems with conditionally homoskedastic innovations. We distinguish
between three classes of regressor processes, presented below.

Assumption P. The autoregressive matrix Rn in (1) satisfies

Cn := κn (Rn − Ir) → C as n → ∞ (6)

for some r×r matrix C satisfying ‖C‖ < ∞ and some sequence (κn)n∈N of positive
numbers. The regressor xt in (1) belongs to one of the following classes:

(i) Near-nonstationary and nonstationary regressors, if (6) holds with κn/n →
κ ∈ (0,∞].

(ii) Near-stationary regressors, if (6) holds with κn/n → 0, κn → ∞ and C a
negative stable2 matrix.

(iii) Stationary regressors, if (6) holds with κn = 1 and R = Ir + C has spectral
radius ρ (R) < 1.

The process xt in (1) is initialized at x0 = op

(
κ

1/2
n

)
with (κn)n∈N satisfying (6)

under Assumptions P(i)–(ii) and x0 = Op (1) under Assumption P(iii).

Observe that (6) implies that the localizing coefficient matrix Cn of Rn is allowed
to depend on the sample size n. In the near nonstationary regressor case P(i), quite
general localizing coefficient matrices Cn are permitted with the sole condition
‖C‖ < ∞ that the limit matrix in (6) is bounded; the exact I(1) case is included
in P(i) when C = 0. The negative stability requirement of Assumption P(ii) on
the limiting matrix C in (6) implies restrictions on the sequences (Cn) and (Rn)

that give rise to regressors with near-stationary characteristics; see the discussion
following Assumption N and Lemma 2.1 of MP (2020). Moreover, the negative-
stability property of C is a necessary and sufficient condition for the matrix

Vxx =
∫ ∞

0
erC
uuerC′

dr (7)

to be well defined (and positive definite since 
uu > 0). Since Vxx is the probability
limit of the sample moment matrix n−1κ−1

n

∑n
t=1 xt−1x′

t−1 (Lemma 2.2(ii) of MP
(2020) for the conditionally homoskedastic case and Lemma 3.2(ii) below), the
requirement of Assumption P(ii) in the definition of a near-stationary process
seems minimal. Assumption P(iii) covers the usual stable root regressor case.
Assumption P allows for an initial condition x0 (n) that takes the form of a random
process (e.g., a linear process of past innovations (ut)t≤0) provided that the order of
magnitude of x0 (n) is dominated by that of xn (strictly under P(i)-(ii) and weakly
under P(iii)), a restriction that rules out distant and infinite past initializations (see
Andrews and Guggenberger (2008) and Phillips and Magdalinos (2009b)) that
contribute to least squares limit theory.

2A square matrix is negative stable if all its eigenvalues have negative real part.
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Denoting the demeaned regression matrices in the system (1)–(2) by Y =(
y′

1
,...,y′

n

)′
, X = (

x′
0,...,x

′
n−1

)′
, where y′

t
= y′

t − ȳ′
n, x′

t = x′
t − x̄′

n−1, ȳn = n−1 ∑n
t=1 yt

and x̄n−1 = n−1 ∑n
t=1 xt−1, the OLS estimator of A in (2) is given, as in KMS

(2015a), by

Ân = Y ′X
(
X′X

)−1
. (8)

The effect of GARCH innovations on the asymptotic theory of the least squares
estimator of A is known to differ according to the persistence class of the regressor

xt in (1). For stationary processes in class (iii),
√

n vec
(

Ân −A
)

is asymptotically

zero mean Gaussian with nonstandard asymptotic variance that depends on the
GARCH parameters and the fourth moment of the innovations. As a result, the
usual self-normalized hypothesis tests will be invalid and a White (1980) type of
correction is necessary to obtain correctly sized t and Wald tests. The situation is
very different for the near-I(1) processes of class (i), where the nonstandard limit

distributions of n vec
(

Ân −A
)

in the unit root and local to unity cases (Phillips

1987, Phillips 1988; Chan and Wei, 1987) are invariant to the presence of GARCH
effects and the associated Dickey–Fuller type t and Wald tests remain valid without
corrections for conditional heteroskedasticity. This dichotomy has a signal-to-
noise ratio interpretation: stationary GARCH effects in the noise of the system
(1)–(2) are asymptotically eliminated by the strong signal

∑n
t=1 xt−1x′

t−1 = Op
(
n2
)

of a near-integrated process in class (i). On the other hand, the weaker Op (n) signal
of a stationary process in class (iii) is not sufficient to eliminate GARCH effects
from the noise. Given the vast discrepancy in the order of magnitude of the above
signals, a natural question is the existence of a “minimal” order of magnitude for
the signal of xt to asymptotically eliminate GARCH effects. An affirmative answer
requires the development of a limit distribution theory for the OLS estimator in the
intermediate case of near-stationary regressors of class P(ii), undertaken in the next
section.

3. LEAST SQUARES LIMIT THEORY FOR NEAR-STATIONARY
SYSTEMS WITH GARCH INNOVATIONS

We develop a limit theory for the centered and scaled least squares regression
estimate

√
nκn

(
Ân −A

)
=

(
1√
nκn

n∑
t=1

εtx
′
t−1

)(
1

nκn

n∑
t=1

xt−1x′
t−1

)−1

+Op

(√
κn

n

)
(9)

for regressors xt belonging to the class P(ii) of near stationary processes. The
asymptotically negligible term above arises from estimating the intercept in (2)
and employing the demeaned series for yt and xt−1 for the construction of the
OLS estimator Ân; in the case of stationary and near stationary regressors this
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demeaning is eliminated asymptotically.3 Our approach follows MP (2009) in the
sense that we derive a law of large numbers and a martingale central limit theorem,
respectively, for the denominator and numerator of the matrix quotient (9) and use
this to extract the limit theory. The main technical issue is to obtain the probability
limit of the quadratic variation of the martingale transform in the numerator of (9)
when εt is a vec-GARCH process defined in (3). An approximation to this quadratic
variation is achieved by reducing the problem to the existence of a stable solution to
a stochastic recurrence relation involving products of innovations and covariates.
Stability of the solution permits standard martingale approximation arguments that
resolve the asymptotics in (9). The above analysis, summarized in Lemma 3.3, is
the main technical contribution of the paper.

To fix ideas, we establish some notation for the recursive equations that we
employ in the development of the asymptotic theory (see part (ii) of Lemma 3.3).
Given the matrices A1,...,Aq,B1,...,Bp in (3), define

�i =
⎧⎨
⎩

Ai +Bi, if i ≤ p∧q
Ai, if p < i ≤ q
Bi, if q < i ≤ p

(10)

�i = Ir2 ⊗�i, �n,i = Ri
n ⊗Ri

n ⊗�i (11)

and consider the stochastic difference equations:

Y (j) =
κ∑

l=1

�lY (j− l)+ v(j) (12)

Yn (j) =
κ∑

l=1

�n,lYn (j− l)+ vn (j) (13)

for j ≥ 1 and κ := q ∨ p, with v(j) and vn (j) denoting generic innovations (to be
specified by (24) and (25) below). The companion matrix associated with (13) is
given by

Mn,κ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�n,1 �n,2 ... �n,κ−1 �n,κ

I 0 ... 0 0

0 I
. . .

...
...

...
. . .

. . . 0 0
0 ... 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (14)

where all identity matrices are of order r2m(m+1)/2 × r2m(m+1)/2. The
companion matrix associated with (12), denoted by Mκ , has the same form as
the matrix in (14) with �n,i replaced by �i for all i ∈ {1,...,κ}. It is relatively

3See the proof of Theorem 3.4 in the Appendix for details and the proof of (9).
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straightforward to show from first principles that Assumption G on the GARCH
process ensures the stability of the solution of (12) and (13).

LEMMA 3.1. Under Assumption G, the spectral radius and norm of the
companion matricesMn,κ and Mκ defined in (14) satisfy:

(i) ρ (Mκ) < 1 and
∑∞

j=0

∥∥∥Mj
κ

∥∥∥ < ∞ and

(ii) limn→∞ ρ
(
Mn,κ

)
< 1 and supn≥1

∑∞
j=0

∥∥∥Mj
n,κ

∥∥∥ < ∞.

We start by listing some properties of near-stationary processes generated by
potentially conditionally heteroskedastic martingale difference innovations (et)

that have finite fourth order moments. Some results are direct generalizations of
the conditionally homoskedastic case of MP (2009). In particular, we show that
the sample moment matrix n−1κ−1

n

∑n
t=1 xtx′

t has the same probability limit as in
the case of a near-stationary regressor generated by a conditionally homoskedastic
martingale difference (et).

LEMMA 3.2. Denote by x0t = ∑t
j=1 Rt−j

n uj the regressor in (1) with x0 = 0 and
define the process

ζn,t =
t−1∑
j=0

Rj
nF (1)et−j. (15)

Under Assumptions4 M and P(ii), the following hold:

(i) max1≤t≤nE

∥∥∥κ
−1/2
n x0t

∥∥∥4 = O(1) and max1≤t≤nE

∥∥∥κ
−1/2
n ζn,t

∥∥∥4 = O(1).

(ii) Both n−1κ−1
n

∑n
t=1 xt−1x′

t−1 and n−1κ−1
n

∑n
t=1 ζn,t−1ζ

′
n,t−1 converge in proba-

bility to the matrix Vxx in (7).
(iii) (nκn)

−1/2
∥∥∑n

t=1 (xt−1 ⊗ εt)−∑n
t=1

(
ζn,t−1 ⊗ εt

)∥∥ = op (1) .

Lemma 3.2 shows that stationary GARCH effects are eliminated from the
first order asymptotics of the denominator of the matrix quotient (9), for a near
stationary regressor xt of arbitrary order. The asymptotic development of near-
stationary regression theory so far was based on unconditional moment bounds
and truncation and did not employ any properties of the GARCH specification (3).
Obtaining the limit distribution of the martingale transform in the numerator of the
matrix quotient (9), asymptotically equivalent to

Nn = 1√
nκn

n∑
t=1

(
ζn,t−1 ⊗ εt

)
(16)

4Under Assumption M(ii), ut = et = εt , so C (1) = I in the definition of ζn,t

https://doi.org/10.1017/S0266466621000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000086


884 TASSOS MAGDALINOS

in view of Lemma 3.2(iii), is more challenging. We show that the predictable
quadratic variation of Nn

〈N〉n = 1

nκn

n∑
t=1

(
ζn,t−1ζ

′
n,t−1 ⊗EFt−1εtε

′
t

) = 1

nκn

n∑
t=1

(
ζn,t−1ζ

′
n,t−1 ⊗Ht

)
(17)

with Ht defined in (3), can be approximated by

Vn = 1

nκn

n∑
t=1

(
ζn,t−1ζ

′
n,t−1 ⊗	εε

)
, 	εε = Eε1ε

′
1 (18)

with approximation error expressed in terms of the solutions of the stochastic
recurrence relations (12) and (13) arising from (3), and that the stability of these
solutions implies the asymptotic negligibility of the approximation error. The
approximation of 〈N〉n by Vn and the characterization of the approximation error in
terms of bounds that depend on the solutions of the stochastic difference equations
(12) and (13), summarized by the next result, is the main technical contribution of
the paper.

