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A long-wave model based on lubrication theory is developed for the flow of a viscous
liquid film lining the interior of a tube in the presence of an insoluble surfactant on the
interface; no thin-film assumption is made. Linear stability analysis identifies two modes;
in the absence of base flow, the ‘interface’ mode is the only unstable mode. The growth
rates of this mode serve as an accurate predictor of how surfactant concentration increases
plug formation time, and the effects of film thickness on this increase are quantified. In
the presence of base flow, both the interface mode and ‘surfactant’ mode may be unstable,
resulting in a richer variety of free-surface dynamics. In previous work, turning points
in families of travelling wave solutions for a falling viscous film lining the interior of a
vertical tube with a clean interface have been shown to be a good indicator of hc, the
critical thickness past which plugs may form, and this approach is adapted here for flow
with surfactant. It is found that turning points in branches of travelling waves that arise
from an unstable surfactant mode give an estimate of hc, provided the interface mode is
linearly stable. When both modes are unstable, interpretation of these turning points as
they relate to plug formation is more complicated. The study concludes by examining the
impact of film thickness on growth rates and travelling wave solutions for core–annular
flow with surfactant.

Key words: liquid bridges, thin films, lubrication theory

1. Introduction

Film flows inside a tube occur in a variety of engineering and scientific applications and
have been the subject of numerous modelling, numerical and experimental studies over the
last several decades; see, e.g., Oron, Davis & Bankoff (1997) and Craster & Matar (2009)
for a review of some of the applications in which such flows arise. The stability of such
flows to long-wave disturbances has been well studied (e.g., Goren 1962; Yih 1967; Hickox
1971) and both linear stability analysis and weakly nonlinear models have provided insight
into the instability mechanisms present in these flows.

When such flows saturate well outside of the linear regime, strongly nonlinear models
can provide insight into the nonlinear dynamics. For film flows inside a tube, this dynamics
can include plug formation, which has important consequences for applications like human
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lungs/airways lined with mucus. In order to develop a nonlinear model that has minimal
complexity but can accurately describe such essential features of these flows, simplifying
assumptions, often exploiting one or more assumed small ratios of length scales, are
employed.

Lubrication theory has proved useful for deriving simplified models that are able to
accurately capture many features of such flows. Hammond (1983) derived a model for
the case of no base flow using a thin-film approximation. Gauglitz & Radke (1988, 1990)
extended Hammond’s work by including a more faithful representation of the free-surface
curvature and pointed out the importance of including such terms when studying nonlinear
features of these flows that may occur outside of the thin-film regime. For pipe flows, this
includes plug formation, when the free surface tends to r = 0 in finite time, and Gauglitz
& Radke (1988, 1990) identified a critical film thickness ratio that allowed one to predict
whether plugs would form in physical experiments.

Models built on lubrication theory have also shed light on how the presence of an
insoluble surfactant on the free surface modifies the stability and dynamics of these film
flows. In the absence of base flow, Halpern & Grotberg (1993) developed a model to
include insoluble surfactants and a flexible tube, building on the model of Halpern &
Grotberg (1992). Otis et al. (1993) developed and used a model that also included the
curvature terms of Gauglitz & Radke (1988) for the study of airway constriction and plug
formation; their model is likely more applicable for thick films as it includes additional
nonlinearities that arise due to the cylindrical geometry of the film. Experiments were
conducted by Cassidy et al. (1999) and the model of Halpern & Grotberg (1993) was used
to predict the closure time, i.e. how long it takes for a film to pinch off and form plugs.

The presence of background flow allows for a richer dynamics and arises in numerous
applications. Frenkel & Halpern (2002) and Halpern & Frenkel (2003) were the
first to show that the presence of shear flow results in linear instability of planar
Couette–Poiseuille Stokes flows with insoluble surfactants that are otherwise stable
at all wavenumbers in the absence of background flow. Depending on the parameter
regime, the free surface may be unstable for small wavenumbers or a band of finite
wavenumbers bounded away from zero. This discovery of a new instability resulted in
numerous studies documenting both linear and nonlinear stability of such flows covering
a variety of parameter regimes. Wei (2005a) studied the stability of falling films or
two-fluid Couette flow and the mechanisms behind instability, in particular looking at the
phase difference between the free surface and vorticity in the bottom fluid. Wei (2007)
examined the role of external forces and interfacial shear in the stability of thin-film
flow with surfactants. Levy, Shearer & Witelski (2007) used perturbation theory to study
travelling wave solutions of gravity-driven film flow with surfactant down an inclined
plane. The stability of small-amplitude travelling wave solutions to planar Couette flow
was discussed theoretically and numerically by Halpern & Frenkel (2008) who showed
that such solutions are unstable to long-wave disturbances. Bassom, Blyth & Papageorgiou
(2010) studied two-layer channel flow, and used a non-local integral term for the coupling
between fluids. Frenkel & Halpern (2017) incorporated the effects of gravity in horizontal
Couette flow with surfactants and negligible inertia and, using lubrication theory, showed
that in some parametric regimes, arbitrarily strong gravity cannot completely stabilize the
flow. Frenkel, Halpern & Schweiger (2019a,b) extended the work of Frenkel & Halpern
(2017) and Halpern & Frenkel (2003) by both incorporating gravity and considering
arbitrary wavenumbers. The two eigenmodes that solve the linear stability problem were
studied extensively, and parameter regimes were found where (i) both modes are stable,
(ii) exactly one mode is unstable and (iii) for some values of Bond number, both modes
are unstable. For parameter values where both modes are unstable, varying the Bond
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number can change which mode is the most unstable, and the dispersion curves of both
modes exhibit interesting changes in both the maximum growth rate and range of unstable
wavenumbers.

Core–annular flows are shear-driven flows with many similarities to planar
Couette–Poiseuille flows, but an additional instability mechanism, the Rayleigh–Plateau
instability, is present due to the azimuthal curvature of the free surface of the flow.
This additional instability leads to a rich variety of possible dynamics which have been
extensively studied, and a brief (and incomplete) overview of some linear and nonlinear
stability results applicable in the absence of surfactant is given next. Hickox (1971) applied
the long-wave method developed by Yih (1967) to core–annular flows and showed that
when the annular fluid is more viscous than the core fluid, the viscosity stratification
results in instability for both axisymmetric and azimuthal modes; this instability has
a growth rate that tends to zero as the Reynolds number goes to zero. In the case of
the more viscous fluid occupying the core region, stable core–annular flow can exist,
although there are requirements on the flow and fluid parameters that must be met (see,
e.g., Joseph, Renardy & Renardy 1984; Preziosi, Chen & Joseph 1989). Frenkel et al.
(1987) examined the saturation of instabilities due to capillarity in the weakly nonlinear
regime using a Kuramoto–Sivashinsky-type (KS-type) equation for the evolution of the
free surface. Papageorgiou, Maldarelli & Rumschitzki (1990) studied a modified version
of this equation in which the effects of viscosity stratification were included by solving
the core flow in Fourier space; this results in the addition of a non-local term to the
KS-type equation. Georgiou et al. (1992) expanded these results to include the effects of
gravity in vertical core–annular flows due to a density difference in the fluids. Kerchman
(1995) developed a strongly nonlinear thin-film equation for the free surface, both with
and without non-local terms (or local approximations of them) arising due to viscosity
stratification. Kerchman found that for sufficiently high surface tension and high values
of viscosity stratification with the more viscous fluid in the annulus (and at most O(1)

Reynolds number in the core region), these viscosity stratification terms may be neglected
(i.e. his (3.20) applies); good agreement was found with pressure-driven, low Reynolds
number experiments conducted by Aul & Olbricht (1990) with a thin annular film of
viscous oil and water in the core region. Reviews of these and many other stability studies
can be found in, e.g., Joseph & Renardy (1993) and Joseph et al. (1997).

Numerous studies, especially over the last fifteen years, have considered immiscible
core–annular flow with an insoluble surfactant at the interface. Blyth, Luo & Pozrikidis
(2006) showed that for core–annular flow, the presence of surfactant does not result in a
new instability (as it does in planar flow) but that the presence of insoluble surfactant can
increase both the maximum growth rate and the range of unstable wavenumbers. They
also used an immersed-boundary code to study the film’s nonlinear dynamics and showed
interesting interfacial evolutions including core breakup and pointed waves that lie beyond
the scope of lubrication-theory models. Wei & Rumschitzki (2005) studied the linear
stability of core–annular flow with assumed thin annular film and small capillary number
which allowed them to neglect the core dynamics (and resulting non-local viscosity
stratification term); they showed that increasing Marangoni number from zero can have
a first stabilizing and then destabilizing effect on the film. Wei (2005b) expanded on these
results by including the core dynamics and the associated non-local terms that arise and
studied the case with capillary number Ca � ε and Marangoni number Ma ∼ ε2, where ε
is the ratio of mean film thickness to the core radius; for Stokes flow with the more viscous
fluid occupying the annulus, surfactant can have a destabilizing effect on all wavenumbers.
Kas-Danouche, Papageorgiou & Siegel (2009) expand on this by developing a nonlinear
model for core–annular flow with constant pressure gradient, and explore the nonlinear
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dynamics with the core flow coupled to the thin annular film flow using an integral term
for the coupled dynamics. Bassom, Blyth & Papageorgiou (2012) studied core–annular
flow surrounding a rod. Zhou et al. (2014) studied the linear stability of a viscoelastic film
with insoluble surfactant in a vertical tube with both core flow and gravity and showed the
interplay between surfactant and viscoelasticity on the stability of such films, including
the existence of unstable wavenumber bands bounded away from zero.

