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Instability and transition mechanisms induced
by skewed roughness elements in a high-speed

laminar boundary layer
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The disturbance evolution in a Mach-4.8 zero-pressure-gradient flat-plate boundary-
layer flow altered by discrete three-dimensional roughness elements is investigated
including a laminar breakdown scenario. Direct numerical simulation (DNS), as well
as the biglobal linear stability theory based on two-dimensional eigenfunctions in flow
cross-sections, are applied. Roughness elements with high ratios of spanwise width
to streamwise length are compared at varying height and skewing angles with respect
to the oncoming flow. For an oblique roughness, the element’s height is varied
between 27 % and 68 % of the undisturbed boundary-layer thickness. Compared
to a symmetric roughness element an obliquely placed element generates a more
pronounced low-speed streak in the roughness wake. The linear stability analysis
reveals the occurrence of eigenmodes that can be associated with the first and second
modes in the flat-plate flow. At identical roughness height, larger amplification is
found for the eigenmodes of the oblique set-up. The results are confirmed by unsteady
DNS showing very good agreement with stability theory; transient-growth behaviour in
the near wake of the roughness is of minor importance. The comparison of the results
gained for adiabatic wind-tunnel flow conditions with those for atmospheric-flight
conditions with wall cooling reveals significant differences in the wake vortex system
with subsequent impact on the stability properties of the flow. The hot-flow cases
are less unstable at identical roughness Reynolds numbers. A variation of the wall
cooling shows that the roughness-wake first- and second-mode behaviour is similar
to that of the flat-plate flow: wall cooling stabilizes the first-mode and destabilizes
the second-mode instabilities of the roughness wake.

Key words: boundary layer stability, high-speed flow, transition to turbulence

1. Introduction
Boundary-layer transition at hypersonic flow speeds is of particular importance to

the design of respective flight vehicles, influencing the heat load and aerodynamic
drag which are to be minimized for sustained flight. It is essential to understand how
discrete surface roughness influences the laminar–turbulent transition mechanisms.
A huge number and variety of experiments have been conducted under cold
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wind-tunnel conditions, see e.g. Holloway & Sterret (1964), Fujii (2006), Casper et al.
(2008), Schneider (2008), as well as hot flight conditions, e.g. Reda (2002), Berry &
Horvath (2007), Spanos & Micklos (2010). A variety of roughness geometries have
been examined, mostly with a symmetrical alignment of the roughness element with
respect to the oncoming flow.

Theofilis (2011) reviews the linear stability theory (LST) and analysis of complex
two- and three-dimensional flows based on a two- (biglobal LST) or three-dimensional
(triglobal LST) eigenfunction methodology. The classical (monoglobal) LST has
been applied by Marxen, Iaccarino & Shaqfeh (2010) to clarify the mechanisms
of disturbance growth past two-dimensional surface roughness in hypersonic
flat-plate boundary-layer flow. The biglobal LST has been successfully applied to
incompressible swept-wing-type flow with cross-flow by, e.g. Koch et al. (2000) and
Bonfigli & Kloker (2007). Choudhari et al. (2012), DeTullio et al. (2013), Groskopf,
Kloker & Marxen (2010a), Groskopf, Kloker & Stephani (2011) and Groskopf &
Kloker (2012) applied biglobal LST to supersonic and hypersonic flat-plate flows
altered by discrete three-dimensional roughness elements, identifying the dominant
instability modes due to the trailing vortices and ensuing velocity streaks in the wake
of the elements. Paredes and Theofilis, see DeTullio et al. (2013), confirmed biglobal
LST with a non-local, downstream marching method based on the parabolized stability
equations (PSEs). Another approach, triple-deck theory, has been applied for transonic
flow by Mengaldo et al. (2015).

The progress on laminar–turbulent breakdown in high-speed boundary layers based
on spatial direct numerical simulation has been summarized by Zhong & Wang (2012)
including a section about surface roughness.

Two-dimensional isolated roughness elements in a Mach-4.8 flat-plate flow have
been investigated by Marxen et al. (2010), Marxen, Iaccarino & Shaqfeh (2014). It is
shown that a roughness with a size of up to 70 % of the undisturbed boundary-layer
thickness alters the stability properties of the flow only locally, representing a
disturbance amplifier with a limited bandwidth. The two-dimensional scenario seems
not likely to lead to transition. Redford, Sandham & Roberts (2010) conducted direct
numerical simulation (DNS) for an isolated three-dimensional roughness varying the
roughness height Reynolds number, Mach number and wall-temperature conditions
to develop a transition correlation. Bernardini, Pirozzoli & Orlandi (2012) carried
out DNS of roughness-induced flat-plate boundary-layer transition in the range
0 6 Ma∞ 6 4 for roughness heights of 25 %–65 % of the boundary-layer thickness δ
deriving another transition criterion. DeTullio et al. (2013) investigated the linear and
nonlinear disturbance evolution including the breakdown to turbulence in a Mach-2.5
boundary layer downstream of an isolated roughness in terms of DNS and biglobal
LST in PSE fashion. The roughness element is a sharp-edged cube. The roughness
heights were chosen according to the transition criteria of Redford et al. (2010) and
Bernardini et al. (2012) to generate one sub-critical and one transitional case. The
latter case shows early transition due to a ‘highly unstable wake’. According to the
biglobal stability analysis, the two most unstable modes with varicose and sinuous
characteristics, respectively, deform the low-speed streak that is generated in the
wake centreline of the roughness. The varicose mode shows the larger growth rate
on average. Furthermore, DeTullio et al. (2013) found that in DNS a superposition
of both modes at similar amplitudes can lead to a disturbance-energy growth that is
stronger than that of the most unstable mode alone.

DeTullio & Sandham (2015) performed DNS of a Mach-6 boundary layer disturbed
by a square cuboid with a height of 54 % of the boundary-layer thickness. They
identified three characteristic wake modes: a sinuous (SL) and a varicose (VL) mode
induced by the lateral shear surrounding the low-speed streak and a lower-situated
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varicose mode (VC) not unlike the second (Mack) mode. The varicose modes were
found to be most unstable and excited by the first and second mode developing
laterally outside the wake, whereas mode SL is excited by damped global modes in
the recirculation bubble that originate from oblique acoustic waves in the free stream.
Wall cooling could be shown to strongly stabilize mode VC, contrary to the second
mode itself, and weakly stabilize the other modes. van den Eynde & Sandham (2015)
investigated various roughness shapes in a Mach-6 flow showing that, for identical
roughness Reynolds numbers, the disturbance growth downstream the roughness is
reduced significantly by downramping the roughness smoothly, due to weaker shear
layers in the wake. The comparison of a sharp- and a smooth-edged rectangular
profile is not shown but the results imply that large differences can only be gained
by a strong decrease of the rear-side slope’s absolute value. This is in accordance
with von Doenhoff & Braslow (1961), see also Kurz & Kloker (2016), showing
limited influence of the roughness shape, and, thus, the edge form, in subsonic flow.

In subsonic flow the term ‘critical roughness Reynolds number’ is used to define
a threshold to global, in the sense of absolute, instability with transition occurring
immediately at the (isolated) three-dimensional roughness element, see e.g. Kurz
& Kloker (2016). In supersonic or even hypersonic flat-plate flow, transition to
turbulence mostly occurs due to convective instabilities which may look like a global
one in experiments if the extent of laminar flow downstream of the roughness element
is short, see, e.g. Bartkowicz, Subbareddy & Candler (2010). Casper et al. (2008),
Schneider (2008) and Subbareddy, Bartkowicz & Candler (2014) show that for the
investigated roughness set-ups there always is a finite streamwise distance between
the roughness location and the transition location. Absolute instability has not been
observed. So far, in supersonic flow, a roughness often is called super-critical in the
literature if it just promotes transition significantly without necessarily triggering it
immediately through global instability. In the present work a terminology analogous
to Kurz & Kloker (2016) is adopted to distinguish the following cases: the ‘critical’
limit separates scenarios of global and convective-only instabilities. The sub-critical
cases are further separated by a ‘promotive’ limit separating significant (promotive)
and insignificant (non-promotive) influence on the transition location, respectively.

Many different correlations have been developed based on experimental as well
as numerical data to find a criterion for laminar–turbulent transition in high-speed
boundary layers induced by three-dimensional roughness elements. Mostly, some kind
of roughness Reynolds number is applied defining a critical or promotive threshold
that is either constant or dependent on further flow quantities. Reda (2002) prefers
the roughness Reynolds number Rekk = ρ̃kũkk̃/µ̃k based on the flow quantities of the
undisturbed flow at the roughness position x̃r and height k̃ (dimensional quantities are
marked by superscript ,̃ ρ is density, u streamwise velocity and µ denotes the dynamic
viscosity). Berry & Horvath (2007) and Horvath, Berry & Merski (2004) include the
wall-temperature boundary condition indirectly in a correlation coefficient. Reshotko
& Tumin (2004) suggest that transient (non-modal) growth plays an important role in
early transition due to roughness effects. Their criterion also includes wall-temperature
effects. Nowadays, Rekk is understood to be the relevant parameter, see Groskopf et al.
(2010b), Bernardini et al. (2012), Choudhari et al. (2012), Groskopf & Kloker (2012)
and Bernardini et al. (2014). Redford et al. (2010) introduce the additional parameter
Makk/Tw to emphasize the influence of the wall temperature on roughness-induced
transition. Makk is the roughness Mach number based on the flow quantities of
the undisturbed flow at the roughness position. Bernardini et al. (2012) suggest a
modified roughness Reynolds number Re∗kk involving the kinematic viscosity at the
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wall to include the effect of wall temperature. Note that for sustained hypersonic
flight the wall is cooled by radiation of heat, and the wall temperature Tw,ra is in
radiative equilibrium (radiation adiabatic condition). It has been shown that in this
case the wall-temperature increase along transition is distinctive because Tw,ra scales
with δ−1/4

eff , the effective shear-layer thickness, that reduces significantly, see the book
of Hirschel (2005), §§ 3 and 7 and the DNS of Fezer & Kloker (2003).

So far, none of the approaches account for a skewness of the roughness, inducing
a strong asymmetry of the wake. Concentrating on the low-disturbance-amplitude
scenario, the present work deals with increased eigenmode growth in the wake of
skew discrete roughness elements with a height smaller than the local boundary-layer
thickness in the unperturbed flat-plate flow. In § 2 the numerical procedure and the
computational set-up are described. Section 3 compares the steady base flows for
various parameter set-ups, including cold adiabatic and hot cooled-wall flow. In § 4
these base flows are analysed applying the biglobal linear stability theory. In § 5
the results from unsteady DNS are discussed and compared to the stability analysis,
and the nonlinear disturbance evolution followed by breakdown to turbulence is
investigated for a point-source excitation.

2. Methodology
2.1. Governing equations

The three-dimensional unsteady Navier–Stokes equations for a compressible fluid are
the basis for the following investigations. They are applied in a non-dimensional form.
The reference length is L̃ (˜ marks dimensional quantities), velocities u, v and w in
streamwise (x), wall normal (y) and spanwise (z) directions are normalized by the free
stream velocity ũ∞. For density ρ and temperature T the respective free stream values
are used as reference. The non-dimensional pressure p is based on the reference value
ρ̃∞ũ2

∞.
For the DNS the equations are applied in conservative formulation. See Keller

& Kloker (2015) for the complete set of equations. Reynolds number Re∞, Prandtl
number Pr∞ and Mach number Ma∞ are also based on the free stream values and
L̃. A calorically perfect gas behaviour is assumed, also under atmospheric-flight
conditions. The influence of thermally perfect gas properties, including the bulk
viscosity, are neglected. Thus, for the hot-flow cases a worst case scenario is
investigated since the neglected effects have a relaxing influence leading to lower
disturbance growth rates especially for flat-plate second-mode instabilities, see, e.g.
Bertolotti (1998) and Linn & Kloker (2010).

