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Abstract

A class of controlled branching processes with continuous time is introduced and some
limiting distributions are obtained in the critical case. An extension of this class as
regenerative controlled branching processes with continuous time is proposed and some
asymptotic properties are considered.
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1. Introduction

Controlled branching processes (CBPs) are integer-valued discrete-time Markov processes
where the population size in every generation could be randomly regulated before reproduction
by emigration of part of the population, or after reproduction by immigration of individuals. It
is interesting to point out that in a CBP the evolutions of the individuals are not independent but
nonetheless they reproduce independently of each other. The main models and results for this
class of processes are presented in the recent monograph [11]. A general definition of a CBP
with continuous time (CT) does not exist at present. The main motivation behind the present
paper is to introduce a new class of continuous-time controlled branching processes.

Let {Zn, n = 0, 1, . . .} be a CBP (see (2.2) and (2.3) for their mathematical definitions),
and let {N(t), t ≥ 0} be a renewal process. We study the process {Y(t), t ≥ 0}, defined by
Y(t) = ZN(t), which is a first attempt to introduce a CBP with CT. If N(t) = n then, at time t,
the population size is Y(t) = Zn. We assume that the renewal period is the common lifespan
of all individuals. It is clear that {Y(t), t ≥ 0} is not a Markov process unless {N(t), t ≥ 0}
is a homogeneous Poisson process. In all cases, the evolutions of the individuals are not
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independent. The proposed new process could also be referred to as a CBP subordinated by a
renewal process or as a randomly indexed CBP.

A randomly indexed branching process was introduced by Epps [3] as an alternative to
geometric Brownian motion for modelling daily stock prices. He considered a Bienaymé–
Galton–Watson (BGW) branching process indexed by a Poisson process. Assuming four
particular offspring distributions, he studied the asymptotics of the moments, estimates of cer-
tain parameters of the process, and model calibration based on real data from the New York
Stock Exchange. Furthermore, using simulations, several estimates of the parameters of this
process were compared in [2]. Utilizing this stock price model, formulas for pricing European
call options and up-and-out barrier options were also derived in [15] and [17], respectively.

BGW branching processes subordinated by a general renewal process were introduced in
[16] and [21] (critical case) and in [14] and [18] (non-critical cases). Large deviation prob-
lems for a Poisson random indexed BGW branching process were considered in [5], [6], and
[9]. Large and moderate deviations for a class of renewal random indexed BGW branching
processes were studied in [7] and [8].

The general CBP with CT proposed here is an essential generalization of the processes
mentioned above. In this work we investigate {Y(t), t ≥ 0} in the critical case. The paper is
organized as follows. In Section 2 we define and discuss the CBP with CT and with single and
multitype control functions. In Section 3 we present auxiliary results concerning transfer-type
limiting distributions and weighted renewal theory. In Section 4 we prove two limit theo-
rems when the mean of the renewal periods is either finite (Theorem 4.1) or infinite (Theorem
4.2) for a CBP with CT and a single control function. Towards the goal of studying the gen-
eral CBP with CT and multitype control functions, in Section 5 we investigate the particular
case with three specific control functions, that is, the CBP with random migration. We obtain
limiting distributions by again considering finite and infinite means of the renewal periods
(Theorems 5.1 and 5.2, respectively). Finally, in Section 6 we propose an extension of the pro-
cess {Y(t), t ≥ 0}, namely the regenerative process {U(t), t ≥ 0}. It coincides with {Y(t), t ≥ 0}
until it hits zero, then upon staying at zero for a random time period, the process regenerates.
The basic definition of alternating regenerative processes was proposed in [19], where the so-
called Basic Regeneration Theorem was proved. We apply this theorem as well as the limit
theorems from Sections 4 and 5, to obtain limiting distributions. At the end of the paper we
provide some concluding remarks.

2. Description of models

On a certain probability space (�,A, P), we consider the following three independent sets
of random variables.

(i) Define the set X = {Xn(i), n, i = 1, 2, . . .} of non-negative integer-valued independent
and identically distributed (i.i.d.) random variables with probability generating function
(p.g.f.) f (s) =E[sX1(1)], 0 ≤ s ≤ 1. Further, let I0 be a positive integer-valued random
variable independent of X with p.g.f. �(s) =E[sI0 ], 0 ≤ s ≤ 1. Recall that the classical
BGW branching process with I0 ancestors is defined as follows:

Z0 = I0, Zn =
Zn−1∑
i=1

Xn(i), n = 1, 2, . . . , (2.1)
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where
∑0

i=1 = 0. Taking into account the independence of the individual evolu-
tions, (2.1) implies E[sZn | Z0 = I0] =�(fn(s)), where fn(s) =E[sZn | Z0 = 1] and fn(s) =
fn−1(f (s)), n = 1, 2, . . . . Clearly zero is an absorbing state.

(ii) Define the set φ = {φn(k), n = 1, 2, . . . ; k = 0, 1, . . .} of non-negative integer-valued
random variables, independent of X, where for every fixed k the subset φ(k) =
{φn(k), n = 1, 2, . . .} consists of i.i.d. random variables with p.g.f. gk(s) =E[sφ1(k)],
0 ≤ s ≤ 1. The CBP is defined as follows:

Z0 = I0, Zn =
φn(Zn−1)∑

i=1

Xn(i), n = 1, 2, . . . , (2.2)

with φ referred to as the set of random control functions. Note that if φ1(k) ≡ k a.s.
for every k, then {Zn, n = 0, 1, . . .} is a BGW branching process defined by (2.1). If
this is not the case, let us point out that since hn(s) =E[sZn | Z0 = I0] �=�(ψn(s)) where
ψn(s) =E[sZn | Z0 = 1], we have that the evolutions of the individuals are not indepen-
dent. It follows from (2.2) that the state zero will be absorbing if and only if φ1(0) = 0
a.s. For more details see [11].

Definition (2.2) can be generalized by introducing the set of random control functions
φD = {φn,d(k), n = 1, 2, . . . ; k = 0, 1, . . . ; d ∈ D} and the set of random variables XD =
{Xn,d(i), n, i = 1, 2, . . . ; d ∈ D}, where D is an index set. Then the CBP with multitype
control functions is defined as follows:

Z0 = I0, Zn =
( ∑

d∈D

φn,d(Zn−1)∑
i=1

Xn,d(i)

)+
, n = 1, 2, . . . , (2.3)

where, as usual, a+ = max{0, a}. In some branching models it is assumed that for every
fixed d the random variables {Xn,d(i), n, i = 1, 2, . . .} are integer-valued i.i.d. and, for
every fixed k and d, the subset φd(k) = {φn,d(k), n = 1, 2, . . .} consists of non-negative
integer-valued i.i.d. random variables. Note that the random variable Xn,d(i) can be neg-
ative, allowing individual emigration in the model. We will consider a particular case of
(2.3) in Section 5, which admits a random migration component.

