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Abstract

This study demonstrates how subtle signals taken from the early stages within a construction process can be used to diag-
nose potential problems within that process. For this study, the construction process is modeled as a quasi-Markov chain. A
set of six different scenarios representing various common problems (e.g., small budget, complex project) is created and
simulated by suitably defining the transition probabilities between nodes in the Markov chain. A Monte Carlo approach
is used to parameterize a Bayesian estimator. By observing the time taken to pass the review gateway (as measured by num-
ber of hops between activity nodes), the system is able to determine with good accuracy the problem scenario that the con-
struction process is suffering from.
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1. INTRODUCTION

Building construction projects are mostly linear processes,
but can iterate when faults occur. These iterations add time
and cost to the construction process, especially if the iteration
was not anticipated (Mitropoulos & Howell, 2002). There are
several reasons for unanticipated iteration in a construction
project, including a poor brief, political considerations, or
an insufficient budget. The disruption to the project fre-
quently occurs later on in the execution of the project (Chester
& Hendrickson, 2005). In these events, it would be beneficial
to be provided with early warning that a type of problem was
anticipated. If some signal could be observed early in the pro-
cess, the project manager could be made aware of the poten-
tial problem and take mitigating action.

This research seeks to exploit Bayesian methods to inter-
pret a single signal based on the temporal progress of a project
to generate diagnostic predictions of potential problems. The
Bayesian method will produce a set of probabilities that cer-
tain problems exist. It will then be for the project manager to
interpret these in the broader context of the project execution
as to what action would be appropriate. This is a significant
development on previous work, such as that of Weidl, Mad-
sen, and Israelson (2005) and Lee, Park, and Shin (2009),
where multiple signals are used, which are often subjective.

The diagnosis method presented in this article aids the project
manager in focusing on a small number of potential prob-
lems, but it still encourages project managers to apply their
own judgment.

The remainder of this article will first present background
to this research. This will then be synthesized into a Markov-
like process model for the construction domain. This process
model will then be presented with certain scenarios and the
results will be analyzed. Finally, there will be a discussion re-
garding the model in the domain context. The article will then
conclude with comments on the general approach.

2. BACKGROUND

Process planning and scheduling are mature topics. These are
essential tools that support the ability to deliver project out-
comes in a timely and ordered manner. “Modern” tools,
such as PERT and critical planning, have been well studied
and adopted (Kelley & Walker, 1959; Williams, 1995). Al-
though they provide the means for estimating the duration
of a project and identifying that a project is off-track, they
do not provide guidance as to what is causing the difficulty.
As increasingly complex projects are planned with greater
sources of uncertainty, these original methods need to be ex-
tended to be able to handle a more stochastic view of planning
and scheduling.

The construction industry follows a (mostly) linear process.
This process starts with the project inception and definition
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and is expected to terminate with the completion of the build-
ing. The process can terminate in other ways, but these repre-
sent project failures, because the project has come to a conclu-
sion other than completing the building. Within this process,
there are also gateways (Soibelman et al., 2003). These gate-
ways ensure that the project has reached sufficient maturity
and quality that it may proceed to the next phase. In the event
that a gateway blocks the project, two outcomes are possible:
either the process must return to the start of the phase or the
project is terminated (i.e., it fails).

For the purposes of this research, the Royal Institute of
British Architects (RIBA) construction process is adopted
(RIBA, 2007). Figure 1 contains the earliest part of that process,
represented as a flowchart. This flowchart starts with the project
inception and terminates at the granting of building permission.
The process continues with the construction of the building.
For the purposes of this article, it is sufficient to only consider
the earliest phases, and the study will focus on the RIBA pro-
cess up to and including the first gateway review (GR1).

This flowchart can be thought of as a Markov chain, as illus-
trated in Figure 2 (Wu & Shieh, 2006; Taha, 2007). Each ele-
ment of the flowchart can be represented by a node. From each
node, there are a number of nodes the process could progress
to, which are represented by the directed arcs exiting the
node. For example, from the identify site node, the process
could move on to any of outline objectives, determine budget,
or project definition. This does assume that projects only per-
form one task at a time, but for the purpose of this research this
is not critical. When simulating the design process, the node
that the process moves to is determined stochastically. In other
words, each arc has a predetermined probability of being fol-
lowed. Based on these probabilities, an arc is selected at ran-
dom thereby moving the process on to the next step. For the
simulation model, these probabilities were estimated through a
combination of literature and discussions with domain experts.

2.1. Construction design process

The construction design process is a variant of generic
product development, as described by, for example, Pahl
and Beitz (1996) and Cross (2000). The fundamental aspects
of this process are mostly linear, but divided into major sec-
tions (i.e., phases) that are delimited by stage gates (Soibel-
man et al., 2003). These stage gates provide the opportunity
to review the progress of the project and determine if it should
go ahead, require further work within the current stage, or be
terminated. This ensures that “weak” designs are not taken
through to further downstream phases (thereby wasting re-
source or risking failure; Von Stamm, 2008).

The construction industry ranges from building construc-
tion through to highway laying. This article will focus on
building construction, due to its generality: individual build-
ing professionals (e.g., architects, builders) tend to specialize
in certain types of buildings due to the level of specialist
knowledge that is required. There is common ground, how-
ever, across all these specialist domains. First, the design

stage is common to all domains. The client proposes an
idea for a building project and it is then up to the architect
to transform this idea into a practical building solution. To
achieve this successfully, the design must satisfy the client’s
requirement for both the functionality and aesthetics of the

Fig. 1. Overview of the full early phases of the Royal
Institute of British Architects process.
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building. Second, the financial considerations of a building
project are common. There is typically a fixed overall budget
with little leeway vis-à-vis the total cost. The client will have
expectations of what can be achieved for her or his budget and
it is the architect’s responsibility to provide solutions that can
maximize what can be achieved for that budget. Third, the
consideration of and adherence to legal issues is common.
There are a significant number of legal regulations that build-
ings must follow. Although there will be different specialized
legislation for different types of building projects, the overall
process of following legislation remains common.

In the United Kingdom, the building process is governed
by a set of rules detailed by RIBA. These rules divide the con-
struction process into several stages:

1. preparation,
2. design,
3. preconstruction,
4. construction, and
5. use.

Each main stage is then broken down into smaller work
stages. This work will focus on the first two of the main
RIBA stages: preparation and design. These stages occur be-
fore significant resources have been invested into the project,
and therefore it is during these stages when it is easiest (i.e.,
most cost effective) to change the design. The reasons for
changing design could include misinterpretation, a change
in budget, or a change of opinion.

Clough et al. (2000) note that the planning and definition
stages of the project must define the requirements and (bud-
getary) constraints. The project definition must include “es-
tablishing broad project characteristics such as location, per-
formance criteria, layout, equipment, services and other
owner requirements needed to establish the general aspect
of the project.” The design phase involves completing the
architectural and engineering design of the entire project.
This results in the production of the final working drawings
and the specifications of the total construction program.

