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Quantitative mathematical models describe planar, spontaneous, reaction wave
propagation (Zeldovich, Combust. Flame, vol. 39, 1980, pp. 211–214) in a finite
hot spot volume of reactive gas. The results describe the complete thermomechanical
response of the gas to a one-step, high-activation-energy exothermic reaction initiated
by a tiny initial temperature non-uniformity in a gas at rest with uniform pressure.
Initially, the complete conservation equations, including all transport terms, are
non-dimensionalized to identify parameters that quantify the impact of viscosity,
conduction and diffusion. The results demonstrate unequivocally that transport terms
are tiny relative to all other terms in the equations, given the relevant time and length
scales. The asymptotic analyses, based on the reactive Euler equations, describe both
induction and post-induction period models for a fast heat release rate (induction
time scale short compared to the acoustic time of the spot), as well as a modest heat
release rate (induction time scale equivalent to the acoustic time). Analytical results
are obtained for the fast heating rate problem and emphasize the physics of near
constant-volume heating during the induction period. Weak hot spot expansion is the
source of fluid expelled from the original finite volume and is a ‘piston-effect’ source
of acoustic mechanical disturbances beyond the spot. The post-induction period
is characterized by the explosive appearance of an ephemeral, spatially uniform
high-temperature, high-pressure spot embedded in a cold, low-pressure environment.
In analogy with a shock tube the subsequent expansion process occurs on the acoustic
time scale of the spot and will be the source of shocks propagating beyond the spot.
The modest heating rate induction period is characterized by weakly compressible
phenomena that can be described by a novel system of linear wave equations for
the temperature, pressure and induced velocity perturbations driven by nonlinear
chemical heating, which provides physical insights difficult to obtain from the
more familiar ‘Clarke equation’. When the heating rate is modest, reaction terms
in the post-induction period Euler equations exhibit a form of singular behaviour in
the high-activation-energy limit, implying the need to use a nonlinear exponential
scaling for time and space, developed originally to describe spatially uniform thermal
explosions (Kassoy, Q. J. Mech. Appl. Maths, vol. 30, 1977, pp. 71–89). Here
again the result will be the explosive appearance of an ephemeral spatially uniform
high-temperature, high-pressure hot spot. These results demonstrate that an initially
weak temperature non-uniformity in a finite hot spot can be the source of acoustic
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and shock wave mechanical disturbances in the gas beyond the spot that may be
related to rocket engine instability and engine knock.

Key words: combustion, gas dynamics, Navier–Stokes equations

1. Introduction
Zeldovich et al. (1970) are concerned with preferential autoignition sites occurring

in reactive gases characterized by a momentary non-uniform temperature distribution
varying around a relatively low mean temperature. A transient, Cartesian, one-
dimensional model, based on the reactive Euler equations, is developed to describe
the evolution of the combustion process from an initially imposed local, negative
linear temperature gradient in a hot spot surrounded by a much larger semi-infinite
domain at relatively low temperature. After correcting a typo in equation (3.2) of
the 1970 manuscript, it is clear that the model is developed for a characteristic
chemical heat release time scale similar to the local acoustic time scale, based on the
distance a wave can propagate during the heat release process. The objective is to
identify the dependence of combustion wave evolution on the amplitude of the linear
temperature gradient. They seek to identify critical gradients that facilitate relatively
strong shocks that can couple to an adjacent reaction zone leading to detonation
formation. Following up on these ideas, Zeldovich (1980) describes an intuitive,
qualitative theory for the propagation of a ‘spontaneous reaction wave’ through a
reactive gas, initiated by an imposed temperature inhomogeneity (hot spot gradient)
in an initially constant-pressure gas at rest. He argues that the inhomogeneity will
initiate a sequence of adiabatic thermal explosions that propagate down an imposed
negative temperature gradient due to the sensitivity of the local induction time to the
temperature at each point, with the result that a reaction front can be identified and
tracked. He considers ‘. . . the extreme case of large space lengths and small gradients
so that one may neglect interaction between adjacent volumes of reacting substance
(so that). . . in each particle of the substance thermal explosion occurs independently’.
In other words, he postulates a continuous sequence of perfectly constant-volume
thermal explosions. Zeldovich contrasts this type of propagating chemical reaction
wave to traditional transport-dominated flames, high-speed deflagration and detonation
waves. It is implicit in such a process that the localized energy addition cannot
induce gas motion or any form of gas dynamic disturbance, limitations recognized
subsequently by many researchers (Short 1995, 1997; Kapila et al. 2002; Seitenzahl
et al. 2009; Kassoy 2010, 2014a,b). The qualitative theory lacks a quantitative
mathematical model for the evolution of the reaction wave, including relevant time
and length scales, the characteristic gradient magnitude, as well as the characteristic
chemical power and the energy deposition. Subsequently, Zeldovich et al. (1988)
used numerical solutions based on the Euler equations to study the effect of initial
concentration and temperature gradients on the generation of pressure waves, with
the objective of explaining detonation initiation. The model and interpretation of the
numerical data recognizes the importance of the thermomechanical response of the
gas to thermal energy deposition. The authors state ‘. . . that spontaneous generation
of shock and detonation waves may occur in conditions close to self-ignition of the
reactive mixture’, results that ‘. . . may provide insight into the onset of nonlinear
combustion instability in various technical systems’ (e.g. rocket engines and knock
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Zeldovich spontaneous reaction wave propagation 441

in internal combustion engines are mentioned). The authors cite numerous related
technical papers by themselves, their colleagues and others addressing the detonation
initiation and evolution problem.

Makviladze & Rogatykh (1991) formulate a mathematical model for reaction
initiation and evolution in a localized hot spot, with an imposed negative linear
temperature gradient, initially at constant pressure with zero speed. The model
is based on the planar, reactive, non-stationary Euler equations, with one-step
Arrhenius kinetics used to produce transient, spatially distributed heat release. The
non-dimensional space and time variables are chosen to facilitate a characteristic
time scale for heat release (the induction time of a thermal explosion) comparable to
the acoustic time scale (wave passage time) in the spot. Significant non-dimensional
parameters are identified in the conservation equations, boundary and initial conditions
and then used in a succession of numerical solutions to determine solution dependence
on the parameter values. The authors identify a criterion for ‘. . . dangerously explosive
regimes. . . ,’ in terms of the non-dimensional temperature gradient parameter λ,
equation (16) in their text. An ad hoc assumption of zero speed is used to define
a reduced equation set describing constant-density, adiabatic heat addition to the
gas. The analytical solution is used to describe the spatially dependent time for
maximum heat release rate. This model for the Zeldovich spontaneous reaction wave
is characterized by a thermal explosion propagating down the negative gradient at
a specific speed. The temperature reaches the adiabatic explosion value just behind
the propagating front, with a concomitant high-pressure value (pressure rises with
temperature in a constant-density heat addition process. Kassoy (2010, 2014a,b)
has explained the physical consquences of relatively rapid heat addition with near
inertial confinement.) Numerical solutions of the full equations are used to discuss the
relationship between a propagating spontaneous ‘chemical’ reaction wave and familiar
propagating gas dynamic waves (shocks and detonations). The authors note that an
induction period with relatively small changes in dependent variables is followed by
a full-scale explosion on a substantially shorter ‘excitation’ time scale (Gu, Emerson
& Bradley 2003) during which most the heat release and fuel consumption occurs. It
is this relatively rapid heat addition process that occurs in a nearly inertially confined
gas volume, as described in the cited Kassoy references above.