(iii) Finally, define the set J = {Jn, n = 1, 2, . . .} of positive i.i.d. random variables, indepen-
dent of X and φ, with cumulative distribution function (c.d.f.) G(x) = P(J1 ≤ x), x> 0;
G(0) = 0. Define the renewal process {N(t), t ≥ 0} by

N(t) = max{n ≥ 0: Sn ≤ t}, t ≥ 0, (2.4)

where S0 = 0, Sn = ∑n
i=1 Ji, n = 1, 2, . . . . This yields the renewal function

E[N(t)] =
∞∑

n=0

G∗n(t), t ≥ 0,

where G∗n is the n-fold convolution of G with G∗0 = 1.

Definition 2.1. Let {Zn, n = 0, 1, . . .} be a CBP defined by (2.2) or (2.3) and let {N(t), t ≥ 0}
be a renewal process given by (2.4). Then the continuous-time process {Y(t), t ≥ 0}, defined
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by Y(t) = ZN(t), is called a controlled branching process with continuous time (CBP with CT)
or CBP with CT and with multitype control functions, respectively.

Alternatively, the process {Y(t), t ≥ 0} can be called a randomly indexed CBP with CT or
CBP subordinated by a renewal process.

Remark 2.1. If Sn ≤ t< Sn+1, then N(t) = n and Y(t) = Zn, n = 0, 1, . . . . Therefore {Y(t),
t ≥ 0} could also be considered as an age-dependent branching process, in which all individuals
in a given generation have the same lifetime and they give birth to their offspring simultane-
ously. More precisely, if Y(t) = Zn then the lifespan of the individuals from the n th generation
is equal to Jn. In general, {Y(t), t ≥ 0} is not a Markov process. It is a Markov process
with exponentially distributed individual lifespans in the particular case when {N(t), t ≥ 0}
is a homogeneous Poisson process. Note that {Y(t), t ≥ 0} is an example of branching pro-
cess with dependent evolutions of the individuals, in contrast to Bellman–Harris or Markov
branching processes, where the evolutions of the individuals are independent. Finally, let us
point out that the discrete-time CBP {Zn, n = 0, 1, . . .} is embedded in the continuous-time
CBP {Y(t), t ≥ 0}. In fact Zn = Y(Sn), n = 0, 1, . . . . Moreover, if J1 ≡ 1 a.s., then Y(n) = Zn,
n = 0, 1, . . . .

3. Preliminaries

We now provide auxiliary results for investigating limiting distributions of the CBPs with
CT {Y(t), t ≥ 0} defined in the previous section. The main tools for further investigations are
the p.g.f.

h(t;s) =E[sY(t) | Y(0) = I0] =
∞∑

n=0

P(N(t) = n)hn(s), t ≥ 0, 0 ≤ s ≤ 1, (3.1)

and the conditional distribution function P(Y(t) ≤ x | Y(t)> 0), which satisfies

P(Y(t) ≤ x | Y(t)> 0) =
∫ ∞

0
P(Z	y
 ≤ x | Z	y
 > 0) dyP(N(t) ≤ y | ZN(t) > 0), (3.2)

where 	y
 denotes the integer part of y and {N(t), t ≥ 0} is the renewal process (2.4).
Let

μ=E[J1] =
∫ ∞

0
(1 − G(y)) dy,

the mean of the renewal periods. When μ<∞, it is known (see [1, Ch. 8.6.1] or [4, Ch. XI.1])
that

P

(
lim

t→∞
N(t)

t/μ
= 1

)
= 1.

Let {Zn, n = 0, 1, . . .} be a non-negative discrete-time process with absorbing state zero, and
denote Qn = P(Zn > 0), n = 0, 1, . . . . It is shown using equation (7.17) of [21] that if Qn ↓ 0
and Qn ∼ L(n)n−γ as n → ∞, where 0< γ < 1 and L(x) is a slowly varying function (s.v.f.),
then

lim
t→∞ P

(
N(t)

t/μ
≤ x

∣∣∣ ZN(t) > 0

)
= V1(x), x ≥ 0, (3.3)

where V1(x) = 1{x≥1}, with 1A the indicator function of the set A.
We will also consider the case when μ= ∞ and

1 − G(t) ∼ t−ρL(t)

�(1 − ρ)
as t → ∞, 0<ρ < 1, (3.4)
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where L(t) is an s.v.f. Let a(t) = (�(1 − ρ)(1 − G(t)))−1. It is known (see [1, Ch. 8.6.2] or [4,
Ch. XIV.3]) that

lim
t→∞ P

(
N(t)

a(t)
≤ x

)
= Gρ (x), x ≥ 0,

where Gρ(x) = P(	ρ ≤ x), with 	ρ
d= ξ

−ρ
ρ and ξρ , has a one-sided ρ-stable distribution, i.e.

E[e−λξρ ] = e−λρ , λ > 0. Note that (3.4) yields a(t) ∼ tρ/L(t) as t → ∞. Hence, referring to
equation (7.18) in [21] and the conditions on {Zn : n = 0, 1, . . .}, we have

lim
t→∞ P

(
N(t)

a(t)
≤ x

∣∣∣ ZN(t) > 0

)
= Vρ,γ (x), x ≥ 0, (3.5)

where Vρ,γ (x) =E[	−γ
ρ 1{	ρ≤x}]/E[	−γ

ρ ] and E[	−γ
ρ ] = �(1 − γ )/�(1 − γρ). Note that

Gρ (x) is known as the c.d.f. of the Mittag–Leffler distribution of order ρ, with Laplace
transform ϕρ(λ) = (1 + λρ )−1 (see [12] for more details).

Further on we will need some results from weighted renewal theory as follows. For any
sequence of real numbers {wn, n = 0, 1, . . .}, consider the function W(x) = ∑	x


k=0 wk, x ≥ 0.
The weighted renewal function Hw(t), t ≥ 0, is defined as follows:

Hw(t) =
∞∑

n=0

wnG∗n(t) =
∞∑

k=0

P(N(t) = k)W(k) =E[W(N(t))].

Lemma 3.1. Let 0<μ<∞ and let L(t) be an s.v.f.

(i) If wn ≥ 0, n = 0, 1, . . . , W(t) ↑ ∞ as t → ∞, and α ≥ 0, then, as t → ∞,

W(t) ∼ L(t)tα if and only if Hw(t) ∼μ−αL(t)tα .

(ii) If wn ≥ 0, n = 0, 1, . . . , W(t) ↑ 1 as t → ∞, and 0<α < 1, then, as t → ∞,

1 − W(t) ∼ L(t)t−α if and only if 1 − Hw(t) ∼μαL(t)t−α .

