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Abstract

Andrews [‘Binary and semi-Fibonacci partitions’, J. Ramanujan Soc. Math. Math. Sci. 7(1) (2019), 1-6]
recently proved a new identity between the cardinalities of the set of semi-Fibonacci partitions and the
set of partitions into powers of 2 with all parts appearing an odd number of times. We extend the identity
to the set of semi-m-Fibonacci partitions of n and the set of partitions of n into powers of m in which all
parts appear with multiplicity not divisible by m. We also give a new characterisation of semi-m-Fibonacci
partitions and some congruences satisfied by the associated number sequence.
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1. Introduction

A partition A of an integer n > 0 is a finite nonincreasing integer sequence whose sum
is n. The terms of the sequence are called parts of A. As in [2], a partition with k parts
will generally be expressed as

A=A, A,..., ), 44 =2A=---=24>0,

or
A=A A7,..48), 4>h>-->4,>0,1<k,

where /lf" indicates that 4; occurs with multiplicity v; for each i, and v{ + --- + v, = k.
Andrews [1] describes the set SF(n) of semi-Fibonacci partitions as follows:
SF(1) = {(1)}, SF(2) = {(2)}; if n > 2 and n is even, then

SF(n) = {4 | A is a partition of n/2 with each part doubled};

if n is odd, then a member of SF(n) is obtained by inserting 1 into each partition in
SF(n — 1) or by adding 2 to the single odd part in a partition in SF(n — 2).
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TaBLE 1. The map SF(n) — OB(n) forn = 9.

SF9) — 0B(9)
Q&1 - (8,1)
432 - 4,2,1,1,1)
63) (2,2,2,1,1,1)
54) 4,1,1,1,1,1)
(72 -  (,1,1,1,1,1,1,1)
9) - (1,1,1,1,1,1,1,1,1)

The cardinality sf(n) = |[SF(n)| satisfies the recurrence relation

sf(n/2) if n is even,
sf(n) = { e
sf(n—1)+sf(n—2) ifnisodd,

for all n > 0 (with sf(—1) = 0,sf(0) = 1).

The semi-Fibonacci sequence {sf(n)},-o occurs as sequence number A030067 in
Sloane’s database [5]. Beck [3] has previously considered the properties of a set of
polynomials related to the semi-Fibonacci partitions.

Andrews stated the following relation between the number of semi-Fibonacci
partitions of n and the number ob(n) of binary partitions of n in which every part
occurs an odd number of times.

Tueorem 1.1 [1, Theorem 1]. For each n > 0,

sf(n) = ob(n).

Andrews gave a generating function proof and asked for a bijective proof.
The proof turns out to be remarkably simple. It goes as follows. Each part ¢ of
A € SF(n) can be expressed as f = 2. h, i >0, where & is odd. Now transform ¢ as

t=2-hr2020 .. 20 (htimes).

This gives a partition of n into powers of 2 in which every part has odd multiplicity.
Conversely, consider 5 € OB(n), the set of binary partitions of n in which every part
occurs an odd number of times. Since every part (a power of 2) has odd multiplicity, we
simply write § in the exponent notation 8 = (8}',..., B5), with 8; > -+ > B, and the u;
odd and positive. Since each ;" has the form (274, j; > 0, we apply the transformation

B’;i — (2ji Ui 2];'”[,_

This gives a unique partition in SF(n). Indeed, the image may contain at most one odd
part which occurs precisely when j; = 0. We illustrate the map for n = 9 in Table 1.

We also consider the following congruence, which Andrews proved with generating
functions.
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TueorEM 1.2 [1, Theorem 2]. For each n > 0, sf(n) is even if 3 | n and odd otherwise.

Proor. We give a combinatorial proof based on mathematical induction. The result
holds forn = 1,2, 3, since sf(1) = 1 = sf(2) and sf(3) = [{(1,2),(3)}| = 2. Now letn > 3
and assume that the result holds for all integers less than 7.

Ifn =1 (mod 3), then sf(n) is the sum of sf(n — 1) and sf(n — 2) which have opposite
parities since, by the inductive hypothesis, sf(n — 1) is even (since 3|(n — 1)) and
sf(n —2) is odd.

If n = 2 (mod 3), then sf(n) is the sum of sf(n — 1) which is odd (since 3 ¥ (n — 1))
and sf(n — 2) which is even. Thus, sf(n) is odd.

If 3| n and n is even, then sf(n) = sf(n/2). Since 3 | n/2, it follows that sf(n/2) is
even by the inductive hypothesis.

