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Abstract. A theoretical analysis of spherical probes in plasmas is presented. It is
assumed that the probe is at floating potential, that ion motion with respect to the
probe is radial and that the electrons are Maxwellian. The analysis shows that as
probe radius divided by Debye length tends to zero, the ratio of floating potential
to electron temperature also goes to zero.

1. Introduction
Interactions between dust and plasma are common in a wide variety of situations.
Dusty plasmas are observed in space, where they are found in interstellar and
circumstellar clouds, planetary rings and magnetospheres and comets (Northrop
1992; de Angelis 1992). In industrial plasmas, dust occurs as a contaminant to
be removed, while numerous experimental studies of dust behaviour have been
undertaken. Applications for dusty plasmas include powder and thin-film synthesis,
as described by Bouchoule (1999). Wherever dust is exposed to plasma, it becomes
electrically charged. The potential of dust grains in plasmas is described in the
literature by models that treat a single dust grain as a spherical probe at floating
potential. There have been two main approaches to the collection of ions by a
spherical probe. Orbital motion theory applies where ion temperature is significant
(see Bohm et al. (1949) and Bernstein and Rabinowitz (1959) for monoenergetic
ions and Laframboise (1966) for the Maxwellian case). The radial motion theory
of Allen et al. (1957) (ABR) is valid where ion temperature is much smaller than
electron temperature. In this paper, the radial theory is examined in the limit of
small probe radius.

2. The radial motion theory
Consider a spherical probe immersed in a plasma as shown in Fig. 1. Far from the
surface, the electrons and ions (singly charged) are equal in density. The surface
potential Vp is unknown, but the total current at the surface is zero.

An ion at distance r from the centre of the probe moves towards it at speed ui.
Assume that the ion started at an infinite distance with no kinetic energy, and that
the ions are collisionless, so

1
2Miu

2
i = −eV (r), (1)
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Figure 1. Schematic of a spherical probe.

where V (r) is the potential at this radius, which vanishes as r →∞. Poisson’s law
can be expressed as

∇2V = −charge density
ε0

= − 1
ε0
e(ni − ne), (2)

where ni and ne are the ion and electron densities, e is the charge magnitude of an
electron and ε0 is the permittivity of free space. The (as yet unknown) ion current
Ii is related to the local ion density and speed:

Ii = ni(r)eui(r)4πr2

⇒ ni(r) =
Ii

4πr2eui(r)
. (3)

If relatively few electrons reach the probe, the electron density follows a Boltz-
mann relation:

ne(r) = n0 exp
(
eV

kTe

)
, (4)

where Te is the electron temperature, k is the Boltzmann constant and n0 is the
plasma density. Assuming a perfectly absorbing surface, the actual electron density
is likely to be smaller than that given by (4) because those electrons that hit the
surface will only contribute to the density on their inbound trajectory, whereas
those that do not will have both positive and negative radial velocities at differ-
ent times. This electron depletion will be most marked close to the probe surface,
where ne approaches half of the given value. However, we expect (4) to be a good
approximation over most of the sheath.

The electron flux to the surface is obtained by integrating the radial velocity over
velocity space, but considering only the inbound electrons, which are unaffected by
the above mentioned depletion. Multiplying by surface area and electron charge,
and neglecting secondary emission and photoemission, we obtain the surface
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electron current as

Ii = Ie = 4πR2n0e

√
kTe

2πme
exp
(
eVp
kTe

)
. (5)

It is convenient to normalize as follows:

φ = − eV
kTe

, ρ =
r

λD
, P =

R

λD
,

Ni =
ni
n0
, Ne =

ne
n0
, J =

Ii

n0e
√

2kTe/Mi4πλ2
D

,

 (6)

where λD is the electron Debye length, given by

λD =

√
ε0kTe
n0e2 . (7)

Substituting (6) and (7) into (2) with spherical symmetry gives

1
ρ2

d

dρ

(
ρ2 dφ

dρ

)
= Ni −Ne. (8)

The normalized densities from (3) and (4) are Ni = Jφ−1/2/ρ2 and Ne = exp(−φ).
Substituting these into (8) gives

d

dρ

(
ρ2 dφ

dρ

)
= Jφ−1/2 − ρ2e−φ. (9)

This is integrated numerically, and requires two boundary conditions. Assume
that beyond a certain distance ρb quasineutrality will apply, i.e. the Laplacian term
in (9) will be much smaller than either of the two terms on the right-hand side. The
plasma solution is then

ρ ≈ J1/2eφ/2

φ1/4
, (10)

which is assumed to be true at ρb. For the second boundary condition, we take the
derivative of φ(ρ) from (10), giving[

dφ

dρ

]
ρb

=
2ρb
J

φ
3/2
b

φb − 1
2

e−φb , (11)

where φb is the value of φ at ρb. At the surface, substituting (6) into (5) gives

J

P 2 = αe−Φ, (12)

where α =
√
Mi/4πme and Φ = φ(P ).

3. Finding an appropriate boundary condition
It has hitherto been known that the boundary condition must be set at sufficiently
large radius in order to obtain a meaningful result. Here this criterion will be put
into more concrete form. Obtain an expression for (d/dρ)(ρ2dφ/dρ) by differentiat-
ing the plasma solution. Only where this expression is small compared to Jφ−1/2

will the plasma solution be valid. Thus the plasma condition is

4φ(2φ− 3)(2φ + 1)
(2φ− 1)3 �

J

φ1/2
,
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Figure 2. The plasma criterion. For a given current J , let γ be much greater than unity.
The boundary potential φb is then taken from the curve.