Ritz (1994) states that the most critical stages of the precon-
struction phase are the planning for construction execution
and resource (i.e., time, money, equipment) usage. In projects
where these aspects are neglected, there is a greater risk of
project of failure at a later stage due to overruns of time
and/or money.

Any significant construction project will have a number of
independent parties involved. A key factor in the success of a
construction project lies, therefore, within the communication
between these parties (Chan et al., 2004). In particular, it is
the quality of the communication at certain key points within
the process that has a significant impact on the outcome of the
project (Emmitt & Gorse, 2003). These key points are char-
acterized by where a decision has to be made that would be
extremely difficult to change once the decision has been
implemented. Lack of communication may result in changes
having to be made, and these changes can result in negative
consequences. An example of poor communication could oc-
cur when deciding the shape and floor plan of a building: if

Fig. 2. Detailed view of the quasi-Markov chain implementation of the Royal Institute of British Architects process for this study.
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the appropriate parties are not made aware of a bad decision,
there are several significant downstream design aspects that
could be affected with potentially damaging results.

The challenges listed above give rise to the potentially dif-
ficult scenarios a construction process can find itself in. These
are detailed in Table 1.

2.2. Uncertainty within construction

Construction projects frequently overrun, either in terms of
time or financial resources. Given that the budgets are set be-
fore any (physical) work is done, this is perhaps not surpris-
ing. The early phases of the construction process essentially
serve to formulate an executive plan of work. The resources
required for the various tasks involved are based on estimates
and assumptions of how well the work will progress. These es-
timates and assumptions form the first source of uncertainty.

The construction process is complex, and contains a num-
ber of actors (e.g., client, architect, builder, and planners). Al-
though the interaction among these actors is defined in terms
of when they should occur and how they should proceed,
there is no guarantee that this will happen. Moreover, the
quality of the interaction is determined by the abilities of
each actor. Ineffective or poor actions taken by certain actors
will generate unacceptable work or fail to meet predetermined
deadlines. Unacceptable work will require rework, which in
turn will cause delays (Mitropoulos & Howell, 2002). These
events occur seemingly randomly (although will be biased by

the capabilities of the various actors), and hence represent the
second source of uncertainty.

Finally, the construction process occurs outdoors. In this con-
text, there are external events beyond the control of any of the
actors within the construction process, such as extreme weather.
This introduces the third and final source of uncertainty.

2.3. Project monitoring and risk management

There have been a number of attempts to model the construc-
tion process stochastically (as well as other processes, such as
the software engineering process). There are two levels at
which these models operate: the first is to simply simulate
the process under certain conditions; the second is to diag-
nose the process based on certain observations. Both these
approaches require an understanding of the sources of uncer-
tainty and the structural relationships between the various
tasks within the processes.

The first level of model focused on process simulation.
Chapman (1990) was one of the earliest to use the term risk
engineering. This was applied to an offshore pipeline laying
project consisting of five key tasks. The duration of each of
these tasks is represented by a probability distribution along
with the number of days that are workable each month of
the year. The simulation model’s output provides a clearer
picture of the overall project risks given these conditions,
which are, in turn, used to decide when and how best to pro-
ceed with the pipe-laying project. Fenton et al. (2002) and

Table 1. Problematic construction process scenarios

Scenario Design Issues Caused Main Affected Nodes

Overly complex design Underground conditions may be an issue
Regulation needs are more complex
Unrealistic time demands
Poor management due to complexity
Project complexity is increased

Determine potential budget
Prepare project master program
Perform feasibility study
Finalize project program
Produce detailed design

Small budget Supplier problems
Client requirements increase
Cost cutting reduces quality
Underestimating costs
Poor management: attempting to achieve results with insufficient

resource

Determine potential budget
Prepare project master program
Total costs finalized

Difficult planning
approval

Political considerations make progress more difficult
Increasing health & safety needs
Regulatory requirements increase complexity of tasks
Disputes may cause delays

First stage “outline” approval
Produce detailed design
Consider building regulations

Poor brief Client requirement changes
Brief continuously being modified
Poor client visualization due to lack of clarity
Errors by the construction team
Designer decisions that the client does not like

Outline project objectives
Architect develops ideas
Complete preliminary design

review
Confirm brief, final
Produce detailed design spec

Tight schedule Unrealistic time demands
Mistakes due to rushed work
Poor workmanship
Poor management

Outline project program
Finalize project program
Prepare master program
Total costs finalised
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Khodakarami et al. (2007) use Bayesian belief networks
(BBNs) to model and simulate the software engineering pro-
cess. In Fenton et al. (2002), the simulation is used to estimate
the number of software defects in complex software packages
based on a number of project characteristics, such as level of
project complexity and development process maturity. This
simulation provides a distribution of the possible number of
faults, and enables a project manager to compare various op-
tions for shaping the project. A similar simulation approach is
taken in Khodakarami et al. (2007) to estimate the total soft-
ware engineering process duration. Neil et al. (2005) use a
Bayesian network to assess financial institutions’ exposure
to rare but significant risk based on simulations using some
basic stochastic estimates on frequency of extreme events
and severity of extreme events. Moving to the construction
process domain, Anderson et al. (2009) simulate the con-
struction process using as a planning and constraint satisfac-
tion problem with stochastic task durations. This supports
different scenarios being simulated by modifying the prob-
abilities that certain events will occur, which in turn will
have an impact on the duration of the project. This enables
a project manager to better plan for contingencies. Nasir
et al. (2003) identify a set of schedule-affected risks and con-
struct a BBN based on these risks. Assuming a project man-
ager knows which risks are occurring; this can then be used in
a Monte Carlo simulation to compute a revised project dura-
tion estimate. Kim and Reinschmidt (2009) adopt a similar
approach, but use the percentage of project completion as
an input to estimate the overall completion date. Finally,
Cho and Eppinger (2005) use design structure matrices, an
approach similar to Markov chains, to rearrange task orders
to minimize the effect of iterations within the design process.

The second level of modeling seeks to diagnose a given
process. McCabe et al. (1998) describe an early attempt to
use BBNs to diagnose a construction process by observing
queue lengths for various construction services related to a
project. In the software engineering domain, Fan and Yu
(2004) use a BBN to infer the risk level for a given software
project based on observations such as developer experience
and time pressures. The result is used to determine if the proj-
ect has an appropriate level of resouces allocated to it. Lee
et al. (2009) use a BBN to identify potential risk sources in
a project based on the observed risk level of a set of 26 iden-
tified risk categories. Through partial observation (or estima-
tion) of some of these risks within a project, it is possible to
identify the driving risk factors in the project and, therefore,
support the management of these risks by the project man-
ager. Weidl et al. (2005) construct a BBN to monitor a large
continuous process. Again, this is based on observed vari-
ables that are fed into the BBN. The BBN then presents a
ranked set of potential root causes for any potential problems
by identifying the variables that are driving the system into a
problem state. Dissanayake and Robinson Fayek (2008) pro-
vide a project diagnosis tool based on fuzzy logic that is ca-
pable of identifying what might be affecting a particular
task within a larger construction project.

