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We propose a new length scale as a basis for the modelling of subfilter motions in
large-eddy simulations (LES) of turbulent flow. Rather than associating the model
length scale with the computational grid, we put forward an approximation of the
integral length scale to achieve a non-uniform flow coarsening through spatial filtering
that reflects the local, instantaneous turbulence activity. Through the introduction of
this grid-independent, solution-specific length scale it becomes possible to separate
the problem of representing small-scale turbulent motions in a coarsened flow model
from that of achieving an accurate numerical resolution of the primary flow scales.
The formulation supports the notion of grid-independent LES, in which a prespecified
reliability measure is used. We investigate a length-scale definition based on the
resolved turbulent kinetic energy (TKE) and its dissipation. The proposed approach,
which we call integral length-scale approximation (ILSA) model, is illustrated for
turbulent channel flow at high Reynolds numbers and for homogeneous isotropic
turbulence (HIT). We employ computational optimization of the model parameter
based on various measures of subfilter activity, using the successive inverse polynomial
interpolation (SIPI) and establish the efficiency of this route to subfilter modelling.

Key words: turbulence modelling, turbulence simulation

1. Introduction
Large-eddy simulations (LES) are based on the assumption that small-scale turbulent

eddies are more isotropic than the large ones, and are responsible for energy
dissipation. Modelling the small scales while resolving the larger eddies may be
very effective: first, since most of the momentum transport is due to the large eddies,
model inaccuracies are less critical compared with, for instance, Reynolds-averaged
Navier–Stokes (RANS) formulations; second, the modelling of the unresolved scales
is easier, since they tend to be more homogeneous and isotropic than the large ones,
which depend on the specific boundary conditions used to define the flow problem at
hand.

† Email address for correspondence: ugo@queensu.ca
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The size of the smallest eddies that are resolved in LES is related to the length
scale of the smoothing operator, the ‘filter width’, which will be denoted here by
∆. In this paper we investigate the consequences of relating the filter width (and,
therefore, the model length scale) to some fraction of the length-scale representative
of the energy- and momentum-carrying eddies, an integral scale of turbulence L. The
grid size, h, should then, ideally, be sufficiently smaller than eddies of size ∆ for
these flow features to be represented accurately. The association of a local filter width
with a fraction of the local integral scale allows to incorporate in a natural way flow
heterogeneities, while keeping the universality assumption of the small turbulent scales
intact.

The most commonly used models for the flow physics at the unresolved scales
are of eddy-viscosity type: the contribution of the unresolved scales to the resolved
momentum transport, the unresolved stresses (often called the ‘subgrid-scale stresses’,
but here referred to as ‘subfilter stresses’) is given by

τij − δij

3
τkk =−2νTSij (1.1)

where Sij is the resolved strain-rate tensor (ui,j+ uj,i)/2 in terms of partial derivatives
of the spatially filtered velocity field ui. Almost invariably, the eddy viscosity νT is
determined as the product of a length scale and a velocity scale, and the former is
taken to be proportional to the filter width. In many cases the velocity scale is also
proportional to the filter width (a prime example is the Smagorinsky–Lilly model
(Smagorinsky 1963; Lilly 1967)); the velocity scale can also be obtained from a
separate transport equation (Yoshizawa 1982; Ghosal et al. 1995) or from a dynamic
procedure (Germano et al. 1991) exploiting Germano’s identity (Germano 1992).
Non-eddy-viscosity models have also been proposed; examples are the mixed model
(Bardina, Ferziger & Rogallo 1980) (which contains an eddy-viscosity component
of the Smagorinsky type next to Bardina’s similarity model (Bardina et al. 1980)),
regularization models (Geurts & Holm 2006b; Geurts, Kuczaj & Titi 2008) or
tensor-diffusivity models (Leonard & Winckelmans 1999). In these cases the resulting
model also preserves an explicit dependence on ∆.

The filter width ∆ plays a central role in the modelling of subfilter dynamics,
both from the point of view of the method formulation and from that of its
practical implementation. Consequently, there has been considerable discussion on its
appropriate value. In most cases, the filter width is taken to be proportional to the
grid size h, i.e. ∆ = nh, where n is typically chosen equal to 1 or 2 (McMillan &
Ferziger 1979). If the mesh is Cartesian and anisotropic, an appropriate average is
used to determine h, usually either algebraic or geometric:

h= (hxhyhz)
1/3 or h= (h2

x + h2
y + h2

z )
1/2 (1.2a,b)

(where hx, hy and hz are the grid spacings in the three coordinate directions). The
best value of n has been the subject of some debate. Ghosal (1996) discusses the
effect of the filter width on modelling and aliasing errors, and concludes that, if
second-order accurate differencing schemes are used, ∆= 8h is required to decrease
the numerical discretization errors to negligible levels, relative to the contribution of
the subfilter model to the fluxes; only if higher-order schemes are used smaller values
of n can be used. Geurts & Fröhlich (2002) reported approximately grid-independent
simulation results for a turbulent mixing layer with ∆ = 4h, using a fourth-order
accurate finite-volume method. Lund (2003) studied the effect of varying n within
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the context of explicit filtering of the nonlinear terms, but concluded that using a
high value of n is not cost-effective, in the sense that reducing both h and ∆ gives
more accurate results (compared with unfiltered direct numerical simulation (DNS)
results) than reducing h with a fixed ∆, at the same cost. He also observed that
the ratio ∆/h at which convergence is observed depends on the statistical quantity
studied. A comprehensive error-landscape study was presented by Meyers, Geurts &
Baelmans (2003, 2005) for homogeneous, isotropic, decaying turbulence. In such a
computational approach a sequence of resolutions N and filter widths ∆ is studied
to provide an overview of the simulation error that occurs. It was shown that an
optimal value of n depends on the spatial resolution and the subfilter model adopted.
A side-result after such an error-landscape analysis is the identification of an ‘optimal
refinement’ strategy which specifies the optimal model parameter as function of
resolution.

It must be mentioned that in most cases the filter width is not a well-defined
quantity, since the shape of the filter function is not generally known. The implicit
use of the discretization to filter the equations is inconsistent, as pointed out by
Lund (2003). Even when explicit filtering of the Navier–Stokes (NS) equations is
performed (Bose, Moin & You 2010; Singh, You & Bose 2012), the implicit filtering
due to the application of finite differences changes (in an unknown way) the shape
of the filter function. Perhaps the only filter that is exactly known and defined is
the Fourier cutoff in wave space. If the filter function is unknown the filter width ∆
cannot be defined uniquely. Thus, in the following, we will use ∆ and refer to the
filter width, in a loose sense, to indicate the scale of the smallest eddies resolved in
the calculation.

Relating the filter width to the mesh size has a simple rationale: the smallest eddy
that can potentially be distinguished, in a numerical calculation, has size proportional
to the grid; thus, the unresolved eddies are those smaller than the grid (hence, the
term ‘subgrid-scale stresses’). This choice, however, carries a number of implications,
some of them undesirable.

(a) As the grid is refined, the filter width also decreases. This results in the
well-known asymptotic behaviour of an LES approaching a DNS as h (and,
hence, ∆) become smaller. This seems poor practice, as grid refinement not only
affects discretization errors but also implies an adaptation of the contribution
of the model for the unresolved scales. It is unclear how to distinguish model
contributions from numerical influences. Moreover, the main motivation to
embark on an LES was the infeasibility of DNS in the first place; hence,
approximating such an infeasible target using coarse resolutions only may not be
optimal (Meyers et al. 2003). Furthermore, performing grid-convergence studies
is not straightforward, since many turbulent statistics are filter-dependent (hence,
intrinsically grid-dependent). Recently, some studies of grid convergence have
been performed by maintaining ∆ fixed while decreasing h (Vreman, Geurts &
Kuerten 1996; Geurts & Fröhlich 2002; Gullbrand 2002; Lund 2003; Meyers
et al. 2003; Bose et al. 2010).