During the 1980s and extending to the present, there has been extraordinary interest
in using asymptotic and/or computational methods to resolve reaction initiation
phenomena, and/or gas dynamic consequences arising from either inhomogeneous
initial conditions or thermal energy deposition into a gas volume. A non-exhaustive
selection of these studies is cited in brevity below, primarily to inform the interested
reader of the modelling diversity. More detailed information can be obtained from
the publication introduction sections and their bibliographies.

Sileem, Kassoy & Hayashi (1991) use numerical methods to study planar detonation
initiation following thermal energy deposition into a reactive gas volume adjacent to
a planar boundary. Clarke, Kassoy & Riley (1984a,b) describe a related modelling
effort where a hot planar boundary is an energy source that heats the adjacent
inert gas by conduction, causing localized gas expansion. The induced motion
(. . . ‘piston effect’. . . ) is the source of a shock wave propagating into the adjacent
cold environment.

Jackson, Kapila & Stewart (1989) study the evolution of a high-activation-energy
(ε→ 0) chemical reaction within a finite slot when the chemical time scale for the
induction period is identical to the acoustic time scale. A traditional thermal explosion
formulation facilitates a quantitative description of the thermomechanical response of
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the gas to transient, spatially resolved, chemical heat addition, initiated by an O(ε)
negative temperature gradient in the slot. The describing equations are essentially
those for linear acoustics driven by a nonlinear reaction term and are equivalent
to ‘Clarke’s equation’ (Clarke 1978). Numerical solutions of the system show that
the induction-period temperature and pressure perturbations become unbounded in
the vicinity of the O(ε) temperature maximum in the initial condition and at a finite
thermal explosion time, te. The failure of the numerical method as t→ te is interpreted
to mean that a familiar thermal explosion logarithmic singularity characterizes the
runaway process. The authors then use coordinate expansion asymptotics to describe
the spatially multiscale evolution of the hot spot. The solution development is confined
to the vicinity of the O(ε) initial temperature maximum. A post-induction period
analysis employs nonlinear rescaling of the time and space, the former developed
originally by Kassoy (1977), to describe the full-scale explosion in the vicinity of
the original O(ε) temperature maximum. The results show that the reactant is totally
consumed on exponentially short time and space scales while the spatially uniform
temperature rises to the adiabatic explosion value in an essentially constant-volume
process, with a concomitant increase in pressure and almost no induced fluid speed.
The post-induction theory is also confined to a very thin region adjacent to the
original temperature maximum.

The consequences of spatial inhomogeneities in pressure, temperature, concentration
and speed, on the evolution of a reaction process at relatively modest activation
energy are predicted by Short (1995, 1997). He provides a thorough review of the
literature available in that period. A high-activation-energy theory (based on the
familiar small parameter ε = R′T ′0/E

′�O(1)) is formulated to describe the initiation
of a chemical process by O(ε) spatial inhomogeneities in the initial values of the
dependent variables, leading ultimately to the appearance of a detonation. His models
describe chemical heat deposition into a volume of reactive gas, characterized by
dimension l′R, when the induction time scale of the thermal explosion, denoted by
t′R, is compared to the acoustic time scale t′a = `′R/c′0, where c′0 is the characteristic
speed of sound. He considers models for the time-scale ratio µ= t′R/t

′
a = 1 and also

µ� O(1) (‘long-wavelength analysis’). The former describes a weakly compressible
response of the gas to minor heat addition during the induction period of a
thermal explosion. In contrast, the latter corresponds to nearly constant-volume heat
addition. Short recognizes the limitations of the Zeldovich concept cited above and
develops an asymptotic analysis for variable density corrections to the lowest-order
constant-volume solution valid for µ= 0.

High-activation-energy asymptotics are used by Short (1996) to quantify the
spatially homogeneous evolution of thermodynamic variables in a compressible
atmosphere containing initial disturbances in velocity and pressure. The induced
gas motion (either expansion or compression) influences the thermal process in a
fundamental way. Large expansion rates prevent thermal runaway from occurring.
Conditions leading to the appearance of a thermal explosion are defined.

In contrast to the self-initiation phenomena in the references above (small-amplitude
initial disturbances), direct initiation of gaseous detonations is the subject of a paper
by Eckett, Quirk & Shepherd (2000). A spherical blast wave, generated by the rapid
deposition of a large amount of thermal energy into a small volume of reactive gas,
ignites a chemical reaction in a reactive gas through which it propagates. (Traditional
blast wave theory is based on an unphysical idealization; instantaneous deposition
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Zeldovich spontaneous reaction wave propagation 443

of energy into a point.) The study seeks to determine blast wave properties (critical
energy) that lead to a sustained spherical detonation, associated with the ‘competition
between heat release, wavefront curvature and unsteadiness.’

Vasquez-Espi’ & Liñan (2001) model the initiation of a high-activation-energy
chemical reaction in a reactive gas following ‘instantaneous’ spatially resolved thermal
energy deposition to create a well-defined hot, high-pressure spot (it is assumed that
the energy addition occurs at constant volume and that ‘. . . there is no time for the
generation of motion. . . ’, thus neglecting the thermomechanical response of the gas
to energy addition.) The problem formulation is developed for reaction time scales
of the order of the local acoustic time, µ=O(1). The acoustically linearized reactive
Euler equations with a nonlinear chemical energy term found by Clarke (1978) are
derived. Highly resolved numerical methods are used to ascertain a critical value of
the ‘Dahmköhler number,’ (1/µ). Beyond the critical value, a well-defined ignition
process occurs because the local chemical power addition is large enough to overcome
the cooling effect of local gas expansion.

Kapila et al. (2002) develop a model for detonation formation arising from an
existing tiny linear temperature gradient in a semi-infinite domain. The compressible
non-dimensional equations are valid when the characteristic thermal energy deposition
time (really the thermal explosion induction time) is similar in magnitude to the local
acoustic time. Familiar high-activation-energy thermal explosion theory is employed
to study the impact of asymptotically small gradients on induction-period history.
The analysis leads to a recognition that the post-induction period time scale will be
exponentially short compared to the local acoustic time. The asymptotic methodology
enables a cause–effect understanding of the physics of shock formation that is
difficult to obtain from numerical experiments alone. ‘Accurate and well-resolved
numerical computations are (used) to determine the mode of detonation formation as
a function of the size of the initial gradient.’ Solutions are obtained for a wide range
of temperature gradients to demonstrate the diversity of evolutions to detonation. The
authors recognize that ‘. . . Zeldovich ideas, while extremely instructive, are limited
in accuracy. . . ’ due to the lack of gas dynamic response of the gas to spatially
distributed transient heat deposition.