While most work on core–annular flow stability has focused on axisymmetric
disturbances, non-axisymmetric disturbances can also play an important role in
determining the stability of the flow. In a planar geometry, Squire’s theorem guarantees
that the minimum critical Reynolds number at which instability occurs corresponds
to two-dimensional instability. In the cylindrical geometry of pipe flow, however,
the theorem does not hold, and the most unstable mode may thus be either
axisymmetric or non-axisymmetric. Hickox (1971) studied both axisymmetric and the first
non-axisymmetric mode and showed that both can be linearly unstable in the long-wave
limit. Hu & Patankar (1995) found that when the core fluid is more viscous than the
annular fluid and when the core region is small relative to the annular region, the
dominant mode of instability is non-axisymmetric and gives rise to corkscrew waves; these
waves persist over a variety of parameter values. Indireshkumar & Frenkel (1996) used a
small-amplitude equation to study the weakly nonlinear stability of both axisymmetric
and non-axisymmetric modes, and found in their set-up that even when surface tension is
relatively large (and the axisymmetric mode is the only linearly unstable one), it is still
possible for nonlinearities to transfer energy to non-axisymmetric modes allowing them
to be visible in model solutions. In the presence of surfactant, Blyth & Bassom (2013)
found that for Stokes flow, the presence of surfactant and viscosity stratification can lead
to situations where the first non-axisymmetric mode is the most linearly unstable mode
if the annular film is thick. For example, with Marangoni number Ma = 0.5, viscosity
ratio m = 2 and capillary number Ca = 1, they find that the axisymmetric mode has
a wider range of unstable wavenumbers, but the maximum growth rate occurs for the
first non-axisymmetric mode; as the Marangoni number decreases, or as the film thins,
the axisymmetric mode returns to being the dominant one. All of these studies suggest
that care must be used when interpreting results of the numerous axisymmetric models
developed over the last several decades, as non-axisymmetric modes may play a non-trivial
role in the free-surface evolution depending on the parameter regime, although many of
these axisymmetric models have indeed had success in reproducing experiments which
exhibit a primarily axisymmetric dynamics.

Many of the nonlinear models referenced above employed a thin-film approximation,
where one of the two fluid layers (the annular one in cylindrical geometry set-ups) is
assumed to be thin relative to the channel width or pipe radius. For thick films, however, a
small-slope, or long-wave, approximation that does not assume small film thickness may
be more appropriate, especially for studying plug formation.

As mentioned above, one common method for using models to predict plug formation
is to let the model run until the free surface, at any location, tends to r = 0 (or reaches a
prescribed small fraction of the tube radius). This was the method used by, e.g., Halpern
& Grotberg (1993) and Cassidy et al. (1999) to predict plug formation in the absence of
base flow.

A second method was used by Camassa, Ogrosky & Olander (2014) for predicting plug
formation in the presence of gravity-driven base flow. They found that travelling wave
solution branches could be readily found for thin films; as the film thickness increased,
however, a turning point in the family of solutions was reached, and beyond this point no
solutions could be found. These turning points have been shown to correspond well with
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the critical film thickness separating plug formation from no plugs in both experiments
and model simulations in a variety of models (Camassa et al. 2014, 2016; Ding et al. 2019;
Dietze, Lavalle & Ruyer-Quil 2020).

In the current paper, a long-wave model is derived to describe both thin- and thick-film
flows with insoluble surfactant inside a tube in the presence or absence of base flow due
to gravity, active core flow or both. The focus here will be primarily on low Reynolds
number (and low capillary number and low Marangoni number) flows. In these regimes
the axisymmetric dynamics is likely to play a significant if not dominant role, and thus
the models developed here will assume axisymmetry. In other parameter regimes, not
only may azimuthal instabilities play a leading role, but also short-wave instabilities, and
the long-wave asymptotic modelling approach would likely be insufficient to capture this
dynamics. Following the approach of Camassa et al. (2012) for flows without surfactant,
the ratio of core-to-annular viscosities will be assumed to be large, and this will be
exploited to decouple the core dynamics from the film dynamics; here, with surfactant
included, this results in two coupled partial differential equations (PDEs), one for the
free-surface evolution and one for the surfactant concentration at the film’s free surface.
In the absence of base flow, the effects of film thickness on the linear stability and plug
formation characteristics will be studied and previous thin-film model results will be
extended for thick films. In the presence of base flow, travelling wave solutions will be
found and used, where possible, to identify the impact surfactant concentration has on
plug formation, wave amplitude and other nonlinear features of the film flow.

The rest of the paper is organized as follows: the main model is derived in § 2. After
briefly discussing solution techniques in § 3, model results in the absence of base flow are
given in § 4. Results for a falling film with a passive air core are given in § 5 followed by
results for core–annular flow in § 6. Conclusions are given in § 7.

2. Model development

The problem studied here is a highly viscous film with dynamic viscosity μ̄ and density
ρ̄ that coats the interior of a rigid tube with radius ā. The core region of the tube is
occupied by a much less viscous fluid, possibly air, with viscosity μ̄(c) � μ̄ and density
ρ̄(c); this core fluid may either be passive or actively driven by a pressure gradient. The
flow of the fluids is assumed to be axisymmetric with independent coordinates (r̄, z̄);
the positive z̄-direction is up the tube so that acceleration due to gravity ḡ is oriented
in the negative z̄ direction. The centre of the tube is at r̄ = 0, the tube wall is at r̄ = ā and
the free surface lies at r̄ = R̄(z̄, t̄). Bars denote dimensional quantities. See figure 1 for the
definition sketch of the flow variables.

Insoluble surfactant is assumed to be present at the free surface with concentration
Γ̄ (z̄, t̄) and diffuses with diffusion coefficient D̄s. The surface tension at the free surface
depends on the concentration and is denoted by σ̄ (Γ̄ ). A long-wave model for this flow is
derived next.

2.1. Governing equations and boundary conditions
The flow of the annular film is governed by the cylindrical axisymmetric Navier–Stokes
equations

ρ̄(ūt̄ + ūūr̄ + w̄ūz̄) = −p̄r̄ + μ̄

(
1
r̄
∂r̄(r̄ūr̄) + ūz̄z̄ − ū

r̄2

)
, (2.1a)
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a–

g–

Q–

z–

r–

u–
w–

h
–
(z– ,t–)

R– (z– ,t–)

Γ
–
(z– ,t–)

R–0 h–0

FIGURE 1. Definition sketch of the flow variables in a vertical tube with radius ā; r̄ = R̄(z̄, t̄)
denotes the location of the free surface; h̄(z̄, t̄) denotes the film thickness; R̄0 (h̄0) denotes the
mean core (film) thickness; Γ̄ (z̄, t̄) denotes the concentration of insoluble surfactant at the free
surface.

ρ̄(w̄t̄ + ūw̄r̄ + w̄w̄z̄) = −p̄z̄ + μ̄

(
1
r̄
∂r̄(r̄w̄r̄) + w̄z̄z̄

)
− ρ̄ḡ, (2.1b)

1
r̄
∂r̄(r̄ū) + w̄z̄ = 0, (2.1c)

where (ū, w̄) are the velocity components in the (r̄, z̄) direction, respectively, and p̄ is
pressure. Subscripts will be used to denote partial derivatives. No-slip boundary conditions
are enforced at the wall, r̄ = ā

w̄ = ū = 0. (2.2)

At the free surface, r̄ = R̄, three boundary conditions must be met: (i) continuity of
tangential stress,

μ̄

(1 + (R̄z̄)2)
[2R̄z̄(ūr̄ − w̄z̄) + (1 − (R̄z̄)

2)(ūz̄ + w̄r̄)] − τ̄ (c) = − 1
(1 + (R̄z̄)2)1/2

σ̄z̄, (2.3)

where τ̄ (c) is the tangential stress at the free surface due to active core flow; (ii) jump in
normal stress according to the Young–Laplace law,

− p̄ + 2μ̄

(1 + (R̄z̄)2)
[(R̄z̄)

2w̄z̄ − R̄z̄(ūz̄ + w̄r̄) + ūr̄] + p̄(c)

= σ̄ (Γ̄ )

R̄(1 + (R̄z̄)2)1/2

(
1 − R̄R̄z̄z̄

(1 + (R̄z̄)2)

)
, (2.4)

where p̄(c) is the core fluid pressure and (iii) a kinematic boundary condition

ū = R̄t̄ + w̄R̄z̄. (2.5)

In the case of a passive core, τ̄ (c) and p̄(c) will be set to zero.
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The surfactant flow is modelled by an advection–diffusion equation of the same form
used in, e.g., Kas-Danouche et al. (2009) and Bassom et al. (2012), Zhou et al. (2014),

∂

∂ t̄
[(1 + (R̄z̄)

2)1/2R̄Γ̄ ] + ∂

∂ z̄
[w̄(1 + (R̄z̄)

2)1/2R̄Γ̄ ] = D̄s
∂

∂ z̄

[
R̄Γ̄z̄

(1 + (R̄z̄)2)1/2

]
. (2.6)

The dependence of surface tension σ̄ on surfactant concentration is generally nonlinear,
but may be linearized about the mean concentration,

σ̄ (Γ̄ ) = σ̄0 − R̄∗T̄(Γ̄ − Γ̄0), (2.7)

where it has been assumed that the surfactant concentration Γ̄ is much less than the
maximum packing value Γ̄∞, and where σ̄0 is surface tension corresponding to the base
surfactant concentration value Γ̄0, R̄∗ is the universal gas constant and T̄ is absolute
temperature.

2.2. Scalings and dimensionless equations
Equations (2.1)–(2.7) may be made dimensionless using the following scales,

r = r̄
R̄0

, z = z̄
λ̄
, u = ū

Ū0
, w = w̄

W̄0
, t = t̄W̄0

λ̄
, p = εp̄R̄0

μ̄W̄0
, τ = τ̄ R̄0

μ̄W̄0
,

σ = σ̄

σ̄0
, Γ = Γ̄

Γ̄0
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.8)

where λ̄ is a length scale in the z-direction (corresponding to the wavelength of a typical
free-surface disturbance), and where Ū0 and W̄0 are velocity scales in the r and z directions,
respectively. The velocity scales used will depend on whether a base flow is present: in
the absence of any base flow, the axial velocity scale will be taken to be W̄0 = σ̄0/μ̄;
for a falling film, the velocity scale may be taken to be the undisturbed velocity of the
free surface, W̄0 = ρ̄ḡh̄2

0/μ̄; for pressure-driven core–annular flow, W̄0 = 2Q̄(c)/πR̄2
0 may

be taken to be a centreline velocity with core volume flux Q̄(c) as in, e.g., Camassa
et al. (2012); Camassa & Ogrosky (2015). A long-wave approximation will be made,
where variations in z̄ will be assumed smaller than variations in r̄, so that ε = R̄0/λ̄� 1
(and Ū0 = εW̄0). We note that other scaling options could be used as well. A thin-film
approximation exploiting an assumed small ratio of film thickness to tube radius would
be suitable here, though a long-wave model may be able to shed light on the dynamics
when the film is not thin. It is important to note that each modelling approach may capture
different physics; as one of the goals of the current study is to study thick films and plug
formation, the thin-film approach is not used here. The dimensionless parameters that
appear in the equations and boundary conditions,

Re = ρ̄W̄0R̄0

μ̄
, Fr = W̄0√

ḡR̄0

, C = μ̄W̄0

σ̄0
, M = R̄T̄Γ̄0

σ̄0
, Pe = W̄0R̄0

D̄s
, a = ā

R̄0
,

(2.9)

are the Reynolds, Froude, capillary, Marangoni and Péclet numbers, and a film thickness
parameter a, respectively. The film thickness parameter may be rewritten in terms of
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dimensionless film thickness h0 = h̄0/ā through a = 1/(1 − h0). The domain of a is
(1,∞) (and for h0 is (0,1)) with a → 1 (h0 → 0) corresponding to the limit of the core
fluid filling the entire tube, and a → ∞ (h0 → 1) corresponding to the limit of the annular
fluid filling the entire tube.