2.4. Conclusion

The general construction process can be reasonably modeled
as a Markov chain, with probabilistic transitions from one ac-
tivity to the next. Although for any specific project there will
have been deterministic reasons for moving from one activity
to the next, this is not important when considering a large set
of projects that will appear to move the process at random.
Moreover, given that the exact nature of uncertainty in a cur-
rent project is unknown, the best estimate that can be made for
the transition probabilities at the outset are given by prior
probabilities. In other words, when thinking about the future
possible directions for a project that is about to start, a sto-
chastic approach is suitable. As more information is gathered,
this can be used to refine the understanding of the nature of
project being executed.

3. PROCESS MODELING METHODOLOGY

The process modeling methodology is based on a Markov
chain (Eckert et al., 2004; Flanagan et al., 2007; Pandelis,
2010). A Markov chain consists of a set of nodes linked by
directed arcs. The temporal domain is modeled discretely,
that is, one action happens per discrete time step. The nodes
represent activities and the arcs represent the possible subse-
quent nodes the process could move to in the next time step,
potentially including a “loop-back” arc, which models the
process remaining in the same state at the next time step.

One aim of this work has been to make this approach
broadly applicable within the construction industry. In order
to achieve this, the key generic process stages in the early con-
struction process were identified, based upon the RIBA
framework. These stages are represented as nodes in the Mar-
kov chain (see Figure 1). The nodes are the following:

A. Project inception and definition: the “official” start of
the project; formulating the core ideas of the project

B. Identify site: selection of the project location
C. Outline project objectives: specification of the funda-

mental design ideas
D. Determine budget: identify the total funding for the

project
E. Appoint design team and project manager: identify the

team of individuals who will execute the construction
project

F. Outline project program and risks: define the various
stages within the construction project and associated
expected time and cost

G. Develop ideas and preliminary sketches: creating the
first designs, including architectural drawings

H. First stage planning “outline approval”: informal dis-
cussions with local planning authorities and regulatory
committees to gauge opinion and ensure there are no
fundamental reasons why the project cannot proceed
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I. Prepare project master program and procurement strat-
egy: update the original program and agree; draw up
the bill of quantities

J. Perform feasibility study/site investigation: all site in-
vestigations are performed

K. Complete preliminary design and construction design
and management review: any changes to the design
are made, and the program is checked for health and
safety conformity

L. Confirm final brief: all changes are agreed and the de-
signs are finalized

M. Detailed design specifications and technical drawings:
Produce the technical drawings in full detail

N. Finalize costs: agree the overall budget, including any
changes from original budget

O. Finalize project program: agree the overall timeframe
for the construction work

P. Apply for planning permission: ensure that all aspects
of the project adhere to the rules dictated by the authori-
ties and apply for planning permission

At the outset of a project, it is assumed that none of these
tasks have been started. Each node contains a completion sta-
tus, and hence at the outset of the project these are all set to
“false” (incomplete). This is proposed as a “quasi-Markov”
chain in the sense that it is an extension to a pure Markov
chain that is “memoryless.” The addition of “node-memory”
through a status variable provides a more intuitive model for
the construction process in which a number of tasks can hap-
pen in parallel and must be completed successfully. There-
fore, the node status can be used at various stage gates to en-
sure that all relevant tasks have been completed and that the
project may proceed. To implement this, it was also necessary
to develop “gateway” nodes that were able to verify the com-
pletion status of prior nodes. In a Markov chain process, the
simulation can only be at one node (i.e., task) at any point
in time. Therefore, the Markov chain is not able to represent
a process with concurrent tasks. Although this is not a realis-
tic representation of a real construction process where tasks
do happen concurrently, this limitation does not significantly
affect the overall result, which is the time taken, as measured
by number of steps taken, for the process to complete. The
gateway nodes were inserted at key stages within the con-
struction process. The key stages are where there is a signifi-
cant transition in the project. Within the RIBA framework,
this occurs when moving into and out of RIBA stage C,
and it is labeled GR1 in Figure 1. This gateway represents a
review of the project status, and if the project is not in a satis-
factory state it sends the project back to the start. The transi-
tions from the gateway node are again modeled stochastically,
but should the gateway review fail, the process returns to the
earlier state with status aspects intact (e.g., the site will remain
identified). The result is that a different set of transition prob-
abilities come into effect. This different set of transition prob-
abilities represents that some work has been done on the pro-
ject and this will affect how the process is likely to flow

through the nodes the second time. In particular, it assumes
that the whole project does not restart. That outcome would
be modeled as a failure. The transition probability tables
can be found in Appendix A.

In addition to the activity nodes, it is also necessary to in-
clude terminal nodes. These are nodes that from a Markov sim-
ulation perspective can be entered but can never be left. When
the simulation process enters one of these nodes, that simula-
tion run terminates. For this simulation, there are two types of
terminal nodes: success and failure. The success terminal
node is entered when all tasks in the construction process
have been successfully completed and, in this case, represents
that planning permission has been granted. Upon granting
planning permission, the construction project is able to pro-
ceed with the physical construction. The failure nodes repre-
sent where the project is canceled. There are a number of
points within the construction process when it is possible to
cancel the project, and hence there are a number of different
failure terminal nodes. It is assumed that once a project enters
a failure node, there is no possible remedial action to be taken
and that, therefore, the project is completely abandoned. It is
also theoretically possible (due to the cycles that exist in the
Markov chain) that a process can take an arbitrary number of
hops to reach a terminal node. Therefore, to ensure that a sim-
ulation run terminates, the Markov simulation is terminated
after 60 steps and is deemed to have failed. It should be noted
that few simulations result in this outcome.

Once the nodes have been determined, the next step is to
connect the nodes with directed arcs. The “normal” progres-
sion of the project, as determined by literature (e.g., RIBA),
is straightforward to implement. These arcs determine how
the project would progress if all went well: all activities are suc-
cessful and there is no need for any rework. For a complete sim-
ulation framework, however, it is also necessary to represent
how the process progresses when activities are not successful.
This is modeled by arcs linking a node to a “previous” node, or
possibly as a loop-back to the original node. It is worth noting
that feedback loops do not feed back any further than the gate-
way “above” them. It is assumed that once the project has
passed a gateway, all the tasks prior to that gateway have been
successfully completed and therefore do not need revisiting.

3.1. Parametrization of the Markov chain transition
probabilities

The construction process simulation model is a subset of the
earliest activities of the RIBA process (Figure 2) and contains
a set of activity nodes and arcs connecting these nodes. In this
case, each node is connected to between two and five other
nodes. These connections represent the outcomes possible
from each activity node. The parameterization of the model
is the association of a probability distribution for each node
that represents the transition probabilities for following each
arc. These probability values determine how the simulation
proceeds through the construction process model (Taha,
2007). Therefore, it is important that the probability values
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are as realistic as possible. In particular, if the probability of a
task being successfully completed is too high, then the sim-
ulation will register that is takes fewer attempts to achieve
this task than would occur in reality. Of course, setting a prob-
ability that a task is completed too low will result in the simu-
lation reporting that the overall process time is higher than it
would be in reality.