(b) In most calculations the grid is refined in regions of the flow where large
gradients are expected. Thus, some intuitive attempt is made to decrease the
filter width where the local integral scale is smaller. When complex flows
are simulated, however, it may not be possible to know, a priori, where the
integral scale decreases (and refine the mesh in these regions). Even in simple
wall-bounded flows the relationship between grid size and filter width may not
be straightforward. For instance, the two definitions of h in (1.2) result in very
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different behaviours of near a solid wall where the wall-normal integral scale
behaves as L∼ κy, where κ is the von Kàrmàn constant, while those parallel to
the wall remain constant. In these regions, typically, hx, hz� hy. If the algebraic
mean is used, ∆ (proportional to h) decreases; if the geometric one is employed,
on the other hand, ∆ remains nearly constant.

(c) In cases in which adaptive meshes are used with local refinement, sudden
variations of the grid size can occur. These result in sharp gradients in the
eddy viscosity that can lead to aliasing errors. Moreover, the presence of sharp
changes in the filter width is directly associated with commutation errors (which
occur when filtering and differentiation do not commute). This problem was
studied, among others, by Sullivan, McWilliams & Moeng (1996), Geurts &
Holm (2006a) and Vanella, Piomelli & Balaras (2008), who observed that the
filter width must be decoupled from the grid size in the vicinity of an interface
between a coarse and a fine mesh. Analyses of the commutator errors were
presented in Ghosal & Moin (1995) and van der Bos & Geurts (2005b). In
addition, theoretical estimates as well as direct evaluation of commutator errors
for turbulent flow in a temporal mixing layer were carried out by Geurts (1999)
and van der Bos & Geurts (2005a). In the case of considerable non-uniformity
and skewness of the filter, the fluxes due to commutator errors were found to be
up to 25 % of the subfilter fluxes. Such would arise on non-uniform grids near
solid walls when filter width and grid spacing become identical. Non-commuting
filters formally induce violation of the conservation of mass and momentum
in terms of the filtered velocity field (Geurts et al. 1997). Smooth variation of
the filter width was found to suffice to render commutator errors much smaller
than subfilter stresses and hence largely remove the need to model these terms
directly. A unified solution for subfilter stresses and commutator errors arises
from adapting regularization modelling (Geurts & Holm 2006a).

Mason & Callen (1986) attempted to relate the model length scale to the integral
scale of the flow for wall-bounded flows. They performed simulations of plane channel
flow, and the filter width was assigned as

∆=
[

1
κ(y+ yo)

+ 1
lo
+ 1
κ(2δ − y+ yo)

]−1

, (1.3)

where δ is the channel half-width and yo is the roughness length of the surface. This
prescription matches a constant filter width ∆= lo in the interior of the channel, to a
mixing length κy near the walls. lo is taken to be a fraction (between 0.02 and 0.04)
of the channel half-width. A strong dependence of the results on lo was observed on
a fixed mesh. Weaker dependence was observed when lo was maintained constant and
the grid was refined.

Girimaji and coworkers proposed the partially-averaged Navier–Stokes (PANS)
equations (Girimaji 2006; Girimaji, Jeong & Srinivas 2006), a model that bridges the
RANS equations to DNS. In addition to the averaged continuity and momentum
conservation equations, a turbulence model (the K –ε model in the original
formulation) is used, and two parameters are introduced, fk and fε, which measure the
amount of turbulent kinetic energy (TKE) and dissipation that the model is expected
to provide. In general, fε is set to unity, while fk determines whether the model is
in the RANS regime ( fk ' 1) or if some of the turbulence scales are resolved. The
values of fk used by Girimaji (2006), ranging between 0.4 and 1, are much higher
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than what would be expected in LES (where the small scales typically carry a much
lower fraction of the energy).

Menter & Egorov (2005, 2010) also developed a two-equation model that spans
RANS and LES. They modified the K –L two-equation model, originally proposed by
Rotta (1970) by introducing a length scale that varies locally and resolves the eddies
larger than the length scale L. Application of the model to a circular cylinder in a
cross-flow demonstrated that the model behaves as a RANS model when the boundary
layer is attached while the LES behaviour of the model switches on in the massively
separated regions. This behaviour is similar to the DES model by Spalart et al. (1997)
with the difference that the Menter–Egorov model is formulated independently of the
grid and geometry.

In this work we will follow an approach in which the definition of the model length
scale ` is directly based on local turbulence quantities characteristic of the flow that is
considered. It is emphasized that this natural length-scale distribution within the flow
domain is grid-independent; the flow physics are considered completely independent
from any numerical element such as spatial discretization method and computational
grid. This approach to LES follows the classical partial differential equation (PDE)
interpretation of the closed LES equations (Geurts 2003). The mesh size h can
in our PDE approach be chosen in such a way that the smallest resolved eddy,
of size ∆ (which should be related to the model length scale `), be reproduced
accurately by the numerical method. This approach has several potential advantages:
grid refinement studies are straightforward and a clear measure of the adequacy of the
resolution is provided by the ratio ∆/h achieved. Grid nesting and local refinement
can be performed without any sharp gradients in the eddy viscosity, which will be
beneficial in reducing the aliasing errors. This approach will be presented and applied
to homogeneous isotropic turbulence (HIT) as well as turbulent channel flow at a
range of Reynolds numbers. In this way we establish the practical usability of the
formulation, next to its theoretical appeal.

In the following, after introducing the governing equations and describing the
numerical scheme and the boundary conditions (§ 2), we will present the model for
the unresolved eddies and specify the definition of the length scale and filter width
(§ 3); a theoretical analysis of the model will also be carried out. There will be an
extensive discussion of possible ways to evaluate the model coefficient, followed by
the application of the proposed model to two flows in § 4, i.e. forced HIT (in which
the theoretical findings are evaluated numerically), and a turbulent plane channel flow
at Reynolds numbers up to Reτ = 2000 (based on channel half-width and friction
velocity uτ ). Some concluding remarks and recommendations for future work will be
presented in § 5.

2. Governing equations and numerical model
In the classical approach to LES, the velocity field is separated into a resolved

(large-scale) and a small-scale, unresolved field by a spatial filtering operation
(Leonard 1975). The continuity and the Navier–Stokes equations for the resolved
field are

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂(ujui)

∂xj
= ν ∂

2ui

∂xj∂xj
− ∂τij

∂xj
− 1
ρ

∂p
∂xi
+ fi. (2.2)
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Here, x1, x2 and x3 are the streamwise, wall-normal and spanwise directions,
respectively, also referred to as x, y and z. The resolved velocity components in
these directions are, respectively, u1, u2 and u3 (or u, v and w). In these equations,
τij = uiuj − uiuj are the unresolved stresses that constitute the well-known central
closure problem in LES. Their modelling will be discussed in the next section.

For HIT, periodic boundary conditions were applied in all directions. To produce
sustained turbulence the linear forcing method proposed by Rosales & Meneveau
(2005) was used. The force in the momentum equations (2.2) is given by

fi = Aui with A= 〈2νS
2 + τijSij〉Ω,t
〈uiui〉Ω,t (2.3)

where 〈. . .〉Ω,t is the average over the entire volume Ω and time, and S= (2SijSij)
1/2.

The numerator of (2.3) represents the total dissipation rate (viscous and residual) of
resolved kinetic energy, 〈K 〉Ω,t, while the denominator is twice 〈K 〉Ω,t.

In channel flow, periodic boundary conditions were used in the streamwise and
spanwise directions and no-slip boundary conditions in the normal direction. The
forcing in the case of channel flow is fi= δ1i fp, and fp is the pressure gradient, which
is adjusted at each time step to maintain a constant flow rate.