Throughout the derivation, the Reynolds number will be assumed to be small; as a result,
O(εRe) terms will not be retained, but O(ε) terms will. The Marangoni number will also
be assumed to be small, as discussed in, e.g., Frenkel & Halpern (2017).

The dimensionless momentum equations and boundary conditions using (2.8) are given
in appendix A, (A 1)–(A 6). When only terms of O(1) and O(ε) are retained, the resulting
momentum equations are

pr = 0, (2.10a)

pz = 1
r
∂r(rwr) − Re

Fr2
− εRe(wt + uwr + wwz), (2.10b)

1
r
∂r(ru) + wz = 0. (2.10c)

The dimensionless boundary conditions are no slip at the wall, r = a,

u = w = 0. (2.11)

At the free surface, r = R, the three boundary conditions are

wr − τc = εM
C

Γz, (2.12a)

−p(a) + p(c) = ε

C
[1 − M(Γ − 1)]

(
1
R

− ε2Rzz

)
, (2.12b)

u = Rt + wRz. (2.12c)

Note that (2.12b) has one term of O(ε3). This term has been retained for several reasons
and is also retained in many other film flow models derived using long-wave asymptotics.
For one, this term has been shown in previous studies to be the lowest-order one in
the long-wave asymptotics that prevents shock formation, providing some rationale for
retention of this term and exclusion of other terms of comparable or higher order. For
another, this term provides the correct upper bound on unstable wavenumbers in the case
of a clean interface.

There is no guarantee that the resulting competition in the model between the
destabilizing terms of O(ε) and stabilizing term of O(ε3) will be a faithful representation
of the dynamics in the full equations since the range of unstable wavenumbers will extend
well outside the k � 1 range. However, a comparison between the model’s dispersion
relation and previous linear stability results for the full Stokes equations (Zhou et al.
2014) suggests the model is reasonably effective at reproducing the full dispersion relation,
and we note here that asymptotic models, particularly long-wave models derived in this
way, have been previously applied outside their range of validity and found to be in good
agreement with moderately thick-film experiments (e.g., Craster & Matar 2006; Camassa
et al. 2014).
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Long-wave model for film flows inside a tube with surfactant 908 A23-9

The linearized dimensionless constitutive equation is

σ = 1 − M(Γ − 1), (2.13)

and the dimensionless advection–diffusion equation for surfactant is

[RΓ ]t + [wRΓ ]z = ε

Pe
[RΓz]z. (2.14)

The continuity equation may be integrated across the annular fluid layer; using the
kinematic boundary condition produces(

R2

2

)
t

=
[∫ a

R
wr dr

]
z

. (2.15)

Equations (2.14) and (2.15) form the long-wave model and are conservation laws
with conserved quantities RΓ and R2, respectively. An approximate expression for w is
needed to close the system, and can be found by solving (2.10)–(2.12) assuming a regular
perturbation expansion,

w = w0 + εw1 + O(ε2),

u = u0 + εu1 + O(ε2),

p = p0 + εp1 + O(ε2).

⎫⎪⎪⎬⎪⎪⎭ (2.16)

Solving the equations at O(1) gives

w0 = (r2 − a2)

4

(
pz + Re

Fr2

)
+

(
Rτ (c) − R2

2

(
pz + Re

Fr2

))
log

r
a
. (2.17)

The pressure gradient pz is independent of r but depends on p(c)
z through (2.12b). In the

case of a passive core, as with a falling film in a vertical tube, both τ (c) and p(c)
z may be set

to zero, but in the case of active core flow, estimates of both τ (c) and p(c)
z are needed. One

way to estimate τ (c) and p(c)
z is to use the locally Poiseuille model of Camassa et al. (2012),

which produces

p(c)
z = − ρ̄(c)

ρ̄

Re
Fr2

− 4
m R4

, (2.18a)

τ (c) = − 2
m R3

, (2.18b)

where m = μ̄/μ̄(c) is the viscosity ratio. These estimates arise from finding a steady
solution to Poiseuille flow of the core fluid through a pipe with radius R, and is valid
when μ̄(c) � μ̄ so that the core flow can be decoupled from the film flow (see Camassa
& Ogrosky (2015) for further details). Other modelling approaches that make use of this
decoupling in pipe or channel flow could be used as well, such as the models of Tseluiko
& Kalliadasis (2011) or Camassa, Ogrosky & Olander (2017).

The derivation used here, and in previous modelling studies employing this ‘locally
Poiseuille’ approach, neglects the effects of instability due to viscosity stratification and
is only valid for viscous films where the effects due to surface tension are dominant. For
flows with moderate Reynolds number, or for flows with weak surface tension, one may
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expect that the effects of viscosity stratification will become significant and the model
derived here may not be expected to apply. Both weakly and strongly nonlinear thin-film
models have been previously derived with these effects, which typically enter into the
model as a non-local term due to the core flow being readily solved in Fourier space;
see, e.g., Papageorgiou et al. (1990), Georgiou et al. (1992), Kas-Danouche et al. (2009)
and Dietze & Ruyer-Quil (2015), among others. For examples of models that, like the one
developed here, also neglect this instability due to viscosity stratification, see, e.g., Frenkel
et al. (1987), Kerchman (1995), Wei & Rumschitzki (2005), Camassa et al. (2012), etc. It
is in this vein, particularly that of Camassa et al. (2012), that the model derivation here
proceeds, and in the case of equal density fluids and no surfactant, the model developed
here reduces to that of Kerchman (1995) in the thin-film limit. Details of the model
derivation calculations are given in appendix A; see also Camassa & Ogrosky (2015).

Next, proceeding to O(ε) and solving equations (2.10)–(2.12) for w1 produces

w1 = − 1
4C

[
(1 − M(Γ − 1))

(
1
R

− Rzz

)]
z

(
r2 − a2 − 2R2 log

r
a

)
+ RMΓz

C
log

r
a
,

(2.19)

where terms of O(εRe) have been neglected due to the assumed small Reynolds number.
Substituting the total velocity w = w0 + εw1 into (2.15) produces

Rt = −
[

S1 f1(R; a) + S̃2

a4
f2(R; a)

]
Rz + 4MS̃3

a2R
[RΓz f2(R; a)]z

− S̃3

a2R
[[MΓz(R − R2Rzz) + (1 − M(Γ − 1))(Rz + R2Rzzz)] f3(R; a)]z, (2.20a)

Γt = −Γ

R
Rt − 1

R
[RΓ w(R)]z + 1

a P̃e R
[RzΓz + RΓzz], (2.20b)

where ε has been scaled out of the model by returning to the original aspect ratio through a
rescaling of z and t (see, e.g., Camassa & Ogrosky 2015). There are six model parameters;
film thickness parameter a (or alternately h0 = 1 − 1/a), Marangoni number M and

S1 = 1
m

, S̃2 = a4(ρ̄ − ρ̄(c))Re
2ρ̄Fr2

, S̃3 = a2

16C
, P̃e = a Pe, (2.21a–d)

with fi values

f1(R; a) = a2

R4

(
a2

R2
− 1

)
, (2.22a)

f2(R; a) = R2 − a2 − 2R2 log
R
a

, (2.22b)

f3(R; a) = a4

R2
− 4a2 + 3R2 − 4R2 log

R
a

, (2.22c)
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and with velocity at the free surface in (2.20b) of

w(R) = S1R2

a2
f1(R; a) + 16MS̃3

a2
ΓzR log

R
a

+
[

S̃2

2a4
+ 4S̃3

a2

[
MΓz

(
1
R

− Rzz

)
+ (1 − M(Γ − 1))

(
Rz

R2
+ Rzzz

)]]
f2(R; a).

(2.23)

2.3. Model subcases
Before proceeding to solutions of (2.20), three special cases of (2.20a) that will be the
focus of the rest of the paper are written out explicitly for reference. In the case of a
passive air core and viscous film in a capillary with no base flow, i.e. S1 = S̃2 = 0, the
velocity scale may be taken as W̄0 = σ̄0/μ̄ so that S̃3 = 1/16; (2.20a) is then

Rt = M
4a2R

[RΓz f2(R; a)]z

− 1
16a2R

[[MΓz(R − R2Rzz) + (1 − M(Γ − 1))(Rz + R2Rzzz)] f3(R; a)]z, (2.24)

with M, a and P̃e the model parameters. Equations (2.24) and (2.20b) are similar to the
model developed in Halpern & Grotberg (1993) for the case of a rigid tube wall, but it
retains more of the cylindrical geometry of the problem, including conserving RΓ rather
than Γ . The model used here is also similar to that of Otis et al. (1993), although their
model uses an empirical surfactant equation of state. In the absence of surfactant, the
model used here reduces in the thin-film limit to that derived by Hammond (1983) and
studied by Lister et al. (2006).