Lastly, if 3 | n and n is odd, then sf(n) = sf(n — 1) + sf(n — 2) which is even since

3¢ (m—1)and 3 ¢ (n— 2). This completes the proof. O
The following result is easily deduced from the definition of the sets counted by

sf(n).

CoroLLARY 1.3. Given a nonnegative integer v,

sf(2") = 1.

In Section 2 we define the semi-m-Fibonacci partitions by extending the previous
construction using a fixed integer modulus m > 1. A generalised identity is then stated
between the set of semi-m-Fibonacci partitions and the set of partitions into powers of
m with multiplicities not divisible by m (Theorem 2.2). Then in Section 3 we give an
independent characterisation of the semi-m-Fibonacci partitions. Lastly, in Section 4
we discuss some arithmetic properties satisfied by the semi-m-Fibonacci sequence.

2. Generalisation

We generalise the set of semi-Fibonacci partitions to the set SF(n, m) of semi-m-
Fibonacci partitions as follows: SF(n,m) = {(n)} forn=1,2,...,m;if n > m and n is
a multiple of m, then

SF(n,m) = {1| A1is a partition of n/m with each part multiplied by m};

if n is not a multiple of m, that is, n = r (mod m), 1 <r <m — 1, then SF(n, m)
arises from two sources: first, partitions obtained by inserting r into each partition
in SF(n — r,m) and, second, partitions obtained by adding m to the single part of each
partition A € SF(n — m, m) which is congruent to r (mod m) (since A contains exactly
one part which is congruent to » modulo m, as shown in Lemma 2.1 below).

Lemma 2.1. Let A € SF(n, m).

(1) Ifm| n, then every part of A is a multiple of m.
2) Ifn=r (mod m), 1 <r <m, then A contains exactly one part = r (mod m).
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TaBLE 2. Semi-3-partitions forn = 1,2, ..., 10.

n SF(n,3) sf(n,3)
1 {(D)} 1
2 {2} 1
3 {3} 1
4 {4),(3, D} 2
5 {(5),(3,2)} 2
6 {(©)} 1
7 {(7),(4,3), (6, 1)} 3
8 {(8),(5,3),(6,2)} 3
9 {9} 1
10 {(10),(6,4),(7,3),(9,1)} 4

Proor. If m | n, the parts of a partition in SF(n,n) are clearly divisible by m by
construction.

For induction, note that SF(r,m) = {(r)}, r=1,...,m — 1, so the assertion holds
trivially. Assume that the assertion holds for the partitions of all integers < n and
consider A € SF(n,m) with 1 < r <m. Then A may be obtained by inserting r into a
partition @ € SF(n — r,m). Since « consists of multiples of m (as m | (n — r)), A contains
exactly one part = r (mod m). Alternatively, A is obtained by adding m to the single
part of a partition § € SF(n — m, m) which is = r (mod m). Indeed, 8 contains exactly
one such part by the inductive hypothesis. Hence, the assertion is proved. O

Define sf(n, m) = |SF(n,m)|. Table 2 illustrates the semi-3-Fibonacci partitions for
small n.
For m > 1, we see that sf(n,m) = 0if n <0, sf(0,m) = 1 and, forn > 0,

sf(n/m, m) ifn=0 (mod m),

sf(n—r,m)+sf(n—m,m) ifn=r (modm), O0<r<m. @D

sf(n,m) = {

The case m = 2 gives the function considered by Andrews: sf(n,2) = sf(n).

Power partitions are partitions into powers of a positive integer m, also known as m-
power partitions [4]. Let nd(n, m) be the number of m-power partitions of n in which
the multiplicity of each part is not divisible by m. For example, nd(10,3) = 4, the
enumerated partitions being

9,1,3,3,1,1,1,1),3,1,1,1,1, 1,1, 1),(1,1,1,1,1,1,1,1, 1, 1).
TueoreM 2.2. For integers n > 0,m > 1,
sf(n,m) = nd(n, m).

We give two proofs, the first analytic and the second combinatorial.
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First Proor. Let |g| < 1 and define
Gulg) = D sf(r,mq".
n>0

Then

Gn(q) = Z sf(mn, m)qg™ + Z sf(mn + l,m)qm’”l ..

n>0 n>0

+ Z sf(mn +m — 1, m)g™+m!

n>0
m—1
= Z sf(mn, m)qg™ + Z Z sf(mn + r,m)qg™*"
n>0 r=1 n>0

2.2)