The Navier–Stokes equations are discretized using second-order central differences
on a staggered grid, and integrated using a fractional step method (Chorin 1968;
Kim & Moin 1985). The spatial discretization of the convective terms conserves
momentum and energy discretely (Morinishi et al. 1998). All terms are advanced
explicitly in time using a third-order Runge–Kutta method, except (in the channel-flow
calculations) for the diffusive term, which is advanced implicitly using a second-order
Crank–Nicolson method. The Poisson equation is solved directly by Fourier expansion
in the streamwise and spanwise directions (in which the spacing is uniform) followed
by an inversion of the resulting tridiagonal matrix at each wavenumber. The code is
parallelized using MPI, and has been validated extensively for a variety of turbulent
flows (Keating et al. 2004a,b; Keating & Piomelli 2006).

3. Subfilter-scale model
The use of a grid-independent length scale for subfilter-scale (SFS) modelling of

turbulent motions will be illustrated on the basis of the well-known eddy-viscosity
approach. In this section we present the formulation of a local turbulence length scale
for LES and its incorporation in an eddy-viscosity model. Generalization to other
classes of SFS models such as similarity (Bardina et al. 1980) and regularization
models (Geurts & Holm 2006b) can be pursued analogously.

The unresolved stresses are modelled using an eddy-viscosity approximation (1.1),
in which we write the eddy viscosity as

νT = (Cm∆)
2 |S| = `2|S|, (3.1)

where we have introduced a model coefficient Cm, and the model length scale `. As
mentioned before, ∆ should be a fraction of the local, instantaneous integral scale of
turbulence L. Mason & Callen (1986) implemented the same idea by having a constant
model length scale in the channel centre, matched to a mixing length near the channel
walls (1.3). We wish to generalize this idea and make it applicable to complex flows.

Turbulence models for the RANS equations generally prescribe the integral scale
using a velocity scale and a time scale (Speziale 1991). The velocity scale is the
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square root of the TKE K =〈u′iu′i〉/2 (a prime here denotes a fluctuating quantity, and
the bracket an average to which we return momentarily). The time scale can be given
by a combination of K and, for instance, the viscous dissipation (Hanjalić & Launder
1972), the pseudo-vorticity (Saffman 1970; Wilcox 1974) or the vorticity ω=〈ωiωi〉1/2,
where ωi = εijkuj,k, and εijk is the permutation symbol.

Piomelli & Geurts (2010, 2011) proposed a definition of L based on TKE and
vorticity, to give

Lest =K 1/2/ω ⇒ `∝K 1/2/ω. (3.2)

They used the total vorticity (instead of the fluctuating one) to preserve the property
that in a laminar boundary layer the length scale will go to zero. This model was
applied to plane-channel flow and temporally developing mixing layers and showed
some very promising features: grid convergence was achieved, and the filter width
became grid-independent as the mesh was refined; the model correctly predicted the
flow behaviour in the near-wall region, and gave more accurate results than existing
models, especially on coarse meshes. The model also gave vanishing eddy viscosity
in transitional flows and near a solid wall. The asymptotic behaviour near the wall
was νT ∼ y2, close to the exact one, νT ∼ y3 (Germano et al. 1991; Piomelli 1993).

One shortcoming of the TKE vorticity model was the fact that it used only the
resolved part of TKE and vorticity, neglecting the contribution of the unresolved scales.
While this approximation may be reasonable for the TKE, which is mostly due to the
large scales, it is less justifiable for the vorticity, which depends on the small scales;
as the Reynolds number is increased, the neglected contribution of the small scales
becomes larger.

To avoid this shortcoming, we propose to define the filter width in terms of an
approximation of the integral length scale, which characterizes the large eddies:

Lest =K 3/2/εtot, (3.3)

where εtot is the dissipation rate of K , given by

εtot = 〈2(ν + νsfs)s′ijs
′
ij〉, (3.4)

and s′ij is the fluctuating part of the strain-rate tensor Sij. The filter width could then
be expressed as a fraction of the integral length scale:

∆=C∆Lest. (3.5)

The inclusion of the contribution of the unresolved scales to the dissipation in (3.4)
is expected to be more accurate than (3.2) at high Reynolds numbers; the use of the
resolved TKE, as mentioned above, is expected to result in small errors even if the
filter width is deep into the inertial range.

To determine quantitatively the error implicit in such assumption, we consider the
model spectrum (Pope 2000):

E(k)=Cε2/3k−5/3fL(kL)fη(kη) (3.6)

fL(kL)=
[

kL(
(kL)2 + 6.78

)1/2

]11/3

(3.7)

fη(kη)= exp
{
−5.2

[(
(kη)4 + 0.404

)1/4
]}

(3.8)
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103 104 105

100

101

ReL

FIGURE 1. Ratio of integral length scales: line, Lest/Lex; line with circles, Lres/Lex;
——, C∆ = 0.02; - - - -, C∆ = 0.01; — · —, C∆ = 0.005.

where C= 1.5 is the Kolmogorov constant and k is the wavenumber. We calculate the
TKE and dissipation by integrating (3.6)–(3.8) over the entire wavenumber range, to
yield the total TKE and dissipation, K̂tot and ε̂tot (a hat here indicates that the quantity
is calculated using the model spectrum), or up to a cutoff wavenumber K̂c=π/∆, to
obtain the resolved TKE and dissipation, K̂res and ε̂res. Then, we construct three length
scales,

Lex = K̂ 3/2
tot /ε̂tot; Lest = K̂ 3/2

res /ε̂tot; Lres = K̂ 3/2
res /ε̂res, (3.9a−c)

where Lex → L as ReL → ∞. Since the integrals are performed up to a cutoff
wavenumber, we are implicitly adopting a Fourier cutoff filter, in which the
relationship between cutoff wavenumber and filter width is well defined.

In figure 1 we show the ratio between Lest, Lres and the exact integral length Lex, for
various values of the Reynolds number (based on the integral scale Lex and K̂ 1/2

tot ) and
for ∆=C∆Lex, with C∆= 0.005, 0.01 and 0.02. Although the use of the resolved TKE
(instead of the total one) results in an underestimation of the actual TKE by less than
10 %, the ratio Lres/Lex departs significantly from unity beyond a critical Reynolds
number, which increases as C∆ is decreased. Using only the resolved dissipation
is reasonable at low or moderate Reynolds numbers, but grossly underestimates the
dissipation for ReL > 104, leading to the significant overestimation of the integral
scale. The use of the total dissipation, therefore, appears desirable, and the model
(3.3) potentially presents a significant advantage compared with that proposed by
Piomelli & Geurts (2010, 2011). In the latter, only the resolved vorticity was used
(which would lead to the error observed when Lres is used), while (3.3) allows for the
inclusion of the contribution of the unresolved scales to the dissipation. Modelling
errors will still, of course, affect the value of the dissipation; the systematic error
associated with neglecting the small-scale contribution to the dissipation is, however,
alleviated. This is a crucial advantage of the new formulation and key to this paper:
its associated benefits in actual turbulence simulations at high Reynolds numbers will
be presented momentarily.
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FIGURE 2. Contours of the ratio of (a) subfilter energy to total energy, K̂sfs/K̂tot,
and (b) subfilter dissipation to total dissipation ε̂sfs/ε̂tot as a function of ReL and the
coefficient C∆.

With this definition of the length scale, the eddy-viscosity model in (3.1) takes the
form

νsfs =C2
k
K 3

ε2
tot

|S| = `2|S|, (3.10)

where all the model constants have been combined into Ck, and the model length
scale is defined as ` = CkLest = CkK 3/2/εtot. We call this the integral length-scale
approximation (ILSA) model. The coefficient Ck (through its dependence on C∆) is
the parameter that determines the turbulence resolution. A large value of Ck implies
that a large range of turbulent eddies is modelled, a small one corresponds to a
calculation in which most of the eddies are resolved. Figure 2 shows the ratio of
subfilter to total energy, and subfilter to total dissipation, obtained from the integration
of the model spectrum (3.6)–(3.8). In the range of Reynolds numbers and coefficients
C∆ considered, most of the energy (>95 %) resides in the large scales. As expected, as
ReL is increased for fixed C∆, the SFS provide an increasing percentage (approaching
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100 %) of the dissipation. Conversely, for constant ε̂sfs/ε̂tot, C∆ approaches 0 as
ReL→∞, while K̂sfs/K̂tot reaches an asymptotic value.