In the case of a falling viscous film in a vertical tube (with a passive air core), we may
take S1 = 0 and rescale in time by S̃2 to get

Rt = −
[

1
a4

f2(R; a)

]
Rz + 4M

a2 Bo R
[RΓz f2(R; a)]z

− 1
a2 Bo R

[[MΓz(R − R2Rzz) + (1 − M(Γ − 1))(Rz + R2Rzzz)] f3(R; a)]z, (2.25)

with M, a, P̃e and Bo the model parameters; Bo is a Bond number defined as

Bo = S̃2

S̃3

= 8ā2(ρ̄ − ρ̄(c))g
σ̄0

≈ 8ρ̄ḡā2

σ̄0
, (2.26)

where the approximation holds when ρ̄(c) � ρ̄, as with a liquid annular film and air in the
core region. Note that Bo does not depend on the film thickness, and has been defined in
terms of ‘hardware’ parameters only, i.e. properties of the fluid and the dimensional tube
radius. In the absence of surfactant, the model here was studied by Camassa et al. (2014)
and is similar to the model derived by Lin & Liu (1975). It is also the interior counterpart
to the models of Craster & Matar (2006) and Kliakhandler, Davis & Bankoff (2001) who
studied gravity-driven film flow down the exterior of a tube; this exterior model compared
well with experiments by Smolka, North & Guerra (2008). In the thin-film limit, the mode
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here reduces to that of Frenkel (1992) that was studied by Kerchman & Frenkel (1994)
and Kalliadasis & Chang (1994); plug formation in this model was also studied by Jensen
(2000).

In the case of core–annular flow with matching densities, i.e. S̃2 = 0 so that effects of
gravity are neglected, the model may be rescaled in time by S1

Rt = − f1(R; a)Rz + M

4a2R C̃
[RΓz f2(R; a)]z

− 1

a2R C̃
[[MΓz(R − R2Rzz) + (1 − M(Γ − 1))(Rz + R2Rzzz)] f3(R; a)]z, (2.27)

where C̃ = 16C/m is a modified Capillary number; parameters M, a and C̃ determine the
dynamics (again assuming large Péclet number). In the absence of surfactant, the model
here was studied by Camassa & Ogrosky (2015) and it reduces to the model by Kerchman
(1995) in the thin-film limit. We note that the model derivation assumes small Reynolds
number, and that the effects of surface tension are significantly larger than instability due
to viscosity stratification so that the latter may be neglected. In parameter regimes where
these assumptions are not valid, the model cannot be expected to accurately represent the
dynamics.

3. Solution methods

Before presenting results, analytical and numerical solution methods are briefly
discussed.

3.1. Linear stability
The linear stability of constant solutions to the long-wave model may be studied by adding
a small-amplitude sinusoidal perturbation with wavenumber k to the undisturbed base state
R(z, t) = Γ (z, t) = 1; i.e.

R = 1 + R̂ ei(kz−ωt), Γ = 1 + Γ̂ ei(kz−ωt), (3.1a,b)

with R̂ � 1 and Γ̂ � 1. Substitution of (3.1a,b) into (2.20) results in an eigenvalue
problem for ω,

(A − iωI)(R̂, Γ̂ )T = 0. (3.2)

The elements of A are

a11 =
[

S1 f1(1; a) + S̃2

a4
f2(1; a)

]
ik + S̃3

a2
f3(1; a)(k4 − k2), (3.3a)

a12 = MS̃3

a2
[4 f2(1; a) − f3(1; a)]k2, (3.3b)

a21 =
[
−S1 f1(1; a) − S̃2

a4
f2(1; a) + S1 f4(1; a)

a2
+ S̃2 f5(1; a)

2a4
+ wR

]
ik

+ S̃3

a2
[4 f2(1; a) − f3(1; a)](k4 − k2), (3.3c)
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a22 = wRik +
[

MS̃3

a2
f3(1; a) + 1

aP̃e
+ 4MS̃3 f5(1; a)

a2
− 8MS̃3 f2(1; a)

a2

]
k2, (3.3d)

and

f1(1; a) = a4 − a2, (3.4a)

f2(1; a) = 1 − a2 + 2 log a, (3.4b)

f3(1; a) = a4 − 4a2 + 3 + 4 log a, (3.4c)

f4(1; a) = −4a4 + 2a2, (3.4d)

f5(1; a) = 4 log a, (3.4e)

wR = S1 f1(1; a)

a2
+ S̃2 f2(1; a)

2a4
, (3.4f )

with wR the fluid velocity at the free surface. Solving (3.2) results in a quadratic equation
for ω. When M = 0, one of these roots is identical to the dispersion relation for a
clean-interface version of the model and is thus sometimes referred to as the interface
mode (even though this mode may consist of Γ perturbations as well as R perturbations).
As M is increased, this interface mode may be expected to be modified as surfactant
perturbations are fully coupled to the interfacial evolution. The second mode consists only
of surfactant perturbations when M = 0, and is thus sometimes termed the ‘surfactant’
mode; for M > 0, typically both R and Γ perturbations are present in the surfactant mode
as well. This terminology will be adopted here as well. The distinction between the two
modes can become blurred as parameters vary (particularly in the case of a base flow);
nevertheless this terminology will be adopted for the rest of the paper and in most cases
reported here is fairly unambiguous. Other terminology used in the literature includes the
‘robust mode’ and ‘surfactant mode’ as in, e.g., Frenkel & Halpern (2017), who note that
the robust mode, like the interface mode, does not vanish as M → 0; see, e.g., Frenkel
et al. (2019a) for use of this terminology and discussion of the mode branches in a planar
geometry case with base flow.

It is important to note that the long-wave model was derived under the assumption of
aspect ratio ε = R̄0/λ̄� 1, and so this linear stability analysis conducted on the model
should be a faithful representation of the full system’s linear dynamics in the limit k →
0 (in the parameter regimes considered here). However, in the linear stability analysis
conducted here, all terms in the model equations are retained and their impacts on the
growth rates taken into account, regardless of order, as has been done in other studies of
long-wave film flow models. This includes stabilizing terms of O(k4) that arise due to the
axial free-surface curvature, and that introduce both a wavenumber of maximum growth
rate (kmax ) and a cutoff wavenumber which lie outside the model’s region of validity. They
will be shown, however, to be in good agreement with those of the full Stokes equations
found by Zhou et al. (2014). It is important to remember, however, that in the long-wave
limit and with the approximations made here, those terms of O(k2) are the dominant terms
in determining growth rates.

3.2. Numerical methods
Approximate solutions to the nonlinear model equations will be found numerically
using periodic boundary conditions. Each equation is integrated using a pseudospectral
method; i.e. spatial derivatives are calculated in Fourier space while nonlinearities are
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calculated in physical space. Dealiasing is applied at each time step due to the complicated
nonlinearities in the model. The time integration scheme is a simple second-order
predictor–corrector scheme. As both R2 and RΓ are conserved quantities in (2.20), these
values are monitored throughout the simulations, and simulations are repeated with finer
spatial or temporal resolution if necessary. The initial conditions used are a flat free
surface perturbed with one or more Fourier modes: R(z, t) = 1 + ∑n

k=1 ak cos(2πkz + bk),
where bk is a random phase shift, and Γ (z, t) = 1 + ∑n

k=1 ãk cos(2πkz + b̃k). In some
simulations ãk = b̃k = 0 so that a perfectly even distribution of surfactant is assumed at
t = 0; the long-time evolution of the system was not typically found to depend strongly on
these values of ak, bk, ãk, b̃k. The nonlinear code was tested through convergence tests as
well as running simulations using initial conditions consisting of an undisturbed R and Γ
plus small-amplitude linear eigenmodes; the evolution of these eigenmodes for early times
was checked against the linear stability analysis results to ensure proper propagation and
growth/decay.

Travelling wave solutions, i.e. solutions to the model equations of the form R(z, t)2 =
Q(z − ct), R(z, t)Γ (z, t) = N(z − ct), will also be sought. Since (2.20) is a conservation
law, each equation may be integrated once, resulting in two constants of integration K1
and K2. The resulting system consisting of one third-order ordinary differential equation
(ODE) and one first-order ODE may then be rewritten as a system of four first-order ODEs
and solved using standard numerical methods. The approach used here mimics the one
described in Camassa et al. (2016). Briefly, the model has a family of constant solutions
R(z, t) = R0 and Γ (z, t) = Γ0 with R0, Γ0 depending on model parameters (including
constants of integration K1 and K2). Continuing along this family of solutions results
in a Hopf bifurcation (or zero-Hopf bifurcation, in which case a small smoothing term
may be added to make numerical continuation onto the family of periodic solutions
easier; see Camassa et al. (2016) for details). The continuation software AUTO (Doedel
et al. 2008) was used to find the Hopf bifurcation and subsequent periodic solutions.
In all results shown here, integral conditions (1/T)

∫ T
0 R2 dz = (1/T)

∫ T
0 RΓ dz = 1 were

enforced (where T is the period).

4. Results for no base flow

Model results are presented first for the case of a passive core and viscous film in a
capillary with no base flow (i.e. S1 = S̃2 = 0) studied by Hammond (1983), Otis et al.
(1993) and Halpern & Grotberg (1993) and others. Results with base flow due either to
gravity or core flow are given in the following sections. In common with many other
studies of film flows in the presence of surfactant, the Péclet number is assumed to be
large in all results presented here, with P̃e = 104 or larger; in some results diffusion will
be neglected altogether.

4.1. Linear stability analysis
In this case the free surface and surfactant concentration are governed by (2.24) and
(2.20b). Aside from the (large) Péclet number, the two parameters governing the dynamics
are film thickness parameter a and Marangoni number M. The linear modes are shown in
figure 2(c,d) for M = 0.1, a = 2, and k = 0.7, and the growth rates for modes with a
variety of M values for a = 1.11 and a = 2 are shown in figure 2(a,b). Both eigenmodes
contain perturbations to R and to Γ that are in phase with one another due to the lack of a
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FIGURE 2. (a,b) Growth rates for the unstable mode in (2.24) and (2.20b) with no base
flow for various values of M; S1 = S̃2 = 0, S̃3 = 1/16, P̃e = 105: (a) a = 1.11 (h0 = 0.1);
(b) a = 2 (h0 = 0.5). (c,d) Linear eigenmodes for M = 0.1, S1 = S̃2 = 0, S̃3 = 1/16, k = 0.7,
a = 2 (h0 = 0.5).

base flow. In the case M = 0, the surfactant mode contains only disturbances to surfactant
concentration; the interface mode contains both perturbations to R and Γ .