LEMMA 3.3. Consider the vector-valued processes

	t (j) = vec
(
ete

′
t −	ee

)⊗ vech
(
Ht+j

)
(19)

Sn,t (j) = Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗ vech
(
Ht+j

)
(20)

with Ht defined in (3) and

wt = vech
(
εtε

′
t −Ht

)
. (21)

(i) Under Assumptions M and P(ii), 〈N〉n and Vn in (17) and (18) satisfy

‖〈N〉n −Vn‖ ≤ b(σn + sn)+op (1) (22)

as n → ∞, where

σn = 1

nκn

n−1∑
j=1

‖Rn‖2(j−1)

∥∥∥∥∥
n−j∑
t=1

	t (j)

∥∥∥∥∥, sn = 1

nκn

∥∥∥∥∥∥
n−1∑
j=1

n−j∑
t=2

Sn,t (j)

∥∥∥∥∥∥ (23)

and b ∈ (0,∞) is a constant independent of n.
(ii) For each j ≥ 1 and fixed t,n: 	t (j) satisfies (12) with innovations v(j) ≡ vt (j)

given by

vt (j) = vec
(
ete

′
t −	ee

)⊗ϕ +
q∑

l=1

(I ⊗Al)
[
vec

(
ete

′
t −	ee

)⊗wt+j−l
]

(24)

and Sn,t (j) satisfies (13) with innovations vn (j) ≡ υn,t (j) given by
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υn,t (j) = Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗ϕ

+
q∑

i=1

(I ⊗Ai)
[
Rj

nζn,t−1 ⊗Rj
nF (1)et ⊗wt+j−i

]
. (25)

(iii) Under Assumptions M and P(ii), the bounding sequences in (22) satisfy σn →p

0 and sn →p 0.

By Lemma 3.3, the processes in (19) and (20) can be expressed as the companion
form solutions of the stochastic recurrence relations (12) and (13), see (59) and (60)
in the Appendix. The leading terms of these solutions consist of “moving averages”
of the martingale difference sequences (24) and (25) weighted by powers of the
companion matrices Mκ and Mn,κ , respectively. The stability property of the latter
allows to employ standard martingale arguments to demonstrate that the bounding
sequences σn and sn in (22) are asymptotically negligible.

The above lemma implies that the predictable quadratic variation of the mar-
tingale transform in (16) with εt following the vec-GARCH process (3) can
be approximated by its counterpart when εt is conditionally homoskedastic.
Combined with a Lindeberg condition established in the Appendix, a standard
martingale central limit theorem applies to the numerator of the matrix quotient
(9), and shows that the asymptotic variance of the OLS estimator Ân is invariant to
GARCH effects. The asymptotic distribution of the associated Wald statistic

Wn =
(

HvecÂn −h
)′{

H
[(

X′X
)−1 ⊗ 	̂εε

]
H′

}−1 (
Hvec Ân −h

)
(26)

for testing linear restrictions on the coefficient matrix

H0 : Hvec (A) = h, (27)

where H is a known q × mr matrix with rank q and h is a known vector, follows
directly from that of Ân. Since the εt sequence is uncorrelated, 	̂εε in (26) is a
simple parametric estimator 	̂εε = n−1 ∑n

t=1 ε̂tε̂
′
t based on the residuals of (2):

ε̂t = yt − ȳn − Ân (xt−1 − x̄n−1). These results are summarized below.

THEOREM 3.4. Consider the system of predictive regressions (1), (2), and (6)
under Assumption P(ii) with εt and ut satisfying Assumption M(i). The following
limits apply as n → ∞:

(i) (nκn)
−1/2 ∑n

t=1 (xt−1 ⊗ εt) ⇒ N (0,Vxx ⊗	εε)

(ii)
√

nκn vec
(

Ân −A
)

⇒ N
(
0,V−1

xx ⊗	εε

)
(iii) Wn ⇒ χ2 (q), under (27)

where q is the rank of H in (27), Vxx is defined in (7) and 	εε = Eε1ε
′
1.

Analogous results apply to the OLS estimator R̂n when the statistical model is
given by the vector autoregressive process in (1), and ut are martingale difference
innovations that satisfy the vec-GARCH recursion (3), as specified by Assumption
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M(ii). The associated Wald statistic for testing H0 : HR vec (Rn) = hR, where HR

is a known q× r2 matrix with rank q and hR is a known vector, is given by

WR
n =

(
HRvecR̂n −hR

)′{
HR

[(
X′X

)−1 ⊗ 	̂uu

]
H′

R

}−1 (
HRvecR̂n −hR

)
, (28)

where 	̂uu = n−1 ∑n
t=1 ûtû′

t is based on the (1) residuals ût = xt −Rnxt−1.

THEOREM 3.5. Consider the vector autoregression (1) and (6) under Assump-
tion P(ii) with ut satisfying Assumption M(ii). The following limits apply as n →
∞:

(i) (nκn)
−1/2 ∑n

t=1 (xt−1 ⊗ut) ⇒ N (0,Vxx ⊗	uu)

(ii)
√

nκn vec
(

R̂n −Rn

)
⇒ N

(
0,V−1

xx ⊗	uu
)

(iii) WR
n ⇒ χ2 (q),

where q is the rank of HR and Vxx is defined in (7).

Remark 3.6.

(i) Theorems 3.4 and 3.5 provide a full characterization of the effect of GARCH
innovations in stochastic regression models by considering regressors with a
signal that is intermediate to the Op

(
n2
)

signal of I(1) processes and the Op (n)

signal of I(0) processes. We show that a regression signal of order
n∑

t=1

xt−1x′
t−1 = Op (nκn), (29)

where κn → ∞ at arbitrary rate is sufficient to asymptotically eliminate
stationary GARCH effects from the distribution of the least squares estimator
and the associated self-normalized test statistics. The implication is that the
elimination of GARCH effects from least squares regression asymptotics is
not an exclusively I(1) phenomenon: it occurs when the regressors exhibit per-
sistence of any degree, including near-stationary regressors that are arbitrarily
close to stationarity.

(ii) The result has an intuitive signal to noise interpretation: the Op (n) signal
in stationary regression is not sufficiently strong to asymptotically remove
the effects of conditional heteroskedasticity in the noise; this only becomes
possible when the regression signal is strengthened to (29), while the order of
the conditionally heteroskedastic innovations remains I(0).

(iii) Andrews and Guggenberger (2012), herafter AG (2012), establish OLS and
GLS limit theory in an AR(1) process with a root that admits an equivalent
parametrization to (6) for scalar Rn and C. Their results include a univariate
version of Theorem 3.5 obtained under a strong mixing assumption instead
of a GARCH parametrization as in the current paper. While avoiding a
parametric specification of the conditional heteroskedasticity, AG (2012)
impose stronger moment conditions on the innovation sequence ut than
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our Assumptions G, M(ii): Assumption INNOV(iii) of AG (2012) requires
E‖u1‖ζ < ∞ with (at least) ζ > 6 with further moment conditions imposed
for the GARCH(1,1) example of equation (5) of that paper. In short, the OLS
limit distribution result of AG (2012) coincides with a univariate version of
Theorem 3.5 above and is derived by weak dependence arguments without
imposing a GARCH parametrization on ut at the expense of assuming higher
order moments on ut. On the other hand, the current paper makes use of the
GARCH parametrization for the asymptotic development based on the recur-
sive techniques of Lemmata 3.1 and 3.3 and requires four finite moments.
In this sense, the OLS asymptotic results of AG (2012) and Theorem 3.5
above are complementary. It is worth noting the weak dependence properties
of vector-valued conditionally heteroskedastic processes are not as well
developed as in the scalar case: to our knowledge, there are no available results
on the mixing properties of vec-GARCH models, with geometric ergodicity
established by Boussama, Fuchs and Stelzer (2011) for the less general class
of BEKK–GARCH models.

4. IVX LIMIT THEORY WITH GARCH INNOVATIONS

Having characterized the asymptotic behavior of the least squares estimator in near
stationary systems with conditionally heteroskedastic innovations, we turn to the
issue of conducting inference in the predictive regression system (1)–(2) when the
order of regressor persistence is unknown. A robust methodology that produces
standard inference for testing restrictions on the matrix A of coefficients in (2)
across all persistence regimes P(i)–(iii) based on an endogenous instrumentation
procedure, termed IVX, has been proposed by PM (2009a) and further developed
in the current predictive regression context by KMS (2015a). In this paper, we
investigate the extent to which the above procedure is valid under conditionally
heteroskedastic innovations. The main result of the section is Theorem 4.4 which
establishes a testing procedure that is valid over the entire range of persistence
regimes P(i)–(iii).

To fix ideas, instruments are constructed by differencing the regressor xt and a
new process

z̃t = Rnzz̃t−1 +�xt, z̃0 = 0 (30)

is generated according to an artificial autoregressive matrix

Rnz = Ir + Cz

κnz
,

n1/2

κnz
+ κnz

n
→ 0 (31)

with specified persistence degree κnz, where Cz is a negative stable matrix. The
matrix A of coefficients in (2) is then estimated by a standard instrumental variable
estimator that employs the instruments in (30):

ÃIVX = Y ′Z̃
(

X′Z̃
)−1

. (32)
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The asymptotic development of the previous section is the key to the determi-
nation of the asymptotic properties of the above IVX estimator under GARCH
effects. The asymptotic behavior of the numerator of the matrix quotient in (32) is
driven by the martingale transform

Ñn = 1√
n(κnz ∧κnz)

n∑
t=1

(z̃t−1 ⊗ εt) (33)

with instrument process z̃t behaving asymptotically like a near stationary process
of the type P(ii): when κnz � κn (shorthand notation for κnz/κn → 0) in which
case the instruments are less persistent than the regressors, z̃t−1 can be replaced
asymptotically in (33) by zt−1, where

zt = Rnzzt−1 +ut (34)

a κnz-near-stationary process satisfying Assumption P(ii); when κn � κnz, employ-
ing more persistent instruments than the regressor in (1) leads to z̃t behaving
asymptotically as the regressor xt, a necessarily near-stationary process by the
choice of κnz in (31), in which case Ñn in (33) is asymptotically equivalent to Nn

in (16):∥∥∥∥∥Ñn − 1√
nκnz

n∑
t=1

(zt−1 ⊗ εt)

∥∥∥∥∥ = op (1) if κnz/κn → 0,

∥∥∥∥∥Ñn − 1√
nκn

n∑
t=1

(xt−1 ⊗ εt)

∥∥∥∥∥ = op (1) if κn/κnz → 0,

see Lemma 3.2 MP (2020). In both cases, Lemma 3.3 above applies to the

predictable quadratic variation
〈
Ñn

〉
of the martingale transform in (33): denoting

the moment matrices of zt−1 and xt−1 by V(n)
zz = n−1κ−1

nz

∑n
t=1 zt−1z′

t−1 and V(n)
xx =

n−1κ−1
n

∑n
t=1 xt−1x′

t−1 Lemma 3.3 yields∥∥∥〈Ñn

〉
−V(n)

zz ⊗	εε

∥∥∥ →p 0 if
κnz

κn
→ 0 and

∥∥∥〈Ñn

〉
−V(n)

xx ⊗	εε

∥∥∥ →p 0 if
κn

κnz
→ 0

with Lemma 3.2(ii) applying to V(n)
xx and V(n)

zz . Moreover, the asymptotic approx-
imation of n−1 (κnz ∧κnz)

−1 ∑n
t=1 z̃t−1z̃′

t−1 by V(n)
zz when κnz/κn → 0 and by V(n)

xx
when κn/κnz → 0 (Lemma 3.1(iv) of MP (2020)) as well as the limit distribution of
n−1 (κnz ∧κnz)

−1 ∑n
t=1 xt−1z̃′

t−1 (Lemma 3.1(iii) of MP (2020)) are derived through
arguments that do not depend on the conditional homoskedasticity assumption
maintained by MP (2020),5 and hence remain valid under the current conditionally
heteroskedastic framework of Assumption G. We conclude that the limit distri-
bution of Ñn in (33) can be derived directly from Theorem 3.5(i) and the limit

5The proof of Lemma 3.2(ii) in the Appendix shows that Proposition A2 of MP (2020) continues to hold under
Assumptions G and M, so parts (ii)–(iv) of Lemma 3.1 of MP (2020) continue to hold in the current context.
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distribution of the remaining IVX sample moments can be deduced by Lemma 3.1
(iii) and (iv) of MP (2020).