Lemma 3.2. Let μ= ∞. Assume (3.4) and W(t) ∼ Lw(t)tβ as t → ∞, where 0<β < 1 and
Lw(x) is an s.v.f. Then Hw(t) ∼ CW(t/m(t)) as t → ∞, where C = �(1 + β)/(�(1 + ρβ)�β (2 −
ρ)) and

m(t) =
∫ t

0
(1 − G(x)) dx.

Lemma 3.1 is proved in [13, Ch. 2, Theorem 38(a) and Theorem 46(i)]. Lemma 3.2 follows
from [13, Theorem 43].

4. Critical controlled branching processes subordinated by a renewal process

In this section we will consider the process {Y(t) = ZN(t), t ≥ 0}, where {Zn, n = 0, 1, . . .}
is the CBP (2.2) with zero as an absorbing state and {N(t), t ≥ 0} is the renewal process (2.4).
Let us introduce the following notation for k = 0, 1, . . .:

ε(k) =E[φ1(k)], ν2(k) = Var [φ1(k)],

τm(k) = k−1
E[Zn+1|Zn = k] = k−1ε(k)m, where m =E[X1(1)],

l2(k) = Var [Zn+1|Zn = k] = m2ν2(k) + σ 2ε(k), where σ 2 = Var [X1(1)].

Later on the following condition is assumed to hold.
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Condition A.

(a) τm(k) = 1 + c/k, k = 1, 2, . . . , 0< c<∞,

(b) l2(k) = νk + O(1), k → ∞, 0< ν <∞,

(c) supk≥1 (g1/k
k )′′′(1)<∞, where we recall that gk(s) =E[sφ1(k)],

(d) {φ1(k), k = 1, 2, . . .} have infinite divisible distributions.

It is worth pointing out that for a CBP, the threshold parameter determining the criticality
of the process is the asymptotic mean growth rate, i.e. limk→∞ τm(k), when it exists (note that
the asymptotic mean growth rate for a BGW branching process coincides with m). Thus, under
Condition A we consider a critical CBP with additional hypotheses.

Finally, denote Qn = P(Zn > 0), n = 0, 1, . . . , and Q(x) = ∑	x
−1
k=0 Qk, x ≥ 1, and Q(x) = 0

for 0 ≤ x< 1.

Lemma 4.1. Let {Zn, n = 0, 1, . . .} be the CBP (2.2). Assume Condition A holds and δ = 2c/ν,
0< δ < 1. Then we have the following.

(i) P(Zn > 0) ∼ Kn−(1−δ) as n → ∞, with 0<K <∞.

(ii)
lim

n→∞ P

(
Zn

n
≤ x

∣∣∣ Zn > 0

)
= �ν/2,1(x), x ≥ 0,

with �ν/2,1(x) the c.d.f. of a gamma distribution with parameters ν/2 and 1.

(iii) E[Zn] ∼ (Kν/2)nδ and Var [Zn] ∼ (Kν2/2(δ+ 1))nδ+1 as n → ∞.

Proof. Assertions (i) and (ii) follow from Theorems 3 and 4 in [10] by using Condition A.
We will prove (iii). Let mn =E[Zn]. Using Condition A(a), we obtain

mn+1 =
∞∑

k=1

P(Zn = k)E[Zn+1|Zn = k]

=
∞∑

k=1

P(Zn = k)(k + c)

=E[Zn] + cQn

= m0 + c
n∑

k=0

Qk, (4.1)

where {Qn : n = 0, 1, . . .} is monotone decreasing. Applying Theorem 5 from [4, Ch. XIII.5]
and using (i) of this theorem, we obtain

∑n
k=0 Qk ∼ (K/δ)nδ and the first statement in (iii)

follows.
Similarly, by Condition A(b), we have

Var [Zn+1] =E[ Var [Zn+1 | Zn]] + Var [E[Zn+1 | Zn]]

=
∞∑

k=1

P(Zn = k) Var [Zn+1|Zn = k] + Var [mε(Zn)]
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=
∞∑

k=1

P(Zn = k)(νk + O(1)) + Var [Zn + c]

= Var [Z0] + ν

n∑
k=0

E[Zk] + O(n).

Since mk =E[Zk] ∼ (Kν/2)kδ as k → ∞, using well-known properties of the regular
varying functions (r.v.f.s) (e.g. [4, Ch. VIII.9]), we obtain

n∑
k=0

E[Zk] ∼ Kν

2(δ+ 1)
nδ+1 as n → ∞.

Consequently

Var [Zn] ∼ Kν2

2(δ+ 1)
nδ+1 as n → ∞. �

We will investigate the continuous-time process {Y(t) = ZN(t), t ≥ 0} in Definition 2.1
with (2.2).

Theorem 4.1. Let {Y(t), t ≥ 0} be a CBP with CT given in Definition 2.1 with (2.2). Assume
Condition A holds, 0< δ= 2c/ν < 1, and 0<μ<∞. Then we have the following.

(i) P(Y(t)> 0) ∼ Kμ1−δt−(1−δ) as t → ∞, with K defined in Lemma 4.1(i).

(ii) E[Y(t)] ∼ (Kν/2μδ)tδ and Var [Y(t)] ∼ (Kν2/2(δ+ 1))μ−(δ+1)tδ+1 as t → ∞.

(iii)

lim
t→∞ P

(
Y(t)

t/μ
≤ x

∣∣∣ Y(t)> 0

)
= �ν/2,1(x), x ≥ 0.

Proof. (i) Note that from (3.1) we have that P(Y(t) = 0) = h(t;0) and therefore

P(Y(t) = 0) =
∞∑

n=0

P(N(t) = n)Pn =E[PN(t)], (4.2)

where Pn = P(Zn = 0) = 1 − Qn ↑ 1 as n → ∞.
Introduce w0 = P0 = 0, wk = Pk − Pk−1, k = 1, 2, . . . . Note that wk ≥ 0 and W(x) =∑	x

k=0 wk = Pn for n ≤ x< n + 1, n = 0, 1, . . . . Hence we can rewrite (4.2) as

P(Y(t) = 0) =
∞∑

n=0

P(N(t) = n)W(n) =E[W(N(t))]. (4.3)

Note that in this case W(t) ↑ 1 as t → ∞, and by Lemma 4.1(i) we have 1 − W(t) = Q	t
 ∼
Kt−(1−δ) as t → ∞, where 0<K <∞. Therefore, applying Lemma 3.1(ii), we obtain that
P(Y(t)> 0) ∼μ1−δ(1 − W(t)) as t → ∞, which completes the proof of (i).