For all combinations of a and M, the only unstable mode is the interface mode. Figure 2
shows the growth rates of this mode for various values of M and a. For M = 0, the
wavenumber of maximum growth rate is kmax = 1/

√
2 as expected (Hammond 1983;

Halpern & Grotberg 1993). As M increases, kmax decreases slightly, and then increases
until returning to 1/

√
2 in the limit M → ∞. For all values of a and M, wavenumbers

0 < k < 1 are unstable, with all larger wavenumbers stable. The smallest value that kmax

can attain for a particular value of a decreases as a increases; i.e. for thicker films, moderate
values of M result in a greater change to the dominant wavelength.

Figure 3(a) shows the ratio of the maximum growth rates GRM (solid lines) for various
values of M and GR0, the maximum growth rate for M = 0, for three values of a. For
each fixed value of a, the growth rate ratio GR0/GRM increases as M increases, with
noticeable increases occurring at smaller M for thinner films. As M → ∞, the maximum
growth rate approaches a value GR∞ which is a fraction of GR0. For thin films, it has
been shown by Halpern & Grotberg (1993) and others that GR0/GR∞ = 4. The long-wave
model here produces a ratio GR0/GR∞ that appears to be just greater than 4 for a = 1.11
(h0 = 0.1), in good agreement with these earlier results obtained with thin-film models.
As a increases, however, this ratio GR0/GR∞ is significantly greater than 4, consistent
with (non-long-wave) linear stability results in Zhou et al. (2014). This ratio can be found
analytically as a function of film thickness parameter a; the growth rate of the dominant
mode found by solving the eigenvalue problem (3.2) with S1 = S̃2 = 0, S̃3 = 1/16, M = 0
(and 1/P̃e = 0 for simplicity) is

GR0 = − f3(a)(k4 − k2)

16a2
. (4.1)

For large M, the eigenvalues may be expanded in powers of 1/M; the eigenvalue
corresponding to the interface mode is O(1) and positive for 0 < k < 1,

GR∞ = (1 − a2)[1 − a2 + (1 + a2) log a](k4 − k2)

a2(a4 + 4a2 − 5 + 4 log a)
. (4.2)
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FIGURE 3. (a) (Solid lines) Growth rate ratio GR0/GRM for various M and a; S1 = S̃2 = 0,
S̃3 = 1/16, P̃e = 105. Symbols indicate closure time ratios t∗M/t∗0, and dashed lines indicate
limiting growth rate ratio GR0/GR∞. (b) Limiting growth rate ratio GR0/GR∞ as a function
of a; symbols correspond to values from panel (a). (c) Growth rate ratio GR0/GRM in (4.3) as a
function of a for various fixed M.

The ratio of these two interface mode eigenvalues is

GR0

GR∞
= (a4 − 4a2 + 3 + 4 log a)(a4 + 4a2 − 5 + 4 log a)

16(a2 − 1)[1 − a2 + (1 + a2) log a]

= 4 + 2h0 + O(h2
0). (4.3)

The top line in (4.3) gives the ratio for arbitrary film thickness parameter a using the
long-wave model; the bottom expression gives the same ratio expanded in powers of h0 in
order to make an direct comparison with previous results obtained using thin-film models
(Halpern & Grotberg 1993). Figure 3(b) plots this ratio as a function of a. Note that (4.3)
is independent of k, consistent with each panel of figure 2 and figure 3(a).

For fixed M � 0.1, figure 3 shows that the growth rate ratio GR0/GRM is actually larger
for a = 1.11 (h0 = 0.1) than for a = 2 (h0 = 0.5). In other words, the relative impact of
dilute surfactant on growth rate can actually be more pronounced on thin films than on
thicker films. Figure 3(c) shows the growth rate ratio GR0/GRM for four values of M over
the entire range of possible film thickness values. For M < 0.1, after a quick increase
in growth rate ratio as the film thickness increases, the growth rate ratio decreases with
increasing h0.

4.2. Nonlinear dynamics
To explore the saturation of these linear instabilities, (2.24) and (2.20b) were solved
numerically. Similar to previous studies of related models (Otis et al. 1993), a domain was
chosen that closely matches kmax in order to explore the behaviour of the most dangerous
wavenumber. Once free-surface perturbations have grown beyond the linear regime, one
of two main types of behaviour is seen in model solutions; either the instabilities saturate
or the minimum value of R approaches 0 rapidly. Gauglitz & Radke (1988) identified
a critical film thickness hc ≈ 0.12 for M = 0 beyond which plugs may be expected to
form; Halpern & Grotberg (1993) found that increasing M increased hc. Both Halpern &
Grotberg (1993) and Otis et al. (1993) quantified the time that it took for simulations
to result in closure, i.e. plug formation. Halpern & Grotberg (1993), working with a
thin-film model, allowed solutions to be computed until the minimum value of R reached
0.4 times the dimensionless tube radius a; this time was used as a proxy as the closure
time, since in many simulations the minimum value of R decreases very rapidly from
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0.4a towards 0. It was found that it took roughly four times as long for films with large
surfactant concentration to form plugs as surfactant-free films, mirroring the growth rate
ratio found using linear stability analysis. Likewise, Otis et al. (1993) found the closure
time to approach a value slightly larger than 4 for h0 = 0.2.

The same behaviour is seen in solutions to (2.24) and (2.20b). The symbols in figure 3
show the closure time ratios calculated using (2.24); these times were calculated in the
same way as Halpern & Grotberg (1993), so that once the free surface reached a value of
0.4a, the simulation was stopped. No plugs form for h0 = 0.1 (a = 1.11); for thicker films,
the closure time ratios are nearly identical, or just smaller than, the growth rate ratios. Of
course, it is important to note that while thick films with large M can result in a large
reduction factor in the closure time relative to that for a clean interface, the closure times
themselves are much smaller than for thin films; i.e. closure happens quite rapidly with
relatively thick films. It is interesting to note that the trend of decreasing GR0/GRM for
fixed small M as the film thickness increases matches the trend in plug formation found in
experiments by Cassidy et al. (1999); for fixed mean surfactant concentration, as the film
thickens, the growth rate ratio decreased.

5. Results for gravity-driven film flow

Next the case of a falling film and passive air core in a vertical tube (S1 = 0, S̃2 /= 0)
is considered. Equations (2.25) and (2.20b) model this scenario, and the parameters
determining the dynamics, aside from P̃e which is assumed to be very large, are Bo, M
and a.

5.1. Linear stability analysis

Solving the eigenvalue problem (3.2) with S1 = 0 (and after rescaling by S̃3) results in
two eigenmodes; for M = 0, one of the modes has a dispersion relation identical to the
clean-interface case, and one is a surfactant mode that is stable for all wavenumbers.
The growth rate for the clean-interface mode is proportional to Bo−1: GR0 = f3(a)(k2 −
k4)/(a2Bo).

Figure 4(a) shows the growth rates for a = 1.11 (h0 = 0.1), and Bo = 1, for various
values of M. As M increases, the interface mode’s growth rates decrease; both kmax

(wavenumber of maximum growth rate) and the upper bound for unstable wavenumbers
decrease as M increases. Once M has increased sufficiently, this interface mode is
stable for all wavenumbers, e.g. M = 0.1. The surfactant mode undergoes the opposite
effect; in contrast to the case of no base flow, increasing M increases the growth rates.
As M increases, the wavenumber of maximum growth rate for this mode goes from
approximately 1 for very small M down to approximately to k = 1/

√
2 for M = 0.01.

Near M = 0.003, the most unstable mode switches from being the interfacial mode to the
surfactant mode (with higher kmax ) as M increases. As noted earlier, the model is only
strictly valid for k � 1; we note here that since the cutoff wavenumber for the interface
mode decreases as M increases, perhaps the model can meet this criterion for a sufficiently
large value of M under which the cutoff wavenumber can be made small.

Figure 4(b,c) shows the linear eigenmodes for a = 1.25, Bo = 1 and M = 0.1. The
mode shown in panel (b) is the interface mode; surfactant concentration attains its
maximum very near the free-surface wave crest, so that h and Γ perturbations are in phase
with each other. The mode in panel (c) is the surfactant mode; this mode has a phase
difference between h and Γ of a little less than π/2, due to the presence of the base flow.
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FIGURE 4. (a) Linear growth rates for (2.25) and (2.20b) with a = 1.11, Bo = 1 and various
values of M. (b,c) Linear eigenmodes for a = 1.25, Bo = 1 and M = 0.1. (d) Growth rate ratio
GR0/GRM for Bo = 0.1 (dotted lines), Bo = 1 (thin lines) and Bo = 12.6 (thick lines) for various
values of a and M. (e) Phase speed ratio PS0/PS∞ in (5.1).

This phase difference is seen in other types of film flow models that include surfactant,
and has been explored and discussed by, e.g., Wei (2005a, 2007) and Frenkel & Halpern
(2017), the latter of which caution that the phase difference may not always serve as a
reliable indicator of stability for horizontal two-layer Couette flows with gravity. These
phase differences are modified by changes to Bo, a and M, although in the current study,
for many of the parameter regimes studied and reported on the modes explored have phase
differences somewhat similar to those in figure 4(b,c) for the interfacial and surfactant
modes, respectively. There are, however, also interesting cases where the phase differences
can be quite different, and the distinction between mode types is somewhat blurred; see
Frenkel et al. (2019a) for an exploration of these eigenmodes in two-layer Couette flow.

In order to compare how surfactant affects these growth rates relative to the
clean-interface case, the ratio of maximum growth rate at M = 0 to maximum growth
rate for various M is plotted in figure 4(d); the maximum growth rate is taken to be the
largest growth rate in either of the two modes. For Bo = 1 and a = 1.11, (thin black line),
there is a transition between the modes near M = 0.003, consistent with the switch of
unstable mode seen in panel (a). For Bo = 1 and a = 1.25, the exchange occurs at larger
M (≈0.01) and smaller growth rate fraction. For Bo = 1 and a = 2, there is no signature
of an exchange between most unstable mode, with a smooth increase in the growth rate
fraction as M increases.

The Bond number affects these results as well. For Bo = 0.1 (dotted lines), the
maximum growth rate closely follows the growth rates for the case with no base flow
in figure 3(a) for all a values plotted; i.e. the effects of gravity are too weak to significantly
affect the growth rates. For Bo = 12.6, there is a switch of unstable mode for each of the a
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values plotted. (For very large Bond number and very thin films, there is an intermediate
range of M values which result in a larger growth rate for the surfactant mode than is
present in the clean-interface mode; i.e. for these parameter values the growth rate ratio can
be less than 1. However, the asymptotic ordering on which the model is based breaks down
once Bo becomes this large, and it would be necessary to include additional higher-order
terms in the model.) For each value of Bo and a, as M becomes arbitrarily large, the growth
rate ratio tends towards (4.3), just as in the no-base-flow case. For moderate to large Bo,
however, this convergence to GR0/GR∞ can be delayed significantly.