N
or

m
al

iz
ed

 p
ot

en
tia

l φ
 =

 –
eV

/k
T e

Normalized radial distance ρ (Debye lengths)

Figure 3. Potential around a spherical probe, for various values of the normalized ion
current J (hydrogen plasma).

and an appropriate boundary value of φ is found from

J

γ
=

4φ3/2
b (2φb − 3)(2φb + 1)

(2φb − 1)3 , (13)

where γ is an arbitrary value, large compared with unity. The right-hand side of
(13) is plotted in Fig. 2. We can now obtain results for potential distribution and
floating potential by integrating (11) numerically from a boundary given by (10),
(11) and (13). In such calculations, we specify J in advance, obtain a potential
curve to arbitrarily small radii, and use the floating criterion to find the probe
radius. Results are shown in Figs 3 and 4 for the potential distribution and floating
potential respectively.
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Figure 4. Probe floating potential Φ = −eVp/kTe plotted against probe radius P = R/λD
for hydrogen and argon.

4. Limit for small probes
For convenience, we switch to the logarithmic form:

ν = lnφ, ψ = ln ρ, K = ln J, (14)

and (9) becomes

d2ν

dψ2 +
(
dν

dψ

)2

+
dν

dψ
= eK−

3
2ν − e2ψ−ν−eν . (15)

Let

Y (νb) = ln
(

4γ
(2eνb − 3)(2eνb + 1)

(2eνb − 1)3

)
.

From (13), the boundary condition is now

K = 3
2νb + Y. (16)

From (10),

ψb = 1
2 (νb + Y + eνb ) (17)

and the floating criterion from (12) is

K − 2ψp = lnα− eνp . (18)

Figure 5 shows the solutions to (15) for varying K, the function νp(ψp) from (18)
and the locus of intersection between the two, which corresponds to the floating
potential. Note that for very negative K the solutions appear to be congruent. This
is demonstrated by changing the origin to (ψb, νb). Let ζ = ψ − ψb and υ = ν − νb.
Equation (15), using (16) and (17), becomes

d2υ

dζ2 +
(
dυ

dζ

)2

+
dυ

dζ
= eY (e−

3
2υ − eeνb (1−eυ)e2ζ−υ). (19)
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Figure 5. Logarithmic values of potential plotted against distance from probe centre (hy-
drogen plasma). The solid lines are potentials ν at position ψ, the dashed lines represent the
floating criterion. Where the corresponding lines cross, ψ = ψp.

As we take more negative values of K, the limit of (16) gives νb → 2
3 (K− ln 12γ),

i.e. νb also becomes highly negative. It will be shown later that in the limit of small
probe radius, both νb and K tend to −∞. In this limit, (19) reduces to

d2υ

dζ2 +
(
dυ

dζ

)2

+
dυ

dζ
= 12γ(e−

3
2υ − e2ζ−υ), (20)

which is independent of K and νb and explains the congruent solutions (see Fig. 6).
Equation (20) has two asymptotes. The limit of large positive ζ gives υ = −4ζ.
The limit of large negative ζ is the so-called vacuum solution, which we obtain
by assuming that υ increases as ζ decreases, thus making the right-hand side of
(20) vanish in magnitude compared with the differential terms. Then it can easily
be seen that a solution for dυ/dζ = −1 exists and is consistent with the above
assumptions. Thus

lim
νb→−∞,
ζ→−∞

υ = C − ζ, (21)

where C is a constant which depends on γ.
The floating criterion, from (16)–(18), is

eυp = e−νb (2ζp − 1
2νb + lnα) + 1

As νb → −∞, this gives

lim
νb→−∞

ζp = 1
4νb − 1

2 lnα, (22)

i.e. ζp → −∞, so we substitute (21) for υ into (22) to give

lim
νb→−∞

υp = C − 1
4νb + 1

2 lnα. (23)

Now returning to {ν, ψ}, (22) and (17) give the limit of ψp as

lim
νb→−∞

ψp = 3
4νb + 1

2 ln 12γ − 1
2 lnα;
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(a)

(b)

Figure 6. Solutions for the logarithmic potential, with γ = 100, for various values of K
(hydrogen plasma).

so, as the probe radius tends to zero, νb → −∞ (and, from (16), K → −∞). Now,
from (23), we have the limit of νp as

lim
νb→−∞

νp = C + 3
4νb + 1

2 lnα, (24)

i.e., for a given finite C, the limit of νp as ψp → −∞ is −∞. This means, in our
original notation,

lim
P→0

Φ = 0. (25)

It can be shown that the solution for any value of γ > γ′ lies beneath the solution
for γ′. Thus (25) applies to the true solution, for which γ →∞.

5. Conclusions
To summarize, the limit of floating potential in the ABR radial theory as probe ra-
dius tends to zero is zero. If a cold-ion assumption is valid, the potential is strongly
dependent on the probe radius for small and intermediate-sized probes, levelling
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out only for large probes. Dust grains are expected to reside in the lower regions of
Fig. 4, where the probe radius is much smaller than the Debye length. This result
is in contrast with the work of Nairn et al. (1998), who have potential levelling out
at a finite value for small r/λD. This erroneous result was due to an inappropri-
ate boundary condition. It has been established here that the plasma boundary in
this theory is dependent on the size of the current, which in turn is a function of
probe radius for floating probes. Further work on the theories that take finite ion
temperature into account culminates in a complete set of floating potential data
for relevant values of probe size and ion temperature.
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