(ii) Using (4.1) we obtain

E[Y(t)] =
∞∑

n=0

P(N(t) = n)mn = m0 + c
∞∑

n=1

P(N(t) = n)
n−1∑
k=0

Qk,
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where we recall that mn =E[Zn]. Then

E[Y(t)] = m0 + cE[Q(N(t))]. (4.4)

As it was proved in Lemma 4.1 that Q(n) = ∑n−1
k=0 Qk ∼ Knδ/δ as n → ∞, Lemma 3.1(i)

implies E[Q(N(t))] ∼μ−δKtδ/δ as t → ∞. Since c/δ= ν/2, the first statement in (ii) follows
from (4.4). Note that

Var [Y(t)] =E[E[Y(t)2 | N(t)]] −E[Y(t)]2 =
∞∑

n=0

E[Z2
n ]P(N(t) = n) −E[Y(t)]2.

Now denote w0 =E[Z2
0] and wn =E[Z2

n ] −E[Z2
n−1], n = 1, 2, . . . . Note that wn ≥ 0 and let us

define W(x) = ∑	x

k=0 wk =E[Z2

n ] for n ≤ x< n + 1, n = 1, 2, . . . , and W(x) = 0 for 0 ≤ x< 1.
Consequently Var [Y(t)] =E[W(N(t))] −E[Y(t)]2. Applying Lemma 4.1(iii) with 0< δ < 1,
we have W(t) ∼ (Kν2/2(δ+ 1))tδ+1 as t → ∞. Moreover, since W(t) ↑ ∞ as t → ∞, using
Lemma 3.1(i) and the first statement in part (ii) of this theorem, we obtain Var [Y(t)] ∼
(Kν2/2(δ+ 1))ν−(δ+1)tδ+1 as t → ∞. This completes the proof of (ii).

(iii) Let

�t(x) = P

(
Y(t)

t/μ
≤ x

∣∣∣ Y(t)> 0

)
, x ≥ 0.

Now by equation (3.2) we have

�t(x) =
∫ ∞

0
P

(
Z	y
 ≤ xt

μ

∣∣∣ Z	y
 > 0

)
dyP(N(t) ≤ y | ZN(t) > 0).

Then, after the substitution y = ut/μ, we obtain

�t(x) =
∫ ∞

0
P

(
Z	ut/μ

	ut/μ
 ≤ xt

μ	ut/μ

∣∣∣ Z	ut/μ
 > 0

)
duP

(
μN(t)

t
≤ u

∣∣∣ ZN(t) > 0

)
. (4.5)

Hence, from this latter equality, Lemma 4.1(ii), (3.3), and the generalized Lebesgue dominated
convergence theorem (see Theorem 2.4 in [23]), we obtain

lim
t→∞�t(x) =

∫ ∞

0
�ν/2,1

(
x

u

)
dV1(u) = �ν/2,1(x), x ≥ 0,

which proves (iii). �
Remark 4.1. By Theorem 4.1 we can conclude that in the case 0< δ < 1 the asymptotic
behaviour of the continuous-time CBP {Y(t), t ≥ 0} with 0<μ<∞ is similar to that of the
embedded discrete-time CBP {Zn, n = 0, 1, . . .}. Note that the case δ= 1 is an open problem,
along with some other critical subclasses considered in Theorem 4 in [10].

Now we consider the case μ= ∞. The appropriate normalization factor of {Y(t), t ≥ 0} is
a(t) = (�(1 − ρ)(1 − G(t)))−1 introduced in Section 3. Let L be the s.v.f. introduced in (3.4).

Theorem 4.2. Let {Yt, t ≥ 0} be a CBP with CT given in Definition 2.1 with (2.2). Assume
Condition A holds, 0< δ= 2c/ν < 1, μ= ∞, and (3.4). Then we have the following.
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(i) P(Y(t)> 0) ∼ L∗
1(t)t−(1−δ)ρ as t → ∞, with

L∗
1(t) = KL1−δ(t) �(δ)

�(1 − ρ + δρ)
,

where K is defined in Lemma 4.1(i).

(ii) E[Y(t)] ∼ L∗
2(t)tρδ as t → ∞, with

L∗
2(t) = Kν�(δ)

2ρ�(δρ)Lδ(t) .

(iii)

lim
t→∞ P

(
Y(t)

a(t)
≤ x

∣∣∣ Y(t)> 0

)
=�(x), x ≥ 0,

where

�(x) = �(1 − ρ + δρ)

�(δ)

∫ ∞

0
u−(1−δ)�ν/2,1

(
x

u

)
dGρ(u), x ≥ 0,

and Gρ(x) is the c.d.f. of the Mittag–Leffler distribution of order ρ.

Proof. (i) From (4.2) we have

P(Y(t)> 0) =
∞∑

n=0

P(N(t) = n)Qn =E[QN(t)]. (4.6)

Moreover, since (3.4) implies N(t)/a(t)
d→	ρ , with

d→ denoting the convergence in distri-
bution (see Section 3), we can apply equation (7.10) from [21] to obtain that, as t → ∞,

P(Y(t)> 0) ∼ Q	a(t)
E[	−(1−δ)
ρ ]. (4.7)

Note that from (3.4) and Lemma 4.1(i) we have, as t → ∞,

Q	a(t)
 ∼ Kt−ρ(1−δ)L1−δ(t).

On the other hand (3.5) yields

E[	−(1−δ)
ρ ] = �(δ)

�(1 − ρ + δρ)
, (4.8)

which proves (i).
(ii) Under assumption (3.4) we obtain (see [4, Ch. VIII.9]) that, as t → ∞,

m(t) =
∫ t

0
(1 − G(x)) dx ∼ L(t)t1−ρ

�(2 − ρ)
. (4.9)

From (4.9) we have t/m(t) ∼ �(2 − ρ)tρ/L(t) as t → ∞. Moreover, it was proved in Lemma
4.1 that Q(n) = ∑n−1

k=0 Qk ∼ Knδ/δ as n → ∞. Therefore

Q(t/m(t)) ∼ K�δ(2 − ρ)

δLδ(t) tρδ as t → ∞.

https://doi.org/10.1017/jpr.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.8


Controlled branching processes with continuous time 839

Then, from the latter and by Lemma 3.2, we obtain, as t → ∞,

E[Q(N(t))] ∼ C1Q(t/m(t)), with C1 = �(1 + δ)

�(1 + ρδ)�δ(2 − ρ)
,

which proves (ii).
(iii) Similarly to the proof of Theorem 4.1, by using

�t(x) = P

(
Y(t)

a(t)
≤ x

∣∣∣ Y(t)> 0

)
,

Lemma 4.1(ii), and (3.5), we obtain

lim
t→∞�t(x) =

∫ ∞

0
�ν/2,1

(
x

u

)
dVρ,1−δ(u), (4.10)

where

Vρ,1−δ(x) = E[	−(1−δ)
ρ I{	ρ≤x}]
E[	−(1−δ)

ρ ]
.