(2.3)

m—1
= Z sf(n,m)g™ + Z Z(sf(mn, m) + sf(mn +r —m,m))g™*"" (by (2.1))

n>0 r=1 n>0

m—1 m-1
= Z sf(n, m)qg™ + Z Z(sf(n, m)g™*" + Z Z sf(mn + r — m,m)¢™*"

n=0 r=1 n>0 r=1 n>0
m—1 m—1
= (14 2 07) X sf g™ + 3 N sfontn = 1)+ g™
r=1 n>0 r=1 n>0
m—1 m—1
=Gn(¢™ Z q + Z Z sf(mn + r,m)g™ "
r=0 r=1 n>0

m—1
=Gu(g" Y ¢ + 4" s ma = " sfnnmig™) by (2.3)

r=0 n>0 n>0
m—1

= Gulg™ ) 4"+ 4" Gn(@) = Gul@"™)
r=0

= ( —q"+ lil qf)Gm(q’”) +4"Gu(q).
=0

Hence,

l+g+@+@+-+q"" =g
Gulg) = o Gulg":

Using (2.4) iteratively gives

N n n n
1 qm q2m . q(m—l)m qm
Gu(q) = | |

1 _ qmn+l

n+1

n=0
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TasLE 3. The map SF(n,m) — ND(n,m) forn =11, m = 3.

SF(11,3) — ND(11,3)
(11) -~ (1,1,1,1,1,1,1,1,1,1,1)
(8,3) - (3,1,1,1,1,1,1,1,1)
(6,5) - (3,3,1,1,1,1,1)
9,2) - 9,1,1)

Taking the limit as N — oo, we have Gm(q'"N”) — G,,(0) = 1 (since |g| < 1), so that

© 1+ qm" + q2m” +eeet q(m—l)m” _ qm”+l
Gu=1( —— )

n=0

_ ﬁ(l . qm" +q2m” + .- +q(m—1)m”)
i 1 _ qmn+l

m" m' m—1)m" j(m™*!

:l_[(l+(q +q2 +...+q( 1) )Zq/( ))
n=0 j=0

— 1_[ (1 + qu"(jm+1) + qu"(jm+2) + qm"(jm+3) 4ot Z qm”(jm+m—1))
n=0 j=0 j=0 j=0 j=0

= Z nd(n, m)q". 2.5)
n>0

The assertion follows by comparing coefficients in (2.2) and (2.5). O

SEconp Proor. Each part ¢ of A € SF(n, m) can be expressed as t = m' - h, i > 0, where
m does not divide 4. Now transform ¢ as

t=m-hv—m,m,....m (h times).

This gives a partition of n into powers of m in which every part has multiplicity not
divisible by m. Conversely, consider 5 € ND(n,m). Since every part (a power of m)
has a nonmultiple of m as multiplicity, we simply write 8 in the exponent notation
B=@",....5), with §; > --- > B, and the u; # 0 (mod m). Since each B! has the
form (m/)", we can apply the transformation

B = (mh) e miu.

This gives a unique partition in SF(n, m). If m | n, this image contains only multiples of
m. If n=r (mod m), 1 <r < m, the image consists of multiples of m and exactly one
part = r (mod m) which occurs when j; = 0. We illustrate the map forn = 11,m =3 in
Table 3. O

https://doi.org/10.1017/5S0004972720000027 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972720000027

424 A. M. Alanazi, A. O. Munagi and D. Nyirenda [7]

3. A characterisation of semi-m-Fibonacci partitions

Define the max m-power of an integer N as the largest power of m that divides
N (not just the exponent of the power). Thus, using the notation x,,(N), we find that
N=u-m’, s >0, where m { u and x,,(N) = m*. So, x,,(N) > 0 for all N.

For example, x,(50) = 2, x,(40) = 8, x3(216) = 27 and x5(216) = 1.

Note that by unique factorisation, if the parts of a partition A have distinct max
m-powers, then the parts are distinct.

We define three (reversible) operations on a partition A = (41, ..., 4;) with an integer
m> 1.

(1) If the last part of A is less than m, delete it: 7;(2) = (44, ..., dx—1).
({1) Ifm4 A >m, then () =(Ay,..., 41,4 —m, dpy1, ..., Ap).
(iii) If A consists of multiples of m, divide every part by m: 73(1) = (A1 /m, ..., A /m).

These operations are consistent with the recursive construction of the set SF(n, m),
where ‘rgl,‘rfl and 75 ! correspond, respectively, to the three quantities in the
recurrence (2.1).

Lemma 3.1. Let B(n, m) denote the set of partitions of n in which the parts have distinct
max m-powers and at most one nonmultiple of m. If A € B(n,m) and t;(1) # 0, then,
foreachi=1,2 or3, there is an N such that T;(1) € B(N, m).