Gu et al. (2003) use computational solutions to the reactive compressible flow
equations, including all transport terms to study the sensitivity of reaction front
propagation to small linear temperature gradients imposed on a spherical hot spot.
Detailed kinetic schemes for stoichiometric H2–CO–air and H2–air mixtures are used
to describe the autoignition process. Initially, the temperature rises significantly
throughout the spot in a nearly spatially homogeneous process, with a slight
temperature maximum evolving at the origin, far larger than the maximum associated
with the initial tiny gradient. A rapid reaction process follows in the vicinity of the
maximum, leading to a localized hot spot. A reaction wave then spreads quickly
across the spot, creating a region of very high temperature. Subsequently, the entire
spot explodes and all fuel is consumed on the relatively short ‘excitation time
scale,’ t′e. A non-dimensional parameter, ξ , related to the magnitude of the initial
linear temperature gradient is used to discriminate between five different modes of
reaction front propagation. (The parameter ξ is in fact the inverse of the reaction wave
propagation Mach number.) The authors note the importance of a second parameter,
the ratio (t′a/t

′
e), where t′a is the acoustic time scale of the spot. The transient reaction

process is distinct from that in a traditional thermal explosion (Kassoy 1977). The
latter is described in terms of a relatively long induction time, where little fuel is
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consumed and only small temperature changes occur, followed by an extremely rapid
full explosion where the temperature rises to the adiabatic explosion value as all the
fuel is consumed.

Kurdyumov, Sanchez & Linan (2003) extend the aforementioned CKR model for a
planar compact heat source to cylindrical and spherical geometries. Conduction heat
transfer from the source to the adjacent gas raises the temperature of a volume with
characteristic length scale r′h on an energy deposition time scale t′d, where the latter
is compared to the characteristic acoustic and conduction time scales of the volume,
t′a = r′h/a

′
0 (a′0 is the characteristic speed of sound at the initial temperature T ′0) and

t′c = r′2h /κ
′
0 (κ ′0 is the characteristic thermal diffusivity), respectively. A continuum gas

theory requires that the ratio of the acoustic time to the conduction time, equivalent
to the Knudsen number: Kn= (α′0/a′0 r′h)�O(1). The compact heat source, a spark,
hot wire or laser shot delivers a specified amount of energy E′j during the deposition
time scale, which heats the volume such that ρ ′0C′pT ′0 r′j+1

n ∼ E′j ( j= 0, 1, 2 for planar,
cylindrical and spherical geometries, respectively) defines the dimension r′h. C′p is the
characteristic specific heat at constant pressure. When t′d = t′a, energy from the source
to the gas volume raises the local temperature O(T ′0) in a nearly isobaric process,
with the density decrease inversely proportional to the temperature increase. Gas
expelled from the heated volume acts as a piston to drive mechanical disturbances
into the unheated gas. The thermomechanical analysis is carried out for a wide
range of deposition time scales: (t′d/t

′
a � O(1), rapid heating), (t′d/t

′
a = O(1), modest

heating), (t′d/t
′
a�O(1), slow heating). The mechanical consequences of each ratio are

articulated in the Conclusion section of the cited reference.
High-fidelity computational simulations based on the compressible reactive

Navier–Stokes equations, including transport terms, with hydrogen chemistry for
the kinetics are carried out to simulate phenomena that may occur in an HCCI
engine (Sankaran et al. 2005). A turbulent flow field in a high-pressure gas with an
uncorrelated turbulent temperature field is imposed as an initial condition. The field
consists of individual hot spots with relatively small temperature inhomogeneities
being strained and dissipated by the turbulence. The results identify a first ignition
site and subsequent combustion elsewhere in the field. The authors note the impact
of localized gas compression on the heat budget of autoigniting hot spots. Ignition
development is found to be sensitive to ‘. . . temperature distribution statistics’. Two
regimes of ignition are identified: ‘. . . spontaneous propagation and deflagration. . . ’.
‘. . . a criterion based on the propagation speeds (of the waves) is proposed to
distinguish between the two. . . regimes.’ However, cause–effect relations cannot be
determined from the computational dataset.

Spontaneous initiation of detonation in astrophysical objects (white dwarfs)
is the subject of a computational modelling effort by Seitenzahl et al. (2009).
The dimensional reactive Euler equations are solved for appropriate astrophysical
thermodynamic conditions and thermonuclear reaction kinetics to determine whether
a hot spot of fixed size with an initial temperature inhomogeneity can be the source
of a detonation. In particular, the authors seek to determine ‘. . . the smallest size
for a heated region that still leads to detonation. . .’. Several different initial spatial
temperature distributions are incorporated in the modelling. The differing gradients in
induction times (Zeldovich model) play a major role in outcome, although the authors
recognize that ‘. . . Zeldovich’s spontaneous wave concept. . . ignores nonlinear gas
dynamic evolution. . . ’. The use of dimensional equations prevents the reader from
identifying non-dimensional parameters that characterize the reactive gas dynamics.
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Many of the results can be understood in terms of the thermomechanical response
of a compressible gas to transient, spatially resolved thermal energy addition (Clarke
et al. 1984a; Kassoy 2010).

Poludnenko, Gardiner & Oran (2011) focuses on turbulent flames interacting
with a turbulent flow field as a source of detonation initiation, with application to
unconfined systems (e.g. gas cloud explosions, supernovae). Results are obtained from
a DNS based on the compressible flow equations with one-step Arrhenius kinetics,
including transport effects. A planar turbulent flame interacts with a previously created
turbulent flow field. The flame is observed to accelerate during a runaway process
to supersonic propagation speeds under specifically defined physical conditions.
‘. . . burning is controlled by flame propagation and not by autoignition. . . (precluding)
the formation of global spontaneous reaction waves’. Unlike most of the previously
cited studies, specific hot spot properties are not required. A semiquantitative
(order-of-magnitude) steady state analysis for spontaneous runaway is presented, based
on thermal power deposition on the local acoustic time scale with the result that a
Chapman–Jouguet deflagration propagation speed is predicted. ‘. . . the spontaneous
DDT mechanism. . . does not place any . . . constraints on equation of state, reaction
model or . . . flame properties.’

LES methods are used by Kulkarni, Zellhuber & Polifke (2013) to determine the
impact of turbulence on autoignition in a non-premixed hydrogen–air system. The
objective is to determine physical processes (mixing) that enable autoignition to
occur in isolated volumes (hot spots) of fuel–air mixture. Results are presented for
autoignition lengths with respect to turbulent flow properties.

The relationship between super-knock and autoignition of pre-ignition kernels in
supercharged spark-ignition engines is the topic of research described in Peters,
Kerschgens & Paczko (2013). A new theory of turbulence, developed by the first
author, is used to describe the stochastic properties of likely small-scale temperature
inhomogeneities as they might appear during phases of cylinder compression.
Three-dimensional DNS simulations of homogeneous isotropic turbulence are used to
obtain the necessary statistical information. The basic premise is that some of the
hot spots are sites for the Zeldovich-gradient-determined spontaneous reaction wave
propagation to be initiated. A ‘resonance’ between the acoustic waves generated by the
thermomechanical response of the gas to localized transient, spatially resolved thermal
energy deposition, and the spreading reaction wave is the source of a detonation (the
super-knock).