Figure 2 also suggests a strategy to assign the value of the coefficient: one could
require that the SFS contribute a fixed amount of energy or dissipation. This is
analogous to the concept of ‘adaptive LES’ proposed by Pope (2004), and also
related to the PANS formulation, in that the fraction of energy that one expects the
SFS eddies to support can be assigned by the user (in PANS, through the coefficients
fk and fε). Unlike PANS, however, we will not assume that the SFS contribute the
entire dissipation, and assign a value for the resolved energy fraction: rather, we will
assume that the resolved energy fraction is nearly unity.

The ILSA model defined in (3.10) has a number of features. First, the use of the
integral length scale naturally decreases the model length scale in regions of high
gradients in which smaller scales may be present. Second, grid convergence studies
are straightforward, since refining the grid is formally decoupled from changes in
the filter width; only indirect coupling of mesh-spacing and filter width can occur
when changing an under-resolved simulation into a properly resolved one in which
the local ratio ∆/h is sufficiently large. Third, the fact that the model length scale
does not depend on the grid size should make this approach potentially more accurate
in calculations that use adaptive mesh refinement with sharp variations in the local
mesh size (Sullivan et al. 1996; Vanella et al. 2008). Since the integral scale is an
average (in the Reynolds sense) quantity, both K and ε should be averaged to yield
the integral scale. Plane averages can be used in flows that are homogeneous in two
directions (channel, temporally developing mixing layer, etc.). Lagrangian averages
(Meneveau, Lund & Cabot 1996) appear a natural extension for more complex flows
without directions of homogeneity. Using a local formulation, in which the integral
length scale is defined instantaneously at each point is an intriguing possibility that
deserves consideration; this will not, however, be considered in the present work, in
which averages are performed over the homogeneous directions and over time.

To understand the near-wall behaviour of the proposed model we can write

νsfs ∝ K 3

(ν + νsfs)2|s′|4 , (3.11)

where |s′|2 = 2s′ijs
′
ij. In laminar shear-free regions (3.11) is of the form 0/0; this

technical problem is resolved by adding a small number to the denominator. Near a
wall the behaviour is more complex: since u ∝ y, K 3 ∝ y6, while |s′| ∝ const. For
low Reynolds numbers, ν� νsfs and νsfs ∝K 3 ∝ y6. As Re→∞, on the other hand,
ν� νsfs and (3.11) yields that ν3

sfs ∝K 3 ∝ y6, or νsfs ∝ y2. Neither of those two limits
is the correct νsfs∝ y3 one (Germano et al. 1991). Nevertheless, the viscosity vanishes
quite rapidly, and requires no explicit correction, as will be shown later.

Finally, we point out that, in this formulation, the terms ‘subgrid-scale model’ and
‘subgrid-scale stresses’ are not appropriate, since the unresolved eddies may turn out
to be larger than the grid. In the following, therefore, we will refer to ‘subfilter scale
(SFS) eddies, stresses’. Note that this terminology is already used, especially in the
combustion and meteorological communities, and is discussed by Pope (2000).

4. Results and discussion
It was mentioned above that various possibilities exist to determine the coefficient

Ck. Therefore, we will begin by describing the method we chose (§ 4.1). The
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application of the new SFS model to forced HIT, and to turbulent channel flow
at Reτ up to 2000 is presented subsequently (§§ 4.2 and 4.3). Finally, in § 4.4 we
compare results of the new modelling approach to standard models in literature, and
discuss the computational cost of the proposed model.

4.1. Determination of Ck

There are a number of ways in which the relation between the filter width and the
local integral length scale can be specified. The model coefficient Ck can, for example,
be specified by the user based on the computational resources available. Alternatively,
one could find an optimum value for Ck that minimizes the total simulation error in
the prediction of a set of selected quantities that may be known from experiments,
theoretical considerations or DNS. For instance, Piomelli & Geurts (2010, 2011)
required that the coefficient minimizes the error in the prediction of the skin-friction
coefficient, Cf = 2τw/ρU2

b (where τw is the wall stress, ρ the fluid density and Ub the
average velocity in the channel), which is known from experimental data.

An alternative is to use an internal measure of the simulation resolution to determine
Ck. For this study, therefore, we define two measures of the contribution to the
transport by the SFS. The first is the ratio of SFS dissipation to the total dissipation,
defined as (Meyers et al. 2003)

sε = 〈εsfs〉
〈εsfs〉 + 〈εν〉 =

〈2νsfsSijSij〉
〈2(ν + νsfs)SijSij〉 . (4.1)

Geurts & Fröhlich (2002) and Meyers et al. (2003) observed that for large
filter-width-to-grid ratios, sε depends mostly on ∆. An appropriate choice of the
averaging operator might be case-dependent; here, we have averaged over the entire
domain and time.

A second measure is the SFS contribution to the Reynolds stresses. This measure
should, however, take into account the fact that the SFS stress model, in the
eddy-viscosity formulation, does not include the SFS energy. Therefore, the simplest
coordinate-invariant measure of the Reynolds stresses is the second invariant of the
anisotropic part of the Reynolds stress tensor. Let

Ra
ij = u′iu

′
j − δij

u′ku
′
k

3
; τ a

ij = τij − δij
τkk

3
, (4.2a,b)

where u′i=ui−〈ui〉hd,t is the resolved turbulent fluctuation, difference between resolved
and mean velocity (averaged over homogeneous directions and time). We define

sτ =
[ 〈τ a

ij τ
a
ij 〉

〈(Ra
lm + τ a

lm)(R
a
lm + τ a

lm)〉
]1/2

. (4.3)

Once a desired level of sε or sτ is assigned, the value of Ck that ensures that the
SFS model yields the desired subfilter activity can be found by performing a series
of calculations on coarse grids; production calculations can subsequently be performed
with higher reliability on finer meshes. With this procedure, Ck becomes a user-defined
resolution parameter, related to the cost of the calculation, and to the computational
power available. Large values of sε or sτ result in large values of Ck, corresponding
to fairly coarse LES in which most of the energy transfer is modelled, and/or a large
proportion of the Reynolds stresses are unresolved. Such calculations can be expected
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to converge on coarse grids. Small values of sε or sτ , conversely, will result in small
values of Ck, and finer meshes will be required. In the limit s→ 0, the filter width
vanishes and the DNS limit is recovered as the mesh is refined.

To minimize the number of coarse-grid calculations required to determine
Ck, the error-minimization technique based on the successive inverse polynomial
interpolation (SIPI) procedure, as proposed by Geurts & Meyers (2006) to optimize
the Smagorinsky constant, is used. The SIPI method is based on the definition of a
measure φ of the difference between some target quantity and the LES prediction of
this quantity. Geurts & Meyers (2006), for instance, performed simulations of HIT,
and based the definition of φ on the TKE. The method consists of performing three
LES on a coarse mesh, for values of Ck that bracket the optimum (one evaluation is
always performed with Ck = 0, one with a fairly large value of Ck, the third with an
intermediate value). We then construct an interpolating parabola, and find its minimum,
which is used for the next evaluation of φ. The interpolation is then repeated using
three pairs [Ck, φ(Ck)] (including the newest one) that result in a parabola with an
upwards concavity. A new minimum is found and a new error evaluation carried out.
This procedure resulted in an accurate identification of the minimum with typically
less than six error evaluations. The cost of the whole procedure is small, given that
the SIPI test runs are performed on a mesh that is much coarser than that used for
the production runs. The use of the coarse mesh is made possible by the fact that
the integral length scale (3.3) (and, hence, ` and ∆) is representative of the largest
turbulence scales, and is expected to be predicted reasonably well even by coarse
calculations. Obviously, the latter requirement does implicitly set some lower bound
on the coarsest resolutions that actually can be adopted in such a set of SIPI test
runs. In the applications considered here, the overhead created by these SIPI runs
was found to be less than 5 %.