Proor. Let A = (Ay,...,Ax) € B(n,m). If A contains one part less than m, the part is
A. So, T1(A) € B(n — Ay, m) since the max m-powers remain distinct. It is obvious that
the parity of A is inherited by 72(1) = (44, ..., A—1, &y — M, Ay, - . ., A) € B(n — m, m).
Lastly, since the parts of A have distinct max m-powers, 73(1) = (11 /m, ..., Ax/m) may
contain at most one nonmultiple of m as a part. Hence, 73(1) € B(n/m, m). O

We state an independent characterisation of the semi-m-Fibonacci partitions.

THEOREM 3.2. A partition of n is a semi-m-Fibonacci partition if and only if the parts
have distinct max m-powers and at most one nonmultiple of m.

Proor. We show first that SF(n, m) = B(n,m). Let A = (A4, ..., ;) € SF(n, m) be such
that A ¢ B(n,m). Assume that there are A; > A; satisfying x,,(1;) = x,,(4;) and let
Ai =um®, Aj = u;m® with m { u;, u;. Observe that 7, deletes a part less than m
if it exists. So, we can use repeated applications of 7, to reduce a nonmultiple
modulo m, followed by 7. This is tantamount to simply deleting the nonmultiple
of m, say A;, to obtain a member of B(n — A;,m) from Lemma 3.1. By successively
deleting nonmultiples and applying 75, ¢ > 0, we obtain a partition 8 = (81,52, ...)
with g; = vim" > ; = v;m", where m { v;,v; and w < 5. Then apply 75 to obtain a
partition y with two nonmultiples of m. Then, by Lemma 2.1, y ¢ SF(n, m). Therefore,
SF(n,m) C B(n, m).

Conversely, let A = (4y,...,4x) € B(n,m). If A =(¢), 1 <t <m, then A € SF(t,m). If
m | A; for all i, then 73(1) = (4, /m, ..., A /m) € B(n/m,m) contains at most one part Z 0
(mod m), so A € SF(n,m). Lastly, assume thatn = r # 0 (mod m). Thenre€ dor A, =r
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(mod m) for exactly one index ¢. Thus, 71(1) = (44, ..., A1) consists of multiples
of m while 1(1) = (Ay,..., -1, 4y — m, Ayyq, ..., A;) still contains one part # 0
(mod m). In either case A € SF(n,m). Hence, B(n,m) C SF(n,m). Thus, the two sets are
identical. O

Remark 3.3. Notice that Theorem 3.2 certifies the second (bijective) proof of
Theorem 2.2. If A = (Ay,..., ) € SF(n,m) but A ¢ B(n, m) on account of having two
parts A;, A; such that A; = w;m® > A; = u;m® with m £ u;, u;, then it cannot have an
inverse image. Assume that A maps to S € ND(n, m), which then includes the parts
m"*" (u; + uj copies of m). Then u; + u; may be a multiple of m (for example,
when u; = 1,u; = m — 1), which implies that § ¢ ND(n, m), which is a contradiction.
Alternatively, the pre-image of 8 would include the part m(u; + u;) and so cannot be A.

4. Arithmetic properties
We prove several congruence properties of the numbers sf'(#, m).

THeEOREM 4.1. Let n,m be integers with n > 0, m > 1. Then

n

sf(nm+1,m)=sf(nm+2,m)=---=sf(hm+m—1,m) = Zsf(j,m).
Jj=0

Prook. Let J,.,,(q) = 3,50 Sf (nm + r,m)q", where r = 1,2,3,...,m — 1. Then
Jen(@) = " sfoum,m)g" + )" sf(mn+r—m,mg" by (2.1))

n>0 n>0

= Z sf(n, m)q" + Z sf(mn + r,m)g"™"!

n>0 n>0
= Gu(g)+q ) sfmn+r,mq"
n>0
= Gm(Q) + qu,m(q)a

so that

G
) = T2 @)

Since the right side of (4.1) is independent of r, we must have J;,,(q) = Jam(q) =
s = Ju-1.m(q), so that sf(nm + 1,m) =sf(nm+2,m)=---=sf(nm+m— 1, m).
Furthermore, from (4.1),

D o+ rmg" =Y q" Y sfnmyg" = Z S Gmd",

n=0 n=0 n=0 n=0 j=0
which implies that sf(mn + r,m) = 3'._, sf(j,m). m]
CorOLLARY 4.2. Given integers m > 2, for any j > 0 and a fixedv € {0, 1,...,m},

sfm/(mv +r),m)y=v+1 forl<r<m-1.
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Proor. By applying (2.1) several times (the case when m | n), it is clear that for any
j=0,

sf(mj(mv +r),m) = sf(mj_l(mv +7r),m)= sf(mj_z(mv +7r),m)=---=sf(mv+r,m).