Having characterized the asymptotic behavior of IVX sample moments, the
asymptotic distribution of the normalized and centred IVX estimator follows as in
PM (2009a) and MP (2020): we collect the results across the different persistence
regimes of Assumption P in Theorem 4.1 below. Corresponding to the matrix Vxx

in (7), we define the matrices

Vzz =
∫ ∞

0
erCz
uuerC′

z dr and Vxz =
∫ ∞

0
erCVxxerC′

zdr (35)

and, under Assumption P(iii), we denote a strictly stationary ergodic version of xt

by

x̌t =
∞∑

j=0

Rjut−j. (36)

Finally, we denote by Bu an r-variate Brownian motion with covariance matrix

uu, by JC (t) = ∫ t

0 eC(t−s)dBu (s) an Ornstein–Uhlenbeck process and by JC (t) =
JC (t)− ∫ 1

0 JC (t)dt the demeaned version of JC.

THEOREM 4.1. Consider the model (1)–(6) with instruments z̃t defined by (30)
and (31). The following limit theory as n → ∞ applies for the estimator ÃIVX in
(32) under Assumptions P and M(i).

(i) Under Assumptions P(i)–(ii),√
n(κn ∧κnz)vec

(
Ãn −A

)
⇒ MN

(
0,

(
�−1

C

)′
Vz̃z̃�

−1
C ⊗	εε

)
,

where �C and Vz̃z̃ take the following form: under Assumption P(i),

�C = −
[

xx +

∫ 1

0
JC (s)dB′

x (s)+
∫ 1

0
JC (s)J′

C (s)dsC′
](

C−1
z

)′
and Vz̃z̃ = Vzz; under Assumption P(ii): �C = CVxx

(
C−1

z

)′
and Vz̃z̃ = Vzz when

κnz/κn → 0; �C = Vz̃z̃ = Vxx when κn/κnz → 0; �C = −CVxz and

Vz̃z̃ =
∫ ∞

0
esκzCz

(
CVxzC

′
z +CzV

′
xzC

′)esC′
z ds

when κn/κnz → κz > 0, where the matrices Vxx, Vzz, and Vxz are defined in (7)
and (35),

(ii) Under Assumption P(iii),
√

n vec
(

ÃIVX −A
)

⇒ N (0,V0), where

V0 =
([
Ex̌1x̌′

1

]−1 ⊗ Im

)
E
(
x̌1x̌′

1 ⊗ ε2ε
′
2

)([
Ex̌1x̌′

1

]−1 ⊗ Im

)
(37)

and x̌t is defined in (36).
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COROLLARY 4.2. Under Assumption M(i), the IVX–Wald statistic

W̃n =
(

HvecÃIVX −h
)′{

H
[(

X′PZ̃X
)−1 ⊗ 	̂εε

]
H′

}−1 (
HvecÃIVX −h

)
(38)

for testing the hypothesis (27) has a χ2 (q) asymptotic distribution when the
regressor in (1)–(6) satisfies Assumptions P(i)–(ii).

The only class of predictor variables not covered by Corollary 4.2 is that of
purely stationary autoregressions P(iii) with conditionally heteroskedastic innova-
tions. This is by no means surprising since, in the above case, the IVX–Wald test
statistic is asymptotically equivalent to a standard OLS–Wald statistic which is
known to have a nonstandard limit distribution under conditionally heteroskedastic
innovations. When xt is a stationary process and the innovation sequence εt in (2)
is conditionally heteroskedastic, the asymptotic variance of n−1/2 ∑n

t=1 (xt−1 ⊗ εt)

is given by ϒ = E
(
xt−1x′

t−1 ⊗ εtε
′
t

)
and does not factorize to E

(
xt−1x′

t−1

)⊗ 	εε

as in the case when εt are conditionally homoskedastic; consequently, the matrix
n
(
X′X

)−1 ⊗ 	̂εε is no longer a consistent estimator of the asymptotic variance of
the (asymptotically equivalent) OLS and IVX estimators, so both the OLS and
IVX based Wald statistics will fail to be asymptotically χ2 (q). The standard limit
distribution can be recovered by introducing a White (1980) type of correction
in the Wald statistic, which requires consistent estimation of nϒ when xt is a
stationary process. In order to preserve the robustness of the IVX procedure to
the persistence properties of xt, we employ the estimator

ϒ̂n =
n∑

t=1

(
z̃t−1z̃′

t−1 ⊗ ε̂tε̂
′
t

)
, (39)

where z̃t are the IVX instruments in (30) and ε̂t are the OLS residuals from (2).
The corrected IVX–Wald statistic takes the form

Ŵn =
(

HvecÃIVX −h
)′(

HQ̂nH′
)−1 (

HvecÃIVX −h
)
, (40)

Q̂n =
[(

Z̃′X
)−1 ⊗ Im

]
ϒ̂n

[(
X′Z̃

)−1 ⊗ Im

]
. (41)

The next results characterize the asymptotic behavior of ϒ̂n in (39) and confirm the
validity of the White-type correction for all persistence regimes of Assumption P.

LEMMA 4.3. Denote by x0t = ∑t
j=1 Rt−j

n uj the regressor in (1) with x0 = 0 and
by z̃0t the IVX instrument in (30) generated by x0t. Under Assumptions P and M(i),
the following hold as n → ∞:

(i) max1≤t≤nE
∥∥(κn ∧κnz)

−1/2 z̃0t

∥∥4 = O(1) .

(ii) n−1 (κn ∧κnz)
−1 ϒ̂n →p �, where: � = Vzz ⊗	εε when κnz/κn → 0; � = Vxx ⊗

	εε when κn/κnz → 0 and κn → ∞; � = E
(
x̌1x̌′

1 ⊗ ε2ε
′
2

)
under Assumption

P(iii) with x̌t, Vxx and Vzz defined in (36), (7) and (35).
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THEOREM 4.4. Under Assumptions M(i) and P, the corrected IVX–Wald
statistic Ŵn in (40) has a χ2 (q) asymptotic distribution under (27).

Remark 4.5.

(i) Theorem 4.1 and its corollary show that the limit distribution of the stan-
dard IVX–Wald statistic W̃n is invariant to the presence of conditional het-
eroskedasticity in the innovations for all regressors that exhibit some degree
of persistence in that κn → ∞. GARCH effects are present in the limit distri-
bution only in the case P(iii) where the regressor xt is a stable autoregressive
process (and κn = 1). These results are a direct consequence of the asymptotic
development in Section 3 and the fact that any degree of persistence κn →
∞ is sufficient to eliminate GARCH effects in near stationary systems of
regression equations: intuitively, an IVX instrument z̃t behaves asymptoti-
cally as a near-stationary process (zt if κnz � κn and xt if ∞ ↑ κn � κnz),
the martingale transform Ñn in (33) will behave asymptotically as its near
stationary counterpart (16), and will thus have sufficient signal to eliminate
GARCH effects from the limit distribution. For the same reason, the limit
distribution of the standard IVX-Wald test is distorted by the presence of
GARCH innovations when κn = 1 since z̃t behaves like the stationary process
xt.

(ii) Theorem 4.4 shows that a simple adjustment to the IVX Wald test statistic
extends the validity of the IVX approach in the presence of GARCH inno-
vations across the whole range of data generating mechanisms considered
in classes P(i)–(iii). These classes define regressors with diverse stochastic
properties, ranging from pure stationarity to unit root nonstationarity and
include the intermediate local to unity and near stationary persistence regimes.
The adjustment differs from a standard conditional heteroskedasticity cor-
rection in that E

(
xt−1x′

t−1 ⊗ εtε
′
t

)
is estimated in (39) by using the IVX

instruments instead of the regressors, in order to ensure the robustness of the
corrected IVX–Wald statistic in (40) to regressors with degree of persistence
κn dominating the instrument rate κnz. The robustness of the corrected IVX–
Wald test statistic Ŵn in (40) to conditional heteroskedasticity under all
persistence regimes makes it practically relevant and suitable for general
application.

(iii) KMS (2015a) have proposed a finite sample correction to the IVX–Wald
test statistic W̃n in (38) that exhibits better finite sample properties while
being asymptotically equivalent to W̃n. The conditional heteroskedasticity
adjustment employed to W̃n can also be employed to the IVX–Wald test
statistic of KMS (2015a), leading to the adjusted version having a χ2 (q) limit
distribution for models covering the entire range of Assumption P. Extensive
Monte Carlo experiments in KMS (2015a) suggest that choosing Rnz = ρnzIr

with ρnz = 1−1/n0.95 in (31) gives rise to an IVX-Wald test statistic with very
good finite sample size and power properties.
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(iv) A version of Theorems 4.1 and 4.4 were stated under more restrictive
assumptions in KMS (2015a) but no theory was provided. The current
paper establishes the theory of IVX estimation and inference in predictive
regression systems with conditionally heteroskedastic innovations under the
more general vector autoregressive framework of Assumption P (see footnote
1 above) and less restrictive assumptions on the innovations compared to
those imposed by KMS (2015a): while the GARCH parametric specification
for εt is common to both papers, KMS (2015a) imposes an additional weak
dependence condition (equation (8) of that paper) and the stricter condition∑∞

j=1 j
∥∥Fj

∥∥ < ∞ of Phillips and Solo (1992) on the linear process for ut

compared to the summability requirement (5) of the current paper.

5. DISCUSSION

The paper provides a complete characterization of the asymptotic properties of
least squares regression methods in the presence of conditional heteroskedasticity
in the innovations that take the form of a covariance stationary vec-GARCH pro-
cess. Existing results on stochastic regression with conditionally heteroskedastic
innovations lead to different conclusions depending on the integration properties
of the regressors. Least squares limit theory with I(1) processes is invariant to
the presence of conditional heteroskedasticity and the usual Dickey–Fuller type
of limit distributions apply. On the other hand, GARCH effects appear in the
first order asymptotics of the OLS estimator and the associated self-normalized
statistics generated by I(0) regressors. Approached as a signal-to-noise ratio
problem, a natural question that arises is the degree of regression signal required
in order to asymptotically eliminate conditional heteroskedasticity from the noise.
The paper provides a simple and intuitive answer: any signal that dominates the
Op (n) signal of a stationary regressor is sufficient. Consequently, GARCH effects
appear in least squares limit theory only in the case of stationary regressors: for
near-stationary and local to unity regressors, the OLS estimator has the same limit
distribution that applies under conditionally homoskedastic innovations, given in
MP (2009) and Phillips (1988) respectively. A similar result has been established
by Andrews and Guggenberger (2012) for a scalar AR(1) process using weak
dependence techniques rather than a GARCH parametrization.