Since

dE[	−(1−δ)
ρ 1{	ρ≤x}] = d

∫ x

0
u−(1−δ) dGρ(u) = x−(1−δ) dGρ(x),

and from (4.8), we obtain (iii). �
Remark 4.2. Interestingly, for the limiting c.d.f. �(x) in (4.10), we have �(x) = P(ξη≤ x),
where ξ and η are independent random variables with c.d.f.s �ν/2,1(x) and Vρ,1−δ(x), respec-
tively. Assuming 0< δ < 1,μ= ∞, and (3.4), the asymptotic behaviour of the continuous-time
CBP {Y(t), t ≥ 0} is different from that of the embedded discrete-time process {Zn, n =
0, 1, . . .} due to the heavy tail of the lifespan c.d.f. G(x). As before, the case δ= 1 is an open
problem, along with other critical subclasses considered in Theorem 4 of [10].

5. Critical branching processes with random migration and continuous time

In this section we will consider a particular case of the CBP with multitype control functions
(2.3). Let X = {Xn(i), n, i = 1, 2, . . .} be non-negative integer-valued i.i.d. random variables
and let η= {(ηn,1, ηn,2), n = 1, 2, . . .} and I = {In, n = 1, 2, . . .} be two independent sets
of non-negative integer-valued i.i.d. random variables, which are independent from X. Let
{ξn, n = 1, 2, } be i.i.d. random variables with P(ξn = −1) = p, P(ξn = 0) = q, P(ξn = 1) = r,
being p + q + r = 1, and independent from X, η, and I.

Consider D = {1, 2, 3}, Xn,1(i) = Xn(i), Xn,2(i) = −ηn,2, Xn,3(i) = In, φn,1(k) = min{k, k +
ξn · ηn,1}+, φn,2(k) = ξ−

n 1{k>0}, φn,3(k) = ξ+
n 1{k>0}, where we recall that a+ = max{0, a} and

a− = max{0,−a}. The CBP (2.3) with the previous specifications of the offspring distributions
and the control functions can be rewritten as

Z0 > 0, Zn =
(Zn−1∑

i=1

Xn(i) + Mn1{Zn−1>0}
)+
, n = 1, 2, . . . , (5.1)
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where

Mn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ∑ηn,1
j=1 Xn(j) − ηn,2 with probability p,

0 with probability q,

In with probability r,

with
∑x

k=1 = 0, if x ≤ 0. This model can be interpreted as follows: in each generation a random
number of families and individuals can emigrate with probability p, or new immigrants appear
with probability r, or there is no migration with probability q. Zero is an absorbing state. The
particular case with ηn,1 ≡ 1 a.s. and ηn,2 ≡ 0 a.s., for every n, is considered in detail in the
monograph [11]. The CBP defined by (5.1) is studied in [24] and [25].

Denote m =E[X1(1)], 2b = Var [X1(1)], ε1 =E[η1,1], ε2 =E[η1,2], a =E[I1], and

θ = 2E[M1]

Var [X1(1)]
= ra − p(mε1 + ε2)

b
.

Note that for this model the asymptotic mean growth rate, namely

lim
k→∞ k−1

E[Zn | Zn−1 = k] = lim
k→∞ k−1

3∑
i=1

E[X1,i(1)]E[φ1,i(k)]

= lim
k→∞ k−1[(km − ε1m − ε2)p + kmq + (km + a)r]

= m.

Thus the criticality parameter is the offspring mean, as in a BGW branching process. In this
section we consider the model (5.1) in the critical case under the following condition.

Condition B.

(a) m = 1 and 0< 2b<∞,

(b) 0< a<∞, 0 ≤ ηn,1 ≤ N1 <∞ a.s. and 0 ≤ ηn,2 ≤ N2 <∞ a.s., where N1 and N2 are
some constants.

Recall that in Section 2 we introduced�(s) =E[sZ0 ]. The following results take place (see
[24, Theorem 2.2] and [25, Theorem 2.1, Theorem 2.2, and Section 5]).

As in the previous section, let us denote Qn = P(Zn > 0), n = 0, 1, . . . .

Lemma 5.1. Let {Zn, n = 0, 1, . . .} be the CBP (5.1). Assume Condition B holds and
0< θ < 1.

(i) If �′(1) =E[Z0]<∞, then

(a) P(Zn > 0) ∼ K1(n)n−(1−θ) as n → ∞, where K1(x) is an s.v.f.,

(b) limn→∞ P(Zn/bn ≤ x|Zn > 0) = 1 − e−x = E(x), x ≥ 0,

(c) mn =E[Zn] ∼ bθK1(n)nθ and bn =E[Z2
n ] ∼ b2θ (θ + 1)K1(n)n1+θ as n → ∞, where

mn and bn are non-decreasing sequences (it is assumed additionally that E[Z2
0]<∞

and E[I2
n ]<∞).
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(ii) If �(s) = 1 − (1 − s)κL0(1/(1 − s)), where L0(x) is an s.v.f. and 0< κ < 1 − θ , then

(a) P(Zn > 0) ∼ K2(n)n−κ as n → ∞, with K2(x) being an s.v.f.,

(b) limn→∞ P(Zn/bn ≤ x|Zn > 0) = F(x), x ≥ 0, where F(x) is the c.d.f. with Laplace
transform

ϕ(λ) = 1 − Cλκ

(1 + λ)θ+κ − λθ

∫ 1

0
(1 − x)−κ (1 + λx)−θ−1 dx, (5.2)

with C = �(1 − κ)�(1 − θ )/�(1 − θ − κ).

We will investigate the continuous-time process Y(t) = ZN(t) in Definition 2.1 by consid-
ering (5.1). Note that in this case {Y(t), t ≥ 0} is a CBP with CT which admits two types of
emigration (family and individual) and an immigration component in the non-zero states.

Theorem 5.1. Let {Y(t), t ≥ 0} be a CBP with CT given in Definition 2.1 with (5.1). Assume
Condition B holds, 0< θ < 1, and 0<μ<∞.

(i) If �′(1) =E[Y(0)]<∞, then

(a) P(Y(t)> 0) ∼ K1(t)μ1−θ t−(1−θ) as t → ∞, with K1(x) defined in Lemma 5.1(i)-(a),

(b) E[Y(t)] ∼ (bθ/μθ )K1(t)tθ and Var [Y(t)] ∼(b2θ/μ1+θ )(θ + 1)K1(t)t1+θ as t → ∞,

(c)

lim
t→∞ P

(
Y(t)

bt/μ
≤ x

∣∣∣ Y(t)> 0

)
= 1 − e−x = E(x), x ≥ 0.