The speed of linear disturbances is also modified by the presence of surfactant. For a
clean interface, the phase speed of linear disturbances is given by PS0 = − f2(a)/a4; for
M = 0, the stable surfactant mode has a phase speed one half that of PS0. In the limit of
large surfactant concentration (M → ∞), the surfactant mode is the unstable mode with
speed again roughly one half that of PS0,

PS0

PS∞
= 2 f2(8 f2 − f3 − 4 f5)

12 f 2
2 − f3 f5 − f2( f3 + 4 f5)

= 2 + h0

3
+ O(h2

0). (5.1)

The bottom line of (5.1) gives the expansion of the speed ratio in powers of h0 for direct
comparison with previous results obtained using thin-film models. In the thin-film limit
h0 → 0 this matches the factor of 2 found by, e.g., Wei & Rumschitzki (2005) for a thin
film in core–annular flow. The ratio given in the top line of (5.1) is not as sensitive to film
thickness as the growth rate ratio; figure 4(e) shows that the ratio lies between 2 and 2.5
for all film thicknesses, so that the thin-film approximation holds very well for all film
thicknesses.

5.2. Nonlinear dynamics
For some parameter values, the dynamics of (2.25) and (2.20b) is strongly nonlinear, and
the model is solved next to explore this dynamics. If the film is not too thick, the growing
linear instabilities eventually saturate in either the weakly or strongly nonlinear regime.
The effect of increasing M on this dynamics can be seen in figure 5. Figure 5(a) shows
the evolution of the free surface h = a − R with Bo = 5.71, a = 1.25, and M = 0.001;
for these values, the linear interface mode has much higher maximum growth rate than the
surfactant mode. Snapshots are shown in a frame of reference moving with the speed of the
clean-interface linear mode, with gravity acting right to left. The unstable interface mode
saturates as a series of travelling waves, with an apparent preference for a wavelength a
bit larger than the most unstable wavelength λ = 2π

√
2, similar to the dynamics seen in

many other film flow models. The waves’ speed is slightly larger than the speed of the
clean-interface mode; R and Γ at the final snapshot are shown in figure 5(d) and their
anomalies are very nearly in phase with one another.

For M = 0.01 with the same Bo and a values, the surfactant mode and interface
mode have comparable growth rates; the free-surface evolution for this case is shown
in figure 5(b). The presence of both modes in the dynamics is apparent; a wave speed
that is nearly identical to the clean-interface linear mode (and thus appears as motionless
in the moving reference frame) can be seen, as can waves that move slower than the
clean-interface linear mode (thus appearing to move left to right in the moving reference
frame). These slower waves have roughly half the speed of the faster waves, and represent
the surfactant mode. Finally, as M increases further to a regime where the surfactant mode
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FIGURE 5. (a–c) Time snapshots of h = a − R in solutions to (2.25) and (2.20b) with Bo =
5.71, a = 1.25 (h0 = 0.2), domain L = 16π, P̃e = 105 and (a) M = 0.001, (b) M = 0.01 and
(c) M = 0.1; snapshots shown every (a) Δt ≈ 82, (b,c) Δt ≈ 164 in a frame of reference moving
with the clean-interface linear mode. (d–f ) Film thickness h = a − R and Γ corresponding to
final shown snapshot of (a–c), respectively.

is the only unstable mode, slower travelling waves corresponding to saturated surfactant
modes are found; figure 5(c) shows this with M = 0.1. Disturbances to R and Γ in
figure 5(c) are not in phase, with the surfactant concentration largest along the wave’s
leading edge. It is important to note that the model solutions are only valid if they
are consistent with the long-wave asymptotic assumption made in deriving the model;
a typical core-radius-to-wavelength ratio in figure 5(d,e) is approximately 0.13 and in
figure 5( f ) is approximately 0.20, suggesting that the ratio remains small in the solution. In
addition, in figure 5(d–f ), the maximum value of |Rz| is 0.068, 0.018 and 0.11, respectively,
while the maximum value of |Γz| is 0.76, 0.23 and 0.51, respectively. Additional results
concerning the validity of the model solutions are given in appendix B.

For films that are thicker than some critical thickness, h0 > hc(Bo, M, T), plugs may be
expected to form. In solutions to the model with h0 > hc, the minimum value of R begins
to rapidly approach 0; in this limit min R → 0, the model breaks down due to the presence
of inverse powers and logarithms of R, and the model simulation must be halted.
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FIGURE 6. (a) Families of travelling wave solutions to (2.32) in Camassa et al. (2014) (which
is a clean-interface version of (2.25) here) with T = 8π and various Bo and a values; red dots
denote turning points. (b) Solutions corresponding to turning points in (a). (c) Red dots denote
maximum film thickness, hmax/a, for turning point solutions as a function of Bo. Black line
denotes (5.2). (d) Film thickness parameter at the wave crest, awc, and at the substrate, ac versus
log Bo; red dots denote turning point solutions, black line denotes (5.2).

Travelling wave solution branches can also provide an indication of this critical
thickness, and before discussing the impact of surfactant on plug formation, some results
on the clean-interface case are given first. Figure 6(a,b) shows families of travelling wave
solutions for the clean-interface model of Camassa et al. (2014) with period T = 8π and
for a variety of Bond numbers ranging from Bo = 1 to Bo = 88.4; this largest value
corresponds to the fluid used in experiments in Camassa et al. (2014). For each fixed Bo,
there is a turning point at a film thickness h0 = hm, i.e. a largest film thickness for which
travelling waves are found. In Camassa et al. (2014) and Camassa et al. (2016), it was
shown that this turning point agreed well with the minimum thickness hc for which plugs
formed in physical and numerical experiments; i.e. hm ≈ hc. We note that a traditional
thin-film model for falling film flow cannot be used to produce figure 6(a) and similar
figures here; the approximation of the cylindrical geometry of the tube used in deriving
such thin-film models renders these turning points inaccessible unless more terms are
retained or a long-wave or other modelling approach is used.

The effect of gravity (due to ρ̄ > ρ̄(c)) is to reduce the tendency for plugs to form,
which can be seen in figure 6(a). As Bo increases, the turning point location hm increases,
indicating a larger critical film thickness required for plugs to form. The travelling wave
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profiles at each turning point are shown in figure 6(b); the film thickness hwc at the wave
crest of turning point solutions (shown with red dots) increases as Bo increases, as does
the thickness hc of the film in the surrounding substrate (blue dots). The coordinates of
the turning points in figure 6(a), which are approximately (hc, hwc), can be estimated by
an empirical fit,

awc ≈ 0.91Bo1/5 + 0.5, (5.2a)

ac ≈ 0.54Bo1/5 + 0.45, (5.2b)

where awc = 1/(1 − hwc) and ac = 1/(1 − hc). Equation (5.2) thus provides an empirical
estimate of the critical film thickness for which plugs will form given a set of fluid
parameters ρ̄, μ̄ and tube radius ā. These estimates are compared with the turning points
in figure 6(c,d); (5.2) appears to serve as a good estimate over the range of Bond numbers
shown, particularly for values of Bo � 5, although it is stressed that this is an empirical fit
only.

Equation (5.2) also compares well with the rough estimate of the plug formation
boundary depicted in figure 9 of Ding et al. (2019) (not shown), using ac = αc/(αc − 1)
and Bo = B̃o/(8α2) to adjust for the different scalings used in the current study (ac, Bo)
and theirs (α, B̃o correspond to their α and Bo). Ding et al. (2019) found self-similar
solutions Rmin ∝ (tc − t)1/5 to the gravity-driven film model in the absence of surfactant,
where tc is the time of plug formation, or choke time. When M = 0, the same scaling
Rmin ∝ (tc − t)1/5 is seen numerically in the lead up to plug formation here, with the
surfactant concentration scaling like Γmax ∝ (tc − t)−1/5. For M > 0, there was not a
consistent scaling law found for the surfactant concentration; this may be due in part to the
instability of multiple linear modes, and their impact on plug formation will be discussed
further below.

A brief comment on the use of substrate thickness in (5.2) is in order. Note that the
critical thickness parameter ac is not identical to the mean thickness parameter a, but is
defined by the substrate thickness away from the wave crest. The reason for this choice
has to do with the sensitivity of turning point to period size. It has been shown (see,
e.g., figure 6 of Camassa et al. (2016), figure 7 of Ding et al. (2019) or Dietze et al.
(2020)) that the maximum film thickness for which travelling wave solutions can be found
decreases with increasing period size, with the maximum film thickness appearing to
approach some limiting value as T → ∞. This can be understood by noting that turning
point solutions for different period size consist of identical wave profiles, but with different
lengths of substrate surrounding the wave; figure 7 in Camassa et al. (2016) shows this for
two different period size turning point solutions. These solutions have slightly different a
values (i.e. different mean thicknesses), but have identical thicknesses ac in the substrate
far from the wave. This critical substrate thickness may thus be a better measure of the
critical thickness than a as it is insensitive to period size, and the excellent agreement with
(5.2) over a range of Bond numbers provides further evidence in support of this.