The asymptotic invariance of least squares methods to GARCH effects in
the innovations in the case of regressors that are not exactly I(0) carries over
to the IVX procedure of PM (2009a) and KMS (2015a), where the IVX–Wald
test statistic is shown to have a standard chi-squared limit distribution. The
advantage of this method is that, unlike least squares, the limit distribution is
robust to regressor persistence. To accommodate I(0) regressors in the presence
of conditional heteroskedasticity in the innovations, we introduce a White-type
correction based on the endogenously generated IVX instruments rather than the
regressor in order to preserve the method’s robustness property. This adjusted
IVX–Wald test statistic is shown to have a standard chi-squared limit distribution
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under all persistence regimes and stationary GARCH innovations, validating the
IVX procedure under conditional heteroskedasticity.

6. TECHNICAL APPENDIX AND PROOFS

We denote by ‖M‖ = max
{√

λ : λ ∈ σ
(
M′M

)}
and ‖M‖F = (

trM′M
)1/2

the

spectral and Frobenius matrix norms and by σ (A) and ρ (A) the spectrum and
the spectral radius of a square matrix A.

Proof of Lemma 3.1. It is sufficient to show that all nonzero eigenvalues of Mκ

lie inside the open unit disk {z ∈ C : |z| < 1}. Suppose that λ ∈C� {0} is an arbitrary
eigenvalue of Mκ . Letting

Gκ (λ) = Is − 1

λ
�1 −·· ·− 1

λκ
�κ,

with s = r2m(m+1)/2, and using the standard formula for the determinant of a
partitioned matrix (e.g., 5.30 of Abadir and Magnus (2005)) and induction on κ

we obtain

det (Mκ −λIκs) = (−λ)κs detGκ (λ) . (42)

The identity (42) implies that any nonzero eigenvalue λ of Mκ satisfies

detGκ (λ) = 0. (43)

Denoting by MH the conjugate transpose of a square complex matrix M, the
Hermitian part of Gκ (λ) is given by

H [Gκ (λ)] = 1

2

[
Gκ (λ)+GH

κ (λ)
]

= 1

2

[
2Is −

(
1

λ
+ 1

λ̄

)
�1 −·· ·−

(
1

λκ
+ 1

λ̄κ

)
�κ

]

= 1

2

[
2Is − 2Re (λ)

|λ|2 �1 − 2Re
(
λ2

)
|λ|4 �2 −·· ·− 2Re(λκ)

|λ|2κ
�κ

]

= Im −
κ∑

i=1

�i +
κ∑

j=1

[
1− Re

(
λj
)

|λ|2j

]
�j. (44)

The conditions �i ≥ 0 and ρ (�) < 1 of Assumption G imply that the matrix Im −∑κ
i=1 �i = Im −� is positive definite: λmin (Im −�) = 1−λmax (�) > 0. Moreover,

for arbitrary λ ∈ C with λ �= 0 and j ∈ N,

|λ| ≥ 1 �⇒ |λ|2j ≥ |λ|j = ∣∣λj
∣∣ ≥ ∣∣Re

(
λj
)∣∣ �⇒ 1− Re

(
λj
)

|λ|2j ≥ 0,

which implies that the second sum on the right of (44) is a positive semidefinite
matrix. Since Im −∑κ

i=1 �i > 0, (44) implies that H [Gκ (λ)] is a positive definite
matrix for all λ ∈ C satisfying |λ| ≥ 1. Positivity of H [Gκ (λ)] implies the
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nonsingularity of Gκ (λ), so (43) is violated when |λ| ≥ 1. We conclude that Mκ

cannot have an eigenvalue with |λ| ≥ 1, so ρ (Mκ) < 1.
To show the second assertion, Householder’s theorem (Lemma 5.6.10 in Horn

and Johnson, 2013) ensures that for any δ > 0 there exists n0 (δ) ∈ N and a matrix
norm ‖·‖n0(δ) such that ‖Mκ‖n0(δ) ≤ ρ (Mκ)+ δ. By equivalence of norms in finite
dimensional spaces, for each δ > 0 there exists a constant c(δ) ∈ (0,∞) such that∥∥Mj

κ

∥∥ ≤ c(δ)
∥∥Mj

κ

∥∥
n0(δ)

≤ c(δ)‖Mκ‖j
n0(δ) ≤ c(δ) [ρ (Mκ)+ δ]j

for each j ∈N. Since ρ (Mκ) < 1, we may choose δ ∈ (0,1−ρ (Mκ)), which implies
that λδ := ρ (Mκ)+ δ ∈ (0,1) and

∞∑
j=0

∥∥Mj
κ

∥∥ ≤ c(δ)

∞∑
j=0

λ
j
δ = c(δ)

1−λδ

< ∞.

This shows part (i). For part (ii), Mn,κ → Mκ as n → ∞ so, by continuity of the
eigenvalues of a matrix as a function of the matrix elements, ρ

(
Mn,κ

) → ρ (Mκ)

and
∥∥Mn,κ

∥∥ → ‖Mκ‖ as n → ∞. Since ρ (Mκ) < 1, convergence of ρ
(
Mn,κ

)
implies that limn→∞ ρ

(
Mn,κ

)
< 1. Also, since

∑∞
j=0

∥∥∥Mj
κ

∥∥∥ < ∞,
∥∥Mn,κ

∥∥ →
‖Mκ‖ and dominated convergence yield mn := ∑∞

j=0

∥∥∥Mj
n,κ

∥∥∥ → ∑∞
j=0

∥∥∥Mj
κ

∥∥∥ < ∞.

Convergence of (mn) implies that supn≥1mn < ∞, completing the proof of the
lemma. �

Proof of Lemma 3.2. We employ a corollary of the Rosenthal and Minkowski
inequalities for a martingale difference sequence

(
Yj
)

satisfying E
∣∣Yj

∣∣p < ∞:

E

∣∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣∣
p

≤ Cp

⎛
⎝ n∑

j=1

(
E
∣∣Yj

∣∣p)2/p

⎞
⎠

p/2

for p > 2, (45)

where Cp > 0 is a constant depending on p only, see Lemma 2.5.2 in Giraitis
et al. (2012). Letting I,Jt,i ⊆ N∪ {0}, the Minkowski inequality followed by the
inequality (45) with p = 4 imply that∥∥∥∥∥∥
∑
i∈I

∑
j∈Jt,i

Rj
nFiet−j−i

∥∥∥∥∥∥
4

L4

≤
⎛
⎝∑

i∈I

∥∥∥∥∥∥
∑
j∈Jt,i

Rj
nFiet−j−i

∥∥∥∥∥∥
L4

⎞
⎠

4

=
⎛
⎜⎝∑

i∈I

⎧⎪⎨
⎪⎩E

∥∥∥∥∥∥
∑
j∈Jt,i

Rj
nFiet−j−i

∥∥∥∥∥∥
4
⎫⎪⎬
⎪⎭

1/4⎞
⎟⎠

4

≤ c

⎛
⎜⎝∑

i∈I

⎧⎨
⎩
∑
j∈Jt,i

(
E
∥∥Rj

nFiet−j−i

∥∥4
)1/2

⎫⎬
⎭

1/2
⎞
⎟⎠

4
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for a uniform constant c > 0, giving

∥∥∥∥∥∥
∑
i∈I

∑
j∈Jt,i

Rj
nFiet−j−i

∥∥∥∥∥∥
4

L4

≤ cE‖e1‖4

⎛
⎜⎝∑

i∈I

‖Fi‖
⎧⎨
⎩
∑
j∈Jt,i

∥∥Rj
n

∥∥2

⎫⎬
⎭

1/2
⎞
⎟⎠

4

. (46)

For part (i), (46) yields for each t ∈ {1,...,n}

E

∥∥∥∥ x0t

κ
1/2
n

∥∥∥∥
4

= 1

κ2
n

∥∥∥∥∥∥
t−1∑
j=0

Rj
nut−j

∥∥∥∥∥∥
4

L4

= 1

κ2
n

∥∥∥∥∥∥
∞∑

i=0

t−1∑
j=0

Rj
nFiet−j−i

∥∥∥∥∥∥
4

L4

≤ cE‖e1‖4

κ2
n

⎛
⎝n−1∑

j=0

∥∥Rj
n

∥∥2

⎞
⎠

2 ( ∞∑
i=0

‖Fi‖
)4

.

Since the last bound is independent of t and
∑n−1

j=0

∥∥∥Rj
n

∥∥∥2 = O(κn), part (i) for x0t

follows. A simpler version of the above argument applies to E

∥∥∥κ
−1/2
n ζn,t−1

∥∥∥4
since

(45) with p = 4 applies directly to the sum defined by ζn,t−1.
For part (ii), we start by noting that Proposition A2 of Magdalinos and

Phillips (2020) continues to hold in the current conditional heteroskedastic setup
with the following modification to the proof: when a second moment bound is
employed, we replace the role of conditional homoskedasticity in the computation
of products of second moments by an L2 Cauchy–Schwarz inequality followed
by the inequality (46) when necessary; the resulting bounds depend on fourth
moments (instead of second moments) of (et) but the orders of magnitude of
the resulting L2-bounds remain the same. Specifically, referring to the proof

of Proposition A2 of MP (2020): the bounds for max0≤m≤n

∥∥∥	̃
(m)
1n −	

(m)
1n

∥∥∥
L1

in (39) and for max0≤m≤n

∥∥∥	
(m)
3n

∥∥∥
L1

are the same with ‖e1‖L2
max1≤t≤n ‖x0t‖L2

replaced by ‖e1‖L4
max1≤t≤n ‖x0t‖L4

; the bounds for max0≤m≤n

∥∥∥S(m)
2n

∥∥∥
L1

and

max0≤m≤n

∥∥∥S(m)
3n

∥∥∥
L1

in equations (42) and (43) are the same with ‖e1‖2
L2

replaced by

c1/4 ‖e1‖2
L4

where c is the constant in (46); the bound for max0≤m≤n

∥∥∥	
(m)
2n −S(m)

1n

∥∥∥
L1

is the same. Having established the validity of Proposition A2 of MP (2020)
under the assumptions of the current paper, n−1 ∑n

t=1 xt−1u′
xt →p �′

xx and
n−1κ−1

n

∑n
t=1 xt−1x′

t−1 →p Vxx from the argument of Lemma 2.2 of MP (2020)
with n−1 ∑n

t=1 ete′
t →L1 	 following by the mean ergodic theorem instead of the

law of large numbers employed in MP (2020). For the last claim of part (ii),
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note that

max
1≤m≤n

∥∥∥∥∥n−1
m∑

t=1

ζn,t−1e′
t

∥∥∥∥∥
L2

≤ ‖e1‖L4
max
t≤n

∥∥∥∥ ζn,t√
n

∥∥∥∥
L4

= O

(√
κn

n

)
(47)

by part (i) of the lemma. Since ζn,t satisfies the recursion ζn,t = Rnζn,t−1 +F (1)et,
we know that

n−1κ−1
n

n∑
t=1

ζn,t−1ζ
′
n,t−1 →p

∫ ∞

0
erCGerC′

dr,

where, since n−1 ∑n
t=1 ζn,t−1e′

t →p 0 by (47), G = Ren→∞ n−1 ∑n
t=1 F (1)ete′

tF (1)′

= 
uu. Since G = 
uu,
∫ ∞

0 erCGerC′
dr = Vxx and the proof of part (ii) is complete.