(ii) If �(s) = 1 − (1 − s)κL0(1/(1 − s)), where L0(x) is an s.v.f. and 0< κ < 1 − θ , then

(a) P(Y(t)> 0) ∼ K2(t)μκ t−κ as t → ∞, with K2(x) defined in Lemma 5.1(ii)-(a),

(b)

lim
t→∞ P

(
Y(t)

bt/μ
≤ x

∣∣∣ Y(t)> 0

)
= F(x),

where F(x) is the c.d.f. with Laplace transform (5.2).

Proof. (i)-(a) We will use (4.2) and (4.3) from the proof of Theorem 4.1, where now
W(t) ↑ 1 as t → ∞, and by Lemma 5.1(i)-(a) we have 1 − W(t) = Q	t
 ∼ K1(t)t−(1−θ) as
t → ∞. Therefore, applying Lemma 3.1(ii), we obtain that P(Y(t)> 0) ∼μ1−θ (1 − W(t)) as
t → ∞, which completes the proof of (i)-(a).

(i)-(b) Now introduce the function W1(x) =E[Zn] = mn for n ≤ x< n + 1, n = 0, 1, . . . .
Note that in this case W1(n) =∑n

k=0 wk,1, where w0,1 = m0, wk,1 = mk − mk−1, k = 1, 2, . . . .
Therefore E[Y(t)] =E[W1(N(t))]. From Lemma 5.1(i)-(c) we have W1(t) ∼ bθK1(t)tθ as t →
∞, and the conditions of Lemma 3.1(i) are satisfied; then we obtain that E[Y(t)] ∼μ−θW1(t)
as t → ∞, and the first relation of (i)-(b) follows.

Similarly we can introduce the function W2(x) = ∑	x

k=0 wk,2 = bn for n ≤ x< n + 1,

n = 0, 1, . . . , where w0,2 = b0 and wk,2 = bk − bk−1, k = 1, 2, . . .; recall that bn =E[Z2
n ].

Therefore E[Y2(t)] =E[W2(N(t))]. Again from Lemma 5.1(i)-(c) we have W2(t) ∼ b2θ (θ +
1)K1(t)t1+θ as t → ∞, and by Lemma 3.1(i) we obtain E[Y2(t)] ∼μ−1−θW2(t) as t → ∞,
which proves the second relation of (i)-(b).
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(i)-(c) The proof is similar to that of Theorem 4.1(iii) by considering

�t(x) = P

(
μY(t)

bt
≤ x

∣∣∣ Y(t)> 0

)
, x ≥ 0,

and applying Lemma 5.1(i)-(b) and (3.3). Thus

lim
t→∞�t(x) =

∫ ∞

0
E
(

x

u

)
dV1(u) = E(x), x ≥ 0,

which proves (i)-(c).
(ii)-(a) In this case we will use (4.2) and Lemma 5.1(ii)-(b). Then we have that, as t →

∞, both W(t) ↑ 1 and 1 − W(t) = Q	t
 ∼ K2(t)t−κ . Hence, by Lemma 3.1(ii), we obtain that
P(Y(t)> 0) ∼μκ (1 − W(t)) as t → ∞, which proves (ii)-(a).

(ii)-(b) It follows from equation (4.5), applying Lemma 5.1(ii)-(b) and (3.3) that

lim
t→∞�t(x) =

∫ ∞

0
F

(
x

u

)
dV1(u) = F(x), x ≥ 0,

which proves (ii)-(b) in this theorem. �
Remark 5.1. Theorem 5.1 shows that in the case 0< θ < 1, the asymptotic behaviour of the
continuous-time CBP {Y(t), t ≥ 0} with 0<μ<∞ is quite similar to that of the discrete-
time process {Zn, n = 0, 1, . . .}. In this case we can conclude that the limiting properties of
the embedded discrete-time process are transferred to the continuous-time process. Note that
investigating the asymptotic behaviour of {Y(t), t ≥ 0} in the cases θ ≤ 0 and θ ≥ 1 is an open
problem.

We now consider the case μ= ∞. Recall that the appropriate normalization factor of
{Y(t), t ≥ 0} is defined by a(t) = (�(1 − ρ)(1 − G(t)))−1 introduced in Section 3. Recall also
that L is the s.v.f. introduced in (3.4).

Theorem 5.2. Let {Y(t), t ≥ 0} be a CBP with CT given in Definition 2.1 by considering (5.1).
Assume Condition B holds, 0< θ < 1, μ= ∞, and (3.4).

(i) If �′(1) =E[Y(0)]<∞, then

(a) P(Y(t)> 0) ∼ L∗
3(t)t−ρ(1−θ) as t → ∞, with

L∗
3(t) =L1−θ (t)K1

(
tρ

L(t)

)
�(θ )

�(1 − ρ + θρ)
,

where K1(x) is defined in Lemma 5.1(i)-(a),

(b) E[Y(t)] ∼ L∗
4(t)tρθ as t → ∞, with

L∗
4(t) = bθ�(1 + θ )K1(tρ/L(t))

�(1 + θρ)Lθ (t)
,

(c)

lim
t→∞ P

(
Y(t)

ba(t)
≤ x

∣∣∣ Y(t)> 0

)
=�(x), x ≥ 0,
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where

�(x) = �(1 − ρ + θρ)

�(θ )

∫ ∞

0
E
(

x

u

)
u−(1−θ) dGρ(u),

with Gρ(x) the c.d.f. of the Mittag–Leffler distribution of order ρ.

(ii) If �(s) = 1 − (1 − s)κL0(1/(1 − s)), where 0< κ < 1 − θ and L0(t) is an s.v.f., then

(a) P(Y(t)> 0) ∼ L∗
5(t)t−κρ as t → ∞, with

L∗
5(t) =Lκ (t)K2

(
tρ

L(t)

)
�(1 − κ)

�(1 − κρ)
,

where K2(x) is defined in Lemma 5.1(ii)-(a),

(b)

lim
t→∞ P

(
Y(t)

ba(t)
≤ x

∣∣∣ Y(t)> 0

)
= �̃(x), x ≥ 0,

where

�̃(x) = �(1 − ρ + θρ)

�(θ )

∫ ∞

0
F

(
x

u

)
u−(1−θ) dGρ(u),

with F(x) the c.d.f. with the Laplace transform presented by (5.2).

Proof. (i)-(a) As in the proof of Theorem 4.2(i), we obtain

P(Y(t)> 0) ∼ Q	a(t)
E[	−(1−θ)
ρ ] as t → ∞.

Now, from Lemma 5.1(i)-(a) and (3.4), we have

Q	a(t)
 ∼ K1(tρ/L(t))t−ρ(1−θ)L1−θ (t) as t → ∞.