How does the presence of insoluble surfactant impact the location of this turning point?
Figure 7 shows families of solutions with Bo = 88.4. When M = 0 (solid line), the family
of solutions is identical to that shown in figure 6, although the upper branch does not
extend as far upwards in hmax as the family found in Camassa et al. (2014) (which is
denoted by the light grey dotted line). Given that the interfacial dynamics is decoupled
from the surfactant concentration (which is slaved to the interfacial dynamics), one might
expect that the solution should continue further upwards as it would in the clean-interface
model of Camassa et al. (2014). This difference can be understood by considering that
as one progresses along the upper branch, the fluid speed at the wave crest increases
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FIGURE 7. Families of travelling wave solutions to (2.25) and (2.20b) with Bo = 88.4, T = 25
and various values of a and M; × symbols denote solutions shown in figure 8; black circles
denote solutions shown in figure 9. Red dots denote turning points.

until it eventually matches the wave speed. This signifies the presence of a stagnation
point of the fluid along the free surface (in a reference frame moving with the wave).
Moving further up the branch past this point, two stagnation points appear and a region
of recirculation in the moving reference frame occurs at the wave crest; these waves are
sometimes called ‘roll waves’ or ‘trapped core waves’. With negligible 1/P̃e, it is difficult
to find travelling wave solutions as the surfactant, which is being advected by the flow, will
tend to collect at the stagnation point on the leading edge of the waves. This is illustrated in
the bottom row of figure 8, where travelling wave solutions corresponding to each black ×
in figure 7 are shown. Moving along the upper branch of solutions, the fluid speed at
the wave crest converges to the travelling wave speed; as it does so, the distribution of
surfactant approaches a Dirac delta-like distribution, with all surfactant concentrated at
the wave crest.

As M increases, the film thickness hm of the turning point also increases, suggesting
that a thicker film is required for plugs to form in the presence of surfactant; in figure 7,
for M = 0.05, hm ≈ 0.5 while for M = 0, hm ≈ 0.45. Solution profiles are shown in
figure 9 that correspond to the circles in figure 7. As with the M = 0 case, the surfactant
concentration is largest at the wave crest, and the distribution of Γ mirrors that of the free
surface, consistent with the dominant growth rate of the interface mode at these parameter
values. Figure 10 shows the branches and turning points from figure 7 along with the
same solutions using a larger period, T = 100, in order to show the sensitivity of the
turning points to period size. For T = 100, the critical thickness hm is slightly lower than
for T = 25, consistent with clean-interface results from Camassa et al. (2016) and Ding
et al. (2019).

Note that in figure 7, the family of travelling waves with M = 0.1 was not able to
be continued all the way to a turning point, though the branch continues to larger film
thicknesses than were found for M = 0.05; we note that the end of the branch was reached
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T = 25 and various values of a corresponding to black × symbols in figure 7. The free-surface
location R (solid line) and surfactant concentration Γ (dashed line) are shown. (Bottom row)
The fluid velocity at the free surface in a wall reference frame (solid line), and the wave speed c
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FIGURE 10. (Red) Same solution families as those shown in figure 7, with Bo = 88.4, T = 25
and various values of a and M; (black) T = 100.
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FIGURE 11. Family of solutions to (2.25) with Bo = 0.442, M = 0.02, T = 10 and various
values of a. Black × symbols denote solutions shown in figure 12; red dot denotes turning point.

at a film thickness close to the one for which the surfactant mode overtakes the interface
mode as the most linearly unstable.

As the M = 0.1 branch suggests, direct interpretation of turning points in figure 6 as
an indicator of hc may not be as straightforward as in the clean-interface case due to the
presence of multiple unstable modes. Solutions to the evolution equations with parameters
near the turning points in figure 6 (e.g., M = 0.05, Bo = 8.84 and a near the turning
point thickness ac) do not converge to the travelling wave solutions in figure 9, but instead
have an evolution consisting of interactions between both interface and surfactant modes.
In fact, the most prominent feature of the dynamics more closely resembles a saturated
surfactant mode with extremely small values of Γ for large sections of the substrate. This
is in contrast to the clean interface case, where the free-surface dynamics was generally
seen to converge to a series of waves with very similar characteristics to the travelling
wave solutions found. As the turning point solution does not resemble the most prominent
feature of the free surface, it is likely to be a less accurate measure of hc. In addition,
solutions with very small Γ over a large portion of the domain may lie outside the range
of the model’s validity, which uses a linearized equation of state. Both of these issues make
interpretation of the turning points in relation to plug formation somewhat problematic.

It is easier, however, to interpret turning points that lie along branches representing
saturated surfactant modes in parameter regimes where the surfactant mode is the only
unstable mode. Figure 11 shows a family of travelling wave solutions for Bo = 0.442. This
solution was not found by continuation from the clean-interface case (as the solutions in
figure 6 were), but from a Hopf bifurcation that occurs with M > 0. As expected for such a
small Bo number, the turning point occurs at a relatively small film thickness, hm ≈ 0.11.
The profile of four travelling wave solutions denoted by × symbols along this branch
are shown in figure 12. Panels (a,b) show a typical free surface of such waves, with the
surfactant concentration reaching a maximum along the leading edge of the wave, rather
than at the wave crest. In panels (c) and (d) which are at and just above the turning point,
respectively, almost all of the fluid is contained in the wave, with the surrounding film very
nearly been depleted, which limits the growth of the waves. The wave shape still has the
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FIGURE 12. Solutions corresponding to black × symbols in figure 11.

small ‘dip’ at the leading edge, although it is much less pronounced for this small Bond
number, and the wave profiles have much in common with solutions to the no-base-flow
case. The surfactant concentration is still largest on the leading edge of the wave. It is noted
that effects of molecular disjoining pressure have been omitted in the model derivation, so
solutions which contain regions where the film is extremely thin may lie outside the range
of the model’s validity. Inclusion of these effects is left to future work; see Bonn et al.
(2009) for a review of some film flow models which have incorporated these effects.

Solutions to the model with values of a just smaller than the critical film thickness
appear to settle into a quasi-steady state resembling these travelling wave solutions, and
they show plug formation for values of a slightly larger than the critical film thickness.
In addition, right at the critical thickness, larger values of M result in model solutions
with no plugs, and M = 0 results in plugs forming. It thus appears that travelling wave
turning points can indeed be an indication of whether plugs will form in parameter regimes
where only one mode is unstable. For regimes with multiple unstable modes, however,
interpretation of turning points may be more complicated.

6. Core–annular flow

Lastly, the dynamics of (2.27) and (2.20b), which model core–annular flow with
matched fluid densities, is studied. This dynamics is governed by capillary number C̃,
M and a. The linear stability of the model is discussed first, followed by the nonlinear
dynamics.

6.1. Linear stability analysis

Solving the eigenvalue problem (3.2) for (2.27) and (2.20b) (i.e. with S̃2 = 0 = 1/P̃e, and
rescaling by S1 to get C̃) gives the speed and growth rates of linear disturbances to the base
state; figure 13(a) shows the growth rates for a = 1.25 and C̃ = 0.1 and various values of
M. As M is increased, the growth rates show a qualitatively similar pattern to those of
gravity-driven flow as Bo is increased; the interface mode has monotonically decreasing
growth rate, while the surfactant mode has initially increasing maximum growth rate
followed by a period of decreasing maximum growth rate. These trends are shown in
panel (b) for several parameter value combinations. As M → ∞, the growth rate ratio
GR0/GRM again converges to the same values as seen for no base flow in figure 3. The
switch in most unstable mode from interface mode to surfactant mode as M increases
is seen in other core–annular film flow studies with the annular fluid more viscous than
the core fluid; see, e.g., figure 2 of Wei (2005b). Note that, as in figure 4(a), the cutoff
wavenumber for the interface mode decreases as M increases.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

87
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.878


Long-wave model for film flows inside a tube with surfactant 908 A23-27

0 0.5 1.0 1.5

k

0

0.05

0.10

0.15

0.20

Im
 (
ω

)

M = 0

M = 0.001

M = 0.003
M = 0.03
M = 0.1

10–4 10–2 100 102

M

0

2

4

6

8

10

12

G
R 0

/
G

R M

a = 1.11
a = 1.25

a = 2

0 0.2 0.4 0.6 0.8 1.0

h0 = 1 – 1/a

2

4

6

8

PS
0
/
PS

∞

(a) (b) (c)

FIGURE 13. (a) Linear growth rates for (2.27) and (2.20b) with a = 1.25, C̃ = 0.1 and various
values of M. (b) Growth rate ratio GR0/GRM for C̃ = 0.001 (dotted lines), C̃ = 0.01 (thin lines)
and C̃ = 0.1 (thick lines) for various values of a and M. (c) Phase speed ratio PS0/PS∞.

Figure 13(c) shows the phase speed ratio PS0/PS∞ as a function of film thickness. As
with the falling film flow, a high concentration of surfactant in the long-wave model results
in a disturbance speed that is approximately half the speed of disturbances for thin films
with a clean interface, in agreement with previous results obtained using a thin-film model
(Wei & Rumschitzki 2005); however, for thicker films the slow down in speed is much
more pronounced, unlike in gravity-driven flow.

6.2. Nonlinear dynamics

Numerical solutions to (2.27) and (2.20b) are shown in figure 14 for a = 2, C̃ = 0.1 and
M = 0 or M = 0.1 with a domain of L = 16π; solutions are shown in a frame of reference
moving with the speed of the undisturbed free surface without surfactant. For M = 0,
a series of moderate-amplitude travelling waves form and move up the tube faster than
the undisturbed free surface. For M = 0.1, waves have much smaller amplitude than the
M = 0 case, and the waves move slower than the undisturbed clean free surface. Both of
these parameter combinations correspond to the most unstable mode being the interface
mode. A typical core-radius-to-wavelength ratio in figure 16(a,c) is approximately 0.13,
suggesting that the ratio remains small in the solution. In addition, in the final snapshot
of figure 14(a,c), the maximum value of |Rz| is 0.39 and 0.15, respectively. The maximum
value of |Γz| in figure 14(d) is 0.27 (and in figure 14(b) the maximum value of |Γz| is
2.20, although the surfactant concentration does not affect the free-surface dynamics in
this M = 0 case). Additional results concerning the validity of the model solutions are
given in appendix B, including a description of how the M = 0 solution may lie on the
edge of the region of model validity. It is noted, however, that there are examples in the
literature of asymptotic models capturing experimental results well outside the expected
range of validity.