For part (iii), xt−1 = x0t−1 + Rt−1
n x0, so since ‖x0‖ = op

(
κ

1/2
n

)
, we may write∥∥∑n

t=1 Rt−1
n x0 ⊗ εt

∥∥ ≤ ‖x0‖
∥∥∑n

t=1 Rt−1
n ⊗ εt

∥∥ = op (κn) and

1√
nκn

n∑
t=1

xt−1 ⊗ εt = 1√
nκn

n∑
t=1

x0t−1 ⊗ εt +op

(√
κn

n

)
. (48)

Writing out x0t−1 and letting (mn)n∈N ⊂ N be a sequence satisfying mn →
∞,mn/κn → 0, we obtain

x0t−1 =
t−2∑
j=0

Rj
nut−j−1 =

t−2∑
j=0

Rj
n

∞∑
i=0

Fiet−j−i−1

=
mn∑
i=0

t+i−2∑
j=i

Rj−i
n Fiet−j−1 +

∑
i>mn

t−2∑
j=0

Rj
nFiet−j−i−1

=
t−2∑
j=0

Rj
n

( ∞∑
i=0

Fi

)
et−j−1 −

t−2∑
j=0

Rj
n

⎛
⎝∑

i>mn

Fi

⎞
⎠et−j−1 +

mn∑
i=0

t+i−2∑
j=t−1

Rj
nFiet−j−1

−
mn∑
i=0

i−1∑
j=0

Rj
nFiet−j−1 +

mn∑
i=0

t+i−2∑
j=i

Rj
n

(
R−i

n − Ir
)

Fiet−j−1 +
∑
i>mn

t−2∑
j=0

Rj
nFiet−j−i−1

= ζn,t−1 −η
(1)
n,t−1 +η

(2)
n,t−1 −η

(3)
n,t−1 +η

(4)
n,t−1 +η

(5)
n,t−1 (49)

in order of appearance. Noting that η
(k)
n,t−1 ⊗ εt is an Ft-martingale difference

sequence, we will show that

E

∥∥∥∥∥ 1√
nκn

n∑
t=1

η
(k)
n,t−1 ⊗ εt

∥∥∥∥∥
2

→ 0, k ∈ {1,...,5} (50)
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and the result will follow from (48) and (49). For η
(5)
n,t and η

(1)
n,t , the Cauchy–

Schwarz inequality followed by (46) give

E

∥∥∥∥∥ 1√
nκn

n∑
t=1

η
(5)
n,t ⊗ εt

∥∥∥∥∥
2

= 1

nκn

n∑
t=1

E

(∥∥∥η
(5)
n,t

∥∥∥2 ‖εt‖2

)

≤ 1

nκn

(
E‖ε1‖4)1/2

n∑
t=1

(
E

∥∥∥η
(5)
n,t

∥∥∥4
)1/2

≤ (
cE‖ε1‖4

E‖e1‖4
)1/2

⎛
⎝∑

i>mn

‖Fi‖
⎞
⎠

2

1

κn

n−2∑
j=0

∥∥Rj
n

∥∥2

= O(1)

⎛
⎝∑

i>mn

‖Fi‖
⎞
⎠

2

→ 0

since mn → ∞. The same bound as above applies to the left side of (50) with
k = 1. For η

(2)
n,t−1 and η

(3)
n,t−1, a similar argument based on (46) and using the fact

that
∥∥∥Rj

n

∥∥∥ < 1 gives

E

∥∥∥∥∥ 1√
nκn

n∑
t=1

η
(2)
n,t ⊗ εt

∥∥∥∥∥
2

≤ 1

nκn

(
E‖ε1‖4

)1/2
n∑

t=1

(
E

∥∥∥η
(2)
n,t

∥∥∥4
)1/2

≤
(
cE‖e1‖4

E‖ε1‖4
)1/2

nκn

n∑
t=1

⎛
⎜⎝ mn∑

i=0

‖Fi‖
⎧⎨
⎩

t+i−2∑
j=t−1

∥∥Rj
n

∥∥2

⎫⎬
⎭

1/2
⎞
⎟⎠

2

≤
(
cE‖e1‖4

E‖ε1‖4
)1/2

κn

(
sup
l≥0

‖Fl‖
)2

(
mn∑
i=0

i1/2

)2

≤ O

(
mn

κn

)
→ 0

from the choice of (mn)n∈N. The same bound as above applies to the (50) with
k = 3. Finally, applying (46) with Fi replaced by

(
R−i

n − Ir
)

Fi gives

E

∥∥∥∥∥ 1√
nκn

n∑
t=1

η
(4)
n,t ⊗ εt

∥∥∥∥∥
2

≤ 1

nκn

(
E‖ε1‖4

)1/2
n∑

t=1

(
E

∥∥∥η
(4)
n,t

∥∥∥4
)1/2
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≤ (
cE‖e1‖4

E‖ε1‖4)1/2 1

κn

n−2∑
j=0

∥∥Rj
n

∥∥2

(
mn∑
i=0

∥∥R−i
n − Ir

∥∥‖Fi‖
)2

≤ O(1)

(
max

0≤i≤mn

∥∥R−i
n − Ir

∥∥)2
(

mn∑
i=0

‖Fi‖
)2

≤ O(1)‖Rn‖−2mn

(
max

0≤i≤mn

∥∥Ir −Ri
n

∥∥)2

= O

[(
mn

κn

)2
]

= o(1)

from the choice of (mn)n∈N, where the last order of magnitude is obtained since
‖Rn‖−2mn → 1 when mn/κn → 0 and max0≤i≤mn

∥∥Ir −Ri
n

∥∥= O(mn/κn) by Lemma
2.1(ii) of MP (2020). This shows (50) and completes the proof. �

Proof of Lemma 3.3. By definition of the process ζnt−1, we can write

〈M〉n −Vn = 1

n1+α

n∑
t=1

[
ζnt−1ζ

′
nt−1 ⊗ (Ht −	εε)

]
= An +Bn +B′

n, (51)

where

An = 1

nκn

n∑
t=1

⎡
⎣
⎧⎨
⎩

t−1∑
j=1

Rj−1
n F (1)et−je

′
t−jF (1)′ Rj−1

n

⎫⎬
⎭⊗ (Ht −	εε)

⎤
⎦ (52)

Bn = 1

nκn

n∑
t=1

⎡
⎣
⎧⎨
⎩

t−2∑
j=1

t−1∑
i=j+1

Rj−1
n F (1)et−je

′
t−iF (1)′ Ri−1

n

⎫⎬
⎭⊗ (Ht −	εε)

⎤
⎦ . (53)

We first expand the term in (52) by adding and subtracting 	ee from as follows:

An = 1

nκn

n−1∑
j=1

(
Rj−1

n F (1)⊗ I
) n−j∑

t=1

[
ete

′
t ⊗

(
Ht+j −	εε

)](
F (1)′ Rj−1

n ⊗ I
)

= 1

nκn

n−1∑
j=1

(
Rj−1

n F (1)⊗ I
) n−j∑

t=1

[(
ete

′
t −	ee

)⊗Ht+j
](

F (1)′ Rj−1
n ⊗ I

)

− 1

nκn

n−1∑
j=1

(
Rn−j−1

n F (1)⊗ I
)[{ j∑

t=1

(
ete

′
t −	ee

)}⊗	εε

]
F (1)′

(
Rn−j−1

n ⊗ I
)

+ 1

nκn

n−1∑
j=1

Rj−1
n 
uRj−1

n ⊗
n∑

t=j+1

(Ht −	εε)

= A1n −A2n +A3n
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in order of appearance. It is easy to show that A2n and A3n are oa.s. (1): since

1

n

n∑
t=1

(
ete

′
t −	ee

) →a.s. 0 and
1

n

n∑
t=1

(Ht −	εε) →a.s. 0 (54)

by the ergodic theorem on (Ht) and (et), we can write

‖A3n‖ ≤ ‖
u‖ max
1≤j≤n

∥∥∥∥∥∥
1

n

n∑
t=j+1

(Ht −	εε)

∥∥∥∥∥∥
1

κn

n−2∑
j=0

∥∥Rj
n

∥∥2 →a.s. 0

by (54) since
∑n−1

j=0

∥∥∥Rj
n

∥∥∥2 = O(κn). The same argument works for A2n:

‖A2n‖ ≤ ‖	εε‖‖F (1)‖2 max
1≤j≤n

∥∥∥∥∥1

n

j∑
t=1

(
ete

′
t −	ee

)∥∥∥∥∥ 1

κn

n−2∑
j=0

∥∥Rj
n

∥∥2 →a.s. 0.

We conclude that ‖An −A1n‖ = oa.s. (1) and

vec (A1n) = 1

nκn

n−1∑
j=1

(
Rj−1

n ⊗Rj−1
n

)
(F (1)⊗F (1))

n−j∑
t=1

vec
[(

ete
′
t −	ee

)⊗Ht+j
]

.

For any matrices K ∈ R
r×r,L ∈ R

m×m, the vectors vec (K ⊗L) and vec (K)⊗
vec (L) consist of the same elements

{
KijLkl : 1 ≤ i,j ≤ r,1 ≤ k,l ≤ m

}
but appear

in different order in the two vectors. Therefore, there exists an m2r2 × m2r2

permutation matrix � such that vec (K ⊗L) = � [vec (K)⊗vec(L)] . Using this
and the identity vec (K) = Dm vech (K) for a symmetric m × m matrix K, where
Dm denotes the m2 × m(m+1)/2 duplication matrix (Chapter 11 of Abadir and
Magnus, 2005), we can write

vec (A1n) = �
(
Ir2 ⊗Dm

) 1

nκn

n−1∑
j=1

(
Rj−1

n ⊗Rj−1
n

)
(F (1)⊗F (1))

n−j∑
t=1

	t (j), (55)

with 	t (j) = vec
(
ete′

t −	ee
)⊗ vech

(
Ht+j

)
as in Lemma 3.5. Since ‖�‖ = 1 and

‖Dm‖ = √
2 for a permutation matrix �, (55) yields the asymptotic bound for (52):

‖vec (An)‖ ≤ √
2‖F (1)‖2 1

nκn

n−1∑
j=1

∥∥Rj−1
n

∥∥2

∥∥∥∥∥
n−j∑
t=1

	t (j)

∥∥∥∥∥+oa.s. (1) . (56)

The term in (53) can be written as:

Bn = 1

nκn

n∑
t=1

t−2∑
j=1

t−1∑
i=j+1

[{
Rj−1

n F (1)et−je
′
t−iF (1)′ Ri−1

n

}⊗ (Ht −	εε)
]