Figure 3 demonstrates the application of SIPI on a channel flow using the proposed
model at Reτ = 950 on a coarse grid (48× 65× 48). The parameters of the simulation
are discussed later. For this case φ is based on subfilter activity sε:

φs %= 100× ∣∣sε − stgt

∣∣2 (4.4)

where stgt is set to 0.23; this value would be typical of a well-resolved LES of a wall-
bounded flow; the sensitivity of the results to the target value will be examined later.
The first three calculations were performed with Ck = 0.000 (point (i)), Ck = 0.009
(point (ii)) and Ck = 0.0045 (point (iii)). The parabola constructed from these three
points yields a minimum for Ck=0.007. A fourth calculation was carried out with this
value, and the next parabola created by points (ii), (iii) and (iv); it also has a minimum
at Ck = 0.007, indicating this value as the target value. In total four simulations were
performed to optimize Ck. The optimum value obtained directly by sampling φs in a
number of cases was also verified by performing nine simulations (figure 3b), and is
the same as that found using SIPI.

As mentioned, all of the averages required to evaluate the SFS ratios, sε and sτ ,
are carried out over the entire computational domain and time. A single value of the
coefficient Ck obtains; the model length scale `, however, may vary if the TKE and
dissipation are only averaged in homogenous directions (as will be the case in the
plane channel flow). This choice is by no means unique, and is made here to simplify
the initial applications of the model. Its effects and limitations will be discussed in
§ 4.3. More local averages can also be used, and are the subject of ongoing work.
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FIGURE 3. SIPI optimization for plane channel flow at Reτ = 950 with subfilter activity sε
as quantity to be optimized with target value stgt = 0.23 and grid 48× 65× 48. (a) Error
optimization based on SIPI; the first polynomial has been constructed using points (i)–(iii)
(——); the second using (ii)–(iv) (- - - -). (b) Error obtained from nine simulations with
varying values of Ck.

4.2. Forced HIT

We first performed simulations of HIT, with Reynolds number (based on K 1/2 and
the integral scale L) ReL = 250. To achieve a steady state, a force was added to the
right-hand side of the momentum equation. Following Rosales & Meneveau (2005)
A = 0.1333 in (2.3). The domain size was 2π × 2π × 2π, and the initial condition
was a solenoidal isotropic velocity field with random phases and the energy spectrum:

ET(k)= 16√
π/2

u2
ok4

k5
o

exp
(
−2k2

k2
o

)
, (4.5)

where uo = 1 is the initial root-mean-square (r.m.s.) velocity, and ko = 20 the
wavenumber where the spectrum is maximum. These input parameters correspond
to one of the three DNS cases performed by Rosales & Meneveau (2005) using a
pseudo-spectral method. Note that, with the forcing defined in (2.3), at steady state
A = 〈εtot〉Ω,t/2〈K 〉Ω,t, yielding L = 〈K 〉1/2Ω,t/2A. The DNS simulation by Rosales
& Meneveau (2005) showed that the TKE reaches an asymptotic state around 0.3;
therefore, we expect L' 2.05.

Here Ck was determined by choosing a target value of the subfilter activity sε,tgt =
0.15. Simulations were then performed on a coarse grid with 323 points, and the
optimum value of Ck was found using SIPI; only 5 simulations were required to
find that Ck ' 0.006 gave sε,tgt = 0.15. To evaluate the sensitivity of the results to
increasing the range of eddies that are resolved, we also performed the optimization
using sε,tgt = 0.3, a value expected to give a more significant contribution of the SFS
to the momentum transport. The coefficient increased to 0.010.

Figure 4(a,b) show the energy spectra ET(k) calculated, for Ck = 0.006 and
Ck = 0.010, using different grids. Several observations can be made; in both figures
the energy spectra collapse onto each other for 1283 grid points when Ck = 0.006,
and 323 when Ck = 0.010. This is consistent with the observations by Geurts &
Fröhlich (2002) and Meyers et al. (2003) in which, for higher subfilter activity, grid
convergence was achieved at coarser resolution. The value L' 2.05 is also achieved to
good approximation using both Ck values when 643 grid points are used (not shown).
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FIGURE 4. (Colour online) Total energy spectra at grid resolutions of −−− 323, — · —
643, - - - - 1283 and —— 1923 with: (a) sε,tgt = 0.15 and Ck = 0.006; (b) sε,tgt = 0.3 and
Ck = 0.010. Theu shows DNS (Rosales & Meneveau 2005).

Finally, we observe that when Ck = 0.006, smaller eddies (higher wavenumbers) are
resolved while the use of a higher Ck value tends to increase the contribution of
the subfilter model, resulting in a strong attenuation of the predicted spectra at high
wavenumbers (figure 4b). For the higher value of Ck, the spectrum decays more
rapidly at high wavenumbers. Since the DNS data are not filtered, this results in a
larger difference with the reference data.

In figure 5 we compare the flow structures obtained, for different grid resolutions,
for the Ck = 0.010 case. The eddies are visualized using isosurfaces of the second
invariant of the velocity gradient tensor, Q (Hunt, Wray & Moin 1988; Dubief &
Delcayre 2000):

Q=−1
2
∂ui

∂xj

∂uj

∂xi
. (4.6)

We observe progressively smaller structures being resolved as the mesh is refined,
and also more finely detailed appearance of the resolved eddies. At coarse grids the
contribution of numerical discretization errors is quite significant. Conversely, beyond
a resolution of 1283 the global visual impression of the flow appears quite similar,
suggesting the start of convergence to a grid-independent LES. For the lower value
of Ck (not shown) smaller scales appear, as expected.

We also performed simulations at a higher Reynolds number, ReL = 4490. The
spectra are shown in figure 6, for sε = 0.84 (resulting in Ck = 0.006) and sε = 0.44
(which gives Ck = 0.0015). Grid-convergence appears to set in beyond 1283 and
2563 grid points, respectively. The correspondence between the spectrum obtained
here, with an undefined filter function, and the model spectrum coupled with a sharp
Fourier cutoff discussed before is only approximate; however, we can remark, with
reference to figure 2(b), that, at this Reynolds number, sε = 0.84 corresponds to
C∆ ' 0.05; the filter width is approximately 20 times smaller than the length scale
Lest. The corresponding wavenumber is approximately k∆ ' 31 (approximately 77
for sε = 0.44), and is indicated by a dashed line in the figure. The LES results
match the DNS data well up to wavelengths '2∆. Near the cutoff the spectra decay
considerably more rapidly, reflecting the high value of sε, which causes the model
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(a) (b)

(c) (d )

FIGURE 5. Isosurfaces of Q= 5.00 for Ck = 0.010: (a) 323 points; (b) 643 points;
(c) 1283 points; (d) 1923 points.

to be very dissipative. Compared with a Smagorinsky model, in which the eddy
viscosity is given by

νsmag = (Csh)2|S|, (4.7)

with Cs ' 0.17–0.23, the present model gives higher dissipation by a factor
(CkLest/Csh)2. For the grid-converged simulation, with h = 2π/192 ' 0.016Lest, this
implies that the dissipation predicted by the present model is over three times larger
than that of the Smagorinsky model. Choosing a smaller value of the SFS activity,
sε= 0.44 results in a wider range of scales in agreement with the DNS data; however,
a finer mesh (2563 grid points) is required to obtain a similar level of grid-converged
data; again, eddies of size >2∆ appear accurately captured.

This study highlights an important feature of this SFS model: the fact that the
coefficient Ck is really a user-defined parameter, determined by the SFS activity
level chosen. The larger sε (or any other measure of the SFSs used), the larger the
coefficient and the more significant the contribution of the unresolved scales. As Ck
(and, consequently, `) are increased, a coarser grid is sufficient to resolve eddies of
size comparable to the filter width, but modelling errors are expected to increase as
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FIGURE 6. (Colour online) Total energy spectra at grid resolutions − − − 643, — · —
1283, - - - - 1923 and —— 2563 with ReL = 4490 and: (a) sε,tgt = 0.84 and Ck = 0.006.
(b) sε,tgt = 0.44 and Ck = 0.0015. Theu shows DNS (Rosales & Meneveau 2005).

well. An optimal value of the SFS activity may be case-dependent; in the present
case, the LES was found to be accurate for scales larger than 2∆, independent of the
value of ∆ that is implied by the definition of ` chosen by the user.