Kassoy’s (2010) thermomechanical model employs systematic asymptotic methods
to predict the consequences of spatially resolved, transient thermal energy deposition
into a volume of inert gas. In contrast to the compact initial source approach, a
generalized thermal source term with explicitly defined properties is used in the
energy equation to represent a spark, laser shot, heated electric wire or chemical
heat addition. The model quantifies both the thermodynamics and fluid mechanical
responses of the gas to volumetric energy deposition on a time scale short compared
to the acoustic time of the volume. The analysis leads to a non-intuitive result: nearly
constant-volume heat addition prevails when the energy deposited is less than a
specific critical value. The internal expansion Mach number is subsonic. Gas expelled
from the volume acts as a piston to drive mechanical disturbances into the unheated
environment. Beyond the critical value of energy deposition, the heat addition process
is fully compressible, characterized by an O(1) internal gas expansion Mach number
and a large expelled gas Mach number responsible for a blast wave propagating into
the adjacent environment. This finite source, heated on a finite time scale, replaces
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the classical blast wave model of instantaneous energy addition into a point (e.g.
Taylor 1946, 1950). The thermomechanical modelling has been extended to a reactive
gas with a high-activation-energy reaction by Kassoy (2014a) and to a wide range
of heat deposition time scales (Kassoy 2014b). The latter model quantifies the nearly
isobaric response of an inert gas to energy deposition on a time scale long compared
to the acoustic time of the volume. Each of these asymptotic models quantifies the
role of viscous, conductive and mass diffusion in the thermomechanical response.

Radulescu, Sharpe & Bradley (2013) provide an extensive review of a parameter,
used to ‘. . . characterize the detonability and explosion hazard of reactive media’.
Theory and experiment suggest that hot spot ignition and the subsequent appearance
of strong shock waves is uniquely related to the parameter magnitude. The
thermomechanical response to localized, spatially distributed heat addition transients
can be predicted if the parameter is known.

The current paper presents a systematic and rational asymptotic formulation for
autoignition within a finite volume of reactive gas with an instantaneous spatially
non-uniform temperature distribution, T ′, varying around a mean temperature T ′0.
This configuration may occur in a non-uniform mixture of reactive gas where
some volumes of the gas are warmer than the mean and others are colder,
leading to a preferred ignition site. The reaction initiation process is driven by
an imposed dimensional temperature gradient, measured by 1T ′/`′�O(T ′0)/`

′, which
characterizes the local gradient and where `′ is the length scale of the temperature
inhomogeneity. A primary objective is integrate the thermomechanical response of
the gas into the Zeldovich model (1980) for both fast and modest rates of chemical
energy addition (both quantified in §§ 2.1 and 3) in a rational manner in order to
identify physical conditions compatible with constant-volume heat addition physics
implicit in his model. The analysis, related to Short’s work (1995, 1997) and that
of Jackson et al. (1989) and Kapila et al. (2002), should enable the reader to gain
a fundamental and quantitative physical understanding of how autoignition driven
initially by a small temperature gradient generates a propagating, spatially distributed,
high-activation-energy thermal explosion, also known as a spontaneous reaction wave,
including induced fluid motion and the generation of mechanical waves (acoustics,
shocks and blast waves).

2. Mathematical model

The mathematical model is formulated by using asymptotic techniques described
by Clarke & Kassoy (1984) as well as Kassoy (2010, 2014a,b). It quantifies the
multifaceted heat transfer phenomena evolving from an imposed inhomogeneous
temperature distribution like that in figure 1. The primary objectives are to establish
the physical conditions that must exist for a spontaneous reaction wave to propagate
down the negative gradient and for the Euler equations to be an appropriate model.

2.1. Generalized thermomechanical analysis
The analysis begins with the complete planar dimensional (primes′) conservation
equations for a perfect gas including all transport terms and a generalized thermal
source term in the energy equation that may represent external energy addition from
a spark or laser shot, or from an exothermic chemical reaction. These equations are
chosen to emphasize the thermomechanical physics of gaseous systems with imposed
energy addition. An important objective is to identify non-dimensional parameters
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O

FIGURE 1. A spatially non-uniform initial temperature distribution T ′i (x) varying around
a mean value T ′0, where the former is larger than the latter for 06 x6 `′ and less beyond
`′ on a similar length scale.

modulating the transport terms in order to justify the use of the reactive Euler
equations in a subsequent study of reactive gas autoignition and thermomechanics.

ρ ′t′ + (ρ ′u′)x′ = 0 (2.1)

ρ ′(u′t′ + u′u′x′)=−p′x′ + V ′ (2.2)
ρ ′C′v(T

′
t′ + u′T ′x′)=−p′u′x′ +C′ + ρ ′Q̇′s +D′ (2.3)

p′ = ρ ′R′T ′ (2.4)

Yt′ + u′Yx′ = Q̇′s
q′R
+D ′, (2.5)

where V ′, C′, D′ and D ′ represent familiar planar viscous, conduction, dissipation and
mass diffusion operators, respectively. The thermal power heat source is defined by

Q̇′s =
q′R
t′s

Q̇s, (2.6)

where q′R is the heat of reaction per unit mass, t′s is the source heat addition time scale
and Q̇s is the non-dimensional heat source.

The initial conditions, defined by

t′ = 0, 0 6 x′ 6 `′: (T ′, p′, ρ ′)= (T ′i (x′), p′0, p′0/R
′T ′i (x

′)), (2.7a)

u′ = 0, Y = 1, (2.7b)
describe a gas at constant pressure (p′0), at rest (u′= 0), with imposed temperature and
density inhomogeneities. The initial conditions at x′ = 0 and `′ are defined by

x′ = 0, T ′i (0)= T ′1 > T ′0 (2.8a)

x′ = `′, T ′i (`
′)= T ′0 (2.8b)

as shown in figure 1. The boundary at `′ is open, allowing fluid to be expelled into
a cold fluid beyond.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

75
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.756


448 D. R. Kassoy

The details of the initial gradient dT ′i/dx′(t′ = 0, x′) are left undefined so long as
the gradient is negative for 0 < x′ < `′ and T ′i < T ′0 in some domain beyond x′ = `′.
Non-dimensional variables are defined by:

(T, p, ρ)= (T ′/T ′0, p′/p′0, ρ
′/ρ ′0) (2.9a)

u= u′/a′0 (2.9b)

x= x′/`′ (2.9c)

t= t′/t′s, (2.9d)

where a′0 is the characteristic speed of sound at T ′0. When used in (2.1)–(2.9), the
non-dimensional equations take the form

ρt +µ(ρu)x = 0 µ= t′s/t
′
A (2.10)

ρ[ut +µuux] =−µpx

γ
+ t′s/t

′
vV (2.11)

ρ[Tt +µuTx] =−(γ − 1)µpux + (t′s/t′CD)C+ (q′R/e′0)ρQ̇s + (γ )(γ − 1)(ts/t′v)D (2.12)

p= ρT (2.13)

[Yt +µuYx] =−Q̇s + (t′s/t′DIFF)D, (2.14)

where the characteristic acoustic, viscous, conduction and mass diffusion time scales
are defined by

t′A = `′/a′0, t′v = `′2/ν ′0, t′CD = `′2/α′0, t′DIFF = `′2/D′m, (2.15a−d)

respectively, where ν ′0, α′0, D′m are the characteristic kinematic viscosity, thermal
diffusivity and the mass diffusivity, respectively.