= 1

nκn

n−2∑
j=1

n−j∑
t=2

t−1∑
i=1

[{
Rj−1

n F (1)ete
′
t−iF (1)′ Ri+j−1

n

}⊗ (
Ht+j −	εε

)]
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= 1

nκn

n−2∑
j=1

n−j∑
t=2

⎡
⎣
⎧⎨
⎩Rj−1

n F (1)et

(
t−1∑
i=1

Ri−1
n F (1)et−i

)′
Rj

n

⎫⎬
⎭⊗ (

Ht+j −	εε

)⎤⎦

= 1

nκn

n−2∑
j=1

n−j∑
t=2

[{
Rj−1

n F (1)etζ
′
n,t−1Rj

n

}⊗ (
Ht+j −	εε

)]
by definition of the process ζn,t. Employing the same argument for the vectorization
of a Kronecker product, we deduce that

vec (Bn)

= �
1

nκn

n−2∑
j=1

n−j∑
t=2

[
vec

{
Rj−1

n F (1)etζ
′
n,t−1Rj

n

}⊗vec
(
Ht+j −	εε

)]

= �
(
Ir ⊗R−1

n ⊗Dm
) 1

nκn

n−2∑
j=1

n−j∑
t=2

[
Rj

nζn,t−1 ⊗Rj
nF (1)et ⊗vech

(
Ht+j

)]+op (1)

= �
(
Ir ⊗R−1

n ⊗Dm
) 1

nκn

n−2∑
j=1

n−j∑
t=2

Sn,t (j)+op (1),

where Sn,t (j) is defined in (20) and the term involving 	εε is op (1) because

∥∥∥∥∥∥
1

nκn

n−2∑
j=1

n−j∑
t=2

Rj
nζn,t−1 ⊗Rj

nF (1)et

∥∥∥∥∥∥
L1

≤ ‖F (1)‖
κn

n−2∑
j=1

∥∥Rj
n

∥∥2

∥∥∥∥∥1

n

n−j∑
t=2

ζn,t−1 ⊗ et

∥∥∥∥∥
L2

= O

(√
κn

n

)

by (47). The last expression for vec (Bn) yields

‖vec (Bn)‖ ≤ b
1

nκn

∥∥∥∥∥∥
n−2∑
j=1

n−j∑
t=2

Sn,t (j)

∥∥∥∥∥∥+op (1) (57)

for some uniform bounding constant b > 0. Combining (51), (56), and (57) shows
(22) and part (i).

Next, we show that 	t (j) and Sn,t (j) satisfy (12) with innovations given by (24)
and (25) respectively. For Sn,t (j), applying (3) to vech

(
Ht+j

)
yields

Sn,t (j) = Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗vech
(
Ht+j

)
= Rj

nζn,t−1 ⊗Rj
nF (1)et ⊗

{
q∑

i=1

Aivech
(
Ht+j−i

)+
p∑

k=1

Bkvech
(
Ht+j−k

)}
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+Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗
{

q∑
i=1

Aivech
(
εt+j−iε

′
t+j−i −Ht+j−i

)}

+Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗ϕ

=
κ∑

i=1

(
Ri

n ⊗Ri
n ⊗�i

)[
Rj−i

n ζn,t−1 ⊗Rj−i
n F (1)et ⊗vech

(
Ht+j−i

)]+υn,t (j)

=
κ∑

i=1

(
Ri

n ⊗Ri
n ⊗�i

)
Sn,t (j− i)+υn,t (j), (58)

where

υn,t (j) = Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗ϕ +
q∑

i=1

(
Ir2 ⊗Ai

)[
Rj

nζn,t−1 ⊗Rj
nF (1)et ⊗wt+j−i

]

and wt+j−i = vech
(
εt+j−iε

′
t+j−i −Ht+j−i

)
. Since the above expression for υn,t (j)

coincides with (25) and �n,i = Ri
n ⊗Ri

n ⊗�i by (11), (58) shows part (ii) for Sn,t (j).
Applying (3) to vech

(
Ht+j

)
in

	t (j) = vec
(
ete

′
t −	ee

)⊗ vech
(
Ht+j

)
and proceeding as in (58) shows part (ii) for 	t (j).

For part (iii), the processes in (19) and (20) have companion form solutions

	̃t (j) = Mj
κ	̃t (0)+

j∑
l=1

Mj−l
κ ν̃t (l), j ≥ 1 (59)

S̃n,t (j) = Mj
n,κ S̃n,t (0)+

j∑
l=1

Mj−l
n,κ υ̃n,t (l), j ≥ 1 (60)

for the “stacked” processes

	̃t (j) = [
	t (j)

′ ,	t (j−1)′ ,...,	t (j−κ +1)′
]′

(61)

S̃n,t (j) = [
Sn,t (j)

′ ,Sn,t (j−1)′ ,...,Sn,t (j−κ +1)′
]′

(62)

and

ν̃t (j) = [
vt (j)

′ ,0,...,0
]′

, υ̃n,t (j) = [
υn,t (j)

′ ,0,...,0
]′

. (63)

By (61), (63) and the definition of the Euclidian vector norm,∥∥∥∥∥
n−j∑
t=1

	t (j)

∥∥∥∥∥ ≤
∥∥∥∥∥

n−j∑
t=1

	̃t (j)

∥∥∥∥∥ and

∥∥∥∥∥
n−j∑
t=1

ṽt (l)

∥∥∥∥∥ =
∥∥∥∥∥

n−j∑
t=1

vt (l)

∥∥∥∥∥ .
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We can therefore apply the companion form solution (59) to the first term of the
bound (22) of Lemma 3.3(i) to obtain

σn = 1

nκn

n−1∑
j=1

∥∥Rj−1
n

∥∥2

∥∥∥∥∥
n−j∑
t=1

	t (j)

∥∥∥∥∥ ≤ 1

nκn

n−1∑
j=1

∥∥Rj−1
n

∥∥2

∥∥∥∥∥
n−j∑
t=1

	̃t (j)

∥∥∥∥∥
≤ 1

κn

∞∑
j=1

∥∥Mj
κ

∥∥ 1

n

n∑
t=1

∥∥∥	̃t (0)

∥∥∥+ 1

nκn

n−1∑
j=1

∥∥Rj−1
n

∥∥2
j∑

l=1

∥∥Mj−l
κ

∥∥∥∥∥∥∥
n−j∑
t=1

vt (l)

∥∥∥∥∥
= σ1n +σ2n (64)

in order of appearance. The first term of (64) satisfies E‖σ1n‖ = O
(
κ−1

n

)
because∑∞

j=1

∥∥∥Mj
κ

∥∥∥ < ∞ by Lemma 3.1 and

E

∥∥∥	̃t (0)

∥∥∥ = E

{
κ−1∑
i=0

‖	t (−i)‖2

}1/2

≤
κ−1∑
i=0

E‖	t (−i)‖ ≤ κ max
i<κ

E
(‖et‖2 ‖Ht−i‖

)
≤ κ max

i<κ

{
E‖e1‖4

E‖Ht−i‖2
}1/2 ≤ κ

{
E‖e1‖4

E‖ε1‖4
}1/2

by the Jensen inequality for conditional expectations. For the second term of (64),
letting

ωt (k) = vec
(
ete

′
t −	ee

)⊗wt+k (65)

and using the expression in (24) we can write

σ2n ≤ ‖ϕ‖
nκn

n−1∑
j=1

∥∥Rj−1
n

∥∥2
q∑

i=1

‖Ai‖
j∑

l=1

∥∥Mj−l
κ

∥∥
∥∥∥∥∥

n−j∑
t=1

ωt (l− i)

∥∥∥∥∥
+‖ϕ‖max

j≤n

∥∥∥∥∥1

n

j∑
t=1

vec
(
ete

′
t −	ee

)∥∥∥∥∥
∞∑

l=1

∥∥Ml
κ

∥∥ 1

κn

n−1∑
j=1

∥∥Rn−j−1
n

∥∥2

= ‖ϕ‖
nκn

q∑
i=1

‖Ai‖
n−2∑
l=0

∥∥Ml
κ

∥∥ n−1∑
j=l+1

∥∥Rj−1
n

∥∥2

∥∥∥∥∥
n−j∑
t=1

ωt (j− l− i)

∥∥∥∥∥+oa.s. (1)

≤ ‖ϕ‖
nκn

q∑
i=1

‖Ai‖
n−2∑
l=0

∥∥Ml
κ

∥∥ n−1∑
j=1

∥∥Rj−1
n

∥∥2

∥∥∥∥∥
n−j∑
t=1

ωt (j− i)

∥∥∥∥∥+oa.s. (1)

where the term on the second line is oa.s. (1) by the ergodic theorem. The remaining
term is Op

(
κ−1

n

)
when j ≤ i because, in this case, it is bounded in L1 norm by

b

nκn
max

1≤l,i≤q

n∑
t=1

E‖ωt (l− i)‖ ≤ 2b

nκn
max

1≤l,i≤q

n∑
t=1

E‖et‖2 ‖wt+l−i‖

≤ 4b

κn

{
E‖e1‖4

E‖ε1‖4}1/2
,
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where b = ∑∞
j=1

∥∥∥Mj
κ

∥∥∥∑q
i,l=1 ‖Ai‖

∥∥M−l
κ

∥∥ is a finite constant and E‖w1‖2 ≤
4E‖ε1‖4 by the Jensen inequality for conditional expectations. We conclude that

σ2n ≤ ‖ϕ‖
κn

n−1∑
j=1

∥∥Rj−1
n

∥∥2
q∑

i=1

‖Ai‖
j−i∑
l=1

∥∥Mj−i−l
κ

∥∥
∥∥∥∥∥1

n

n−j∑
t=1

ωt (l)

∥∥∥∥∥+op (1)

so the condition

max
1≤j,l≤n

∥∥∥∥∥1

n

n−j∑
t=1

ωt (l)

∥∥∥∥∥
L1

→ 0. (66)

is sufficient to show that σ2n →p 0. The definition of ωt (l) in (65) implies that

ω̃t (l) = ωt (l)1
{‖et‖4 ≤ Ln

}
is an Ft+l-martingale difference sequence for each l ≥ 1, where the truncating
sequence (Ln)n∈N is chosen to satisfy Ln → ∞ and Ln/n → 0. By the Lyapounov
inequality and the martingale difference property of ω̃t (l),

∥∥∥∥∥1

n

n−j∑
t=1

ω̃t (l)

∥∥∥∥∥
L1

≤ 1

n

∥∥∥∥∥
n−j∑
t=1

ω̃t (l)

∥∥∥∥∥
L2

= 1

n

(
n−j∑
t=1

E‖ω̃t (l)‖2

)1/2

≤ b
L1/2

n

n

(
n−j∑
t=1

E‖wt+l‖2

)1/2

≤ 2bL1/2
n√
n

(
E‖ε1‖4

)1/2 → 0

uniformly in j,l. We conclude that

max
1≤j,l≤n

∥∥∥∥∥1

n

n−j∑
t=1

ωt (l)

∥∥∥∥∥
L1

≤ max
1≤j,l≤n

1

n

n−j∑
t=1

E
∥∥ωt (l)1

{‖et‖4 > Ln
}∥∥+o(1)

≤ max
1≤j,l≤n

1

n

n−j∑
t=1

E
[(‖et‖2 +‖	ee‖

)
1
{‖et‖4 > Ln

}‖wt+l‖
]+o(1)

≤ {
E
[(‖e1‖4 +‖	ee‖4

)
1
{‖e1‖4 > Ln

}]
E‖w1‖2

}1/2 +o(1)

= o(1)

since E‖w1‖2 ≤ 4E‖ε1‖4, E‖e1‖4 < ∞ and Ln → ∞, the last inequality following
by the Cauchy–Schwarz inequality. This proves (66) and σn →p 0.
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We turn to the second term of the bound (22) of Lemma 3.3(i), to prove that
sn →p 0. Using the solution (60) and the same argument leading to (64), we obtain

sn ≤ 1

nκn

∥∥∥∥∥∥
n−1∑
j=1

n−j∑
t=2

S̃n,t (j)

∥∥∥∥∥∥
≤ 1

nκn

n−1∑
j=1

∥∥Mj
n,κ

∥∥ n∑
t=2

∥∥∥S̃n,t (0)

∥∥∥+ 1

nκn

∥∥∥∥∥∥
n−1∑
j=1

n−j∑
t=2

j∑
l=1

Mj−l
n,κ υ̃n,t (l)

∥∥∥∥∥∥
= s1n + s2n.