It should be observed that, for Ck = 0.006, i.e. C∆ ≈ 0.05, nearly 10 % of the
TKE resides in the unresolved scales (figure 2a). Approximating K in (3.10) with
Kres may, therefore, result in errors in νsfs, particularly since this viscosity scales
with K 3. To verify the significance of these errors, three additional simulations were
performed. First, the exact value of L (obtained from the DNS data) was used; second,
we considered a case in which the TKE from the DNS was used in the numerator of
(3.10); finally, Ksfs was estimated as (Yoshizawa 1986)

Ksfs = 0.0886(C∆Lest)
2|S|, (4.8)

and was added to Kres in the numerator of (3.10). The results of the four simulations
were within 2 % of each other, indicating that neglecting the SFS contribution to the
TKE should not give significant errors when the SFSs responsible for less than 10 %
of the TKE itself.

4.3. Plane channel flow
Channel flow simulations were performed at Reτ = 950 and 2000. The domain size
is 6δ × 2δ × 3δ in the streamwise, wall-normal and spanwise directions, respectively.
While Piomelli & Geurts (2010, 2011) determined Ck by minimizing the error
in the prediction of skin friction coefficient Cf , which is known from correlation of
experimental data (Dean 1978), we chose Ck to achieve a desired level of the subfilter
activity sε. The relationship of the chosen measure to others (the amount of Reynolds
shear stresses or TKE provided by the model, for instance) will be discussed later.

Figure 3 showed the error minimization for channel flow at Reτ = 950 and grid
size 48 × 65 × 48 illustrating the effectiveness of the SIPI procedure. Figure 7
shows the mean velocity profile (in wall units) and the turbulence intensities obtained

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

29
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.29


A grid-independent length-scale for large-eddy simulations 515

y
0.2 0.4 0.6 0.8 1.00

1

2

3

(b)

y
0.2 0.4 0.6 0.8 1.00

0.4

0.8

1.2

1.6(c)

y
0.2 0.4 0.6 0.8 1.00

0.4

0.8

1.2

1.6(d )

100 101 102 103
0

5

10

15

20

(a)

FIGURE 7. Turbulence statistics for Reτ = 950 and Ck = 0.007: (a) mean velocity; (b)
urms; (c) vrms; (d) wrms; −−− 48× 65× 48 grid points; — · — 64× 97× 64 grid points;
- - - - 128× 129× 128 grid points; —— 192× 193× 192 grid points; + DNS (Hoyas &
Jiménez 2006).

at various grid resolutions. Approximate convergence appears with 48 × 65 × 48
grid points for the mean velocity, while 128 × 129 × 128 grid points are required
to obtain near grid-independent Reynolds stresses. The fact that the mean-flow
statistics can be predicted reasonably accurately with only 48 × 65 × 48 grid points
(corresponding to 1x+ ' 119 and 1z+ ' 60) is rather surprising: with this resolution
the quasi-streamwise vortices in the wall layer cannot be resolved adequately, and
LES is not expected to be accurate. This issue will be discussed further later.

Figure 8 shows contours of streamwise velocity fluctuations obtained with four grids
at Reynolds number Reτ = 950. One can observe how refining the mesh results in
improved resolution of finer scales, as expected. This grid-refinement study shows that
there is very little difference between the results obtained at the two finer meshes.
Apparently, for these grids, ` does not change much with resolution, as the integral
scale is well-approximated throughout the domain. The smallest resolved eddies that
result from the choice Ck = 0.007 can be represented reasonably well using 128 ×
129× 128 grid points.

We also conducted simulations at Reτ ' 2000. The SIPI procedure was carried
out on a 64 × 97 × 64 grid using the estimate for subfilter activity based on the
dissipation, and a target value stgt= 0.23. More refined calculations were subsequently
carried out with the value of Ck = 0.005 that was obtained from the SIPI algorithm.
The turbulence statistics are shown in figure 9, and again demonstrate improved
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FIGURE 8. Contours of u-velocity fluctuations at y+ = 11 superposed on the underlying
grid with Reτ = 950 and Ck = 0.007: (a) 48× 65× 48, (b) 64× 97× 64, (c) 128× 129×
128 and (d) 192× 193× 192 grid points.

agreement with the DNS data as the mesh is refined while keeping Ck fixed. This
indicates that with the filter-width definition based on flow physics, as proposed here,
the convergence to a grid-independent LES can be pursued effectively. At proper
(sufficiently low) Ck the grid-independent LES results will show close agreement
with DNS data. As Ck → 0, the DNS limit would be achieved when the grid is
refined.

Profiles of several quantities related to the SFS model are shown in figure 10.
Figure 10(a) shows the ratio of the eddy viscosity and the molecular viscosity. Some
dependence on the grid resolution can be observed on coarse grids as the eddy
viscosity converges with grid refinement. This dependence on resolution, however,
is much weaker than what would be seen in a classical model of the Smagorinsky
type, in which the viscosity depends on h2; in the present case the grid resolution is
changed by a factor of 4 in each direction between coarsest and finest simulations,
which would result in a decrease of the Smagorinsky eddy viscosity by approximately
a factor of 16. The eddy viscosity as defined in this paper only decreases by 33 %
over the entire range of under-resolved to approximately grid-independent resolutions.
Also, the two finest grids give well-converged results for νsfs despite the fact that the
grid size is different by 50 %. The near-wall behaviour, as expected, is proportional
to y6, steeper than the theoretical prediction of y3.

Figure 10(b,c) show the integral length scale Lest and its ratio to the grid size. First,
we observe a rapid rise of Lest near the wall followed by a more gradual increase
in the channel core. As the mesh is refined the prediction of K and εtot becomes
more accurate, which results in changes in L and νsfs; a nearly grid-converged value
of L is reached for the 128 × 129 × 128 grid. The length scale Lest is of the order
of the channel half-width in the core of the flow, reflecting the expected size of the
eddies there. The mixing length `=−〈u′v′〉/|dU/dy|2, in the core of the channel, is
approximately equal to 0.15δ, of the same order as Lest. At this resolution, 20 grid
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FIGURE 9. Turbulence statistics for Reτ = 2000 and Ck = 0.005: (a) mean velocity; (b)
urms; (c) vrms; (d) wrms; — · — 64 × 97 × 64 grid points; − − − 128 × 129 × 128 grid
points; - - - - 192 × 193 × 192 grid points; —— 256 × 257 × 256 grid points; + DNS
(Hoyas & Jiménez 2006).

points are required to resolve Lest (as shown by the ratio Lest/h in figure 10c), at least
in the channel core.