The estimates for the probability values in this work were
arrived at through expert estimation. A three-member panel of
experts consisting of a construction project manager (em-
ployed by a university undertaking a significant building pro-
ject), an architect from a large construction firm, and an inde-
pendent academic with an expertise in civil engineering and a
background in planning. Using the RIBA process, the experts
placed coarse estimates for each activity as to how frequently
they either moved onto a next stage or that they required more
effort at that stage. They also estimated how frequently they
had moved erroneously (i.e., that they would have to revisit
that activity at a later time). This estimation process was first
undertaken for the “nominal” scenario (where no significant
negative influences exist). Using the nominal scenario prob-
abilities, the probability transition tables were estimated for
the remaining scenarios. These other scenarios represent de-
partures from the nominal scenario, and using the scenario
characteristics in Table 1 revised transition probabilities
were estimated. This is expanded on in the following section.

3.2. Scenario development

The primary aim of this work is to seek warning signals given
by construction projects that are at risk of performing poorly.
A signal is defined as an observation that could be linked to a
potential future problem. Observing these signals will pro-
vide the opportunity to take preventative action to ensure
that the problem does not affect the project in the future.
The signals that will be observed in this work are temporal:
specifically, how long the project takes to enter certain nodes.
For example, consider the following scenario: a construction
project has progressed to the point where it had detailed the
building material and identified the source for the material.
Due to unforeseen circumstances, however, the preferred
building material supply company goes out of business.
The builder must now identify a new supplier and potentially
review the design if certain requested materials are no longer
available. This adds to the time it takes the project to progress
to the next gateway review, and it is this longer than expected
time that is observed as the signal.

To be able study these signals, it is necessary to also pa-
rameterize models for construction processes where problems
occur. By simulating the various scenarios using the different
models, it will be possible to analyze the characteristics and
develop methods for identifying if a construction process is
at risk of being in trouble.

The basic scenario being considered is where all tasks have
nominal, or “good,” transition probabilities. This represents a
realistic ideal case, in which some rework might be necessary,

but this rework is not the result of a fundamental problem
within the project. In addition to this nominal scenario, a
set of common problems were identified and used as a basis
for developing problematic scenarios. Table 1 details a set of
problematic scenarios with their associated design issues and
main affected process nodes.

For each scenario, the nominal transition probability table
was modified to represent the changes in how the process
would proceed. It should be noted that only the transition
probabilities were modified, not the structure of the Markov
model. By considering for each scenario in which nodes
were affected, the relevant feedback arcs had their associated
probabilities increased at the expense of the probabilities of
the forward progressing arcs. This represents that, for these
nodes, there was a greater chance that the project would either
remain at that node for longer (increasing the probability of
the loopback arc) or be more likely to return to an earlier
node because of the need for further rework (increasing the
probability of a feedback arc). The complete transition prob-
ability tables are included in Appendix A.

4. BAYESIAN BASED SCENARIO
IDENTIFICATION

The premise of using the process model as a means of iden-
tifying what potential scenario is being played out is based on
Bayesian theory. For example, let the signal be how long it
takes the project to pass the first gateway and denote this l,
which is the integer value representing the number of hops
from the start of the project. Using Bayes, it is then possible
to compute the probability for being in each scenario (Si)
given this signal (Pearl, 2000):

P(Sijl) ¼ P(ljSi)P(Si)P
j P(ljSj)P(Sj)

: (1)

This equation can then be used to determine the most likely
scenario once the signal (l) has been observed. The condi-
tional probability P(Sijl) is computed for all possible scenar-
ios S1, S2, . . . , SN . These scenarios can then be ranked accord-
ing to their associated conditional probability score. This
ranked list can then be used by a decision maker, such as
the project manager, to further investigate the root cause of
any difficulties. The project manager typically would only
need to consider the top two scenarios. Depending on this
person’s experience, she or he would either be able to further
investigate along the lines of causes (in the case of a novice)
or be able initiate suitable mitigating efforts directly (in the
case of an expert). In either case, because the project manager
is being presented with a ranked list, this removes any initial
prejudice that they might have.

To be able to successfully use Bayes’ theory, as expressed
in Equation 1, additional probabilistic information is needed.
Specifically, there is the need to know the prior probability of
each scenario, P(Si), and the conditional probability distribu-
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tion of l for each scenario, P(ljSi). The method for obtaining
this information is detailed below.

4.1. Scenario prior probabilities

The scenario prior probabilities, P(Si), represent the probabil-
ity that any given scenario occurs. A simple means for obtain-
ing this is to consider the history of construction processes
and measure the proportion that each scenario occurs within
this history. For example, 35% of all projects suffer from hav-
ing a poor brief, then P(SPB) ¼ 0.35.

In practice, these scenario priors would be different for ev-
ery different project manager, or construction company. It ef-
fectively measures the different abilities of an individual con-
tractor to fall into the various scenarios. The “better” the
contractor, the greater the probability that the “standard” sce-
nario occurs. Specifically, a poor contractor will have greater
uncertainty as to how a project will unfold. This will be re-
flected in higher probabilities for the various scenarios at
the expense of the probability of the nominal scenario. Con-
versely, a highly experienced and successful contractor will
be able to better define and resource the project from the outset,
which will result in a high probability for the nominal scenario.

Like the transition probabilities, these prior probabilities
were obtained from the expert panel. They were able, how-
ever, to consult project histories to obtain a more objective es-
timate. The prior probabilities used here are listed in Table 2.

4.2. Model calibration

The calibration of the model is in effect determining the con-
ditional distribution functions for l, that is, P(ljSi) for each
possible scenario. It is assumed that the underlying model
for this conditional distribution is either a Poisson or normal
distribution. This is reasonable: the Poisson distribution mod-
els the time taken for an event to occur and is parameterized
by a single value representing the expected duration, whereas
the normal distribution is a good distribution in which aver-
ages are taken over larger event samples. For the construction
quasi-Markov chain, it can be thought that successfully pas-
sing a gateway is in effect waiting for an event to occur and
hence suitable for being represented by a Poisson distribution.
However, because of the potential of having several cycles in
the quasi-Markov process, this represents a more general cat-

egory and the frequency distribution here might be better rep-
resented by the normal distribution. The Poisson distribution
is defined by a single parameter l and is given by fP (Kreys-
zig, 1999, p. 1081):

f P(x; l) ¼ lxe�l

x!
: (2)

The Poisson distribution has the property that the mean and
standard deviation of the distribution are both equal to the pa-
rameter l. This l represents the mean number of “hops” that
the process would take to pass the gateway.