The equations of the biglobal linear stability theory (B-LST) are formulated in
primitive variables. All flow quantities are split into their steady base-flow part Φb
and unsteady perturbation part Φ ′, where Φ refers to any of the primitive variables:
Φ(x, y, z, t) = Φb(x, y, z) + Φ ′(x, y, z, t). The employed base flow is assumed to be
parallel (∂/∂x≡ 0), resulting in a local theory with respect to the main flow direction
x. This does not imply, in contrast to LST or monoglobal secondary LST, that vb≡ 0
which would eliminate any possibility of investigating vortices in a cross-cut plane.
The only restriction to be made in spanwise periodic flows is that the spanwise mean,
marked with 〈 〉 or, in spectral space, the zeroth mode of the wall-normal velocity is
zero. Small perturbations are assumed for the linearisation. The modal perturbation
ansatz:

Φ ′(x, y, z, t)= Φ̂(y, z) · ei(αx−ωt) + c.c. (2.1)

is applied, where Φ̂(y, z) is the corresponding complex amplitude distribution and
α and ω describe the spatial wavenumber in the x-direction and the frequency,
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Case Grid type x1 x2 y1 y2 λz NX MY KZ

2D verification Coarse 1.6065 54.133 See (2.4) 1.575 — 1470 200 —
2D verification Fine 1.6065 54.133 See (2.4) 1.575 — 2940 200 —
3D Medium 1.6065 54.133 See (2.4) 1.575 3.2 2940 240 192
3D Fine 1.6065 54.133 See (2.4) 1.575 3.2 2940 480 384

TABLE 1. Dimensions of the computational domain, see figure 1(a) for a sketch, with
NX, MY and KZ grid points in x-, y- and z-direction, respectively.

respectively, both of which can be complex. For the temporal approach, α = αr ∈ R,
ω = ωr + i · ωi ∈ C, with temporal amplification for growth rate ωi > 0 the complex
linear eigenvalue problem

Aq̂=ωBq̂, (2.2)

with coefficient matrices A and B results. The square matrices are of size L(q̂) ×
L(q̂) = 5N × 5N for the unknown perturbation amplitudes at N grid points. Instead
of solving the computationally more costly eigenvalue problem (EVP) for the spatial
approach (ω = ωr ∈ R, α = αr + i · αi ∈ C), with spatial amplification for growth
rate αi < 0, Gaster’s relation (Gaster 1962) is applied: αi = −ωi/cgr, with group
velocity cgr. This relation has been applied by, e.g. Koch et al. (2000) and Bonfigli
& Kloker (2007) for secondary linear stability analyses of incompressible cross-flow
vortices. Just as for the incompressible flows, the results from Gaster’s relation are
found to agree excellently with the spatial solution of the eigenvalue problem for the
present compressible flow cases, see Groskopf et al. (2010b). Alternative base-flow
representations, as applied by Bonfigli & Kloker (2007), have been investigated in
a compressible formulation for the present flows. In contrast to Bonfigli & Kloker
(2007) an improvement with respect to the DNS results has not been achieved which
is likely due to the lack of a strong cross-flow component and, thus, less pronounced
streamwise gradients.

2.2. Numerical methods
For a detailed description of the basic algorithm of the DNS solver and the numerical
method see Kloker (1998), Babucke et al. (2006), Babucke, Kloker & Rist (2007)
and Keller & Kloker (2015). The discretisation accuracy of the solver is fourth
order in time, and sixth order in space based on compact finite differences (FDs).
A compact filter scheme of tenth order according to Visbal & Gaitonde (2002)
is used to stabilize the base-flow simulations due to the weak shocks occurring
downstream of the roughness elements. The equations are solved on a structured
curvilinear grid, with equidistant spacing in x and z, see table 1. In wall-normal
direction the grid is stretched with a third-order polynomial with 1ymin = 0.002 at
the wall. This corresponds to 1.1 % of the undisturbed boundary-layer thickness at
the roughness location, which is resolved by a total of 75 grid points in case of the
three-dimensional medium grid of table 1.

The roughness elements are modelled using a body-fitted grid, see figure 1(b),
demanding smooth element edges to avoid the risk of introducing spurious oscillations.
DeTullio et al. (2013) and DeTullio & Sandham (2015) apply a block-grid approach,
thus, being limited to sharp-edged rectangular block configurations.

Spanwise periodicity is assumed based on the domain width λz. For steady flow, all
flow quantities are fixed to a self-similar boundary-layer solution at the inflow plane
x= x1. At the free stream boundary y= y2, the reflection of impinging (shock) waves

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.563


Skewed roughness in a high-speed boundary layer 267

(a) (b)

14.0

15.0
14.5

15.5
16.0

0
0.5

 –0.5
 –1.0

1.0

x
y

z z x

FIGURE 1. (a) Sketch of computational domain. Disturbance forcing at x = xf .
(b) Computational grid at the roughness surface; every second grid line is shown.

is minimized by prescribing vanishing flow-variable gradients along the outgoing
spatial characteristics. At the wall, y = y1 (index w), no slip and impermeability
conditions are prescribed. The wall is assumed to be adiabatic: (∂T/∂n)w= 0, with n
being the local wall-normal direction which at the roughness deviates from the global
wall-normal direction y. For a radiation-adiabatic wall the wall-normal temperature
gradient is not zero but defined by the Stefan–Boltzmann equation with emissivity
ε. At the outflow boundary the second-streamwise-derivative terms are neglected in
the governing equations. For the unsteady DNS, the boundary condition with fixed
quantities is applied at the inflow as well. At the free stream and outflow boundary
an additional sponge region with a source term as applied by Kurz & Kloker (2014)
is used to dampen the fluctuations, Φ ′ and, hence, inhibiting reflections. Velocity as
well as temperature disturbances are assumed to vanish at the wall. In the unsteady
cases disturbances are excited via blowing and suction through a hole at the wall,
mimicking a multifrequent point source, by prescribing the wall-normal mass flux
(index f for forcing)

(ρv)′f = [−3(1− R)4 + 4(1− R)3] ·
∑

h

(ρv)′max,h cos(hωr,0t+ θh), (2.3)

where 0 6 R 6 1 is the normalized radius. The hole is located at (xf , zf )= (3.394, 0)
upstream of the roughness, with diameter 2R = 241x. h denotes the timewise
harmonics of the fundamental frequency ωr,0 with respective phase shift θh, being zero
for all investigated cases. Hence, for t= j2π/ωr,0 and j ∈N the modes constructively
interfere and the signal in figure 2(a) results. Note that at the start of a DNS the
disturbance excitation is continuously ramped up within the first two periods of
the fundamental frequency. The spanwise spectral content at x = xf is shown in
figure 2(b). The forcing also excites a two-dimensional disturbance wave with an
amplitude of 5 %.

For the biglobal stability analysis consecutive streamwise cross-planes are extracted
from the steady base-flow downstream of the roughness elements. The flow data
are then interpolated onto another structured grid that is adapted according to the
expected perturbation modes. For the computation of the wall-normal derivatives
a spectral Chebyshev collocation method is applied. Dependent on the streamwise
location the grid points are clustered in regions of high spanwise and wall-normal
shear, applying a grid transformation similar to Koch et al. (2000). In the periodic
spanwise direction FDs of up to eighth order are used. At the wall y= y1 zero velocity
and temperature perturbations are prescribed. In the free stream all perturbations are
assumed to decay exponentially, see also Groskopf et al. (2010b).
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FIGURE 2. (a) Normalized disturbance signal (ρv)′f (t) at (xf , zf )= (3.394, 0) for the first
fifty harmonics (1 6 h 6 50) of the fundamental frequency ωr,0 = 0.5, each forced with
amplitude (ρv)′max,h = 10−7 and θh = 0. (b) Normalized spanwise spectral content of the
disturbance signal at x = xf . The bars represent the amplitude (left-hand axis) for the
corresponding multiple of the fundamental spanwise wavenumber γr,0 = 1.963495. The
solid line shows the integral of the amplitudes over the harmonics (right-hand axis).

The linear EVP is solved applying the Arnoldi algorithm implemented in the
ARPACK library (see Lehoucq, Sorensen & Yang 1998). The Shift-and-Invert mode
is applied. The solution according to the spatial approach is obtained by Gaster’s
relation. Since the B-LST is localized with respect to the streamwise direction every
(y–z)-cross-plane is analysed independently. The algorithm for eigenvalue tracking in
successive cross-planes in the streamwise direction is based on a best-match approach
applying a cross-correlation for the eigenvectors at two consecutive tracking steps.

2.3. Verification
To verify the DNS solver the Mach-4.8 flow with a two-dimensional surface roughness
of height k= 0.1 and length lr = 0.4 used by Marxen et al. (2010) has been chosen.
Figure 3(a) shows the comparison of the unsteady flow results for identical roughness
set-up and disturbance forcing of frequency ω= 10, corresponding to F= 1.0× 10−4

of Marxen et al. (2010), imposing an adiabatic boundary condition for disturbances
as well as base flow; the agreement is excellent for a similar grid resolution. Half the
grid step size in the streamwise direction shows slight differences. Further streamwise
and wall-normal refinements yield identical results.

Grid studies have also been performed for the three-dimensional roughness set-ups.
The streamwise grid step size is fixed to the above applied fine-grid resolution, and the
number of grid points in wall normal as well as spanwise direction has been doubled,
see 3-D cases in table 1, and figure 3(b); the medium grid solution is sufficiently
accurate.

The B-LST solver has been verified based on a comparison to Mach-4.8 flat-plate
flow stability results from a monoglobal (M-)LST solver. The stability results show
very good agreement for several investigated spanwise wavenumbers γr (not shown).
Whereas this wavenumber is a direct input parameter for the M-LST equations,
in B-LST it is given indirectly via the spanwise width of the computational grid
λz = 2π/γr,0. B-LST also provides simultaneously solutions for higher spanwise
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FIGURE 3. (a) Evolution of two-dimensional streamwise-velocity disturbance (frequency
ω= 10) with adiabatic boundary condition along x-direction in comparison to results from
Marxen et al. (2010) (symbols) for coarse two-dimensional (2-D) verification grid (——)
similar to the one used in Marxen et al. (2010) and 2-D-verification fine grid (— · —),
see table 1. (b) Evolution of streamwise-velocity disturbance along x-direction comparing
3-D-medium-grid (lines) and 3-D-fine-grid (symbols) solutions, see table 1. Roughness
configuration according to case C-3DO-M, see table 3. Frequencies ω= 0.5 (@), ω= 2.5
(A), ω= 10 (6). Vertical line marks roughness location.

Flow Re∞ Ma∞ Pr κ L̃ R̃eunit ũ∞ T̃∞ p̃∞ T̃w

(m) (1 m−1) (m s−1) (K) (bar) (K)

Cold 105 4.8 0.71 1.4 8.5× 10−3 11.8× 106 716.3 55.4 0.01 270
Hot 105 4.8 0.71 1.4 25× 10−3 4.0× 106 1427.4 220 0.0255 644 (ε = 0.8)

677 (ε = 0.6)

TABLE 2. Flow parameters. T̃w holds at roughness location x= xr, with two values for
the hot flow according to emissivity ε.

harmonics as well as for γr = 0. The analysis of Schmidt & Rist (2011) for
compressible streamwise corner flow is based on the same solver applying different
boundary conditions.

2.4. Flow parameters and roughness set-up
This work focuses on the analysis of flat-plate flow with three-dimensional roughness
elements under wind-tunnel conditions (cold cases) and atmospheric-flight conditions
(hot cases). The parameters are given in table 2. The cold-flow parameters are identical
to the work of Marxen et al. (2010).