We have chosen, in this paper, to consider a global average of the SFS activity
measures. This choice implies that, in inhomogeneous flows, the actual SFS
contribution may be higher or lower than the target in different regions of the
flow. To understand better the consequences of this choice, in figure 11 we show
profiles of a surrogate measure of the SFS activity, plane by plane. This measure is
defined as

s̃ε = 〈εsfs〉xzt

〈εtot〉xzt

sε∫ h

0

〈εsfs〉xzt

〈εtot〉xzt
dy

(4.9)

where 〈·〉xzt indicates averaging over wall-parallel planes and time, whereas 〈·〉
indicates averaging over the entire volume (and time). The second term in (4.9)
ensures that the average of s̃ε is sε. A similar expression defines s̃τ . The figure shows
that throughout most of the channel the SFS activity is nearly constant. On the coarse
grid (on which the SIPI procedure was carried out) its average value is very close to
the target one; on finer grids it is somewhat lower: the grid-converged value of the
integral scale is slightly higher than that predicted on the coarse grid (figure 10d),
and on the fine mesh the resolved eddies have a higher-than-expected contribution to
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FIGURE 10. Profiles of: (a) SFS eddy viscosity; (b) estimated integral scale Lest; (c) ratio
Lest/h; and (d) ratio CkLest/CSh; channel flow, Reτ = 950 and Ck = 0.007; − − − 48 ×
65× 48 grid points; — · — 64× 97× 64; - - - - 128× 129× 128; —— 192× 193× 192
grid points.

the momentum and energy transport. The local SFS activity measures show significant
variations only near the wall, for y < 0.1–0.2 (y+ < 100–200). This result indicates
that in calculations of attached boundary layers (especially if wall models are used,
in which the first grid point is located in the logarithmic layer) the use of global
averaging may be adequate. On the other hand, in flows including separation or other
non-equilibrium effects, use of a more local measure of SFS activity may be more
suitable. Within that contest (and, in particular, in wall-modelled LES, in which the
viscous dissipation is negligible compared with that supplied by the SFSs), we point
out that sτ is a better indicator than sε. First, as Re→∞ one loses much sensitivity
when sε is used to determine Ck. Second, requiring that the SFS contribution to the
dissipation be equal to sε at each point implies that νsfs = ν/(1 − sε) everywhere as
well (whereas with the present approach, this is true only on average). Such a model
cannot be expected to be accurate in most flows.

Note that the filter width ∆ = C∆L is unknown: the constant C∆ does not need
to be determined as part of the simulation algorithm. The model coefficient Ck also
accounts for the (unknown) constant of proportionality for the time scale. One can
estimate C∆, however, from figure 2, assuming that the turbulence is isotropic near the
centre of the channel. The Reynolds number based on L and the turbulence intensity
K 1/2 is approximately 800 in this region, and the subfilter activity calculated at grid
convergence is approximately 0.17; figure 2 indicates that these values correspond to
C∆ ' 0.06. The filter width is, therefore, smaller than the integral scale by a factor
of 15–20 (similar to the values observed for the simulations of HIT discussed before).
For the finest mesh, in which L/h' 30 (figure 10c), this gives a ratio ∆/h' 1.5–2,
which is consistent with earlier observations of subfilter resolutions ∆/h that would
be required to achieve nearly grid-independent numerical solutions (Vreman, Geurts &
Kuerten 1994; Lund 2003). Another estimate of the ratio between filter width and grid
size can be obtained by comparing the quantity CkL with the analogous quantity used
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FIGURE 11. Profiles of plane-averaged SFS activity measures, defined in (4.9): (a) s̃ε;
(b) s̃τ ; − − − 48 × 65 × 48 grid points; — · — 64 × 97 × 64; - - - - 128 × 129 × 128;
—— 192× 193× 192 grid points. The thin dotted line shows the target value.

in the Smagorinsky model, Csh. As is the case for Ck, Cs also includes the constant
of proportionality for the time scale. The ratio between the two quantities is shown
in figure 10(d). In the channel core this ratio is approximately equal to 1.5 for the
128× 129× 128 grid, increasing to 2 for the more refined grid.

Figure 12 shows the variation of the two measures of subfilter activity defined above
in (4.1) and (4.3) with Ck. We also include a third quantity that measures the SFS
contribution to the shear stress,

suv =
〈
νsfsS12

〉〈−u′v′ + νsfsS12
〉 . (4.10)

While this measure of SFS activity is not generally applicable, being coordinate-
dependent, and difficult to generalize to complex geometries, it is useful to relate the
measures introduced earlier in the literature to suv, which gives a direct measure of
the contribution of the SFSs to momentum transport. The figure shows, first, that the
range of sε considered (between 0 % and 40 %) corresponds to an SFS contribution to
the total shear stress of less than 10 %; the corresponding values of sτ are under 5 %.
As we already observed, on fine grids all of the metrics considered have lower values
than those estimated on the coarse mesh for the SIPI procedure used to assign Ck.
Thus, the grid-converged calculations resolve more eddies than expected; indicating
that the procedure used to evaluate Ck is conservative.

It is possible also to choose the value of Ck that optimizes the prediction of
some quantity known experimentally. This is predicated on the availability of prior
knowledge, and is effective only if the quantity of interest is not strongly dependent
on the small scales, since the SIPI procedure is performed on a coarse grid. Piomelli
& Geurts (2010, 2011), for instance chose the value of Ck that minimized the error
in the prediction of the skin-friction coefficient, Cf . While we believe that the use of
an internal measure such as sτ is preferable, we also observe that the values of Ck
chosen here are close to the value that optimizes the prediction of Cf . On the coarse
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FIGURE 12. Measures of SFS activity; channel flow, Reτ = 950: (a) sε; (b) sτ (c) suv; line,
48× 65× 48 grid points; line with symbols, 128× 129× 128 grid points.
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FIGURE 13. Profiles of (a) mean velocity and (b) urms; for Reτ = 950; —— Ck = 0.005;
· · · · · · Ck = 0.007; - - - - Ck = 0.009; — · — Ck = 0.012; 128× 129× 128 grid points.

mesh, in fact, the minimum Cf is obtained for Ck= 0.0061, close to the value chosen
for fine simulations (Ck = 0.007).

Next, we examined the sensitivity of the numerical results to the value of Ck

chosen. We performed simulations on the 128 × 129 × 128 grid, using coefficients
ranging from 0.005 to 0.012, corresponding to SFS contributions to the dissipation
ranging between 10 % and 33 % (as evaluated on the fine grid) and to the shear stress
between 1 % and 5 %. For SFS dissipation between 10 % and 25 % of the total we
observe no difference in the mean velocity profiles (figure 13a) and little difference
in the r.m.s. turbulence intensities (figure 13b; the other components have similar
behaviours). When the filter width is increased so that the subfilter eddies contribute
over 30 % of the dissipation, we begin to observe errors in the buffer region (see the
inset in the figure). In particular, the point of maximum urms moves away from the
wall (from y+ ' 30 for Ck = 0.012 to 13 for Ck = 0.005), and the region of the peak
becomes wider, indicating an overestimated diffusion due to a slightly overestimated
eddy viscosity. From figure 2, one can estimate that this case corresponds to a filter
width ∆ ' 0.07–0.1L, substantially larger than that corresponding to Ck = 0.007.
Even with such a large filter width, however, the differences with the DNS data are
surprisingly small.
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FIGURE 14. Profiles of (a,c) mean velocity and (b,d) urms for Reτ = 950; —— present
model, Ck = 0.007; — · — dynamic eddy-viscosity model; + DNS (Hoyas & Jiménez
2006); (a,b) 48× 65× 48 grid points; (c,d) 128× 129× 128 grid points.

4.4. Comparison with other models and cost considerations
We next compare the present model with the dynamic eddy-viscosity model (Germano
et al. 1991; Lilly 1992), which is in widespread use. We used the plane-averaged
formulation with both grid and test filter widths proportional to the grid size, and
performed calculations of the channel flow at Reτ = 950 using both a coarse grid
(with 48× 65× 48 points) and a refined one using 128× 129× 128 points. Figure 14
compares the mean velocity profiles and the streamwise r.m.s. turbulence intensity,
urms. First, the present model, on the coarsest mesh, gives results in surprisingly good
agreement with the DNS, while the dynamic model results in an incorrect prediction
of the near-wall flow, with an overestimation of the intercept of the logarithmic layer
and an excessively high peak of urms, both due to a 12 % underestimation of the wall
stress. On a finer grid, on the other hand, both models give similar results. With
Ck = 0.007, the SFS eddies are expected to contribute between 16 % and 23 % of the
dissipation, and 2 %–4 % of the Reynolds shear stresses (figure 12).