The non-dimensional initial conditions are

t= 0; (T, p, ρ)= (Ti(x), 1, 1/Ti(x)) (2.16a)

u= 0, Y = 1, (2.16b,c)

where Ti(x) = T ′i (x
′)/T ′0. The initial condition in (2.8a) can be written in non-

dimensional terms as

x= 0, T = 1+ τ , τ = T ′1 − T ′0
T ′0

, (2.17)

where the parameter τ quantifies the temperature difference across the gradient.
The viscous, conductive and diffusive transport terms in (2.11), (2.12) and (2.14)

are modulated by the time scale ratios t′s/t
′
v, t′s/t

′
CD and t′s/t

′
DIFF, respectively. These

ratios can be rewritten as (t′s/t
′
A)(t

′
A/t
′
v), (t

′
s/t
′
A)(t

′
A/t
′
CD) and (t′s/t

′
A)(t

′
A/t
′
DIFF). Given the

definitions in (2.15), the ratios of the acoustic time to each of the viscous, conductive
and diffusion time scales are proportional to the Knudsen number Kn= ν ′0/a′0`′, which
must be very small in a continuum gas. Except for exceptionally large ratios t′s/t

′
A,

all transport terms are suppressed in (2.11), (2.12) and (2.14) in the limit Kn→ 0.
In particular, when t′s = t′A, the full nonlinear compressible Euler equations for a
source-driven (Q̇s) system are recovered in the limit Kn→ 0. The thermomechanically
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Zeldovich spontaneous reaction wave propagation 449

induced Mach number, M = u′/a′ = a′0u/a′0a= O(1). However, it must be stated that,
for sufficiently large values of τ , the combination (t′s/t

′
CD)C could be O(1), thus

accounting for a very large heat flux due to an asymptotically large τ . This is not
a likely physical scenario. In the absence of transport physics, traditional flame
propagation cannot occur, leaving only the possibility of spontaneous reaction waves,
or what Kassoy & Clarke (1985) called ‘fast flames’, and reactive gas dynamic waves.

The limit µ→ 0 is studied initially with the objective of developing a transparent
understanding of the physics of the evolving system when the heat addition process is
relatively fast. This corresponds to what many authors refer to as ‘instantaneous’ heat
addition. A second advantage is that a fully analytical solution can be obtained. In
order to include a pressure-gradient-driven flow field in the limit, (2.11) implies that
the speed must be rescaled as

u=µU (2.18)

so that the associated induced Mach number

M = u′

a′
= u′/a′0

a′/a′0
≡ u

a
=O(µ)� 1, a=O(1) (2.19)

is subsonic. It follows from (2.11) and (2.16) that the momentum equation takes the
form

ρ[Ut +µUUx] =−px

γ
+µKnṼ, (2.20)

where Kn→ 0 in the limit and Ṽ is the rescaled non-dimensional viscous term. If
(2.18) is used in (2.10), it follows that the density must be rescaled by

ρ = 1/Ti(x)+µ2R, (2.21)

with the result that in the limit µ→ 0, (2.10) becomes

Rt + (ρU)x = 0. (2.22a)

Then the energy equation (2.12) is transformed to

ρ[Tt +µ2UTx] =−(γ − 1)µ2pUx + (t′s/t′CD)C+ γ (γ − 1)(t′s/t
′
v)µ

2D+ qRρQ̇s, (2.22b)

qR = q′R/e
′
0, (2.22c)

where q′R is a heat of reaction with units J kg−1 and e′0 is the initial internal energy
with the same units. The species equation is

Yt +µ2UYx =−Q̇s + (t′s/t′DIFF)D, (2.23)

and the state equation becomes

p=
[

1
Ti(x)

+µ2R
]

T. (2.24)

The asymptotically reduced describing equations, initial and boundary conditions are

Rt + (U/Ti(x))x = 0 (2.25)

Ut =−px

γ
Ti(x) (2.26)
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p= T/Ti(x) (2.27)

Tt = qRQ̇s (2.28)

Yt =−Q̇s (2.29)

t= 0; (T, p, ρ)=
(

Ti(x), 1,
1

Ti(x)

)
, u= 0, Y = 1, (2.30)

where Ti(0) = 1 + τ and Ti(1) = 1. It is implicit in the analysis that the non-
dimensional parameters qR and τ , defined in (2.22c) and (2.17), respectively, are
O(1) quantities. Asymptotically large heat of reaction or temperature differences
would imply the need for rescaling of T , p and U. Kassoy (2010) has considered
heat addition large compared to the initial internal energy, which has a non-intuitive
consequence on the thermomechanics.

The physical interpretation of the reduced equation system (2.26)–(2.31) enables a
fundamental understanding of the thermomechanical consequences of ‘fast’ heating,
µ = o(1). Equation (2.28) describes constant-volume heating from the source.
The rising temperature is accompanied by rising pressure, defined in (2.27). The
induced speed, described by (2.26), demonstrates that regardless of how fast energy
deposition occurs, (µ → 0), there will be a mechanical response as long as a
temperature–pressure gradient exists. The weak density change is given by (2.25)
in the context of (2.21). Similar equations appear in Kassoy (2010, 2014a,b). Fully
analytical solutions for (2.26)–(2.30) subject to the initial conditions in (2.31) follow,

T = Ti(x)+ qR

∫ t

0
Q̇s(x, t̂) d̂t (2.31)

p= 1+ qR

∫ t

0

Q̇s(x, t̂)
Ti(x)

d̂t (2.32)

U =−Ti(x)
γ

qR

∫ t

0
d̂t
∫ t̂

0

(
Q̇s(x, t̃)

Ti(x)

)
x

d̃t (2.33)

R=−
∫ t

0

(
U

Ti(x)

)
x

d̂t (2.34)

y= 1−
∫ t

0
Q̇s d̂t. (2.35)

The solutions are valid for arbitrary spatial distributions of Q̇s and Ti(x), whether
symmetric or non-symmetric relative to x= 0. The integrals describe the disturbances
to the initial state due to the heat addition defined by Q̇s.

The reader should recognize that the results are valid for any source Q̇s. The
formal analytical solutions in (2.32)–(2.36) provide insights into the dependence of
variables on the non-dimensional heat of reaction, qR, and the non-dimensional heat
source distribution in space and time, Q̇s(x, t), as well as on the initial temperature
distribution Ti(x). In addition, (2.34) can be used to identify the speed of the fluid
expelled from the hot spot at x= 1, where Ti = 1. Given the small Mach number in
(2.18), the thermomechanical disturbances, in the unheated gas, x > 1, will be weak
acoustic waves (Kevorkian & Cole 1968).
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The solutions in (2.31)–(2.35) can be simplified considerably for an asymptotically
small linear negative temperature gradient represented by

Ti(x)= 1− αx · · · , α = o(1), (2.36)

so that the variables depend only on the heat source distribution Qs(x, t) in a first
approximation. This perspective will be useful in the subsequent study of an Arrhenius,
high-activation-energy reaction as the source of thermal energy addition.