For the shape of the roughness elements the definition of Marxen et al. (2010) has
been extended to the spanwise direction:

y1(x, z)= k∗

4

+1∑
j=−1

j tanh
[

sr

(
x− xr − z

tan(ψr)
+ j

lr

2

)]
·
+1∑

j=−1

j tanh
[

sr

(
z+ j

br

2

)]
(2.4)
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FIGURE 4. Sketch of roughness set-up: (a) top view with element dimensions and rotation
angle. (b) Outline of roughness element looking downstream.

Case Flow Tw ε Roughness type k k∗ xr lr br sr ψr

C-REF Cold adiabatic 0 None (smooth) 0 — — — — — —
C-2D-M Cold adiabatic 0 2-D 0.1 0.103772 15.0 0.2 ∞ 20.0 90◦
C-3DS-M Cold adiabatic 0 3-D symmetric 0.1 0.103772 15.0 0.2 0.8 20.0 90◦
C-3DO-S Cold adiabatic 0 3-D oblique 0.05 0.051886 15.0 0.2 0.8 20.0 45◦
C-3DO-M Cold adiabatic 0 3-D oblique 0.1 0.103772 15.0 0.2 0.8 20.0 45◦
C-3DO-L Cold adiabatic 0 3-D oblique 0.125 0.129715 15.0 0.2 0.8 20.0 45◦
H-3DO-M Hot rad.adiab. 0.8 3-D oblique 0.0541 0.056200 15.0 0.2 0.8 20.0 45◦
H-3DO-L Hot rad.adiab. 0.8 3-D oblique 0.0729 0.075729 15.0 0.2 0.8 20.0 45◦
H2-3DO-M Hot rad.adiab. 0.6 3-D oblique 0.0558 0.057976 15.0 0.2 0.8 20.0 45◦

TABLE 3. Parameters for roughness model and thermal boundary condition at the wall.
Comparison of cold- and hot-flow configurations.

where k∗ is the model roughness height which, for small lr or br, might differ from
the nominal height k in order to compensate for the influence of the tanh term and,
thus ensuring max(y1)= k; lr and br describe the distance between the two inflection
points of the contour in streamwise and spanwise direction, respectively; sr defines
the edge’s slope. The centre of the roughness is located at (x, z)= (xr, 0). Its skewing
with respect to the oncoming flow, and thus to the x-axis, is given by the angle ψr.
For all investigated cases the parameters are specified in table 3, where the first set
of characters in front of the first hyphen refers to the flow conditions, the second
set defines the type of roughness and the character following the second hyphen
represents the roughness height in terms of Rekk.

The smooth-plate as well as the two-dimensional roughness flow serve as reference
cases. The spanwise spacing of the elements is four times their spanwise width br.
Identical values of br have been chosen for cases 3DS and 3DO to ensure identical
obstruction areas with respect to the oncoming flow. Three different roughness heights
characterized by Rekk, small (S), medium (M) and large (L), are investigated on the
basis of the oblique roughness set-up 3DO, see also figure 4.

For the cold-flow conditions the roughness elements are located at ReδT = 20 000
based on the undisturbed flat-plate flow and the temperature boundary-layer thickness
δTu , resulting in Rxr = 1225, xr = 15. For the hot-flow scenarios, xr, br, and lr are
kept, whereas k has been adapted to generate identical Rekk values. The ratios k/δTu

as well as k/δu at x = xr are shown in table 4. Additionally, the parameters for the
transition criteria proposed by Redford et al. (2010), Bernardini et al. (2012) and
Bernardini et al. (2014) are given. Cases C-3DS-M and C-3DO-M exhibit identical
parameters. Table 4 reveals that the classification of the roughness set-ups depends
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Case k br/k k/δTu k/δu Rekk Makk/Tw Re∗kk ReQ

C-3DS-M 0.100 8.0 0.506 0.546 434 0.352p 261n 459p
C-3DO-S 0.050 16.0 0.253 0.273 72 0.136n 64n 128n
C-3DO-M 0.100 8.0 0.506 0.546 434 0.352p 261n 459p
C-3DO-L 0.125 6.4 0.633 0.682 990 0.432p 408n 793p
H-3DO-M 0.0541 14.8 0.403 0.430 434 0.514p 439p 788p
H-3DO-L 0.0729 11.0 0.544 0.580 990 0.729p 778p 1202p
H2-3DO-M 0.0558 14.3 0.408 0.436 434 0.486p 420p 763p

TABLE 4. Parameters for the evaluation of three-dimensional roughness configurations
as well as the transition critera of Redford et al. (2010), Bernardini et al. (2012) and
Bernardini et al. (2014). Letters n (non-promotive) and p (promotive) behind the numbers
mark the classification of the case according to the corresponding transition criterion.

on the underlying criterion. Redford et al. (2010), evaluating Makk/Tw over Rekk (see
their figure 19), proclaim a stabilizing effect of the wall cooling given by larger
values of Makk/Tw at identical Rekk. The criteria of Bernardini et al. (2012) and
Bernardini et al. (2014) show the inverse effect with larger values of Re∗kk and ReQ,
respectively, for the hot-flow cases. Note that Rekk already accounts for the thermal
conditions at the wall. Replacing ρk and µk with ρw and µw, respectively, scales the
wall-temperature influence even stronger. The performance of the different criteria
will be discussed below.

3. Laminar base flows

In all cases the time-accurate flow simulation along the flat plate with roughness
converges to a steady state. Convective exponential growth of numerical background
noise can be seen downstream the roughness elements in a temporal Fourier analysis.
For cases S and M the streamwise-velocity amplitudes of the analysed frequencies
do not exceed a value of 10−6 at the end of the investigated streamwise domain,
and therefore are neglected. The cases L exhibit stronger exponential growth reaching
Fourier amplitudes of 10−6 already at x≈ 40. Note that, contrary to the behaviour in
subsonic flow, even the simulations for Rekk = 990 with aspect ratios br/k of 6.4 and
11, respectively, do not show any sign of global instability due to a region of absolute
instability in the wake of the roughness element. For Ma∞< 1, Kurz & Kloker (2016)
detect global instability for roughness configurations with Rekk &600 and d/k≈4 using
basically the same code. The continuing absence of global instability beyond Rekk =
600 despite the larger br/k-values in the supersonic-flow regime is also confirmed by
a Mach-2.5 simulation of DeTullio et al. (2013) with Rekk = 788.

3.1. Effect of element skewing angle for roughness height k= 0.1
Figure 5(a,b) show the vortex structures induced by the symmetric and oblique
roughness, respectively. The visible differences in the vortex structure affect the streak
formation as well as the strength of the shear in the wake. Whereas the symmetric
set-up of case C-3DS-M excites three pairs of equally strong counter-rotating vortices,
case C-3DO-M shows differences with respect to the origin of the vortices. The
naming convention for the vortex pairs follows Groskopf et al. (2010b): the outer
pair is formed by the legs of the horseshoe vortex (HV) of the roughness. The most
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FIGURE 5. Top view on vortex structures by means of the λ2-criterion (λ2=−0.07). HV,
MV and IV denote the horseshoe, main and inner vortices, at leading (L) and trailing
(T) edge of the oblique roughness. Shading indicates streamwise vorticity ωx,b; clockwise
(grey) and counter-clockwise (black) rotation as seen in downstream direction. Reversed
flow is shown by patterned isosurfaces of ub < 0. White bars show position and extent
of the roughness. Cases: (a) C-3DS-M, (b) C-3DO-M, (c) C-3DO-L, (d) H-3DO-M and
(e) H-3DO-L.
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FIGURE 6. (Colour online) Streamwise base-flow-velocity contours. Thin solid lines are
isolines of ub, starting with ub= 0.1 near the wall (∆= 0.1), ending with ub= 0.95. Thick
solid lines with shading indicate vortices and rotation sense shown in figure 5. Shading
indicates the streamwise vorticity with identical contour levels for all cases. Dash-dot lines
represent the sonic line. Case C-3DS-M at (a) x= 18 and (b) x= 34. Case C-3DO-M at
(c) x= 18 and (d) x= 34. Case H-3DO-M at (e) x= 18 and ( f ) x= 34.

persistent vortex pair is named the main vortices (MV). They originate from the flow
around the lateral edges of the roughness at z=±0.4. An inner pair of vortices (IV)
forms directly behind the roughness, along the edge of the separation region. Their
formation is driven by the upward deflection of the near-wall flow coming around the
lateral edges of the roughness element. Remarkably, the inner and the main vortices
are co-rotating on each side. For case C-3DO-M the vortices of a pair are furthermore
distinguished according to their origin. The vortices induced at the leading edge of
the roughness at (x, z)= (14.6,−0.4) are significantly stronger than the trailing-edge
vortices. The leading-edge main vortex (LMV) becomes the dominant flow structure
in the wake. Whereas the pair of IV vanishes shortly behind the symmetric element,
in the oblique set-up the leading-edge inner vortex (LIV), amplified by the stronger
cross-flow behind the roughness, is part of the formative vortex structure in the wake
of the element. The cross-flow is positive near the wall and negative further away,
with the dominant vortices LMV and LIV following the near-wall flow deflection as
for their rotation sense.

The streamwise-velocity isolines in figure 6 show that the imbalance between the
main vortices in case C-3DO-M initiates a cross-flow-vortex-like overturning which is
inhibited by the interference of the nearby co-rotating LIV, see 6(c,d). In contrast to
case C-3DS-M the regions of reversed flow are shifted in spanwise direction for the
oblique set-up. The upstream separation is located near the leading edge, whereas the
downstream separation is shifted toward the trailing edge, see figure 5(b) again.
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FIGURE 7. (Colour online) Streak amplitude (E, red) and maxima in (y–z)-planes of the
absolute values of the wall-normal and spanwise gradients of the streamwise velocity,
∂ub/∂y (A) and ∂ub/∂z (D), respectively, as well as the streamwise vorticity ωx,b (@)
along the streamwise coordinate x for (a) cases C-3DO-M (——) and C-3DS-M (— —)
and (b) cases C-3DO-M (——) and C-3DO-L (— —). (c) Maxima in (y–z)-planes of the
absolute values of spanwise velocity wb (6) and spanwise mean value of wb (E) along
x for case C-3DO-M with spanwise roughness spacing of λz = 3.2 (——) and λz = 6.4
(— —).

The strength of the generated velocity streaks is evaluated by their amplitude ûst:

ûst = 1
2

(
max

yz
[u(x, y, z)− 〈u〉(x, y)] −min

yz
[u(x, y, z)− 〈u〉(x, y)]

)
, (3.1)

with 〈u〉 being the spanwise mean value, needed because of the asymmetric wake flow.
In figure 7(a) the streak amplitude is compared along with ωx,b and gradients of ub.

In general, it can be observed that, whereas the vorticity decays, the streak amplitude
persists along with the wall-normal and spanwise gradients. The streak amplitude as
well as the maxima of vorticity and wall-normal-velocity gradient of case C-3DO-M
are larger than for case C-3DS-M, the spanwise gradients compare. The transient
growth behaviour for the spanwise gradient of the streamwise velocity found by
DeTullio & Sandham (2015) is not observed. Note that the streak amplitude of case
C-3DS-M or C-3DO-M reaches a maximum of 31 % or 44 %, respectively, in the
near wake. Thus, the maximum streak amplitude is approximately 40 % larger for the
oblique set-up. Investigating incompressible flat-plate flows with streamwise streaks
Andersson et al. (2001) found sinuous and varicose modes becoming unstable at
streak amplitudes of about 26 % and 37 %, respectively. According to these thresholds,
case C-3DS-M would support only the sinuous modes whereas case C-3DO-M would
support both.