Therefore, by the line after (3.5), we obtain

E[	−(1−θ)
ρ ] = �(θ )

�(1 − ρ + θρ)
,

which completes the proof of (i)-(a).
(i)-(b) From (4.9) we have that t/m(t) ∼ �(2 − ρ)tρL(t) as t → ∞. Moreover, W1(t) ∼

bθK1(t)tθ as t → ∞ (see the proof of Theorem 5.1(i)-(b)). Hence, as t → ∞,

W1(t/m(t)) ∼ bθK1(tρ/L(t))�θ (2 − ρ)tρθ /Lθ (t). (5.3)

Since all assumptions of Lemma 3.2 are fulfilled, then, as t → ∞,

E[Y(t)] ∼ C2W1(t/m(t)), with C2 = �(1 + θ )

�(1 + ρθ )�θ (2 − ρ)
. (5.4)

Therefore, by (5.3) and (5.4), we obtain (i)-(b).
(i)-(c) As in the proof of Theorem 4.2, denoting

�t(x) = P

(
Y(t)

ba(t)
≤ x

∣∣Y(t)> 0

)
, x ≥ 0,
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and taking into account Lemma 5.1(i)-(b) and (3.5), we have

lim
t→∞�t(x) =

∫ ∞

0
E
(

x

u

)
dVρ,1−θ (u) (5.5)

and consequently (i)-(c).
(ii)-(a) The proof is similar to that in (i)-(a), applying (4.6), (4.7), and Lemma 5.1(ii)-(a).
(ii)-(b) The proof is similar to that in (i)-(c), by using Lemma 5.1(ii)-(b) and (3.5). �

Remark 5.2. Note that in Theorems 5.1 and 5.2 the parameter θ plays a similar role to that
of δ in the case of a CBP with CT and single control function. Each of these two parameters
appears in the rate of convergence of P(Zn > 0). This rate of convergence is needed to apply
the renewal theory and obtain the behaviour of the process in continuous time.

It is also interesting to point out that for the limiting c.d.f. �(x) in (5.5) we have
�(x) = P(ξη≤ x), where ξ and η are independent random variables with c.d.f. E(x) and
Vρ,1−θ (x), respectively. Theorem 5.2 shows that for 0< θ < 1, μ= ∞, and (3.4), the asymp-
totic behaviour of the continuous-time CBP {Y(t), t ≥ 0} is quite different from that of the
embedded discrete-time process {Zn, n = 0, 1, . . .}. One explanation is that the c.d.f. of the
individual lifespan G(x) has a heavy tail with μ= ∞. Investigating the process {Y(t), t ≥ 0} in
the cases θ ≤ 0 and θ ≥ 1 is an open problem.

6. Regenerative controlled branching processes with continuous time

So far we have studied models of branching processes absorbed at zero. In this section we
will extend these models allowing an immigration component at zero.

Let Y = {Y(t), t ≥ 0} be the CBP with CT investigated in Sections 4 or 5, where τ =
inf{t : Y(t) = 0} is the life period with P(τ <∞) = 1 and c.d.f. B(t) = P(τ ≤ t) = P(Y(t) = 0).
Assume also that ζ = {ζi, i = 1, 2, . . .} are non-negative i.i.d. random variables with c.d.f.
A(x) = P(ζ1 ≤ x). The sets ζ and Y are assumed independent.

Let Yk = {Yk(t), t ≥ 0}, k = 1, 2, . . ., be the i.i.d. copies of Y = {Y(t), t ≥ 0} with corre-
sponding life periods τk and c.d.f. B(x).

We will use the sequence of the random vectors {(ζi, τi), i = 1, 2, . . .} to define the renewal
epochs S0 = 0, Sn = Sn−1 + ηn, where ηn = ζn + τn, n = 1, 2, . . . . Let κ(t) = max{n : Sn ≤ t}
be the corresponding renewal process. Also consider the alternating renewal epochs

{(Sn, S∗
n+1) : S∗

n+1 = Sn + ζn+1, n = 0, 1, . . .}
and introduce the process {σ (t), t ≥ 0}, σ (t) = t − S∗

κ(t)+1. Then the regenerative branching
process U = {U(t), t ≥ 0} is defined as follows:

U(t) = Yκ(t)+1(σ (t))1{σ (t)≥0}, t ≥ 0. (6.1)

Note that ζ is interpreted as a set of waiting periods. If σ (t) ≥ 0 then it is called a spent
lifetime, and if σ (t)< 0 then |σ (t)| is called a rest waiting time.

The process {U(t), t ≥ 0} develops as follows: U(t) is defined as zero during the waiting
periods Sn−1 ≤ t< S∗

n , and U(t) coincides with the process Yn(t − S∗
n) during the life periods

S∗
n ≤ t< Sn, n = 1, 2, . . . .

Recall that �(s) =E[sI0 ] =E[sY(0)]. Then Yk(0) can be interpreted as immigration compo-
nents at state zero. If Y(n) = Zn, n = 0, 1, . . . , and {Zn, n = 0, 1, . . .} is a BGW branching
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process, then {U(n), n = 0, 1, . . .} is a branching process with state-dependent immigration
(i.e. immigration at zero only), well known as the Foster–Pakes model (see [19] for more
details and further generalizations).

Further on we will consider the case when A(x) and B(x) are non-lattice c.d.f.s, A(0) =
B(0) = 0, and there exists

lim
t→∞

1 − A(t)

1 − B(t)
= C, 0 ≤ C ≤ ∞. (6.2)

For the distribution of the waiting periods, A(x) say, we will assume one of the following
conditions:

mA =E[ζ1]<∞, (6.3)

mA = ∞, 1 − A(x) ∼ x−αLA(x) as x → ∞, (6.4)

where 1/2<α ≤ 1, LA(x) is an s.v.f., and for every h> 0 fixed, A(t) − A(t − h) = O(1/t) as
t → ∞.

The asymptotic behaviour of U(t) is related to the asymptotic behaviour of the regeneration
period. Assume that the latter is described by the following condition:

lim
t→∞ P

(
Yk(t)

M(t)
≤ x

∣∣∣ τk > t

)
= D(x), x ≥ 0, (6.5)

where M(t) is a positive r.v.f. with exponent ς ≥ 0 and D(x) is a proper c.d.f.

Lemma 6.1. Let {U(t) : t> 0} be the regenerative branching process defined in (6.1). Assume
(6.2), (6.5), and P(Y(t)> 0) ∼ LR(t)t−β as t → ∞, where LR(t) is an s.v.f. and 1/2<β < 1.