The normal distribution is defined by two parameters, m
and s2, and is given by fN (Kreyszig, 1999, p. 1085):

fN(x; m, s2) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p exp � (x� y)2

2s2

� �
: (3)

The normal distribution as defined above will have a mean
value of m and a variance given by s2. Like the Poisson dis-
tribution, m would be the average number of hops taken to
pass the gateway. However, there is an additional degree of
freedom to independently set the variance. As described in
Section 3.2, every scenario has an associated set of transition
probabilities for the quasi-Markov chain. Therefore, to cali-
brate a scenario’s conditional distribution, a Monte Carlo ap-
proach was adopted. The Monte Carlo approach runs the
quasi-Markov chain several times to generate an observed
distribution of time elapsed (measured in hops) to pass the
first gateway node. Both the Poisson and normal distributions
are then fitted against this empirically generated distribution.
If fO(xi) is the observed frequency of what proportion of simu-
lations that passed through the gateway at time xi, then the
Poisson parameter l can be estimated by taking the mean
of the observed sample. Likewise, the best fit for the normal
distribution will be given by estimating the m and s2 param-
eters with the observed sample mean and variances. A x2 test
is then used to measure which of the two models fits the ob-
served data best. The x2 test for the Poisson distribution is
given by (Kreyszig, 1999, p. 1138):

x2
P ¼

X
i

(fO(xi)� fP(xi; l))2

fP(xi; l)
: (4)

A similar expression is used for computing the x2
N statistic for

the quality of fit against the normal distribution. The model
with the smallest x2 statistic value is then selected to represent
the distribution for that observed scenario. This process must be
performed for every scenario. The results are listed in Table 3
and presented graphically in Figure 3. These results represent
the calibrated signal models for each scenario. Thus, for ex-
ample, for the nominal case, the value of the Poisson x2

test (1.50) is smaller than that of the normal x2 test (7050),
and so the distribution of time taken in the nominal scenario
is modeled by a Poisson distribution. When a signal is ob-
served in a future process, these models are then used to

Table 2. Scenario prior
probabilities

Scenario (Si) P (Si)

Nominal 0.15
Complex 0.10
Small budget 0.10
Difficult planners 0.05
Poor brief 0.35
Tight schedule 0.25
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determine the probability that the signal would have resulted
from each scenario.

4.3. Application of model

Using Equation 1 with the appropriate probability distribu-
tion, the model computes which scenario is most likely to
be occurring based on the single observed value of how
long it takes to pass the first gateway, denoted by l. This is
done for each scenario, each time using the appropriately
parameterized scenario model. As there is only one observed
value, l, it is possible to generate a lookup table for a range of
values of l and then rank the possible scenarios. Table 4 lists
the probabilities for each scenario given a l value. These have
been given to six decimal places, because there are values of l
where the probabilities are very close.

Table 5 is the equivalent table but presented by rank order.
These look-up tables can then be used by the project manager
as a guide for diagnosing a construction process based on the
time taken to pass the first gateway node. The project manager
is then able to use this information to determine if any miti-
gating action should be taken to minimize the any potential
downstream process affects.

5. ILLUSTRATION

Two illustrations are given to demonstrate how the project di-
agnosis systems is used. These are based on fictitious cases,
primarily focusing on how long the construction process
takes to pass the GR1 node. The first illustration is a case
where the project has swiftly moved through the first gateway.
The second illustration is a case where there have been more
delays and the process has taken longer to pass through the
first gateway. In both cases, the project manager is unsure if
there are underlying problems and if so what they might be.
In each case, the aim is to illustrate how the system can be
used to provide a ranked list of potential problem sources to
the project manager. It then remains for the project manager
to decide how to use this information.

5.1. Nominal scenario

In the first scenario, the construction process progresses
swiftly through to the first gateway. Specifically, in this sce-

nario it is observed that the process passes the GR1 after 11
hops, that is, l ¼ 11. From Table 5, the ranked order of the
potential scenarios can be read (1, nominal; 2, poor brief; 3,
tight schedule; 4, difficult planners; 5, small budget; and 6,
complex project). Table 6 expands on this by including the
conditional probabilities for each scenario. It should be noted
that Table 6 is simply the ranked set of probabilities taken
from the row l ¼ 11 from Table 4.

From Table 6, the project manager can determine that this
project is most likely running without any significant problems
(the nominal case) due to P(SNjl ¼ 11) ¼ 0.364707 having
clearly the greatest value. If the project manager believes that
this might not be the case, the system suggests that the next
most likely scenario is that the brief is poor, followed by a tight
schedule. The project manager can use the associated probabil-
ities to provide guidance as to the relative likelihood of these sce-
narios. In this case, it can be noted that the poor brief is more
than twice as likely as the tight schedule scenario. Therefore,
if the project manager suspects that the project does have prob-
lems, the brief in this case would be the most likely scenario.

5.2. Problem scenario

The second scenario is one where the construction process
has more iterations, and therefore takes longer to pass the first
gateway. In this scenario it is observed that the process passes
the first gateway after 26 hops, that is, that l¼ 26. Again, ex-
panding on Table 5, the ranked order can be read (e.g., 1 tight
schedule, 2 poor brief, etc.) and Table 7 provides this ranking
with the associated conditional probabilities.

Table 7 shows that the top ranked scenario is that the sched-
ule is too tight. However, it is worth noting that the second most
likely scenario, a poor brief, has only a slightly lower probabil-
ity of occurring (the difference in probabilities is ~0.001). With
this additional information regarding the closeness of scenario
probabilities, a project manager should investigate both sce-
narios. The third ranked scenario, complex project, is suffi-
ciently distant that a project manager need only investigate
this should the top two scenarios prove not to be the case.

6. SYSTEM BENCHMARKING

The Bayesian project diagnosis system uses estimated model
parameters. The parameters are estimated from observed simu-

Table 3. Model calibration results: Scenario model parameter estimates based on simulation data

Scenario (Si) l̂i ŝ2
i x2

P x2
N Model

Nominal 11.98 10.23 1.50 7050 Poisson
Complex 21.19 71.73 4.51×104 0.57 Normal
Small budget 20.41 75.50 6.25×105 0.91 Normal
Difficult planners 15.10 33.69 6.13×105 384 Normal
Poor brief 16.81 41.54 5.10×108 12100 Normal
Tight schedule 18.41 75.92 1.70×107 2.0 Normal

Note: l̂, mean number of hops; variance (ŝ2) along with x2 test statistics for Poisson and normal models.
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Fig. 3. Calibration of the model: for each scenario, the simulation data is plotted along with the best estimate for the Poisson and normal
distributions.
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Table 4. Posterior probabilities for all scenarios for 8 � l � 32

l Nominal Complex Sm. Budget Diff. Planners Poor Brief Tight Sch.