Figure 8 shows the temperature and pressure footprints. Whereas for case C-3DS-M
two high-temperature streaks develop, case C-3DO-M shows one dominant (leading-
edge) high-speed streak, being broader and stronger. In both cases the roughness itself
is heated at the front side of its top. Pressure contour lines show strong expansion of
the fluid in streamwise direction as it flows over the roughness as well as around the
lateral edges of the element, most pronounced for the leading edge of the oblique
set-up.

A doubling of the spanwise roughness spacing λz shows a persistent 50 % reduction
of the mean cross-flow induced in the roughness wake, see figure 7(c), at constant
maximum value. It may be thus concluded that the spacing applied is wide enough
to represent isolated elements. However we will show below that this is not exactly
fulfilled for the instability induced.
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FIGURE 8. Base-flow temperature and pressure distribution at the wall. Shading indicates
temperature, contour lines show pressure distribution at the wall. Label 1 refers to
pb= 0.023, step size between labels is ∆= 0.001. (a) Case C-3DS-M. (b) Case C-3DO-M.
(c) Case H-3DO-M, note the different temperature scale.

3.2. Comparison of base flows for various k
Case C-3DO-S causes only a weak modulation of the streamwise-velocity profiles,
see figure 9. The general wake structure of case C-3DO-L is similar to that of case
C-3DO-M, compare figure 5(b,c), with the former causing stronger deformations (see
figures 7b and 9c, f ) and multiple horseshoe vortices bending around the trailing edge.
However, the streak amplitude and gradients of case C-3DO-L decay faster, the former
dropping below case C-3DO-M at about x = 47. This implies that case C-3DO-M
generates less strong but more stable streaks.

3.3. Atmospheric-flight conditions
The comparison of figure 5(b,d) reveals qualitatively similar structures for cases
C-3DO-M and H-3DO-M. Note that the use of equal λ2-values is justified because
of the kept global Reynolds number and non-dimensional roughness position. (For
constant Re∞, both x = x̃/L̃ and y = ỹ/L̃ are the correct measures for Rex and
δu = δ̃u/L̃, respectively, for incompressible flow.) The additional inner vortex labelled
LIV2, which is visible in the cold cases too, is more pronounced in case H-3DO-M,
however, the remaining vortices are weaker. The recirculation zones in front of and
aft the roughness as well as the inclination angle with respect to the (x–z)-plane
are also smaller. In case C-3DO-M the LMV gets closer to the centre plane z = 0
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FIGURE 9. (a–c) Streamwise base-flow-velocity contours at x = 18. Thin solid lines are
isolines of ub, starting with ub= 0.1 near the wall (∆= 0.1), ending with ub= 0.95. Thick
solid lines with shading indicate vortices and rotation sense shown in figure 5. Dashed
lines show regions of reverse flow ub < 0. (a) Case C-3DO-S. (b) Case C-3DO-M. (c)
Case C-3DO-L. (d–f ) Base-flow temperature distribution in cross-plane at x= 34. Shading
shows the temperature Tb based on the same scaling. Solid lines are isolines of ub as
shown in (a–c). (d) Case C-3DO-S. (e) Case C-3DO-M. ( f ) Case C-3DO-L. Dash-dot
lines represent the sonic line.
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FIGURE 10. (Colour online) (a) ûst (——) and maxima in (y− z)-planes of the absolute
values of ∂ub/∂y (— —), ∂ub/∂z (— · —) and ωx,b (— · · —) along x for cases C-3DO-
M (6) and H-3DO-M (C). (b) as (a) but for cases C-3DO-L (@) and H-3DO-L (E). (c)
maximum (——) and minimum values (— —) of base-flow wall-temperature normalized
by the smooth-wall value along x. Symbols according to (a,b). The vertical line marks
the roughness location xr = 15.

which implies stronger cross-flow. This can also be observed by comparison of the
LMV centres in figure 6(c,e). Another difference becomes obvious in this figure:
the boundary-layer thickness is lower for the cases with radiation-cooled walls
due to the density increase by cooling. Though the basic structure of the vortex
systems appears similar, differences in vortex strength and relative positioning in
the wake of the roughness lead to different spanwise boundary-layer profiles and
temperature footprints downstream, see figures 6 and 8, respectively. The similarity
to a cross-flow-like overturning is only given for the cold case where the high-speed
streak is more pronounced. The same observations hold for the comparison of cases
C-3DO-L and H-3DO-L, see figure 5(c,e). Note that for case H-3DO-L the LIV
extends much further downstream.

In figure 10(a) streak amplitudes are compared along with vorticity ωx,b and
gradients of ub. Whereas the streak amplitude as well as the maximum of vorticity is
smaller for case H-3DO-M, the wall-normal and spanwise gradient of ub are larger.
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FIGURE 11. Lines of generalized inflection points in wall-normal direction within the
boundary layer (— · · —), of sonic speed (Ma= 1) (— · —) and of u+ a= cph (— —)
at x= 24 for (a) case C-3DO-M, cph = 0.88 (from § 4.1: tilt-even mode at ωr = 10) and
(b) case H-3DO-M, cph = 0.9. Thin solid lines are ub-isolines, starting with ub = 0.1 near
the wall (∆= 0.1), ending with ub = 0.95.

Cases C-3DO-L and H-3DO-L exhibit similar streak amplitudes with identical
maximum value at identical streamwise location, see figure 10(b). In figure 10(c)
the spanwise maxima and minima of the wall temperature are plotted along
the streamwise direction. At x = 20, the maximum increase with respect to the
smooth-wall case is approximately 26 % for the hot flow, meaning a temperature
increase of 167K from 644K to 811K. This is a consequence of the radiation-adiabatic
wall condition and demonstrates a significant heat-load increase by the roughness
element at sustained hypersonic flight conditions even without turbulence, cf. Fezer
& Kloker (2003).

3.4. Additional stability relevant flow properties
In flat-plate flow the second-mode instability arises from the occurrence of a near-wall
region in the base flow where the disturbance phase velocity is locally supersonic
(cph > u + a), see, e.g. Mack (1975). In figure 11 the region of supersonic phase
velocity lies between the dashed line and the wall. The lines of Ma= 1 (u= a) and
cph = u+ a almost collapse for the adiabatic case. In the wake of the roughness the
flow has multiple generalized inflection points (GIPs) where strong spanwise gradients
of ub are visible.

The hot-flow case H-3DO-M shows the existence of two GIP lines along the entire
spanwise extent. This is in accordance with the influence of wall cooling at the flat
plate, see, e.g. Mack (1975). At the high-speed streak, case H-3DO-M does not show
an inflection point. The line of cph= u+ a, with cph≈ 0.9 being a typical value for a
second mode, is located significantly above the sonic line, compare case C-3DO-M.

Comparing cases H-3DO-M and H2-3DO-M slight differences can be found (not
shown). The region of supersonic phase velocity above the wall is slightly larger for
the stronger wall cooling. According to the smooth-plate linear stability theory this
would mean that second-mode instabilities are more amplified in case H-3DO-M.

4. Biglobal linear stability analysis
4.1. Identified unstable eigenmodes for k= 0.1

For cases C-3DS-M and C-3DO-M a detailed biglobal linear stability analysis has
been carried out in a cross-plane at x= 24. The results reveal a multitude of unstable
eigenmodes. For the two most unstable eigenmodes of each case, sections of the
stability diagram have been computed by tracking the corresponding eigenvalues in
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FIGURE 12. Modulus of the B-LST perturbation amplitude (shading) at x= 24 normalized
by the maximum of the streamwise-velocity modulus. Case C-3DS-M: (a) streamwise
velocity |û|, and (b) pressure |p̂| for even mode at frequency ωr = 3. Case C-3DO-M:
(c,e) |û| and (d, f ) |p̂| for tilt-even mode at ωr = 5 and 10, respectively. Solid lines
are ub-isolines. Dash-dot lines represent the sonic line. Symbols ⊕ and 	 describe an
approximately opposite phase relation for the modulus maxima located beneath.

the complex plane in terms of varying streamwise location x and frequency ωr. The
investigated parameter space spans the intervals 16.5 6 x 6 40 and 0.5 6 ωr 6 13,
respectively. The base flow changes dramatically with x in the near wake of the
roughness. Therefore, the B-LST assumption of parallel flow may not be applicable,
or its results may be doubtful. Comparing the maximum absolute values of the
spatial gradients of case C-3DO-M in (y–z)-cross-planes along x reveals that within
the examined streamwise range the streamwise gradient is at least one order of
magnitude lower than the wall-normal or spanwise gradient. Thus, starting at x= 24
the investigated eigenmodes are tracked also as far upstream as possible, until
the correlation of the eigenmodes at consecutive streamwise locations becomes
ambiguous.

Representative eigenfunction-amplitude distributions of the most unstable roughness-
wake eigenmodes of cases C-3DS-M and C-3DO-M are shown in figure 12. In
accordance with the phase relation of the dominant amplitude maxima, in case
C-3DS-M the most unstable mode is an even mode (figure 12a,b). The second
most unstable mode is an odd mode (not shown) with a phase shift of about π
between both half-planes z ≷ 0. For case C-3DO-M the most unstable eigenmodes
exhibit a similarity to the even and odd modes of case C-3DS-M, although the
amplitude distributions are tilted. However, the corresponding phase relations of the
eigenfunctions’ maxima reveal their even and odd nature. Therefore, the eigenmodes
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FIGURE 13. Details from the temporal stability diagrams of (a) case C-3DS-M even
mode, (b) case C-3DO-M tilt-even mode and (c) case C-REF for spanwise wavenumber
γr = 5.5. Shading (contour levels are identical for all cases) shows temporal growth rate
ωi. Solid lines represent N-factor isolines with levels shown. Integration started at initial
amplification downstream of the roughness for (a,b) and near the plate’s leading edge
for (c).

of case C-3DO-M shall be also referred to as tilt-even (figure 12c,d) and tilt-odd
mode. Note the existence of non-negligible pressure amplitudes at the wall for the
eigenmodes (figure 12b,d), and that the local maxima are located above the sonic
line, except for ωr = 10 in case C-3DO-M.

4.2. Local and integral growth for k= 0.1
In the following, stability diagrams are discussed that are gained by a procedure
different from classical (monoglobal) LST analysis. Instead of picking the most
unstable eigenvalue from the spectrum at each combination (αr, x), the tracked
biglobal modes are taken, the tracking along αr or/and x started at a reference
combination (αr,ref , xref ), where the modes to be tracked are chosen. Finally, the
results are plotted as ωi = ωi(ωr, x), with the ωr-values being no more equidistant
but approximately proportional to αr. The N-factors are calculated spatially, i.e. as
N =− ∫ αi dx, with αi obtained by Gaster’s relation. For the even mode this method
yields the diagrams shown in figure 13, with the smooth-plate diagram for monoglobal
modes at γr = 5.5 as reference. The tracked biglobal modes are multispectral with
respect to γr and there is no distinguished plane z= const. for these cases. Comparing
the growth rates as well as the N-factor isolines in figure 13, the stronger instability
is clearly for the oblique set-up.

Case C-3DS-M exhibits a similarity to case C-REF in terms of the occurrence of
distinct low- and high-frequency maxima. For case C-3DO-M the distinction between
low- and high-frequency instability mode is less pronounced. For cases C-3DO-M
and C-3DS-M the streamwise range of high-frequency instability is much larger than
for case C-REF. On the smooth plate the low- and high-frequency unstable regions
are related to the first- and second-mode instabilities, respectively. For increasing
Mach number these regions first approach each other and finally, near Ma = 4.8,
merge to one single instability region under adiabatic-wall conditions, compare,
e.g. Mack (2000) and Eissler & Bestek (1996). This merging can be observed
in case C-3DS-M. In the vicinity of the roughness the frequency range of the
second-mode-associated instability region is shifted to lower values. Marxen et al.
(2010) observed a similar behaviour near a two-dimensional roughness. However,
for the latter the shift vanishes downstream the element, the stability properties of
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the smooth-plate flow are recovered. In the wake of a three-dimensional roughness
the flow deformation persists much longer, and the smooth-plate properties are not
recovered within the considered domain.