Figure 15 shows that, on the coarse mesh, the present model yields an eddy
viscosity that is much larger than that predicted by the dynamic model. This balances
the inability of the resolved scales to transport momentum at the appropriate rate: the
fluctuation contours shown in figure 8 show streaks of much larger scale than physical,
and a more quiescent flow. Thus, the contribution of the SFS to the Reynolds stresses
is enhanced (figure 15b), and exceeds that of the resolved scales in the viscous and
buffer layers. In fact, the total Reynolds stress (sum of resolved and SFS components)
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FIGURE 15. Profiles of (a,c) eddy viscosity and (b,d) shear stress; channel flow, Reτ =950.
—— Present model, Ck = 0.007; - - - - dynamic eddy-viscosity model;uK –ω turbulence
model in (a). (a,c): 48× 65× 48 grid points. (b,d): 128× 129× 128 grid points. For the
shear stress figures: lines: resolved stress; lines with squares: SFS stress; lines with circles:
total Reynolds stress.

may be excessively high in the buffer region; the mean velocity gradient must, in that
region, be lower, to satisfy the momentum balance; this phenomenon is noticeable
in figure 14(a). With the dynamic model, on the other hand, the subfilter stresses
are insufficient to balance the unresolved momentum, and the mean velocity gradient
must increase to close the momentum balance, leading to the high intercept of the
logarithmic layer. On the fine mesh, on the other hand, the dynamic model gives
accurate results indicative of the high fidelity achieved at such resolutions.

SFS models usually require the energy- and momentum-transporting eddies to be
resolved to give accurate results. On the coarse mesh, such is not the case, and the
dynamic model cannot be expected to be accurate. The model proposed here, on the
other hand, has some features of a RANS turbulence model, through the definition
of the integral scale. Figure 15(a) shows the eddy-viscosity obtained for this case by
solving the RANS equations with the K –ω turbulence model (Wilcox 1993). In the
viscous and buffer layers the present model yields virtually the same eddy viscosity as
that predicted by the RANS turbulence model. At finer resolution the present model
behaves like a standard SFS model, yielding a much lower viscosity than the K –ω
model. It is not to be expected, however, that this behaviour could extrapolate to cases
in which sε→ 1: unlike the PANS approach, which solves explicitly an equation for
the unresolved TKE, the present model requires that Ktot 'Kres. Even on the coarse
mesh, the resolved eddies support 95 % of the shear stress, integrated over the entire
channel (figure 12c). Presumably, they will support roughly the same percentage of
TKE, leading to an accurate prediction of the dissipation length. For sε= 0.3 and sτ =
0.03 errors in the prediction of the r.m.s. fluctuations become more significant, even
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Simulation Average time-step Average CPU per time-step (s) Total CPU (h)

5 coarse grid (48× 65× 48) 0.0250 0.044 0.67
128× 129× 128 0.0056 0.641 15.23
Total 15.90

TABLE 1. Simulation cost for channel flow at Reτ ' 1000 using the proposed SFS
model on 8 processors.

Simulation Average time step Average CPU per time step (s) Total CPU (h)

No model 0.0047 0.559 14.78
Smagorinsky 0.0055 0.598 14.32
Present model 0.0056 0.641 15.23
Dynamic 0.0056 0.754 18.15

TABLE 2. Simulation cost for channel flow at Reτ ' 1000 using 8 processors and other
commonly used models.

on the fine mesh; these values may approach the limit of applicability of the present
model.

An important issue to be considered when developing SFS models is their cost.
The model proposed here, in terms of computational cost, is comparable to the
Smagorinsky model, and significantly cheaper than dynamic models that require 60 %
more CPU time per time step and grid point due to the repeated filtering operations
required. The proposed model requires, of course, five or six precursor simulations
to determine a reliable estimate of the optimum value of the coefficient Ck. Since
they are performed on a grid that is much coarser than that used for production
runs, however, this overhead is not excessive. Tables 1 and 2 show the details of the
simulation cost using the proposed SFS model and other models, respectively, for
the Reτ ' 1000 case; all of the simulations were run for 10δ/uτ on eight 2.52 GHz
Sparc64 VII processors.

The cost of the simulations on the fine mesh for the present model was only 6 %
higher compared with a simulation using the Smagorinsky model, and nearly 20 %
lower than the dynamic model. The precursor simulations, which were performed
on a much coarser grid added only 4 % to the total cost. Including the cost of the
precursor simulations, the present model is only marginally more expensive than the
Smagorinsky model, and less costly than the dynamic model. These considerations
depend to a very large extent on the algorithm used: the present code has a very
efficient direct solver for the Poisson equation, which requires a fraction of the total
CPU time per step; in codes in which less efficient solvers are used, especially in
complex geometries, the Poisson solution may require a much larger fraction of
the CPU time, and the cost of the SFS model evaluation may not be a significant
consideration.

5. Conclusions

We have proposed a new definition of the length scale to be used in a SFS model,
based not on the grid size, as is common practice, but on turbulence quantities. The
filter width is defined as a fraction of the local integral length scale L, which is
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approximated as the ratio between the square root of the resolved TKE and the
total (sum of resolved and SFS) dissipation. The model coefficient, Ck, represents a
turbulence resolution parameter, which determines what fraction of TKE or dissipation
is resolved. The model length scale can be loosely related to the filter width, i.e. the
size of the smallest eddy resolved by the LES. Based on its definition, we call it the
ILSA model.

The coefficient Ck in the new model can be determined by specifying the desired
contribution of the unresolved scales to either the momentum flux or the energy flux
between resolved and unresolved scales. In all cases the determination of Ck can
be carried out on a rather coarse grid, using any error minimization procedure. The
one we chose, the SIPI, proposed for a similar problem by Geurts & Meyers (2006)
converged to the minimum in five or six function evaluations.

The ILSA model coefficient Ck is not determined based on physical considerations
(as is the case, for instance, in the Smagorinsky–Lilly model (Smagorinsky 1963;
Lilly 1967)). It is, instead, derived from a user-defined level of flow resolution. Using
the SIPI approach Ck can be determined once a desired value of a measure of the
SFS activity is assigned. Large values of the SFS contribution to the momentum and
energy transport result in large filter widths, and simulations that can be performed
on coarse grids (but resolve a narrower range of scales). Requiring a smaller SFS
contribution, conversely, results in smaller length scales and associated filter widths,
that require finer meshes (and a higher cost) in exchange for smaller errors. We
have performed calculations in which the SFSs contribute between 15 % and 84 %
of the SFS dissipation, in isotropic turbulence and plane channel, to illustrate this
point. Although the relation is not rigorous due to the ambiguity of the definition
of the filter function in practical applications, in most cases, for grid-independent
calculations, the model length scale was approximately 2–4 times the filter width ∆.

In practice, the chosen value of SFS activity would depend on the available
computational power. HIT (and, in particular, some analogue of figure 2) can be used
for guidance. The new approach provides a systematic algorithmic framework for
optimizing model parameters in relation to computational resources and/or the level
of desired flow resolution.

The proposed definition of νsfs is, in principle, grid-independent. In practice, as the
grid is refined, a more accurate prediction of TKE results in a slight decrease of
the integral length Lest. The decrease, however, is much smaller than that observed
when ∆ is taken to be proportional to the grid size. The fact that the integral length
scale depends on the resolved TKE, which can be predicted reasonably well even
on coarse grids, plays a favourable role in the mild grid-dependence of νsfs and also
makes it possible to evaluate Ck on coarse grids with good accuracy. The resulting
model is computationally very efficient. Moreover, as the grid is refined, the LES
do not tend towards the DNS limit; this allows the straightforward performance of
grid-independence studies.

The ILSA model has been tested in HIT and plane channel flow, with results that
are as good or better than standard models. One feature of the proposed model that
was observed is its accurate prediction of the flow in cases in which the grid is too
coarse to resolve the momentum-transporting eddies accurately; the model appears to
have a hybrid RANS/LES character, in these circumstances, that results in improved
prediction of the flow statistics.

Possible improvements of the model would include a more localized formulation,
in which the coefficient Ck is not everywhere constant. Alternative ways to evaluate
it (without precursor simulations) should also be considered. Some of these issues are
the subject of ongoing investigations.
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