8 0.344521 0.048824 0.057724 0.056648 0.296987 0.195296
9 0.370304 0.047042 0.054561 0.055632 0.292808 0.179653

10 0.376371 0.046963 0.053471 0.055725 0.296104 0.171366
11 0.364707 0.048489 0.054234 0.056825 0.306561 0.169184
12 0.337966 0.051505 0.056632 0.058686 0.323238 0.171973
13 0.299431 0.055882 0.060445 0.060939 0.344613 0.178690
14 0.253144 0.061442 0.065423 0.063124 0.368568 0.188299
15 0.203746 0.067954 0.071280 0.064747 0.392521 0.199752
16 0.155892 0.075155 0.077713 0.065373 0.413807 0.212059
17 0.113400 0.082799 0.084460 0.064724 0.430188 0.224430
18 0.078563 0.090715 0.091346 0.062731 0.440257 0.236388
19 0.051997 0.098836 0.098315 0.059517 0.443543 0.247792
20 0.033000 0.107191 0.105403 0.055331 0.440322 0.258753
21 0.020160 0.115866 0.112706 0.050469 0.431286 0.269512
22 0.011895 0.124971 0.120336 0.045216 0.417262 0.280320
23 0.006797 0.134594 0.128384 0.039819 0.399044 0.291361
24 0.003770 0.144790 0.136907 0.034479 0.377336 0.302718
25 0.002033 0.155564 0.145914 0.029352 0.352771 0.314366
26 0.001068 0.166868 0.155371 0.024557 0.325953 0.326184
27 0.000546 0.178608 0.165197 0.020181 0.297493 0.337974
28 0.000272 0.190643 0.175280 0.016280 0.268036 0.349488
29 0.000133 0.202802 0.185479 0.012885 0.238253 0.360450
30 0.000063 0.214891 0.195639 0.009999 0.208824 0.370585
31 0.000029 0.226715 0.205604 0.007605 0.180401 0.379646
32 0.000013 0.238088 0.215232 0.005668 0.153565 0.387435

Note: 6 d.p. is used to illustrate ranking in cases with near equal probabilities.

Table 5. Scenario ranking from posteriors for 8 � l � 32

l Nominal Complex Sm. Budget Diff. Planners Poor Brief Tight Sch.

8 1 6 4 5 2 3
9 1 6 5 4 2 3

10 1 6 5 4 2 3
11 1 6 5 4 2 3
12 1 6 5 4 2 3
13 2 6 5 4 1 3
14 2 6 4 5 1 3
15 2 5 4 6 1 3
16 3 5 4 6 1 2
17 3 5 4 6 1 2
18 5 4 3 6 1 2
19 6 3 4 5 1 2
20 6 3 4 5 1 2
21 6 3 4 5 1 2
22 6 3 4 5 1 2
23 6 3 4 5 1 2
24 6 3 4 5 1 2
25 6 3 4 5 1 2
26 6 3 4 5 2 1
27 6 3 4 5 2 1
28 6 3 4 5 2 1
29 6 3 4 5 2 1
30 6 2 4 5 3 1
31 6 2 3 5 4 1
32 6 2 3 5 4 1
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lation runs. To benchmark (or assess) the project diagnosis sys-
tem, it is necessary to measure how well the system is able to
predict a scenario. A simple yet effective method for bench-

marking the system is to consider the observed frequencies
(and ranking of these frequencies) of all the scenarios for the
same range of l values. The ranking from the empirical data
used to estimate the model parameters is then compared to
the same ranking generated from the model generated posterior
probabilities. This is a well-used benchmarking methodology
(Fan & Yu, 2004; Weidl et al., 2005; Anderson et al., 2009).

The Bayesian project diagnosis system is used by the pro-
ject manager considering the probabilities of various scenar-
ios being played out. The probabilities are considered first in
rank order, with further attention when two adjacently ranked
scenarios have little difference between the probabilities.
Therefore, an intuitive benchmark for the Bayesian diagnosis
approach is to compare the Bayesian model probability esti-
mates and the observed frequencies for a range of l values.
The Bayesian model based scenario ranking is given in
Table 8 and the observed frequencies are given in Table 9.
From these tables, the difference in rank is computed for
each l and is denoted dl. For example, in the top line of
Table 10, under the Planners column, the value 3 is computed
by taking the difference between the same cell from Tables 8
(value ¼ 5) and 9 (value ¼ 2). These differences are used to
compute the Spearman rank correlation score. Where there
are a total of n rankings to consider, the rank correlation is
computed by

r ¼ 1� 6
P

d2
l

n2(n� 1)
, (5)

Table 6. Ranked list of predicted scenarios for
the case l ¼ 11 and associated conditional
probabilities (to 2 d.p.)

Rank Scenario (i) P(Si|l ¼ 11)

1 Nominal 0.36
2 Poor brief 0.31
3 Tight schedule 0.17
4 Planning 0.06
5 Small budget 0.05
6 Complex project 0.05

Table 7. Ranked list of predicted scenarios for
the case l ¼ 26 and associated conditional
probabilities (to 4 d.p.)

Rank Scenario (i) P(Si|l ¼ 26)

1 Tight schedule 0.3261
2 Poor brief 0.3260
3 Complex project 0.1669
4 Small budget 0.1554
5 Planning 0.0246
6 Nominal 0.0011

Table 8. Observed frequencies for all scenarios for 8 � l � 32

l Nominal Complex Sm. Budget Diff. Planners Poor Brief Tight Sch.

8 0.44576 0.04558 0.05378 0.20693 0.11304 0.13491
9 0.38585 0.05662 0.06338 0.21169 0.13908 0.14338

10 0.36176 0.06469 0.08098 0.21562 0.13416 0.14279
11 0.33413 0.08065 0.09121 0.21123 0.14594 0.13682
12 0.27597 0.08539 0.12412 0.18662 0.17518 0.15273
13 0.22487 0.10519 0.12155 0.21459 0.18420 0.14960
14 0.18530 0.12353 0.13987 0.19806 0.19908 0.15416
15 0.15735 0.13158 0.15680 0.18969 0.20724 0.15735
16 0.10668 0.16861 0.19191 0.16738 0.19436 0.17106
17 0.08668 0.17141 0.18176 0.17853 0.19858 0.18305
18 0.06471 0.19954 0.21341 0.15023 0.21957 0.15254
19 0.06627 0.22855 0.20391 0.13594 0.19796 0.16737
20 0.04946 0.21860 0.21563 0.14441 0.19387 0.17804
21 0.03838 0.22614 0.22407 0.13382 0.19710 0.18050
22 0.02381 0.25063 0.23434 0.11905 0.18546 0.18672
23 0.01788 0.27923 0.22421 0.11692 0.17882 0.18294
24 0.01327 0.26534 0.25871 0.10779 0.14760 0.20730
25 0.00871 0.30836 0.28049 0.11672 0.13763 0.14808
26 0.00849 0.28238 0.26327 0.09766 0.16773 0.18047
27 0.00721 0.28125 0.24760 0.11058 0.16587 0.18750
28 0.00509 0.37150 0.24427 0.07888 0.14758 0.15267
29 0.00667 0.36667 0.24333 0.10667 0.13667 0.14000
30 0.00337 0.33333 0.29293 0.07407 0.12121 0.17508
31 0.00000 0.41129 0.26210 0.06048 0.08468 0.18145
32 0.00000 0.31416 0.28761 0.07080 0.11504 0.21239
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where r ¼ 1 suggests total correlation (Siegel & Castellan,
1988). Table 10 shows that all Spearman scores are positive,
with the majority greater than 0.5. This suggests that the
model based ranking correlates well against the actual data
that was used to parametrize the Bayesian model.