Since supn≥1

∑∞
j=1

∥∥∥Mj
n,κ

∥∥∥ < ∞ by Lemma 3.1,

E‖s1n‖ ≤ b
1

κn
max
t≤n

E

∥∥∥S̃n,t (0)

∥∥∥ ≤ bmax
t≤n

max
0≤i≤κ−1

1

κn
E
(‖et‖

∥∥ζn,t−1

∥∥‖Ht−i‖
)

≤ 1

κ
1/2
n

‖H1‖L2
‖e1‖L4

max
t≤n

∥∥∥∥ζn,t−1

κ
1/2
n

∥∥∥∥
L4

= O

(
1

κ
1/2
n

)

by Lemma 3.2(i). For s2n, some care is required to use the norm equivalence
between υ̃n,t (l) and υn,t (l): standard manipulations yield

s2n = 1

nκn

∥∥∥∥∥∥
n−2∑
j=1

n−j∑
t=2

j−1∑
l=0

Ml
n,κ υ̃n,t (j− l)

∥∥∥∥∥∥ = 1

nκn

∥∥∥∥∥∥
n−3∑
l=0

Ml
n,κ

n−2∑
j=l+1

n−j∑
t=2

υ̃n,t (j− l)

∥∥∥∥∥∥
≤

n−3∑
l=0

∥∥Ml
n,κ

∥∥ 1

nκn

∥∥∥∥∥∥
n−l−2∑

j=1

n−l−j∑
t=2

υ̃n,t (j)

∥∥∥∥∥∥ =
n−3∑
l=0

∥∥Ml
n,κ

∥∥ 1

nκn

∥∥∥∥∥∥
n−l−2∑

j=1

n−l−j∑
t=2

υn,t (j)

∥∥∥∥∥∥ .

Substituting the expression for υn,t (j) in (25) we obtain

s2n ≤
n−3∑
l=0

∥∥Ml
n,κ

∥∥ q∑
i=1

‖Ai‖ 1

nκn

∥∥∥∥∥∥
n−l−2∑

j=1

n−l−j∑
t=2

Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗wt+j−i

∥∥∥∥∥∥
+‖ϕ‖‖F (1)‖

n−3∑
l=0

∥∥Ml
n,κ

∥∥ 1

κn

n−l−2∑
j=1

∥∥Rj
n

∥∥2

∥∥∥∥∥1

n

n−l−j∑
t=2

ζn,t−1 ⊗ et

∥∥∥∥∥ .

The last term on the right converges to 0 in L1 by (47). For the first term,
partitioning the third sum into j ≤ i and j > i we obtain that s2n ≤ s3n + s4n +op (1)

where

s3n =
n−3∑
l=0

∥∥Ml
n,κ

∥∥ q∑
i=1

‖Ai‖ 1

nκn

∥∥∥∥∥∥
n−l−2∑
j=i+1

n−l−j∑
t=2

Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗wt+j−i

∥∥∥∥∥∥
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and, using the Cauchy–Schwarz inequality twice,

Es4n ≤ ‖F (1)‖
n−3∑
l=0

∥∥Ml
n,κ

∥∥ q∑
i=1

‖Ai‖ 1

nκn

q∑
j=1

n−l−j∑
t=2

E
∥∥ζn,t−1

∥∥‖et‖
∥∥wt+j−i

∥∥

≤ q‖F (1)‖
n−3∑
l=0

∥∥Ml
n,κ

∥∥ q∑
i=1

‖Ai‖max
t≤n

∥∥∥∥ζn,t

κn

∥∥∥∥
L4

‖e1‖L4
‖w1‖L2

= O

(
1

κ
1/2
n

)
.

It remains to show that s3n →p 0. The inner double sum in the expression for s3n

can be written as

n−l−2∑
j=i+1

n−l−j∑
t=2

Rj
nζn,t−1 ⊗Rj

nF (1)et ⊗wt+j−i

=
n−l−i−2∑

j=1

n−l−j−i∑
t=2

Rj+i
n ζn,t−1 ⊗Rj+i

n F (1)et ⊗wt+j = (
Ri

n ⊗Ri
n

) n−l−i∑
t=3

ξn,t−1 ⊗wt,

where ξn,t−1 = ∑t−2
j=1 Rj

nζn,t−j−1 ⊗Rj
nF (1)et−j is a Ft−1-martingale array satisfying

max
t≤n

E
∥∥ξn,t−1

∥∥2 = ‖F (1)‖2 max
t≤n

t−2∑
j=1

∥∥Rj
n

∥∥4
E

(∥∥ζn,t−j−1

∥∥2 ∥∥et−j

∥∥2
)

≤ ‖F (1)‖2
n−2∑
j=1

∥∥Rj
n

∥∥4 ‖e1‖2
L4

max
t≤n

∥∥ζn,t

∥∥2
L4

= O
(
κ2

n

)
. (67)

In the above notation, Lemma 3.1(ii) implies that, for some uniform constant B,
s3n satisfies

Es3n ≤ B
1

nκn
max

i,l
E

∥∥∥∥∥
n−l−i∑

t=3

ξn,t−1 ⊗wt

∥∥∥∥∥
≤ B

1

nκn
max

i,l
E

∥∥∥∥∥
n−l−i∑

t=3

ξn,t−1 ⊗wt1 {‖Ht‖ ≤ Ln}
∥∥∥∥∥

+B
1

nκn
max

i,l
E

∥∥∥∥∥
n−l−i∑

t=3

ξn,t−1 ⊗wt1{‖Ht‖ > Ln}
∥∥∥∥∥

= B(ε1n + ε2n) .

Note that the sequence ξn,t−1 ⊗wt is an Ft -martingale difference sequence with

wt = vech
(
εtε

′
t −Ht

) = vechH1/2
t

(
ηtη

′
t − Im

)
H1/2

t

= D+
m

(
H1/2

t ⊗H1/2
t

)
vec

(
ηtη

′
t − Im

)
,
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where D+
m is the Moore–Penrose inverse of the duplication matrix Dm, sat-

isfying
∥∥D+

m

∥∥ = 1 (e.g., 11.30 in Abadir and Magnus, 2005). Since ‖Ht‖ is
Ft−1-measurable, the martingale difference property is preserved for 1{‖Ht‖
≤ Ln}ξn,t−1 ⊗wt giving

ε1n ≤ 1

nκn

{
max

i,l

n−l−i∑
t=3

E
∥∥ξn,t−1

∥∥2 ‖wt‖2 1{‖Ht‖ ≤ Ln}
}1/2

≤ b

nκn

{
max

i,l

n−l−i∑
t=3

E
∥∥ξn,t−1

∥∥2 ‖Ht‖2 1{‖Ht‖ ≤ Ln}
}1/2

≤ bLn√
nκn

{
max
t≤n

E
∥∥ξn,t−1

∥∥2
}1/2

= O

(
Ln

n1/2

)

by (67), where b = {
2E

(‖η1‖4 +1
)}1/2

. Taking Ln → ∞ with Ln/n1/2 → 0 we
can write

ε2n ≤ 1

nκn

n∑
t=3

E
(∥∥ξn,t−1

∥∥‖wt‖1 {‖Ht‖ > Ln}
)

≤ 2

nκn

n∑
t=3

E
(∥∥ξn,t−1

∥∥‖Ht‖1{‖Ht‖ > Ln}
)

≤ 2

nκn

n∑
t=3

{
E

(∥∥ξn,t−1

∥∥2
)
E
(‖Ht‖2 1 {‖Ht‖ > Ln}

)}1/2

≤ 2

κn

{
max
t≤n

E
∥∥ξn,t−1

∥∥2
}1/2 {

E
(‖H1‖2 1 {‖H1‖ > Ln}

)}1/2

= O(1)
{
E
(‖H1‖2 1{‖H1‖ > Ln}

)}1/2 = o(1)

by (67) and integrability of ‖H1‖2. This completes the proof of sn →p 0. �

Proof of Theorem 3.4. The Lindeberg condition Ln (δ) = ∑n
t=2E

(
ξ 2

nt1{|ξnt

∣∣
> δ}) →p 0 for all δ > 0 with ξnt = n−1/2κ

−1/2
n ‖εt‖‖ζnt−1‖ is established as

follows: by truncating ‖εt‖2 using a sequence (Ln)n∈N satisfying Ln → ∞ and
Ln/

√
n → 0

Ln (δ) = 1

n

n∑
t=2

E

(‖ζnt−1‖2

κn
‖εt‖2 1

{‖ζnt−1‖2

κn
‖εt‖2 > nδ2

})

≤ Ln

n

n∑
t=2

E

(‖ζnt−1‖2

κn
1
{‖ζnt−1‖2

κn
>

nδ2

Ln

})

+ 1

n

n∑
t=2

E

(‖ζnt−1‖2

κn
‖εt‖2 1

{‖εt‖2 > Ln
})
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≤ max
t≤n

∥∥∥∥ ζnt

κ
1/2
n

∥∥∥∥
2

L4

[
Ln max

t≤n
P

(‖ζnt−1‖2

κn
>

nδ2

Ln

)
+E

(‖ε1‖4 1
{‖ε1‖4 > Ln

})]

≤ O(1)

[
L2

n

n

1

δ2
max
t≤n

E

(∥∥∥∥ ζnt

κ
1/2
n

∥∥∥∥
2
)

+o(1)

]
→ 0

from the choice of (Ln)n∈N, since maxt≤n

∥∥∥ζnt/κ
1/2
n

∥∥∥2

L4
= O(1) by Lemma 3.2(i)

and (εt) is a strictly stationary sequence satisfying E‖ε1‖4 < ∞, where the second
inequality follows by the Cauchy–Schwarz inequality and the third inequality
follows by the Markov inequality.