Compare the tilt-even-mode eigenfunctions of case C-3DO-M in the low- and
high-frequency region in figure 12(c–f ), respectively. In contrast to the former the
latter shows an additional near-wall maximum for streamwise velocity as well
as pressure below the sonic line which is virtually identical with this mode’s
line of u + a = cph, see figure 11(a) 0.2 6 z 6 0.4. With the contraction of
the region of supersonic phase velocity at the high-speed streaks the line of
supersonic phase velocity encloses the near-wall amplitude maxima of the eigenmode.
Furthermore, there is a phase shift between the pressure’s wall maximum and
the shear-layer maximum very much like the wall-normal characteristics of the
second mode on the smooth plate. Based on these properties the B-LST low- and
high-frequency eigenmodes of the roughness wake may henceforth also be referred
to as roughness-wake first- and second-mode instabilities, respectively. Note that
high-frequency eigenmodes with the same properties have been found for case
C-3DS-M with the even mode resembling the varicose mode VC of DeTullio &
Sandham (2015) in a Mach-6 boundary layer which they also associated with the
smooth-plate second- or Mack-mode instability. As observed by these authors the
largest amplification of this mode is shifted to lower frequencies compared to the
smooth-plate second mode.

In general it is found that for cases C-3DS-M and C-3DO-M the even and tilt-even
modes are more amplified than the odd and tilt-odd modes, respectively. However, at
the end of the investigated streamwise domain, the growth rates approach those of
the odd modes being more persistent. This corresponds to the stronger decay of the
wall-normal gradient compared to the spanwise gradient of ub shown in figure 7(a)
with the even and odd modes being associated with the former and latter, respectively.
However, within the investigated streamwise range of the present work the tilt-even
mode of case C-3DO-M gains the largest N-factors. The second mode reaches N =
6.8 for ωr = 10 compared to N = 6.4 for the first mode at ωr = 5. N ≈ 5 has been
found sufficient for transition to turbulence in wind-tunnel experiments under noisy
conditions. The tilt-even mode gains N = 5 at approximately x= 33, corresponding to
180k or 98δu downstream of the roughness centre.

The comparison of original and doubled roughness spacing shows similar amplitude
distributions. However, the spatial growth rates at x= 24 are generally larger for the
smaller spacing, with a 10 % increase for the dominant tilt-even mode. Therefore the
present set-up with λz = 4br is slightly more unstable than the flow with an isolated
element, also due to stronger induced cross-flow, see again figure 7(c).

4.3. Comparison of stability properties for various k at ψr = 45◦

The growth rates of the most amplified modes at x = 24, approximately 50
boundary-layer thicknesses downstream of the element, differ significantly in the cases
shown, see figure 14. For case C-3DO-S the characteristic of αi= αi(ωr) is similar to
that of the corresponding smooth-plate eigenmode which is shown for comparison; the
maximum growth rate for the low-frequency first mode is approximately 30 % larger
at the streamwise location shown. On the other hand it is only 30 % of the maximum
growth rate of case C-3DO-M. Case C-3DO-L shows as expected the strongest growth,
being 50 % larger in maximum than for case C-3DO-M. Contrary to cases C-3DO-S
and C-3DO-M, case C-3DO-L does not exhibit a second local maximum related to
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FIGURE 14. Spatial growth rates αi from B-LST as a function of frequency ωr at
streamwise position x= 24. Case C-3DO-S most amplified low-frequency mode (— · —),
case C-3DO-M tilt-even mode (— —), and case C-3DO-L tilt-even mode (——). Case
C-REF three-dimensional disturbance with spanwise wavenumber γr = 5.9 (— · · —).

the high-frequency second mode. Figure 14(a) reflects the behaviour already described
above: with increasing roughness height the local amplification maxima for low- and
high-frequency modes shift to higher, and lower frequencies, respectively, approach,
and finally merge fully. This fusion of first and second mode can also be seen for case
C-3DO-M somewhat further downstream, see the stability diagram in figure 13(b).
Note that for case C-3DO-L the eigenfunctions corresponding to frequencies beyond
the single amplification maximum exhibit the typical additional near-wall pressure
maximum below the sonic line. Thus, the continuous transition from roughness-wake
first to second mode takes place in the region of the amplification maximum. The
first- and second-mode instability regions have merged inseparably.

The effect of atmospheric-flight conditions on the B-LST results is not shown but
will be discussed based on DNS in § 5.5.

5. Direct numerical simulation of disturbance evolution
5.1. Response to point-source pulsing for k= 0.1

To gain a general overview of the stability and (internal) ‘receptivity’ behaviour of
the investigated flows the steady base flows are exposed to an unsteady disturbance
pulsing, see § 2.2 and figure 2 in particular. The diameter of the disturbance-
source hole is 2R = 0.429. For comparison, the wavelength of the smooth-plate
two-dimensional eigenmode (γr = 0) is λx≈ 1.03 and 0.54 for frequencies ωr = 5 and
10, respectively.

The responses in terms of disturbance amplitudes from temporal Fourier analysis
for the flows of cases C-2D-M, C-3DS-M, C-3DO-M as well as C-REF are shown in
figure 15(a–d). Note that this is not a ‘standard’ N-factor stability diagram since at
each frequency the receptivity of the multitude of excited modes varies and possible
decay of the disturbances along the streamwise direction is also included. Figure 15(a)
shows the neutral line for the sum of superposed eigenmodes in the smooth-plate
flow. N-factors for the sum of modes can be calculated by relating the downstream
amplitudes to the values at the neutral point. Figure 15(a–d) thus show the amplitude
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FIGURE 15. Response of the base flow to point-source pulsing. The pulse consists of
the first 50 harmonics of fundamental frequency ωr,0 = 0.5. Shading: (a–d) amplitude of
streamwise-velocity disturbance u′ gained from temporal Fourier analysis, the neutral line
(— —) connects the streamwise locations of first amplification; (e, f ) the natural logarithm
of u′ normalized by its value at x= 13. Cases: (a) C-REF, (b) C-2D-M, (c,e) C-3DS-M,
and (d, f ) C-3DO-M. The solid vertical lines mark the roughness location xr = 15.
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spectra that would be observed in a respective experimental set-up. The amplitudes
can be scaled to the level of the forcing in the experiment within the regime of modal
growth. Note that larger forcing amplitudes will lead to a decrease in the streamwise
extent of the purely linear flow behaviour. The representation of the results in
figure 15(e, f ) eliminates the influence of receptivity and transient processes in the
flat-plate flow upstream the roughness by normalizing the amplitudes of each excited
frequency by its respective value at x = 13. The shown natural logarithm represents
the N-factor for the sum of modes displaying the influence of the roughness and its
wake only.

Figure 15(a–d) show that regardless of the roughness shape the behaviour resembles
the smooth-plate behaviour up to a short distance upstream of the roughness
(x ≈ 13). Right downstream of the excitation location the disturbance-amplitudes
drop throughout the frequency range before they start to grow again. The drop is
more pronounced for higher frequencies. For some frequencies, in the second-mode
range in particular, the excitation occurs upstream of branch I of the smooth-plate
stability diagram. Downstream of x≈ 13 the response varies with the roughness shape.

The behaviour of case C-2D-M is in accordance with Marxen et al. (2010), see
their figure 17. They found that the two-dimensional roughness acts ‘as a disturbance
amplifier with a limited bandwidth’. The stability properties in its far wake resume
the smooth-plate behaviour. Therefore, the amplification in front of and damping along
the roughness results in an offset with respect to the smooth-plate evolution. Within
the low-frequency region (ωr . 8) the net effect for the disturbances is negligible. For
higher frequencies (8.ωr .13) it results in an amplitude gain, compare the amplitude
levels in figure 15(a,b) right behind the roughness. For frequencies beyond that range
(ωr & 13) the net effect is negative. They are only weakly amplified upstream of the
roughness, and comparably damped strongly along the element.

The spectrum of case C-3DS-M in figure 15(c) shows strong growth for two
frequency intervals related to the roughness-wake first and second mode. The largest
disturbance amplitudes are gained within the low-frequency range for ωr = 3. This
frequency also shows the largest integral amplification, see figure 15(e). Whereas case
C-3DS-M exhibits a response whose shape compares qualitatively to case C-2D-M,
case C-3DO-M shows increased growth, and growth at all throughout the whole
investigated frequency spectrum in agreement with the results of the B-LST analyses.
The amplitude spectrum in figure 15(d) is dominated by frequencies ωr = 3, 6, and
9.5 reaching a similar order of magnitude of approximately 10−3 at the end of the
investigated streamwise range. Due to nonlinear interaction the amplitude of the
mean-flow deformation (ωr = 0) gains 10−4. Figure 15( f ) reveals that the integral
amplification in the near wake is largest for ωr = 9.5 with the lower frequencies
catching up to the end of the streamwise domain.

5.2. Comparison of DNS and B-LST results for k= 0.1
For case C-3DO-M a comparison of B-LST u′- and p′-eigenfunctions for the tilt-even
mode with the corresponding DNS disturbance-amplitude distributions, in general,
shows good agreement. However, an excellent representation of the DNS amplitude is
obtained for a superposition of the tilt-even and tilt-odd B-LST mode, see figure 16.
The relative weights of tilt-even and tilt-odd mode are 0.615 and 0.385 for ωr = 5,
and 0.69 and 0.31 for ωr = 10, respectively.

Though the single-frequency DNS signal extracted by temporal Fourier analysis
obviously contains more than the dominant eigenmode at non-negligible amplitude,
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FIGURE 16. Comparison of normalized disturbance-amplitude distributions from DNS
(shading) and B-LST (thick solid lines) at x = 24 for case C-3DO-M. (a) u′ and (b) p′
yielded by superposition of tilt-even (relative weight 60 %) and tilt-odd (40 %) mode with
phase shift adapted to DNS signal for ωr = 5. (c) u′ and (d) p′ yielded by superposition
of tilt-even (69 %) and tilt-odd (31 %) mode for ωr = 10. Thin solid lines are isolines of
ub, starting with ub = 0.1 near the wall (∆= 0.1), ending with ub = 0.95.
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FIGURE 17. Comparison of amplitude growth of streamwise-velocity disturbance u′ from
DNS (lines) and B-LST (symbols) for case C-3DO-M. Blank and filled symbols show the
B-LST results for tilt-even and tilt-odd mode, respectively. Frequencies ωr = 5 (——,@),
amplitudes from B-LST and DNS matched at x= 24, and ωr = 10 (— —,6), amplitudes
matched at x= 30.

the comparison of dominant B-LST eigenmode growth and DNS disturbance evolution
in figure 17 shows excellent agreement downstream of x≈ 22 for the low frequency.
Up to this location the wavy characteristic implies a transient-growth behaviour, where
the true amplitude of the dominant low-frequency disturbance is masked by damped
modes of identical frequency and similar amplitude values. The high frequency shows
a comparable beating within the same region. A similar scenario has been observed by
Marxen et al. (2010) downstream of a two-dimensional roughness. They showed that
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the beating is due to a superposition of the dominating eigenmode and an additional
stable mode generated by the roughness itself. The additional modes involved in the
present case could be extracted by applying a multimode decomposition, see, e.g.
Tumin (2007). However, here the transient behaviour is limited to a short streamwise
extent downstream the roughness, and a detailed investigation of the transient growth
in the roughness wake has been set aside.