When the energy addition time scale is longer, µ = O(1), (2.10)–(2.14) are
essentially the compressible Euler equations with a heat source, q′R/e

′
0 = O(1). The

transport terms remain suppressed. These equations describe a fully compressible
thermomechanical process evolving from the transient, spatially resolved energy
addition on the time scale t′s (see § 5). In this case wave propagation within the
hot spot occurs on the same time scale as the energy addition, thus facilitating the
compressible (variable density) response. The equation structure implies unequivocally
that all thermodynamic variables undergo O(1) changes, in contradistinction to the
fast heating limit process, and that the induced Mach number,

M = u′/a′ = u/a= u/(T)1/2 =O(1). (2.37)

The Mach number of the fluid expelled from the heat spot is of the same order,
and is the source of the ‘piston effect’ driving strong mechanical disturbances (e.g.
shocks) into the unheated cold environment (Kevorkian & Cole 1968). During the heat
addition time scale, t′s, the order of magnitude of fluid motion in the hot spot and
beyond is quantified by

D′ =O(u′t′s)=O(a′o`
′/a′0)=O(`′) (2.38)

while the generated shock wave will move the same order-of-magnitude distance,

d′s =O(a′0t′s)=O(`′), t′s/t
′
A =O(1). (2.39)

This result implies that the expelled fluid will be able to support the shock during the
entire heat addition process, Q̇s(x, t) > 0.

3. Thermomechanical analysis for a reactive gas in the fast heating limit: µ� 1

In the following paragraphs an Euler-based analysis is presented for a single-step,
high-activation-energy, exothermic reaction in order to include a specific chemical heat
source, similar to that in Kassoy (2014a). The objective is to address the Zeldovich
concept with a rational systematic mathematical model.

The dimensional (primed (′)) Euler equations can be written as:

ρ ′t′ + (ρ ′u′)x′ = 0 (3.1a)

ρ ′(u′t′ + u′u′x′)=−p′x′ (3.1b)

ρ ′(e′t′ + u′e′x′)=−p′u′x′ + ρ ′A′q′RY e−E′/R′T ′ (3.1c)

Yt′ + u′Yx′ =−A′Y eE′/R′T ′, (3.1d)

where ρ ′, p′, T ′ are the usual thermodynamic variables, u′ represents the gas speed
induced by energy addition, e′ is the internal energy (C′vT

′), where the specific heat
is treated as a constant, A′ is the pre-exponential (frequency) factor in the Arrhenius
rate term, E′ is the activation energy, R′ is the universal gas constant, q′R is the heat
of reaction and Y is the non-dimensional reactant concentration.
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Non-dimensional thermodynamic variables are defined relative to an equilibrium
gas state denoted by ρ ′0, p′0, T ′0: ρ, p, T = (ρ ′/ρ ′0, p′/p′0, T ′/T ′0). It follows that
e= e′/e′0, where e′0 =C′vT

′
0. The gas speed is non-dimensionalized by the equilibrium

speed of sound, (a′0=
√
γR′ T ′0), u= u′/a′0. The space and time variables are defined

by x= x′/`′ and t= t′/t′s, where `′ defines the characteristic length scale of prescribed
initial spatial inhomogeneities in the variables, ρ ′, p′, T ′, Y and t′s = ε exp(1/ε)/A′
(a traditional thermal explosion induction time), where ε = R′ T ′0/E is the small
activation energy parameter and qR = q′R/e

′
0. Many of these variable definitions differ

from those used by Short (1997).
The non-dimensionalized conservation equations take the form:

ρt +µ(ρu)x = 0 (3.2a)

ρ(ut +µuux)=−µpx/γ (3.2b)
ρ(Tt +µuTx)=−µ(γ − 1)pux + A′t′sqRρY e−1/εT (3.2c)

Yt +µuYx =−A′t′sY e−1/εT, (3.2d)

where µ= t′s/t
′
A is the ratio of the characteristic thermal explosion induction time to

the local acoustic time t′A= `′/a′0. The non-dimensional state equation for a perfect gas:

p= ρT (3.3)

completes the mathematical model. The variables in (3.2) and (3.3) are subject to the
following initial conditions:

t= 0: ρ = ρi(x), p= 1, T = Ti(x), u= 0, Y = 1, 0 6 x 6 1, (3.4)

corresponding to an initial non-homogeneity in density and temperature on the
dimensional length scale `′. This finite model of an initial disturbance is chosen with
the explicit objective of identifying the thermomechanical response of the disturbed
gas and consequences of the response to the gas external to the disturbed volume.

3.1. Induction time theory for a spatially dependent thermal explosion
Following Short (1997), an asymptotic analysis is formulated for a high-activation-
energy reaction (ε�O(1)) where the induction time is short compared to the acoustic
time of the heated volume (µ�O(1)), again to obtain a complete analytical solution.
The former requires that the thermodynamic variables be defined by the traditional
thermal explosion asymptotic expansions, valid in the limit ε→ 0,

(ρ, p, T)= (1+ ε(R, P, ϕ)+O(ε2)), (3.5)

where R, P, ϕ are spatially variable, time-dependent descriptions of chemically
driven perturbations from the initial thermodynamic state: e.g. t = 0. (R, P, ϕ) =
(Ri(x), 1, ϕi(x)), where each is non-zero only in 06 x6 1. The asymptotic expansions
in (3.5) imply that the appropriate initial conditions for temperature, pressure and
density take the form: T(0, x)= Ti = 1+ εϕi(x), p(0, x)= 1, ρ(0, x)= 1− εϕi(x).

As a result, the temperature difference parameter in (2.17), τ = O(ε), so that
an asymptotically small imposed temperature gradient is the driver for the entire
evolutionary process to follow. Similarly,

Y = 1− εW +O(ε2), (3.6)

where W is the perturbation in the reactant concentration: at t= 0, W =Wi(x)= 0 in
0 6 x 6 1.
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Initially (3.2a–d) take the forms:

Rt + (µ/ε)(ρu)x = 0 (3.7a)

ρ(ut +µuux)=−µεPx/γ (3.7b)

ρ(ϕt +µuϕx)=−(µ/ε)(γ − 1)pux = ρqReϕ (3.7c)

Wt +µuWx = eϕ. (3.7d)

This mathematical system contains two non-dimensional parameters (µ and ε).
The speed and density variables are to be rescaled to obtain a lowest-order reduced
mathematical model that couples an explicit mechanical response of the gas to
localized spatially distributed transient heating. Gas motion induced by an evolving
spatial pressure gradient in (3.7b) can be assured in the limit ε→ 0, and µ� O(1)
if

u= εµU. (3.8)

It follows that (3.7a–d) take the forms

Rt +µ2(ρU)x = 0 (3.9a)

ρ(Ut + εµ2UUx)=−Px/γ (3.9b)

ρ(ϕt + εµ2Uϕx)=−µ2(γ − 1)pUx + ρqReϕ (3.9c)

Wt + εµ2UWx = eϕ. (3.9d)