Travelling wave solutions to a clean-interface version of (2.27) were found in Camassa
& Ogrosky (2015) and Camassa et al. (2021). Unlike solutions to the gravity-driven flow
model (2.25), no turning points are found in these solutions, and in no nonlinear simulation
are plugs seen to form. Figure 15(a) shows families of solutions to (2.27) and (2.20b) with
C̃ = 0.1, T = 20, and various values of a and M. As with gravity-driven flow, solutions
to (2.27) with M = 0 are identical to those found in the clean-interface version, but the
family of solutions found by numerical continuation ceases when a stagnation point arises
at the free surface; solutions to the clean-interface model are shown with the dotted grey
line. The presence of surfactant has several effects on the travelling wave profiles as M
is increased. Not surprisingly, the amplitude of the free-surface waves decays as M is
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FIGURE 14. (a,b) Time snapshots of solution to (2.27) and (2.20b) with M = 0, a = 2, C̃ = 0.1
and domain length L = 16π; snapshots shown every Δt = 0.4. At final snapshot, max h ≈ 1.37,
max Γ ≈ 3.00. (c,d) Same as (a,b), but shown for M = 0.1; at final snapshot, max h ≈ 1.13,
max Γ ≈ 1.35.
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FIGURE 15. (a) Travelling wave solutions to (2.27) and (2.20b) with C̃ = 0.1, T = 20 and
various values of a and M. (b) Free-surface profiles R(Z) and (c) surfactant concentration Γ (Z)

of solutions marked with × symbols in (a).

increased; in addition, the wave’s base of support increases as M is increased. As these
solutions were obtained by continuation from the M = 0 case, they all resemble saturated
interface mode solutions.

For thinner films, M has a similar effect in reducing wave amplitude, though the
maximum surfactant concentration occurs at the leading edge of the wave, similar to the
gravity-driven case. Figure 16 shows the evolution of a solution with a = 1.11, M = 0.1
and C̃ = 0.1. Similar to the case of a thicker film in figure 14(c,d), the free surface
forms waves that move slower than the clean undisturbed free surface; the surfactant
concentration has smaller deviations from the mean, however, relative to free-surface
deviations.

7. Conclusions

The flow of a film lining the interior of a tube in the presence or absence of gravity
effects and active core flow was studied with insoluble surfactant on the interface.
A long-wave model, based partly on the approach of Camassa et al. (2012) but including
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FIGURE 16. (a,b) Time snapshots of solution to (2.27) and (2.20b) with M = 0.1, a = 1.11,
C̃ = 0.1 and domain length L = 16π; snapshots shown every Δt = 0.4. At final snapshot,
max h ≈ 3.51, max Γ ≈ 2.06.

the surfactant concentration dynamics, was developed for the film flow. Solutions to the
model equation were found for each subcase: (i) no base flow, (ii) gravity-driven flow and
(iii) core–annular flow. No thin-film approximation was made in developing the model.

In the case of no base flow for thin films, the long-wave model agrees with earlier results
obtained using thin-film models that a high concentration of surfactant results in a factor
of four (i) decrease in linear growth rates and (ii) increase in plug formation time over
the clean-interface case found by others using a thin-film model. The long-wave model
shows that this factor increases significantly as film thickness increases, and the decrease
in growth rate continues to be a good predictor of the increase in plug formation time for
thick films.

The situation is more complicated in the case of background flow. For the case of a
falling viscous film, there are potentially two unstable modes, leading to a variety of
dynamics in the free-surface evolution. When only one of the surfactant and interface
modes is linearly unstable, the instability typically saturates as a series of travelling waves
with characteristics resembling the unstable mode or, if the film is thick enough, results in
plug formation. When both modes are unstable and have comparable growth rate, the film
dynamics is more complicated with both modes interacting.

Travelling wave solutions were found using numerical continuation. When continuation
was performed starting from clean-interface solutions, solutions retained characteristics
of a saturated interface mode; travelling wave solutions resembling saturated surfactant
modes were found by other means. Both types of families of solutions can exhibit turning
points, where there is a maximum film thickness for which solutions along the branch may
be found. In the case where there is only one unstable mode, these turning points may be
taken as an indicator of hc, the critical film thickness past which plugs may form. In the
case where both mode types are linearly unstable, these turning point solutions may not be
representative of the free-surface dynamics, and caution must be used in interpreting these
points. For core–annular flow, no plugs are found to form in the model; the presence of
surfactant reduces the amplitude of saturated interface mode solutions and reduces their
speed.
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Several mechanisms for instability development or saturation were omitted during
the model derivation. For the case of core–annular flow, the instability-generating
effects of surface tension were assumed to dominate those of viscosity stratification;
it would be interesting to include the effects of viscosity stratification as an additional
instability mechanism competing with surface tension and Marangoni forces. The effects
of molecular disjoining pressure have been neglected as well, since one of the goals of
the current paper is to relax the thin-film assumption and analyse the effects of larger film
thickness on the film’s flow features. Thus parameter regimes where portions of the film
may be expected to become extremely thin lie outside the range of the model’s validity,
and model solutions where the film becomes very thin should be viewed with caution.
In addition, the model assumes axisymmetric flow; the impact of including azimuthal
variations in the free surface is an interesting topic for future work.
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Appendix A. Additional calculations in model derivation

The dimensionless momentum equations are

ε3Re(ut + uur + wuz) = −pr + ε2

r
∂r(rur) + ε4uzz − ε2 u

r2
, (A 1a)

εRe(wt + uwr + wwz) = −pz + 1
r
∂r(rwr) + ε2wzz − Re

Fr2
, (A 1b)

1
r
∂r(ru) + wz = 0. (A 1c)

The dimensionless boundary conditions are no slip at the wall r = a

u = w = 0. (A 2)

The tangential stress boundary condition at r = R is

2ε2Rz(ur − wz) + (1 − ε2R2
z )(ε

2uz + wr) − (1 + ε2R2
z )τc = εM

C
Γz(1 + ε2R2

z ). (A 3)

The dimensionless normal stress boundary condition at r = R is

− p(a) + p(c) + 2
1 + ε2R2

z

[ε4R2
z wz − ε2Rz(ε

2uz − wr) + ε2ur]

= ε

C
[1 − M(Γ − 1)]

(
1

R(1 + ε2R2
z )

1/2
− ε2Rzz

(1 + ε2R2
z )

3/2

)
. (A 4)

The dimensionless constitutive equation is

σ = 1 − M(Γ − 1). (A 5)
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The dimensionless advection–diffusion equation for surfactant is

[(1 + ε2R2
z )

1/2RΓ ]t + [w(1 + ε2R2
z )

1/2RΓ ]z = ε

Pe

[
RΓz

(1 + ε2R2
z )

1/2

]
z

. (A 6)

A steady pipe flow solution is sought for the core fluid flowing through a pipe with
radius R that satisfies no-slip boundary conditions at the pipe wall. This yields

w̄(c) = r̄2 − R̄2

4μ̄(c)
(p̄(c)

z̄ + ρ̄(c)ḡ). (A 7)

This results in a wall stress of

τ̄ (c) = R̄
2

(p̄(c)
z̄ + ρ̄(c)ḡ). (A 8)

In terms of the core region volume flux Q̄, the pressure gradient is given by

p̄(c)
z̄ = −8μ̄(c)Q̄

πR̄4
− ρ̄(c)ḡ. (A 9)

Non-dimensionalizing these stresses with respect to the film scales already introduced
gives

p(c)
z = − ρ̄(c)

ρ̄

Re
Fr2

− 8Q̄
πmW̄0R̄2

0

1
R4

, (A 10a)

τ (c) = − 4Q̄
πmW̄0R̄2

0

1
R3

. (A 10b)

If we set the velocity scale by the core fluid velocity as in Camassa et al. (2012), i.e.

W̄0 = 2Q̄
πR̄2

0

, (A 11)

then we have

p(c)
z = − ρ̄(c)

ρ̄

Re
Fr2

− 4
m R4

, (A 12a)

τ (c) = − 2
m R3

. (A 12b)

Appendix B. Validity of long-wave model solutions

In this appendix, the degree to which the computed model solutions satisfy the
asymptotic conditions under which the model was derived is explored.

The long-wave model derivation relies on the assumption that axial length scales
(measured by the wavelength of a typical free-surface disturbance) are much larger than
radial length scales (as measured by the core radius). To gauge the degree to which the
computed solutions satisfy this requirement, the axial derivative of the free surface of
five different model solutions is shown in figure 17. The five model solutions are those
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FIGURE 18. For the final snapshot of figure 5(c), the terms of each equation are plotted as a
function of z: (a) (A 1a) at r = 1.1; (b) (A 1b) at r = 1.1; (c) (A 3); (d) (A 4); (e) (A 6). Terms
that are retained (omitted) in the long-wave model derivation are shown with solid (dashed) lines.

presented in figures 5 (falling film) and 14 (active core flow). The derivative of the final
snapshot of each of these solutions is shown here in figure 17(a), and the square of the
derivative is shown in (b). Note that except for the M = 0 solution in figure 14, all of
the solutions have derivatives that everywhere satisfy |Rz| < 0.15, and R2

z < 0.03, thus
appearing to clearly satisfy the long-wave approximation. The maximum of |Rz| over z is
shown as a function of time in panel (c), indicating that this asymptotic approximation is
valid throughout the simulation. Note that the parameter values corresponding to these four
solutions cover a variety of cases, including both thin and thick films, and base flow due
to gravity or active core flow, providing evidence that the long-wave model is valid over
a range of parameter values. For the M = 0 solution in figure 14, the ordering is satisfied
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less clearly, with maxz |Rz| ≈ 0.4 in the final snapshot, and earlier in the simulation, |Rz|
briefly approaches a value of 0.5.

Next, the degree to which the velocity given by w = w0 + w1 (using (2.17) and (2.19))
and u (found through the continuity equation (A 1c)), satisfies the full momentum
equations (A 1a) and (A 1b), the boundary conditions (A 3) and (A 4) and the surfactant
concentration equation (A 6) is examined. Figure 18 shows the values of each term in these
equations using the computed solution shown in figure 5(c). For the momentum equations,
the inertial terms have been omitted due to the assumed smallness of the Reynolds number,
and the remaining terms have been shown at a fixed value of r, here r = 1.1. These terms
were computed throughout the domain with qualitatively similar results (not shown). In
the axial momentum equation, the wzz term is sufficiently small relative to the three terms
which set the leading- and first-order velocity profile. The asymptotic approximation is
clearly satisfied in the boundary conditions as well. (Note that some terms have been
omitted for clarity, namely terms which are a product of R2

z and a term already displayed,
since R2

z has been shown for this solution in figure 17.) These results suggest that the
asymptotic ordering used in the derivation of the model remains valid for this solution.
Similar qualitative results are found for the other solutions, with the one exception being
the M = 0 solution shown in figure 14, where the asymptotic ordering was still present but
far less clear, consistent with the large values of |Rz| in figure 17.
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