(i) If (6.3) or (6.4) holds true and 0 ≤ C<∞, then for x ≥ 0

lim
t→∞ P

(
U(t)

M(t)
≤ x

)
= �1(x) + C

1 + C
, (6.6)

where

�1(x) = π−1 sin πβ
∫ 1

0
D(xu−ς )u−β (1 − u)β−1 du.

(ii) If (6.4) holds true and C = ∞, then for x ≥ 0

lim
t→∞ P

(
U(t)

M(t)
≤ x

∣∣∣ U(t)> 0

)
=�2(x), (6.7)

where

�2(x) = 1

B(1 − β, α)

∫ 1

0
D(xu−ς )u−β(1 − u)α−1 du.

Note that Lemma 6.1 follows by Theorem 2.1 (Basic Regeneration Theorem) in [19].
Referring to the limiting results in Theorems 4.1–4.2, we are now in a position to apply

Lemma 6.1. Let {U(t), t ≥ 0} be the regenerative branching process defined by (6.1), where
{Y(t), t ≥ 0} is the CBP with CT investigated in Section 4. The following result holds.

Theorem 6.1. Let {U(t), t ≥ 0} be the regenerative branching process defined by (6.1), where
{Y(t), t ≥ 0} is a CBP with CT given by Definition 2.1 with (2.2). Assume Condition A holds.
Let 0<μ<∞ and 0< δ= 2c/ν < 1/2.
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(i) If, additionally, (6.3) or (6.4) holds and 0 ≤ C<∞, then for x ≥ 0

lim
t→∞ P

(
U(t)

t/μ
≤ x

)
= �1(x) + C

1 + C
, (6.8)

where

�1(x) = π−1 sin π(1 − δ)
∫ 1

0
�ν/2,1

(
x

u

)
(1 − u)−δu−(1−δ) du.

(ii) If (6.4) holds and C = ∞, then for x ≥ 0

lim
t→∞ P

(
U(t)

t/μ
≤ x

∣∣∣ U(t)> 0

)
=�2(x), (6.9)

where

�2(x) = 1

B(δ, α)

∫ 1

0
�ν/2,1

(
x

u

)
(1 − u)α−1u−(1−δ) du.

Proof. Note that by Theorem 4.1(i), by denoting Lδ(t) = Kμ1−δ, and (6.4), we have in (6.2)
that

1 − A(t)

1 − B(t)
= (LA(t)/Lδ(t))t

1−δ−α .

Therefore C = 0 if 1 − δ < α and C = ∞ if 1 − δ > α. In the case 1 − δ= α we have that
C = 0 if LA(t)/Lδ(t) → 0, C = ∞ if LA(t)/Lδ(t) → ∞, and 0<C<∞ if LA(t)/Lδ(t) converges
to a positive constant. One has 1 − B(t) = o(1 − A(t)) and hence C = ∞ in this case. Note
that under the conditions of the theorem, the limiting results (i) and (iii) in Theorem 4.1
are valid. Therefore we can use the limiting distributions (6.6) and (6.7) of Lemma 6.1,
where upon substituting β = 1 − δ, M(t) = t/μ, D(x) = �ν/2,1(x), and ς = 1, we establish (6.8)
and (6.9). �
Remark 6.1. We proved Theorem 4.1 under the condition 0< δ < 1, whereas Lemma 6.1
requires 1/2<β < 1, which in turn implies 0< δ < 1/2. Moreover, note that �1(x) is a c.d.f.
of a product of two independent random variables with c.d.f.s �n/2,1(x) and that of a beta dis-
tribution of parameters 1 − δ and δ. The analogous conclusion is valid for �2(x), with c.d.f.s
�n/2,1(x) and that of a beta distribution with parameters α and δ.

Theorem 6.2. Let {U(t), t ≥ 0} be the regenerative branching process defined by (6.1), where
{Y(t), t ≥ 0} is a CBP with CT given by Definition 2.1 with (2.2). Assume Condition A holds.
Let μ= ∞ and (3.4) holds with 1/2< (1 − δ)ρ < 1.

(i) If, additionally, (6.3) or (6.4) holds and 0 ≤ C<∞, then for x> 0

lim
t→∞ P

(
U(t)

a(t)
≤ x

)
= G1(x) + C

1 + C
,

where

G1(x) = π−1 sin π(1 − δ)ρ
∫ 1

0
�(x/uρ)(1 − u)(1−δ)ρ−1u−(1−δ)ρ du,

with �(x) defined in Theorem 4.2.
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(ii) If (6.4) holds and C = ∞, then for x ≥ 0

lim
t→∞ P

(
U(t)

a(t)
≤ x

∣∣∣ U(t)> 0

)
= G2(x),

where

G2(x) = 1

B(1 − (1 − δ)ρ, α)

∫ 1

0
�(x/uρ)(1 − u)α−1u−(1−δ)ρ du.

Proof. The proof is similar to that of Theorem 6.1. Indeed, in the limiting distributions (6.6)
and (6.7) of Lemma 6.1, we have to make the substitutions β = (1 − δ)ρ, M(t) = a(t), ς = ρ,
and D(x) =�(x). �

We can also consider the process {U(t), t ≥ 0} defined by (6.1), where {Y(t), t ≥ 0} is the
CBP with CT given by Definition 2.1 with (5.1), investigated in Section 5. Then, applying
limiting distributions (6.6) and (6.7) of Lemma 6.1 together with Theorems 5.1 and 5.2, we
can obtain counterparts of Theorems 6.1 and 6.2.

More precisely, Theorem 5.1 has to be combined with Lemma 6.1, where we have to set
β = 1 − θ under the condition 0< θ < 1/2, M(t) = bt/μ, D(x) = E(x), and ς = 1. Similarly,
Theorem 5.2 has to be combined with Lemma 6.1, where we have to set β = (1 − δ)ρ under
the condition 1/2< (1 − δ)ρ < 1, M(t) = a(t), D(x) =�(x), and ς = ρ.

Finally, note that some other applications of the Basic Regeneration Theorem from [19] in
the theory of branching processes are given in [21] and references therein.

7. Concluding remarks

We have introduced a new class of CBPs with CT and investigated its asymptotic behaviour
in some critical cases, using the limiting distributions of the CBP with discrete time and cer-
tain transfer-type limit theorems for renewal and regenerative processes. If the mean μ of the
renewal periods is finite, then the limiting behaviour of the processes with discrete and con-
tinuous time is similar. However, if μ is infinite, then the normalization of the processes is
different as well as their limiting distributions.

As mentioned in the Introduction, randomly indexed BGW branching processes were suc-
cessfully applied as stock price models. The new extensions introduced here open possibilities
for more diverse applications. Although the randomly indexed branching processes appeared
in financial mathematics, it seems that they could also be applied in cell biology studies,
especially in the analysis of clonal data, PCR processes, and cell proliferation models.

The investigation of the non-critical processes as well as the critical processes under differ-
ent conditions is an open problem. It would also be interesting to obtain more detailed results
for some particular CBP classes. Another open problem is to define a CBP with CT along the
lines of the construction in [22] for two-sex branching processes.
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