Part (i) is now an immediate consequence of established results. By Lemma
3.2(iii), the martingale transform Nn in (16) and (nκn)

−1/2 ∑n
t=1 xt−1 ⊗ εt have the

same limit distribution. By Lemma 3.3 (i) and (iii), the predictable quadratic varia-
tion of Nn in (17) has the same the limit distribution as n−1κ−1

n

∑n
t=1 ζn,t−1ζ

′
n,t−1 ⊗

	εε, so that

〈N〉n = 1

nκn

n∑
t=1

ζn,t−1ζ
′
n,t−1 ⊗	εε +op (1) →p Vxx ⊗	εε,

where the last convergence in probability follows by Lemma 3.2(ii). Having
verified the Lindeberg condition, we may apply a standard martingale central limit
theorem, e.g., Corollary 3.1 of Hall and Heyde (1980), to establish the asymptotic
distribution of part (i). Part (ii) follows immediately from part (i), Lemma 3.2(ii)
and (9). For completeness, we provide a proof of (9): Letting xt = xt − x̄n−1 and
εt = εt − ε̄n, the fact that

∑n
t=1 xt−1 = Op

(√
nκn

)
implies that

1

nκn

∥∥∥∥∥
n∑

t=1

xtx
′
t −

n∑
t=1

xtx
′
t

∥∥∥∥∥ ≤ 1

κn
‖x̄n−1‖2 = Op

(κn

n

)

and (nκn)
−1/2

∥∥∑n
t=1 xt−1ε

′
t −

∑n
t=1 xt−1ε

′
t

∥∥ = (nκn)
−1/2

∥∥nx̄n−1ε̄
′
n

∥∥ = Op
(√

κn/n
)

.
Combining the two remainder terms proves (9). Note that the same orders of
magnitude apply for the purely stationary case, by putting κn = 1. Part (iii) follows
immediately by part (ii), (9), and n−1κ−1

n

∥∥X′X −X′X
∥∥ = op (1). �

Proof of Lemma 4.3. We first note that the effect of the initial condition
x0 satisfying Assumption IC is asymptotically negligible for OLS/IVX sample
moments as shown in MP (2020) via arguments that do not depend on the
conditional homoskedasticity assumption maintained in that paper. We therefore
proceed with setting x0 = 0 without loss of generality. For part (i), we employ the
decompositions

https://doi.org/10.1017/S0266466621000086 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000086


908 TASSOS MAGDALINOS

z̃0t = x0t + Cz

κnz
ψ

(2)
nt ,

κn

κnz
→ 0, (68)

z̃0t = zt + 1

κn
ψ

(1)
nt ,

κnz

κn
→ 0, (69)

see equations (17) and (19) of MP (2020) with x0 = 0, where

ψ
(1)
nt =

t−1∑
j=1

Rt−1−j
nz Cnx0j, ψ

(2)
nt =

t−1∑
j=1

Rt−1−j
nz x0j

and x0t = ∑t−1
j=0 Rj

nuxt−j is the regressor xt in (1) with zero initialization x0 = 0. We
first establish the bound

max
1≤t≤n

E

∥∥∥ψ
(1)
nt

∥∥∥4 ∨
max
1≤t≤n

E

∥∥∥ψ
(2)
nt

∥∥∥4 = O
(
κ2

n κ4
nz

)
. (70)

The Minkowski inequality gives

E

∥∥∥ψ
(1)
nt

∥∥∥4 = E

∥∥∥∥∥∥
t−1∑
j=1

Rt−1−j
nz Cnx0j

∥∥∥∥∥∥
4

≤
⎛
⎝ t−1∑

j=1

{
E
∥∥Rt−1−j

nz Cnx0j

∥∥4
}1/4

⎞
⎠

4

≤ ‖Cn‖4

{
max
1≤t≤n

E
∥∥x0j

∥∥4
}⎛
⎝ n∑

j=1

∥∥Rj
nz

∥∥
⎞
⎠

4

= O
(
κ2

n κ4
nz

)

uniformly in t ≤ n. The above argument with Cn replaced by Ir yields the same

bound applies to E

∥∥∥ψ
(2)
nt

∥∥∥4
. Employing the decomposition (68) with x0 = 0 we

obtain

max
1≤t≤n

E‖z̃0t‖4 ≤ 8 max
1≤t≤n

E‖x0t‖4 + 8‖Cz‖4

κ4
nz

max
1≤t≤n

E

∥∥∥ψ
(2)
nt

∥∥∥4 = O
(
κ2

n

)

by Lemma 3.2(i) and (70). Employing the decomposition (69) with x0 = 0 we
obtain

max
1≤t≤n

E‖z̃0t‖4 ≤ 8 max
1≤t≤n

E‖zt‖4 + 8

κ4
n

max
1≤t≤n

E

∥∥∥ψ
(1)
nt

∥∥∥4

= O
(
κ2

nz

)+O

(
κ4

nz

κ2
n

)
= O

(
κ2

nz

)
when κnz/κn → 0 by (70) and Lemma 3.2(i) (since zt is κnz-near stationary). This
proves part (i).
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For part (ii), denoting xt−1 = xt−1 − x̄n−1 and εt = εt − ε̄n, using the identity

ε̂t = y
t
− Ânxt−1 = εt −

(
Ân −A

)
xt−1

and the fact that the OLS estimator satisfies
∥∥∥Ân −A

∥∥∥ = Op
(
(nκn)

−1/2
)

we obtain

that

1

n(κn ∧κnz)
ϒ̂n = 1

n(κn ∧κnz)

n∑
t=1

(
z̃0t−1z̃′

0t−1 ⊗ εtε
′
t

)+op (1) (71)

provided that both

r1n = 1√
nκn

1

n(κn ∧κnz)

n∑
t=1

(
z̃0t−1z̃′

0t−1 ⊗ x0t−1ε
′
t

)

r2n = 1

nκn

1

n(κn ∧κnz)

n∑
t=1

(
z̃0t−1z̃′

0t−1 ⊗ x0t−1x′
0t−1

)
are op (1). First note that,

E‖x̄0n‖4 ≤ 1

n4
E

(
n∑

t=1

‖x0t‖
)4

≤ 1

n4

(
n∑

t=1

‖x0t‖L4

)4

≤ max
1≤t≤n

E‖x0t‖4

by the Minkowski inequality, so we may write

max
1≤t≤n

E
∥∥x0t

∥∥4 ≤ max
1≤t≤n

E(‖x0t‖+‖x̄0n‖)4 ≤ 16 max
1≤t≤n

E‖x0t‖4 .

For r1n, the Cauchy–Schwarz inequality gives

E‖r1n‖ ≤ 1√
nκn

1

κn ∧κnz
max
t≤n

E

(
‖z̃0t−1‖2

∥∥x0t−1

∥∥∥∥εt

∥∥)

≤ 1√
nκn

1

κn ∧κnz
‖ε1‖L4

(
max
t≤n

E‖z̃0t−1‖4
)1/2 (

max
t≤n

E
∥∥x0t−1

∥∥4
)1/4

≤ 4‖ε1‖L4

1√
nκn

1

κn ∧κnz

(
max
t≤n

E‖z̃0t−1‖4
)1/2 (

max
t≤n

E‖x0t−1‖4

)1/4

= O

(
1√
nκn

1

κn ∧κnz
(κn ∧κnz)

√
κn

)
= O

(
1√
n

)

by part (i) and Lemma 3.2(i). Similarly,

E‖r2n‖ ≤ 1

nκn

1

κn ∧κnz
max
t≤n

E

(
‖z̃0t−1‖2

∥∥x0t−1

∥∥2
)

≤ 1

nκn

1

κn ∧κnz

{
max
t≤n

E‖z̃t−1‖4
}1/2 {

max
t≤n

E
∥∥xt−1

∥∥4
}1/2

= O

(
1

n

)
.
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Returning to (71), we can write

1

n(κn ∧κnz)
ϒ̂n = 1

n(κn ∧κnz)

n∑
t=1

(
z̃0t−1z̃′

0t−1 ⊗ εtε
′
t

)+Op

(
1√
n

)

=
⎧⎨
⎩

1
nκnz

∑n
t=1

(
zt−1z′

t−1 ⊗ εtε
′
t

)+Op

(√
κnz
κn

)
,

κnz
κn

→ 0

1
nκn

∑n
t=1

(
xt−1x′

t−1 ⊗ εtε
′
t

)+Op

(√
κn
κnz

)
, κn

κnz
→ 0

(72)

from which the result when κn → ∞ follows by Lemma 3.3, since zt is a κnz-near
stationary process. For κn = 1, letting x̌t in (36) be a strictly stationary version of
the stable autoregression xt = Rtx0 +∑t−1

j=0 Rjut−j,

1

n

n∑
t=1

∥∥xt−1 − x̌t−1

∥∥‖xt−1‖‖εt‖2 ≤ 1

n
‖x0‖

n∑
t=1

∥∥Rt
∥∥‖xt−1‖‖εt‖2

+ 1

n

n∑
t=1

∥∥Rt
∥∥‖xt−1‖‖εt‖2

∞∑
j=0

∥∥Rj
∥∥∥∥u−j

∥∥
= Op

(
1

n

)

and then the second part of (72) gives

1

n
ϒ̂n = 1

n

n∑
t=1

(
x̌t−1x̌′

t−1 ⊗ εtε
′
t

)+op (1) →p E
(
x̌1x̌′

1 ⊗ ε2ε
′
2

)
by the ergodic theorem.

It remains to show (72). For the κnz/κn → 0 part, the decomposition (69) implies
that

η1n = 1

nκnzκn

n∑
t=1

‖zt−1‖
∥∥∥ψ

(1)
nt−1

∥∥∥‖εt‖2 = op (1)

η2n = 1

nκnzκ2
n

n∑
t=1

∥∥∥ψ
(1)
nt−1

∥∥∥2 ‖εt‖2 = op (1)

are sufficient for (72). Using the Cauchy–Schwarz inequality we obtain

Eη1n ≤ ‖ε1‖2
L4

κnzκn
max
t≤n

‖zt‖L4
max
t≤n

∥∥∥ψ
(1)
nt

∥∥∥
L4

= O

(√
κnz

κn

)

by (70) and Lemma 3.2(i), and, similarly,

Eη2n ≤ ‖ε1‖2
L4

1

κnzκ2
n

max
t≤n

∥∥∥ψ
(1)
nt

∥∥∥2

L4
= O

(
κnz

κn

)

which proves (72) when κnz/κn → 0. When κn/κnz → 0, the same argument can
be applied to the decomposition (68). �
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Proof of Theorem 4.4. Under Assumptions P(i)–(ii), κn → ∞, Lemma 4.3
shows that

1

n(κn ∧κnz)
ϒ̂n =

(
1

n(κn ∧κnz)

n∑
t=1

z̃t−1z̃′
t−1

)
⊗	εε +op (1)

which implies that

n(κn ∧κnz)

∥∥∥Q̂n − (
X′PZ̃X

)−1 ⊗	εε

∥∥∥ = op (1)

and hence that
∥∥∥Ŵn − W̃n

∥∥∥ = op (1) under the null hypothesis (27). Corollary 4.2

then gives Ŵn ⇒ χ2 (q).

When κn = 1, Lemma B2 of KMS (2015b) implies that n−1
∥∥∥X′Z̃ −X′X

∥∥∥ =
op (1) . Combined with Lemma 4.3, this yields

nQ̂n =
[(

1

n
X′X

)−1

⊗ Im

]
1

n
ϒ̂n

[(
1

n
X′X

)−1

⊗ Im

]
+op (I) →p V0,

where the matrix V0 is defined in (37). We can then write Ŵn = w′
nwn + op (1)

where, under (27),

wn =
(

HnQ̂nH′
)−1/2

Hvec
[√

n
(

ÃIVX −A
)]

⇒ N
(
0,Iq

)
by Theorem 4.1(ii). �
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