Equation (3.9a) and the initial conditions imply that, to account for density variation
associated with the gas motion, the density perturbation must be rescaled by

R=−ϕi(x)+µ2R̃, (3.10)

where ϕi(x) represents the initial density distribution compatible with (3.5) and the
second term describes a very small change in density. Equation (3.9a) takes the form

R̃t + (ρU)x = 0. (3.11)

The equation set composed of (3.9b–d) and (3.11) describe a weakly variable density
response of a gas to relatively rapid energy deposition, (µ � O(1)). The local
expansion Mach number is characterized by

M = u′

a′
= u

a
= u√

T
= εµU√

T
=O(εµ)= o(1). (3.12)

In the limits ε→ 0 and µ→ 0 (3.3), (3.5) and (3.9) and (3.11) can be used to define
the reduced system of initial value equations and conditions

R̃t +Ux = 0, R̃(0, x)= 0 (3.13a)

Ut =−Px

γ
, P(0, x)= 0 (3.13b)

ϕt = qReϕ, ϕ(0, x)= ϕi(x) (3.13c)

P= ϕ − ϕi(x)+O(ε, µ2) (3.13d)

Wt =−eϕ, W(0, x)= 0. (3.13e)
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Equation (3.13c) describes a constant-volume heat addition process, as envisaged by
Zeldovich (1980), for the temperature perturbation ϕ response to energy addition. The
rate of temperature perturbation increase is proportional to the size of qR, the heat of
reaction defined in (2.22c). The solution is given by

ϕ = ln
1

(e−ϕi(x) − qRt)
= ϕi(x)+ ln

1
(1− t/te(x))

, (3.14)

where ϕi(x) is an imposed initial (small) temperature disturbance of the type
considered by Zeldovich (1980) in his spontaneous wave theory. The temperature
perturbation solution in (3.14) appears in Short (1997). It has a classical thermal
explosion singularity at a spatially dependent time te where

te(x)= e−ϕi(x)

qR
. (3.15)

A simple calculation demonstrates that (dϕ/dqR) > O, as expected from physical
perspectives. As noted by numerous authors (Jackson et al. 1989; Kapila & Dold
1989; Short 1997), (3.15) implies that the thermal explosion spreads down an imposed
negative initial temperature gradient (ϕ′i(x) < 0), where the bold prime denotes a
spatial derivative. The inverse of the thermal explosion propagation speed is found
from (2.15) to be

dte

dx
= −ϕ

′
i(x) e−ϕi(x)

qR
(3.16)

while a comparison of the dimensional propagation speed relative to the characteristic
dimensional speed of sound, a′0, can be obtained from (3.16) as

dx′/dt′e
a′o
=−qR

µ

eϕi(x)

ϕ′i(x)
, (3.17)

showing quantitatively that the thermal explosion moves through the volume of heated
gas at a locally supersonic speed, proportional to qR, when µ� O(1), as noted by
Kapila & Dold (1989), Friedman & Herrero (1990), and referred to in Short (1997).
The front moves through the volume defined by the characteristic length scale, `′,
during the induction time period, reaching the edge, x′ = `′, when the dimensional
value t′e = t′s/qR� O(t′A). Equation (3.17) demonstrates that when the gradient of the
initial temperature distribution is zero, the propagation speed is infinite, a non-physical
result noted by Short (1997), interpreted to mean that a spatially homogeneous thermal
explosion occurs. Jackson et al. (1989) have noted that the reaction evolution process
differs if at a symmetry point x= 0, the gradient is zero or less than zero.

Equation (3.14) demonstrates that an initial temperature inhomogeneity is essential
for ϕ to be spatially dependent. This is crucial to supporting the induced gas motion
described by (3.13b). The pressure disturbance is equal to the difference between
the evolving ϕ(x, t)-value and the initial value ϕi(x) (see (3.13d)). It must be
emphasized that, in the absence of an initial small temperature disturbance, the
solution in (3.14) shows that the thermal explosion induction period is characterized
by a spatially homogeneous thermal temperature, that the spatial pressure gradient
is absent and that no local gas motion can occur. Kassoy (2010) has discussed the
role of localized gas expansion as an immediate source of mechanical disturbances
(Kevorkian & Cole 1968).
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x φi(x)= 1− x te(x)

0.01 0.99 0.37
0.25 0.75 0.47
0.5 0.5 0.607
0.75 0.25 0.779
1.0 0 1.0

TABLE 1. The explosion time te(x) as a function of location for a linear temperature
gradient ϕi(x)= 1− x, x> 0 with qR = 1.

A Schwab–Zeldovich formulation can be used with (3.13c) and (3.13e) to show that

W = 1
qR

ln
1

(1− t/te(x))
, (3.18)

when W(0, x)= 0.
The thermally induced gas speed can be found from the integral of (3.13b) ((3.13d)

and (3.14) are employed):

U =−ϕ
′
i(x)

qRγ
e−ϕi(x)

[
ln

1
(1− t/te(x))

− (t/te(x))
]
, (3.19)

where it is assumed that there is no initial speed disturbance, Ui(x) = 0. Equation
(3.19) demonstrates that U> 0 when ϕ′i(x)< 0, meaning that gas expansion occurs and
that the speed is singular when the explosion time te is reached at a given location.
Equation (3.19) also shows that there is thermally induced low-Mach-number gas
motion throughout the heated volume as the reaction wave propagates.

The analytical solutions in (3.14) and (3.19) and the results in tables 1 and 2 enable
a complete description of the thermomechanical response of the heated gas. Table 1
lists the value of the explosion time by location x when an initially linear temperature
distribution exists, ϕi(x)= 1− x and qR= 1. The results show that a thermal explosion
occurs close to x = 0 when t = 0.372 for qR = 1, and then propagates through the
inhomogeneity arriving at x= 1 when t= 1.

Table 2 lists the induced speed at x = 0.01, x = 0.5 and the edge of the heated
region, x= 1, demonstrating that gas is expelled at the non-homogeneity edge (x= 1)
for all times up to and including te = 0.372, for the case ϕ′i(x) = −1. Furthermore,
(3.19) can be used to show that the gas speed at x= 1 will continue to increase for
time values up to t= 1 when the thermal explosion singularity leads to an unbounded
value of the scaled speed U.

Finally (3.13) and (3.19) can be used to find the solution for the weak density
change represented by R̃ in (3.10). The logarithmic dependence in (3.18) and (3.19)
is found once again.