In contrast to the low frequency, a weak beating with a large streamwise wavelength
can be observed downstream of the region of transient growth. Its wavelength cannot
be extracted from the DNS disturbance evolution since only one nodal point of the
beating is found within the simulated domain at x ≈ 30. Assuming that tilt even
and tilt-odd mode are the dominant waves of this beating the resulting streamwise
wavelength can be estimated to λbeat = 2π/|αr,even − αr,odd|& 70 which is larger than
the computational domain.

The amplitudes of B-LST and DNS for ωr = 10 in figure 17 have been matched at
the streamwise location of the beating’s nodal point. However, the amplitude growth
is underpredicted by B-LST within the largest part of the shown streamwise extent.
In this case the linear superposition of even and odd modes with similar amplitudes
results in a disturbance growth faster than the growth of the most unstable mode itself,
at least locally. A similar phenomenon has been observed by DeTullio et al. (2013)
in a Mach-2.5 boundary-layer flow altered by an isolated roughness. Nevertheless,
B-LST and DNS show a larger integral growth for the roughness-wake second-mode
disturbance, N = 5.7 for ωr = 10 instead of N = 4.6 for ωr = 5 in 22 6 x 6 40.

5.3. Influence of skewing angle for k= 0.1
Figure 18(a) shows that the wake is dominated by low-frequency first-mode
disturbances for case C-3DS-M as well as C-3DO-M which is only due to their larger
amplitudes in front of the roughness, and the transient-growth behaviour in its near
wake. Figure 18(b) reveals that the strong amplitude gain by the transient-growth
behaviour is limited to the low-frequency range, see also figure 15(e, f ). Case
C-3DO-M shows larger local and integral growth up to the end of the domain,
with the second-mode disturbances exhibiting larger growth rates than the first-mode
ones (for x> 30) in a much larger streamwise range, see again figure 15( f ). At about
x= 43 the second-mode growth rate decreases below the first mode’s, but, contrary to
case C-3DS-M, is still positive up to the end of the streamwise domain. The above
observations are in accordance with the results from the B-LST analysis.

On a closer look the amplitude growth of frequency ωr = 6 in figure 18(a) shows
a slight kink at x ≈ 52 for case C-3DO-M. It is even more pronounced for ωr = 5
(not shown). This sudden increase in the growth rate can be associated with a change
in the mode dominance from the tilt-even to the tilt-odd mode. A superposition of
both modes, as it has already been done in § 5.2, shows that for ωr = 5 the ratio of
even- and odd-mode amplitude is approximately 3:1 at x = 35.3, then drops to 1:1
at x= 46 and further to 2:3 at x≈ 51.7 where the conversion becomes visible in the
amplitude evolution. The change of the dominant mode from tilt even to odd has also
been predicted by B-LST showing larger growth for the tilt-odd mode downstream
of x ≈ 34, and is in accordance with the results of Choudhari et al. (2012) who
found a similar behaviour in the wake of a diamond-shaped roughness in a Mach-
3.5 boundary layer. Additionally, there may be an energy transfer between even and
odd mode which exhibit similar phase velocities of cph = 0.88 and 0.86 at x = 24,
respectively, and a maximum difference of 3 % throughout the domain investigated by
B-LST, 16.5 6 x 6 40.
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FIGURE 18. (a) Amplitude growth of streamwise-velocity disturbance u′. (b) Natural
logarithm of the u′-amplitude normalized by its value at x = 13 for the vicinity of the
roughness. Cases: C-3DS-M@ for ωr= 3 (——), ωr= 10 (— —); C-3DO-M6 for ωr= 6
(——), ωr= 9.5 (— —), ωr= 1.5 (— · —). The vertical lines mark the roughness location
xr = 15.

Based on figures 15 and 18 it becomes clear that for identical disturbance excitation
the stronger growth in the wake of the obliquely placed roughness causes earlier
transition than in the symmetric set-up. The two cases compared yield the same
roughness Reynolds numbers for every criterion, see again table 4. However, the
orientation of roughness elements with high ratios of spanwise width and streamwise
length induce significant cross-flow in the wake, and thus palpably influences the
transition location in the important subcritical regime in hypersonic flow.

5.4. Various roughness heights k for ψr = 45◦

To investigate the influence of the roughness height on the flow stability properties
the base flows of cases C-3DO-S, C-3DO-M and C-3DO-L are exposed to the
point-source pulsing. The respective response is shown in figure 19. The characteristic
of case C-3DO-S is virtually similar to that of the smooth-plate flow of case
C-REF. DeTullio et al. (2013) and DeTullio & Sandham (2015) also found their
small-roughness set-ups with Rekk = 169 at Ma∞ = 2.5 and Rekk = 60 at Ma∞ = 6,
respectively, to only slightly alter the stability properties of the flat-plate flow. As we
do, they also conclude that in these cases transition to turbulence is most likely not
driven by the isolated roughness.

The response of cases C-3DO-L, see figure 19(d), differs more strongly from
the smooth-plate result than case C-3DO-M. The spectrum of unstable frequencies
extends to higher values. But whereas for case C-3DO-M there are still distinct
frequency ranges that can be assigned to first and second modes with the limit
being at about ωr = 9, such a clear distinction is lost in case C-3DO-L showing a
broad-band response which again is in accordance with the findings from the B-LST.
It is also evident that the flow of case C-3DO-L exhibits the strongest disturbance
growth with the mean-flow distortion (ωr = 0) reaching values greater than 10 % at
the end of the computational domain where the flow becomes transitional.

The vicinity of the roughness again is dominated by low-frequency disturbances, see
figure 20(a). They benefit from a higher amplitude level in front of the roughness and
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FIGURE 19. Response of the base flow to point-source pulsing with harmonics 16 h6 50
of fundamental frequency ωr,0 = 0.5. u′-amplitude (shading) over x and ωr from temporal
Fourier analysis. (a) case C-REF, (b) case C-3DO-S, (c) case C-3DO-M, (d) case C-3DO-
L, (e) case H-3DO-M, ( f ) case H-3DO-L. The vertical lines mark the roughness location
xr = 15.

the amplitude boost due to the transient-growth behaviour which is more pronounced
for case C-3DO-L. For the latter the u′-amplitude increases by a factor of three within
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FIGURE 20. (a) Amplitude growth of streamwise-velocity disturbance u′ for case C-3DO-
M: symbol (6), frequencies ωr = 2 (— —), ωr = 6 (——), and ωr = 0 (· · · · · ·); case C-
3DO-L: symbol (A), ωr = 2 (— —), ωr = 7 (——) and ωr = 0 (· · · · · ·). (b) Maxima of
the spanwise mean value of wb in (y–z)-cross-planes for cases C-3DO-M (——), C-3DO-
L (— —), H-3DO-M (— · —) and H-3DO-L (— · · —). The vertical lines mark the
roughness location xr = 15.

1x= 0.5= 4k whereas in case C-3DO-M it increases by a factor of 2 within the same
streamwise range.

Within the following region of exponential growth higher frequencies show larger
amplification rates, and, thus, earlier reach transition-relevant amplitude levels. For
case C-3DO-M, ωr = 6 exhibits the highest amplitude at the end of the computational
domain, see figure 20(a). Whereas the disturbances of case C-3DO-M still behave
linearly at x = 53.7 reaching an N-factor of approximately 9 with respect to the
value at x = 13, for case C-3DO-L the frequency ωr = 7 gains N = 10 already at
about x = 40.3 and goes into nonlinear saturation at x ≈ 44.5 with a u′-amplitude
of approximately 2 %. Starting from lower amplitude levels frequencies 7 < ωr 6 11
show even larger integral growth for 13 6 x 6 40. ωr = 10.5 reaches N = 10 first at
x= 38.5.

The strong kink in the disturbance-amplitude evolution for ωr = 2 at about x= 38.5
is a direct consequence of the nonlinear generation of very-low-frequency modes
including a three-dimensional mean-flow distortion, see also figure 19(d), that both
drive the amplitudes of disturbances with higher frequencies within the low-frequency
band. (We found a strongly similar behaviour for subsonic flow cases without
roughness with a broad initial disturbance spectrum.) From this location on, nonlinear
generation dominates the amplitude growth of low frequencies. Downstream of a
kink the maxima of the disturbance-amplitude distribution virtually collapse with the
extrema of the mean-flow distortion. Toward the end of the computational domain
the flow of case C-3DO-L becomes transitional with the whole frequency spectrum
reaching amplitudes larger than 1 %, see figure 19(d).

5.5. Effect of atmospheric-flight conditions
The point-source pulsing is also applied to the hot-flow cases. The response is shown
in figure 19(e, f ) for cases H-3DO-M and H-3DO-L, respectively. The fundamental

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.563


Skewed roughness in a high-speed boundary layer 289

10–4

10–5

10–6

10–7

10–1

10–2

10–3

 0.1

 0

0.2

 0.3

0.4

 0.5

 0.1

 0

0.2

 0.3

0.4

 0.5

0–0.4–0.8 0.4 0.8 1.2–1.2

0–0.4–0.8 0.4 0.8 1.2–1.2

3010 20 40 50
x

z

0.45 0.65 0.85

0.45 0.65 0.85

(a) (b)

(c)

M
ax

. a
m

pl
itu

de

y

y

FIGURE 21. (a) Amplitude growth of streamwise-velocity disturbance u′ for case C-3DO-
L (@), frequencies ωr = 2 (— —), ωr = 7 (——) and case H-3DO-L (E), ωr = 1.5 (—
—), ωr = 4.5 (——). Base-flow distortion is given by ωr = 0 (· · · · · ·). The vertical line
marks the roughness location xr = 15. Normalized DNS disturbance-amplitude distribution
(shading) of u′ at x=36 for (a) case C-3DO-L at ωr=7 and (b) case H-3DO-L at ωr=4.5.
Thin solid lines are isolines of ub, starting with ub = 0.1 near the wall (∆= 0.1), ending
with ub = 0.95.

frequency ωr,0 = 0.5 corresponds to a dimensional value of ω̃r,0/(2π) = 6.73 kHz
instead of 4.55 kHz for the cold-flow conditions. Though for cold- and hot-flow cases
the amplitudes drop to comparable levels right downstream of the excitation location
due to receptivity properties, the disturbance growth of the hot-flow case is weaker
upstream the roughness. The first-mode amplification is strongly reduced due to wall
cooling, whereas the second mode is shifted to higher frequencies due to the reduced
boundary-layer thickness. Thus, the frequency gap between amplified first and second
mode is much larger for the hot flow.

Based on figure 19 it can be observed that, in general, the amplitude growth is
weaker for the hot cases comprising smaller bands of amplified frequencies, at least
in the near wake of the roughness, which implies a similarity to the smooth-plate
behaviour described above. The less pronounced instability of the hot-flow cases may
also be attributed to the slightly lower streak amplitude, see figure 10(a), whereas
wall-normal and spanwise gradients of the streamwise base-flow velocity obviously
are even larger for the hot-flow cases. The final amplitude levels of cases C-3DO-M
and H-3DO-L are comparable, the latter having the broader frequency band. Note that
these cases also show a comparable cross-flow magnitude, see figure 20(b).

Thus, it becomes clear that case C-3DO-L is the most critical in terms of earlier
transition. Compared to case H-3DO-L, the frequency band fills up earlier and more
evenly to nonlinear amplitude levels. In case H-3DO-L the gap between first and
second modes is still visible when the nonlinear generation of the base-flow distortion
(ωr = 0) starts at x≈ 42.