7. DISCUSSION

The Bayesian project diagnosis support system assumes that
the underlying distributions for the time taken to arrive at
the gateway for each scenario can be represented by either a
Poisson or normal distribution. The simulation process is
used to estimate the parameters of those models. For most
scenarios, the x2 test suggested that this assumption was
reasonable, as determined by sufficiently low x2 values
(Table 3). However, for both the difficult planner and poor
brief, the x2 statistic for both distribution models was very
high (difficult planners: x2

P ¼ 6.13 � 105 and x2
N ¼ 384;

poor brief: x2
P ¼ 5.10� 108 and x2

N ¼ 12100). This is not
too critical for the difficult planner scenario, because this oc-
curs relatively rarely. However, for the poor brief, which is the
most common scenario, this potentially poses a problem.
From Table 5 it can be seen that the poor brief is the top-rated
scenario for 52% (13 of 25 cases) of the l range (8� l� 32).

Based on the rank correlation (as presented in Section 6 and
in Table 10), the Bayesian project diagnosis system performs
well. The benchmarking illustrated that there were relatively

Table 9. Scenario ranking from observations for 8 � l � 32

l Nominal Complex
Sm.

Budget
Diff.

Planners
Poor
Brief

Tight
Sch.

8 1 6 5 2 4 3
9 1 6 5 2 4 3

10 1 6 5 2 4 3
11 1 6 5 2 3 4
12 1 6 5 2 3 4
13 1 6 5 2 3 4
14 3 6 5 2 1 4
15 3 6 5 2 1 3
16 6 4 2 5 1 3
17 6 5 3 4 1 2
18 6 3 2 5 1 4
19 6 1 2 5 3 4
20 6 1 2 5 3 4
21 6 1 2 5 3 4
22 6 1 2 5 4 3
23 6 1 2 5 4 3
24 6 1 2 5 4 3
25 6 1 2 5 4 3
26 6 1 2 5 4 3
27 6 1 2 5 4 3
28 6 1 2 5 4 3
29 6 1 2 5 4 3
30 6 1 2 5 4 3
31 6 1 2 5 4 3
32 6 1 2 5 4 3

Table 10. Rank difference and Spearman rank correlation statistic for 8 � l � 32

l Nom Complex Budget Planners Brief Sched Spearman

8 0 0 21 3 22 0 0.60
9 0 0 0 2 22 0 0.77

10 0 0 0 2 22 0 0.77
11 0 0 0 2 21 21 0.83
12 0 0 0 2 21 21 0.83
13 1 0 0 2 22 21 0.71
14 21 0 21 3 0 21 0.66
15 21 21 21 4 0 0 0.46
16 23 1 2 1 0 21 0.54
17 23 0 1 2 0 0 0.60
18 21 1 1 1 0 22 0.77
19 0 2 2 0 22 22 0.54
20 0 2 2 0 22 22 0.54
21 0 2 2 0 22 22 0.54
22 0 2 2 0 23 21 0.49
23 0 2 2 0 23 21 0.49
24 0 2 2 0 23 21 0.49
25 0 2 2 0 23 21 0.49
26 0 2 2 0 22 22 0.54
27 0 2 2 0 22 22 0.54
28 0 2 2 0 22 22 0.54
29 0 2 2 0 22 22 0.54
30 0 1 2 0 21 22 0.71
31 0 1 1 0 0 22 0.83
32 0 1 1 0 0 22 0.83
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few cases where there was a large discrepancy between the
ranking of the observed frequencies of the scenarios versus
the model predicted posterior probabilities. For most observed
l values in Table 10, the Spearman correlation is greater than
0.5. Looking in greater detail at Table 10, this suggests that
more attention is particularly warranted on the poor brief sce-
nario. The diagnosis system almost always ranks this scenario
higher than it actually occurs. Further analysis is possible
through the comparison of Tables 4 (model generated poste-
rior probabilities) and 8 (observed frequencies). From these
it can be seen that the poor brief scenario is consistently over-
estimated, as well as the tight schedule. In contrast, the diffi-
cult planners scenario is underestimated throughout the range
and complex design and small budget are underestimated mid-
range. By considering Equation 1, this suggests that the prior
probabilities should be revisited, lowering P(SPB), the prior
probability of a poor brief and raising P(SDP), the prior prob-
ability of encountering difficult planners.

For comparison, Weidl et al. (2005) and Anderson et al.
(2009) are both methodologically similar to this article.
Both articles use Bayesian methods for estimating the impact
of various events on the processes they are monitoring. More-
over, both articles evaluate their estimation power through
simulation. Weidl et al. (2005) report that for their root cause
identification algorithm they are able to achieve correct clas-
sification of at least 84%. This compares to the results from
this article in which a Spearman correlation of between 0.5
and 0.8 was reported from the simulation experiment compar-
ing the actual event occurring and the diagnosed (estimated)
event using only the single observation of time elapsed.

Anderson et al. (2009) seek to estimate the process execu-
tion duration, given certain observed disturbances. This is
equivalent to the reverse problem described in this article:
Anderson et al. observe an event and estimate the completion
time (equivalent to estimating l), whereas this article seeks to
estimate the disturbance given l. It must be noted that the na-
ture of the “disturbance” is different: Anderson et al. (2009)
has clear disturbances (e.g., labor strike, delayed material, de-
livery), whereas in this project, it is harder to identify which
disturbances are occurring (e.g., poor brief, over complex
project). The results from Anderson et al. are less straightfor-
ward to compare, but they provide a favorable comparison be-
tween the time estimates of a set of planned projects and the
simulated estimates for these projects.

8. CONCLUSION

This study has shown that by using a Bayesian approach, it is
feasible to diagnose the scenario that a process is experienc-
ing using no more than the total time elapsed. Using this in-
formation, a project manager is able to take preemptive action
to mitigate the likely affects due to that scenario. This has
been demonstrated using a mathematical simulation model
of the construction design process. By using no more than
the time taken to pass the GR1 node, the Bayesian diagnosis
method performs well at identifying the most likely potential

difficult scenarios. This compares favorably with other sim-
ilar diagnosis and estimation methods, with the benefit of
only using one objective observation, as opposed to a number
of more subjective observations (e.g., new technology and
specification discontent; Lee et al., 2009).

This project diagnosis would be of greatest use to novice
project managers. These are the managers who, due to less
experience, are most likely to need some direction concerning
likely causes of difficulty with a project. More senior project
managers would be expected to have a tacit diagnosis process,
built from many years’ experience.