By the last equality in Theorem 4.1,

\%

sf(mv +r,m) = Zsf(i,m) =1+ Zsf(i,m), v>0,1<r<m.
i=1

i=0

If 1 <v<m,then X/, sf(i,m) =2 (sf(i —i,m)+ sf(i —m,m)) (by (2.1)). Since
0<i<v<m, this gives sf(mv+r,m)=1+ 37 (1 +0)=1+v. If v=m, then
SV sf i m) = X sfm) + sf(mym) =m — 1+ sf(L,m)=m—1+1=m; thus,
sf(mv +r) =v+ 1 is true in this case. Finally, if v = 0, it is not difficult to see that
sf(r,m) = 1. O

We note a few interesting special cases of Corollary 4.2.

CoroLLARY 4.3. For any integer m > 2.

()  sf(m',m)=1fori>0;
() sfmh,m)y=1for1<h<m-1,i>0;
(iii) given an integer n > 0, then, for eachn € {0, 1,...,m},

sf(mm+1,m)=sf(mm+2,m)=---=sf(n+1)m—-1,m)=v+1.
Proor. Part (i) is the case & = 1 of part (ii). Parts (ii) and (iii) are obtained by setting
v =0 and j = 0, respectively, in Corollary 4.2. O

Note that part (i) of Corollary 4.3 implies Corollary 1.3. Also, when m = 2, part (iii)
gives just the three values sf(1) = 1, sf(3) = 2 and sf(5) = 3, the parities of which are
consistent with Theorem 1.2. Part (iii) is a stronger version of Theorem 4.1 since the
restriction of n to the set {0, 1, ..., m} specifies a common value.

TueoreEm 4.4. For any j > 0,

2j+1

Z sf(,3)=0 (mod 2).

r=0

Consequently,

sf3j+4,3)=sf3j+5,3)=0 (mod 2), where j=0 (mod 2), 4.2)
sf3j+4,3)=5f3j+5,3) =0 (mod?2) forall j=0, r=>2. 4.3)

Proor. Note the identity

1 = " n
=] a+q" +a™ (4.4)
q n=0
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and recall that

1+4q" + A
Z Sf(n, 3)qn - ( q q 3 3n q )
n>0 n=0
o 1 2:3"
El_[( +q +q33n+q ) (mod 2)
=0 1 +¢q°
:ﬁ(l+q A+ g+
0 1+ q3 3
[l
n=0 1+ q3” + q2.3"
=(-g[ [a+g") by @4).
n=0
Thus,
> Z sf(r,3)g" = —— Z s (n.3)g" = [ [ +4*) (mod 2).
n>0 r=0 n>0 n=0

Since the series expansion of the right-hand side of the preceding equation has even
exponents, the result follows.
To prove (4.2), we observe that

sfBj+4,3)=sfB(+ 1D+ 1,3)=sf3(j+1)+2,3) (by Theorem 4.1)
Jj+1
= Z sf(r,3) (by Theorem 4.1)
r=0

=0 (mod2) (since j+ 1 isodd).

Furthermore, for (4.3), observe that

3,_1j+ = 0 if j=1 (mod 2),
1 otherwise.

Now, if j is odd, then
sf(3"j+4,3) = sf(3(3’_1j +1)+1,3)= sf(3(3’_1j +1)+2,3)

31 sl
= Z sf(r,3) (by Theorem 4.1)
r=0
3r—lj
=3+ 1,3+ ) 5f(1,3)
r=0
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=sf(3'j+1,3) (mod 2) (since 3"!; is odd)
3r—2j

= > 5f(3)
=0

=0 (mod 2) (since 3772 is odd).
On the other hand, if j is even, we reach the result using (4.2). O

TurorEM 4.5. Letk=m+r (mod 2m)andk <m?> +rforl1 <r<m—-1.Ifn>0,m>?2
and n = m'k for i > 0, then sf(n, m) is even.

Proor. Note that k = m + r (mod 2m) and k <m? +r for 1 <r <m— 1 imply that
k=mQ2t+1)+r< m? + r, for some positive integer ¢, and so 2¢ + 1 < m. Then, from
Corollary 4.2,

sf(m'k,m) = sf(m'(mQ2t + 1) + r),m) = sf(mQt + 1) + r,m) (by (2.1))
=2t+1+1 (by Corollary 4.2 and since 2t + 1 < m)
=2t+2. O

REMARK 4.6. When m = 3, Theorem 4.5 reduces to Theorem 4.4 without the restriction
k<m?+r.
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