Nevertheless, the amplitude development of the most amplified frequencies in the
near wake and the far wake, respectively, in figure 21(a) reveals an interesting fact:
compared to the cases with Rekk = 434, where the amplitude growth is stronger in
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general for the cold flow, here growth rates are at comparable levels for distinct
frequencies. The growth rates of ωr = 7 in case C-3DO-L and ωr = 4.5 in case
H-3DO-L are virtually identical within 25 . x . 35. In the near-wake the first-mode
low-frequency disturbance is even more amplified in case H-3DO-L. However, the
respective high-frequency but also first-mode disturbances are again dominant towards
the end of the computational domain with case C-3DO-L reaching the nonlinear
amplitude levels earlier than case H-3DO-L. The overall integral growth in terms of
an N-factor for the sum of modes with respect to the amplitude at x = 13 shows
N = 10 at x = 40.3 for ωr = 7 in case C-3DO-L, as already mentioned above. This
corresponds to 138δu at xr = 15. In case H-3DO-L frequency ωr = 4.5 exhibits
N = 10 at approximately x = 43.8 or 229δu. The similar stability behaviour of cases
C-3DO-L and H-3DO-L for distinct frequencies may be attributed to the similar
streak amplitude, see figure 10(b). On the other hand, wall-normal and spanwise
gradients of the streamwise base-flow velocity are larger and the cross-flow is weaker
in case H-3DO-L.

Though growth rates of the most amplified disturbance frequencies are comparable
for cases H-3DO-L and C-3DO-L, the mean-flow distortion growth is weaker in the
hot flow, see again figure 21(a). This likely is due to the less pronounced mode
interaction since the amplitude levels of the involved frequencies are less evenly
distributed within the spectrum. Figure 21(b,c) compare the amplitude distributions
of the integrally most amplified high-frequency first-mode disturbances. As can be
expected from the differences in the base flows their shape is quite different.

The above observations oppose the transition criteria of Bernardini et al. (2012) and
Bernardini et al. (2014) which, at identical values of Rekk, evaluate the hot-flow cases
with wall cooling as more critical, see table 4. The present results reproduce the trend
given by the criterion of Redford et al. (2010) showing stabilization by wall cooling.
Nevertheless, the criteria of Bernardini et al. (2012) and Bernardini et al. (2014) still
might hold for symmetric roughness configurations. In the asymmetric cases compared
here, the respective hot flows show lower cross-flow magnitudes at identical Rekk, see
again figure 20(b).

The differences in disturbance evolution are small comparing cases H-3DO-M and
H2-3DO-M. For the respective emissivities ε = 0.8 and 0.6 of the radiation adiabatic
wall the smooth-wall temperature at xr= 15 differs by approximately 5 %, see table 2.
Nevertheless, the trend that can be observed in the comparison of roughness-wake first-
and second-mode disturbance growth in figure 22 resembles the well-known behaviour
of the smooth-wall flow. Wall cooling stabilizes the first-mode instabilities (figure 22a),
and destabilizes the second-mode ones (figure 22b). Though, here, the destabilization
of the second mode must be accounted to a larger streamwise range of amplification
at virtually identical maximum growth rates.

DeTullio & Sandham (2015) observed a different behaviour for their second-mode-
like instability (mode VC) based on a wall-temperature reduction from the adiabatic
value to 50 % of it. This change showed only small influence on the low-frequency
first-mode instabilities in the wake of the square-box roughness, but showed a
reduction of 33 % for the maximum growth rate of the wake mode VC. Note that
DeTullio & Sandham (2015) adapted their global simulation Reynolds number to
yield the identical Rekk instead of reducing the roughness height. The impact of the
rather strong change in the thermal boundary condition on the base flow is not shown
by the authors.
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FIGURE 22. Natural logarithm of the u′-amplitude normalized by its value at x= 13 for
cases H-3DO-M (C) and H2-3DO-M (A) for frequencies (a) ωr=1 (— —), ωr=2.5 (——)
and (b) ωr= 12 (——) and ωr= 13 (— · —). Note the different scales. The vertical lines
mark the roughness location xr = 15.

5.6. Nonlinear disturbance evolution in the transitional flow regime for case
C-3DO-M

To gain a better understanding of the transition onset downstream of the obliquely
placed roughness of case C-3DO-M the frequency content of the pulsing is reduced
to a biharmonic point-source excitation involving ωr = 5 and 10. According to the
above analysis these represent a first-mode and a second-mode instability, respectively.
The excitation amplitude is increased to (ρv)′max,h = 10−4 for each frequency in order
to make sure that on one hand the disturbance evolution starts within the linear
regime and on the other hand transition occurs within the investigated computational
domain. Phase shifts θh are again set to zero. The chosen numerical resolution for
the simulation yields worst-case values of (1x+, 1y+min, 1z+) ≈ (4.4, 0.55, 2.2) in
the turbulent region at the end of the computational domain which are comparable
to the resolution chosen for the breakdown scenario in DeTullio & Sandham (2015).
The following results are based on a temporal Fourier analysis with a fundamental
frequency of ωr,0 = 2.5. Thus, ωr = 5 and 10 correspond to harmonics h = 2 and
4, respectively, and the first subharmonic of the lower excitation frequency can be
resolved.

According to the comparison of the u′-amplitude evolution along x for the excitation
with (ρv)′max,h = 10−4 and that of the linear analysis above with 10−7 scaled with the
missing factor of 103 in figure 23(a), the streamwise amplitude growth is virtually
identical for both excited frequencies up to about x = 33. At x = 32.7 the three-
dimensional mean-flow deformation reaches a u′-amplitude of 0.5 %, see figure 24.
The following deviation from the purely linear behaviour of the disturbance growth
involving nonlinear interaction results in saturation of the amplitudes at levels larger
than 10 %.

Figure 24(a) shows the response to the disturbance excitation for the complete
frequency spectrum in terms of u′-amplitude. The start of the nonlinear generation
of the (three-dimensional) mean-flow deformation (ωr = 0) at approximately x ≈ 21
is visible in the Fourier data by a sudden increase in growth rate. Near this location
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FIGURE 23. Case C-3DO-M: (a) comparison of streamwise-velocity disturbance
amplitudes u′ for excitation amplitudes (ρv)′max,h = 10−4 (lines) and 10−7 (symbols),
respectively, for ωr = 5 (——), (6) and ωr = 10 (— —), (@) and ωr = 0 (— · —).
The data for (ρv)′max,h = 10−7 have been scaled with 103. The vertical lines mark the
roughness location xr= 15. (b) Phase velocities from B-LST for the dominant eigenmodes.
Tilt-even mode (——) and tilt-odd mode (— · —) at ωr = 5, and tilt-even mode (— —)
and tilt-odd mode (— · · —) at ωr = 10.
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FIGURE 24. Case C-3DO-M: (a) amplitude spectrum for streamwise-velocity disturbance
u′ for the biharmonic point source with amplitude 10−4, gained from temporal Fourier
analysis. (b) u′-amplitude growth for ωr = 5 (——), ωr = 10 (— —) and mean-flow
deformation ωr = 0 (— · —). Additionally, even (— —) and odd harmonics (· · ·) of
fundamental frequency ωr,0=2.5 are shown. The vertical lines mark the roughness location
xr = 15.

the amplitude of ωr = 5 exceeds 10−3. Starting from lower amplitude levels but
experiencing virtually identical amplification, the generation of even harmonics of
ωr,0 = 2.5 which are the harmonics of the excited frequencies, can be observed in
figure 24(b). Their amplitude levels at a distinct streamwise location x are staggered
by increasing frequency due to the successive generation of higher harmonics. Shortly
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FIGURE 25. (Colour online) Case C-3DO-M snap-shot visualization: perspective view of
vortex structures by means of the λ2-criterion (λ2=−0.07). Shading indicates wall-normal
distance y.

downstream of x= 39.5, where the mean-flow deformation reaches a u′-amplitude of
approximately 10 %, all even harmonics run into saturation. At x≈ 35, the mean-flow
deformation reaches the amplitude level of ωr= 10 and lowers the growth of the latter
compared to its exponential growth behaviour in figure 23(a); slightly downstream the
low-frequency mode gets an amplitude boost, indicating an enhanced energy transfer
from the distorted mean flow. The flow eventually reaches a transitional state, and
generation of odd harmonics is initiated which gain comparable amplitude levels at
the end of the computational domain.

Figures 25 and 26(a,b) show a snap-shot of the flow in terms of vortex structures
visualized by means of the λ2-criterion, and figure 26(c,d) the pressure at the
wall and the skin friction coefficient. The longitudinal vortex system originating
at the roughness and its decay in the wake are visible as well as the first unsteady
disturbances at the leading-edge main vortex at approximately x = 24. Figure 26(b)
clearly shows localized vortex structures in the direct line of the steady wake vortex,
27.5 6 x 6 36, with a large wavelength indicating the effect of the low-frequency
mode, cf. figure 16(a), most near-wall structure. See also figure 27 for details. For
x > 30 the high-frequency mode is visible above with half the wavelength. Looking
at figure 16(a,c) for the respective eigenmode shapes it becomes clear that there must
be constructive and destructive interference for the far-wall and near-wall structure of
the two frequencies, respectively, visible in figure 26(a,b), supported by a nonlinear
coupling. With the disturbances reaching amplitudes of roughly 5 % near x = 36
subsequent interaction of induced vortical structures can be observed. For 386 x6 45
the low-frequency disturbances with their larger wavelength dominate again, see
figure 26(a). Downstream of approximately x = 45 the start of their breakdown to
increasingly smaller scales and the formation of a turbulent wedge is evident. The
lift-up of the vortices, and the sudden increase in boundary-layer thickness coinciding
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FIGURE 26. (Colour online) Case C-3DO-M snap-shot visualization: (a) top view and
(b) side view of vortex structures by means of the λ2-criterion (λ2 = −0.07). Shading
indicates (a) wall-normal distance y and (b) velocity u. (c) pressure at the wall pw. (d)
Skin friction coefficient cf based on velocity u. Note that axes are not to scale.
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FIGURE 27. (Colour online) Details of figure 26(a,b) with shading for identical quantities
at identical levels. Note that for (b) axes are not to scale.

with the breakdown of the large vortex structures can be observed. Note that the
evolution of the disturbance structures takes place off centre since it is bound to
the spanwise position of the dominant low-speed streak. The finest structures can
be found on top of the latter. In terms of spanwise location the earliest onset of
fluctuation growth is found near z = 0.05 where the superposition of the dominant
eigenmodes of the involved frequencies exhibit a local maximum in their amplitude
distribution.
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FIGURE 28. Case C-3DO-M: (a) local skin friction coefficient cf with respect to 〈u〉.
Spanwise averaging for −1.6 6 z < 1.6 (— —) and 0.05 6 z 6 0.3 (——); laminar
smooth-plate solution (— · —) and values for turbulent flow (— · · —). (b) Maximum
over y and z of tke (— —) and volume integral of Itke(x) (——). (c) Van Driest
transformed u-profile normalized by wall shear velocity u+vD at x= 53. Spanwise averaging
as in (a); u+= y+ (— · —), u+= 0.38−1 ln y++ 4.1 (— · · —), and results for a turbulent
Mach-4.5 flat-plate flow from Jiang et al. (2006), symbols (@).

In between the evolving turbulent wedges, occurring periodically in spanwise
direction, an oblique near-wall wave pattern can be observed which makes the
turbulent wedge look fishbone-like in the top view of the vortex structures, see
again figure 26(a). The propagation direction of these waves with respect to the
z-direction differs dependent on the half-plane (z ≷ 0) they are moving in. Near the
spanwise boundaries of the computational domain, where periodicity is prescribed, the
waves from both half-planes interfere. From the pressure distribution at the wall in
figure 26(c) the streamwise and spanwise wavenumbers can be measured to αr ≈ 9.6
and γr ≈ 4.9. Based on an estimation for the phase velocity from the LST results
for the corresponding smooth-plate flow, cph ≈ 0.92 for γr ≈ 5.5, the frequency of
these waves is approximately ωr = 8.8. Since the flow outside the direct wake is
still smooth-plate like, the observed waves are three-dimensional smooth-wall oblique
second-mode instabilities excited by the high-frequency roughness-wake mode, cf.
figure 13(c).