Challenges remain with this work. The key challenge lies
with the parameterizing of the underlying conditional prob-
ability distributions. In this study, this was achieved by mod-
eling the process as a quasi-Markov chain, and then using a
Monte Carlo approach to generate a sample distribution
against which the models could be fitted. Within this ap-
proach, the key challenge lies within the ability to estimate
transition probabilities. These probabilities will be different
for each construction company and for each type of project.
The probabilities for this study were estimated through a com-
bination of a literature survey and discussions with practicing
construction project managers.

A drawback of the approach taken is that estimates of
which scenario the project lies in are onlyavailable once the first
gateway has been passed. This might well be too late for any
mitigating actions to have significant impact. Solutions to this
drawback could include observing different types of signals
or using time taken by other nodes. The first approach, iden-
tifying other signals, would require further work on the nature
of the scenarios, with a focus on characterizing the scenarios
and thereby identifying the observable signals. The second
approach would be to apply a methodology similar to that pre-
sented in this article, and extend it to all nodes in the process.
With both these approaches, the Bayesian method presented
here could still be applied.

Overall, the Bayesian approach provides promising results.
The key aspect is that relatively simple and subtle signals,
such as the time taken to pass the GR1, can be used to esti-
mate the global conditions in which the project finds itself.
This study shows that there is potential for incorporating other
signals to achieve better estimates of the scenario within
which a project is operating. Moreover, although beyond
the scope of this work, there is a need to develop suitable mit-
igating actions that would provide the means for recovering a
project suffering from a hindering scenario. This diagnosis
system ultimately provides the basis for an intelligent deci-
sion support system based on sound Bayesian methodology.
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APPENDIX A: TRANSITION PROBABILITIES

This appendix contains the transition probabilities for the six differ-
ent scenarios used in the simulation runs. The tables are laid out so
that the originating nodes are shown on the left hand column. There-
fore, each row represents the transition probabilities to the associated
node listed in the top row. For compactness, the contents of each cell
are in percentages. Blank cells represent that there is no connecting
arc between the two nodes. This is to distinguish where there is an
arc, but the probability of following this arc is zero, as is the case
in say the nominal scenario moving from state B1 to D. To further
illustrate how to interpret the table, consider the first (nominal) sce-
nario: when the simulation is in node F there is a 15% chance of pro-
gressing to node D, a 30% chance of remaining in node F, a 54%
chance of progressing to node GR1, and a 1% chance of failure.

The process simulation is based on a Markov chain. The pure Mar-
kov chain is a memoryless construct: the transition to the next node is
determined only by the node that the process is currently in. In the pure
Markov chain history has no effect. In the construction process this is
not the case. Tasks can be completed with degrees of success and the
process can move on to the next tasks (state) even if a previous task has
not been successfully completed. A rationale for this is that the project
manager might not be aware or able to determine the task’s success.
To accommodate for this requirement, some of the states have been
modified to have substates. For this simulation these are the first three
states (A, B, and C). These substates are the following:

A: Project inception and definition

A1 node A has not yet been completed (or has been done
poorly);

A2 node A has been successfully completed.
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B: Identify site

B1 node B activity fails to complete; B2 node B activity is suc-
cessful, may move to C; B3 nodes B and C have been com-
pleted, can progress to D.

C: Outline project objectives

C1 node C activity fails to complete;

C2 node C activity is successful, may move to B;

C3 nodes B and C have been completed, can progress to D.

A.1. Nominal

The nominal scenario represents the case where the construction
project proceeds well with no problems causing additional delay.
There does remain a probability for the project to have to iterate,
although in this scenario it will be relatively low.

A.2. Complex

The complex scenario represents the case where the proposed de-
sign is overly complex for the design specification needs. Issues
that might arise in this scenario are that time management becomes
more challenging, underground issues might arise due to complexity
of design, etc. The affected nodes are C, D, and F. These all now
have a higher probability of transitioning back into an “earlier” state.

A.3. Small budget

The small budget scenario represents the case where either the bud-
get was set too low, or where suppliers have had problems and there-
fore that the expected costs have significantly risen. The affected
nodes are C and D.

A.4. Difficult planners

The difficult planners scenario represents the case where regulating
bodies place challenges on the progress of the project, for example
where regulations are made stricter while the project is underway.
The only node affected here is node F.

A.5. Poor brief

The poor brief scenario represents the combination of either the in-
itial specification for the construction project being poorly expressed
or the client demanding a late change in the brief. This case affects
only node C (all substates).

A B C D E F GR1 G Fail

A1 30 35 35
A2 15 42.5 42.5
B1 20 10 70 0
B2 5 10 85 0
B3 1 6 8 85
C1 20 70 10 0
C2 5 85 10 0
C3 1 8 6 85
D 10 10 80
E 20 80
F 15 30 54 1
GR1 5 94 1

A B C D E F GR1 G Fail

A1 30 35 35
A2 15 42.5 42.5
B1 20 10 70 0
B2 5 10 85 0
B3 1 6 8 85
C1 37.5 35 27.5 0
C2 22.5 50 27.5 0
C3 12.7 19.7 17.4 50
D 35 35 30
E 20 80
F 15 30 54 1
GR1 5 94 1

A B C D E F GR1 G Fail

A1 30 35 35
A2 15 42.5 42.5
B1 20 10 70 0
B2 5 10 85 0
B3 1 6 8 85
C1 37.5 35 27.5 0
C2 50 27.5 22.5 0
C3 12.7 19.7 17.4 50
D 30 30 40
E 20 80
F 28.5 43.5 27 1
GR1 5 94 1

A B C D E F GR1 G Fail

A1 30 35 35
A2 15 42.5 42.5
B1 20 10 70 0
B2 5 10 85 0
B3 1 6 8 85
C1 20 70 10 0
C2 5 85 10 0
C3 1 8 6 85
D 10 10 80
E 20 80
F 28.5 43.5 27 1
GR1 5 94 1
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A.6. Tight schedule

The tight schedule scenario represents the case where unrealistic
time demands have been placed on the construction project. This
can, for example, lead to mistakes being made due to rushed
work. This case affects only node F.

A B C D E F GR1 G Fail

A1 30 35 35
A2 15 42.5 42.5
B1 20 10 70 0
B2 5 10 85 0
B3 1 6 8 85
C1 20 70 10 0
C2 5 85 10 0
C3 1 8 6 85
D 10 10 80
E 20 80
F 33.5 48.5 17 1
GR1 5 94 1

A B C D E F GR1 G Fail

A1 30 35 35
A2 15 42.5 42.5
B1 20 10 70 0
B2 5 10 85 0
B3 1 6 8 85
C1 42.5 25 32.5 0
C2 27.5 40 32.5 0
C3 16 23 21 40
D 10 10 80
E 20 80
F 15 30 54 1
GR1 5 94 1
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