For the following analysis the flow data have been averaged over 18 time periods
of the lower disturbance excitation frequency ωr = 5. The doubling of the number of
periods for averaging yields the same results. The mean values of time are marked
with φ. The spanwise averaging has been restricted to the range with turbulent
appearance 0.05 6 z 6 0.3 at the end of the computational domain. For comparison
the spanwise average for the complete domain is shown.

In figure 28(a) the strong increase of the mean skin friction coefficient cf , which
commonly is used to signal the onset of transition, starts at approximately x = 40.5.
It correlates well to the streamwise region where the disturbance amplitudes of the
excited frequencies reach their saturation level, compare figure 24(b). The same holds
for the maximum of the turbulent kinetic energy tke=0.5(u′2+v′2+w′2) in streamwise
cross-planes, see figure 28(b). The volume integral Itke(x) =

∫ x
x1

∫ y2

y1

∫ z2

z1
(tke) dζ dη dξ

starts to deviate from the exponential growth behaviour upstream. Downstream, cf
shows the overshoot typical for the transitional regime and afterwards oscillates around
the skin friction relation for a compressible turbulent flat-plate boundary layer as given
by White (2006), equation 7-132. The oscillation is likely due to the intermittent state
of the turbulence in this still transitional region. The rise in cf is moderate for the
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FIGURE 29. Case C-3DO-M: (a) perspective view of time-averaged turbulent kinetic
energy by means of an isosurface at tke= 0.003 with isolines of time-averaged streamwise
velocity u in cross-planes at x = 38.2 and 42.4 are shown, starting with u = 0 at the
wall (∆ = 0.1), ending with u = 0.95. Note that axes are not to scale. Circles indicate
starting points of turbulent spreading. Coordinates of point 1 (x, y, z)= (38.2, 0.32, 0.30)
with u= 0.78. Point 2 (41.1, 0.15, 0.04) with u= 0.85. Point 3 (42.4, 0.09,−0.10) with
u= 0.88. (b) Pressure at the wall comparing DNS (shading) and the reconstruction based
on the four dominant B-LST eigenmodes (solid lines).

complete-domain spanwise averages due to the large fraction of laminar flow. The
offset with respect to the laminar smooth-plate solution that is evident within the fully
laminar region of the flow for 18 < x < 40 results from the base-flow high-speed
streaks caused by the trailing vortices.

As mentioned above the onset of transition is commonly detected based on a strong
increase of the skin friction coefficient cf . Actually, transition does not start at the
wall but above with the distance depending on Mach number as described in Fischer
(1972). This phenomenon has been called ‘precursor transition’ by Pruett & Zang
(1992). For high Mach numbers the point where turbulence is initiated is located near
the boundary-layer edge. It roughly coincides with the so-called critical layer cph= ub,
where responsible instability modes exhibit amplitude maxima. From its ‘starting
point’ the turbulence spreads in wall-normal and spanwise directions forming the
turbulent wedge. The initial formation of such a wedge can be seen in figure 29(a)
showing an isosurface of time-averaged tke. Figure 28(b) shows the streamwise
evolution of the tke in terms of its specific maximum value occurring in streamwise
cross-planes as well as its integral value. Both show exponential growth downstream
of the roughness up to the location where the breakdown starts. Interestingly, the
isosurface of tke shows several streamwise starting points at various spanwise and
wall-normal locations. All these points are located near the local boundary-layer
edge. The most upstream of these points can be found where the low-speed streak
shows its maximum wall-normal extent in the corresponding (y–z)-cross-plane. This
region correlates to the locations of the local maxima in the disturbance-amplitude
distributions of the excited frequencies. As already mentioned above, the region where
the finest vortex structures can be observed lies directly downstream. For the marked
points in figure 29(a) u roughly differs between 0.78 and 0.88 and, thus, is close to
the phase velocities of the involved eigenmodes showing 0.8756 cph 6 0.90 at x= 38,
see figure 23(b).

Fischer (1972), investigating turbulent wedges formed behind isolated roughness
specks, found that the spreading angle towards the wall ‘seems to remain essentially
invariant with Mach number’. DNS results from Pruett & Zang (1992) for axisymmet-
ric boundary layers at Ma = 4.5 and 6.8, and Sivasubramanian & Fasel (2015) for
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FIGURE 30. Perspective views of the vortex structures by means of isosurfaces of λ2 =
−0.05 for 32 6 x 6 35.5 from (a) DNS and (b) the reconstruction based on the four
dominant B-LST eigenmodes. The shading indicates the wall-normal coordinate y.

Ma= 6 support this finding. The spanwise spreading angle on the other hand strongly
decreases with Mach number. In the present case both spreading angles were evaluated
based on the isosurface of time-averaged tke shown in figure 29(a). The spanwise
angles with respect to the x-axis differ at both sides showing about 3.5◦ in negative
and 2.4◦ in positive z-direction. Since only the initial formation of the turbulent
wedge is observed these values surely are subject to inaccuracy. Nevertheless, they
quite well correspond to the trend given in Fischer (1972), with a spreading angle
between approximately 2.6◦ and 4◦. A similar estimation for the spreading angle in
wall-normal direction starting from point 1 in figure 29(a) yields an angle of about 1◦.
This value agrees with the findings of Pruett & Zang (1992), 1◦ for the axisymmetric
Mach-4.5 case, as well as the approximate value of about 0.6◦ given by Fischer
(1972). Hence, the turbulent-wedge evolution in the streak-induced breakdown with a
roughness element is similar to the breakdown without discrete roughness, where the
oblique-type breakdown with self-induced streaks typically plays a dominant role.

Figure 28(c) shows the van Driest transformed velocity profiles at the end of the
computational domain. The transformation has been carried out according to White
(2006), equation 7-107. The change towards the turbulent profile becomes evident
though it is not yet fully developed, particularly to be seen near the boundary-layer
edge. The inner layer appears to be developed up to y+ = 50 which corresponds to
y≈ 0.2. For a fully developed turbulent boundary layer the log-law u+vD≈ c−1

1 ln y++ c2
holds within the inner layer. White (2006) proposes c1 ≈ 0.41 and c2 ≈ 5. For the
results shown in figure 28(c) the agreement is better for the values c1 ≈ 0.38 and
c2 ≈ 4.1 found by Österlund et al. (2000). This is in agreement with Jiang et al.
(2006), who investigated a turbulent Mach-4.5 flat-plate boundary layer, and Stolz &
Adams (2003).

Encouraged by the very good agreement between the amplitude distributions from
DNS and B-LST, the three-dimensional disturbance evolution of the present case is
reconstructed based on the B-LST results from § 4 and information about amplitudes
and phase shifts of the involved modes from DNS. For both excited frequencies
only the tilt-even and tilt-odd mode are taken into account. The comparison of the
resulting vortex structures and pressure distribution at the wall are shown in figures 30
and 29(b), respectively. The general agreement between DNS and B-LST is very
good. Non-parallel effects, see Bonfigli & Kloker (2007) for a three-dimensional
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incompressible boundary layer with cross-flow vortices, play a minor role for
the present B-LST analysis of the flow with streaks having eventually vanishing
streamwise vorticity.

6. Conclusions

The linear and nonlinear disturbance evolution in a Mach-4.8 flat-plate laminar
boundary-layer flow altered by skewed three-dimensional roughness elements has been
investigated applying biglobal linear stability theory and direct numerical simulation.
A persistent low-speed streak is generated in the wake of the element with the streak
amplitude being 40 % larger than for the respective non-skewed element at identical
Rekk= 434. The dominant vortex causing the streak originates at the leading edge and
generates a cross-flow-vortex-like streamwise-velocity distribution in the cross-planes.
Though roughness Reynolds numbers of up to Rekk = 990 have been investigated
global instability has not been observed, in accordance with the simulations of
DeTullio et al. (2013) for a symmetric roughness. Within the subsonic regime it
occurs for Rekk & 600, see, e.g. Kurz & Kloker (2016).

Biglobal linear stability analyses show that, compared to the symmetric case, the
oblique set-up leads to a more pronounced instability due to the cross-flow induced
by the roughness itself. In general, multiple unstable eigenmodes are identified.
The two most unstable modes can be assigned to the classification even (varicose)
and odd (sinuous) though their shape is tilted. Dependent on their frequency the
roughness-wake modes exhibit first- and second-mode characteristics of smooth-plate
flow; the second-mode type can be associated with a region of supersonic phase
velocity. DeTullio & Sandham (2015) also correlate their varicose mode VC to the
flat-plate second mode.

The even and tilt even modes exhibit the larger amplification in the near wake of
the symmetric and oblique roughness elements, respectively. However, the growth rates
of the respective odd modes are more persistent downstream. This implies that they
become dominant in the far wake. The unstable regions of the first and second modes
in the stability diagram converge and merge with increasing roughness height.

In the near wake the growth rates are a function of the spanwise spacing of the
periodically placed, skewed roughness elements due to the induced mean cross-flow
which is stronger for a closer spacing.

The results from DNS and B-LST agree well, i.e. no strong sensitivity with respect
to the base-flow representation in the B-LST is found like for a three-dimensional
base flow, see Bonfigli & Kloker (2007). The DNS of the response to a point-source
pulsing, excited near the leading edge of the flat plate, confirms the dominance
of the tilt-even mode. The growth rates agree well downstream of a region of
transient growth. The latter has not been found relevant for transition in any of the
cases investigated here. Excellent agreement of B-LST and DNS is achieved by a
superposition of the two most amplified B-LST eigenmodes at similar amplitudes.
The tilt-odd mode gains in influence in downstream direction as predicted by B-LST.

For Rekk = 434 the disturbance growth in the wake of the symmetric roughness
is dominated by first-mode instabilities, whereas the second mode becomes equally
important for the oblique set-up.

The nonlinear disturbance evolution has been studied based on a bifrequent
point source. The disturbance amplitude has been chosen to initiate turbulence
approximately 130 boundary-layer thicknesses downstream of the element, where
biglobal stability theory predicts an N-factor of approximately 7. The breakup of
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coarse vortex structures into finer ones starts at the top of the low-speed streak. In
between the turbulent wedges developing periodically in spanwise direction, obliquely
running second-mode waves can be identified. The three-dimensional flow field can
be reconstructed with high quality based on the B-LST eigenfunctions and growth
rates before saturation.

DNS results for Rekk = 990 show the largest amplitude growth with a broadening
spectrum of more evenly amplified frequencies which corresponds to the B-LST
results of merging roughness-wake first- and second-mode region. Nonlinear
generation of very-low-frequency modes including a three-dimensional mean-flow
distortion is observed, both drive the amplitudes of disturbances with higher
frequencies within the low-frequency band as known from subsonic flow with a
broad disturbance background.

The comparison of the flow behaviour under cold adiabatic wind-tunnel and
hot atmospheric-flight conditions with cooled wall at identical roughness Reynolds
number Rekk reveals strong differences in the steady base flow. The longitudinal
vortices in the roughness wake differ in strength and position with respect to each
other affecting the streak formation. The hot-flow cases are less critical in terms
of causing premature transition despite the transition criteria derived by Bernardini
et al. (2012) and Bernardini et al. (2014) indicate increased instability. This may
be explained by the strong influence of the roughness-induced cross-flow which, at
identical Rekk, is smaller for the hot-flow cases. On the other hand, the influence
of wall cooling in these criteria may be scaled too strong whereas the criterion of
Redford et al. (2010) gives the correct trend also with cross-flow.

The growth rates of the first- and second mode instabilities of the roughness-wake
flow respond to a variation of the amount of wall cooling as it is known from the
smooth-plate flow. The roughness-wake first mode is stabilized whereas the second
mode is destabilized by stronger wall cooling. This finding is in contrast to the results
of DeTullio & Sandham (2015) where, however, the amount of the variation of wall
cooling has been much larger.
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