3.2. Thermal explosion singularity analysis
The theory predicts that a thermal explosion propagates down the specified gradient.
The singularity occurs close to x = 0 when te = 0.372 for qR = 1. In particular, the
expansions in (3.5) and (3.6) fail when εϕ =O(1), εR̃=O(1) and εW =O(1) in the
limit t→ te(x). It follows from (3.14) that

ε ln[1/(1− t/te(x))] =O(1) (3.20)
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t U(0.01, t) U(0.5, t) U(1, t)

0 0 0 0
0.1 0.152 0.006 0.004
0.2 0.41 0.03 0.016
0.3 0.96 0.08 0.041
0.372 ∞ 0.146 0.066

TABLE 2. The induced fluid speed at locations x= 0.01, 0.5 and 1.0 for time values
t 6 te(0.01)= 0.372 calculated with γ = 1.4 and ϕi(x)= 1− x, x> 0, with qR = 1.

or
[te(x)− t] = exp(O(−1/ε)), (3.21)

implying that, when t is exponentially close to te(x), a full-scale explosion will occur
characterized by O(1) changes in T and Y , as well as ρ = 1 − εϕi(x) + O(µ2), as
all the fuel is consumed and the complete heat of reaction is released. Equation
(3.21) demonstrates that the time scale of the full-scale explosion is exponentially
short compared to the induction time scale t=O(1). This concept has been used by
Kassoy (1977) to describe the full-scale explosion in a spatially homogeneous system
by defining a nonlinear time scale transformation:

te − t= exp(−s/ε)[1+O(ε)], (3.22)

where s > 0 is the O(1) explosion time variable. (An independent application
of this unusual transformation appears in Short (1996).) The application of this
unusual scaling to the current spatially distributed system is the subject of § 4.
This scaling transformation differs fundamentally from that used by Short (1997) to
describe the post-induction period phenomena. In particular, the ε-parameter is absent
from the transformation used. As a result, the subsequent analysis cannot describe
post-induction physics on the exponentially short time scale defined in (3.22).

It should be noted here that the thermal energy released during the induction period
is asymptotically small, O(ε), because so little reactant is consumed and that the
induced non-dimensional kinetic energy,

u′2/e′o =O(ε2µ2). (3.23)

It should be clear that the initial disturbance in the temperature perturbation ϕi(x)
considered by Zeldovich (1980) is absolutely essential to describing a meaningful
thermomechanical response to localized, spatially resolved, transient energy deposition.
Short (1997) has examined the consequences of non-zero initial conditions in the
remaining variables.

In summary, a reaction front, represented by a propagating thermal explosion, moves
at a supersonic speed across the space 0< x61 during a time period, O(t′s)� t′A, much
less than the characteristic acoustic time. The front reaches the boundary x = 1 at
t= 1 for the example gradient ϕ= 1− x. Fluid expelled from the boundary throughout
the induction time scale period, U(1, t), acts like a piston (Kevorkian & Cole 1968)
driving O(εµ) acoustic disturbances into the colder gas, x> 1.
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4. The post-induction time analysis: µ� 1

The singularities in the induction-period solutions imply that the variable definitions
in (3.5), (3.6), (3.8) and (3.10) fail to be viable when εϕ = O(1), εU = O(1), εR̃=
O(1) and εW =O(1). These solution properties, occurring when t→ te(x) as defined
in (3.21), imply that the post-induction zone-dependent variables are defined by

T, p, ρ = 1− εϕ′(x)+µ2R̂, u=µV, Y, (4.1)

where the nonlinearly rescaled time, s in (3.22), is used along with the related rescaled
space scale, X, defined by

x= xF(t)− X exp(−s/ε). (4.2)

The spatial rescaling defines the distance travelled by the propagating thermal
explosion (reaction front) during the exponentially short time scale defined by (3.22),
where te is replaced by te(x) in the current application. Both the length and time
scales germane to the physics of the post-induction period are exponentially short
with respect to the spot dimension `′ and the induction time scale, t′s, defined in the
paragraph above (3.2a). When (3.22) and (4.1) are employed in (3.2), and the limit
ε→ 0 is taken, the lowest-order result is related closely to that in the analysis of a
post-induction period process in a spatially homogeneous system (Kassoy 1977):

T = 1/(1− s), p= 1/(1− s), Y = 1− sqR

(1− s)
(4.3a−c)

ρ = 1+O(µ2), u=µV (4.3d,e)

TMAX = TADIABATIC = 1+ qR, 0 6 s 6 sMAX = qR

(1+ qR)
< 1. (4.4a,b)

These results describe the consequences of complete reactant consumption and
concomitant heat release in an essentially inertially confined, constant-volume heat
addition process on a time scale exponentially short compared to the characteristic
induction-period time scale t′s. To lowest order the temperature and pressure are
spatially homogeneous in the exponentially thin reaction zone just behind the
propagating thermal explosion singularity. The scaled variables can be used to
demonstrate that in the reaction zone the characteristic reaction time scale is
t′R = O(t′s e−s/ε) compared to the local acoustic time scale, t′RA = 0(t′A e−s/ε) based
on the thickness of the reaction zone and characteristic acoustic speed, a result
compatible with the inertial confinement mentioned earlier. It is also important to
note that the local conduction time scale, based on the width of the reaction zone and
a characteristic value of the thermal diffusivity, is small compared to the local reaction
time if exp(−1)/(ε)� (µ)(Kn), where the latter parameter represents the Knudsen
number. As a result the reaction zone is not affected by transport effects relative to
the cooler, unburned gas in front of the propagating thermal explosion. In summary,
§§ 3 and 4 describe a reaction front, defined by a supersonic, propagating thermal
explosion singularity occurring during an induction period in the initially defined hot
spot. The front is followed by a relatively thin reaction zone, in which the entire
heat of reaction is released on a very short time scale. As a result, the lowest-order
temperature rises to the spatially homogeneous adiabatic explosion value just behind
the front, along with a concomitant increase in the pressure. The associated change
in density is minute, precluding the possibility that the front is a fully formed
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shock-reaction zone structure (detonation wave). Rather this spontaneous reaction
wave structure (Zeldovich 1980) has its own properties and characteristics. The
post-induction period solutions above, evolving on a phenomenally short time scale,
show that the propagating thermal explosion leaves behind a spatially homogeneous
hot, high-pressure spot, that can expand on the relatively long acoustic time scale,
`′/a0, in analogy with a shock tube process. The O(1) pressure differential, defined
by pMAX = 1 + qR, is the source of a strong shock wave in the colder gas beyond
x= 1.

5. Modest heating rate theory: µ= 1

The modest heating rate models considered by Jackson et al. (1989), Short (1997),
Vasquez-Espi’ & Liñan (2001), among many others, describe the thermal response
to chemical heat addition on a time scale identical to the acoustic time of the hot
spot. The conservation equations derived and employed for solution development are
equivalent to the Clarke equation (1985) describing only the temperature response. It
is useful to revisit the models in the context of the Zeldovich problem (1980) to
describe a novel set of equations that describe pressure and velocity responses of the
gas to the transient, spatially resolved temperature distribution described by the Clarke
equation, as well as to display an alternative to the Clarke equation. The foundational
equations are those in (3.2) and (3.3) with µ= 1:

ρt + (ρu)x = 0 (5.1a)
ρ(ut + uux)=−px/γ (5.1b)

Tt + uTx =−(γ − 1)Tux + A′t′sqRYe−1/εT (5.1c)

Yt + uYx =−A′t′sYe−1/εT (5.1d)

p= ρT (5.1e)

t= 0: p= 1, T = 1+ εϕi(x), Y = 1, ρ = 1− εϕi(x), u= 0 (5.1f )

subject to the initial conditions in (2.30), where

A′t′s = εe1/ε, (5.2)

given the definition of the traditional thermal explosion induction-period time scale, t′s,
in the paragraph just above (3.2). The variable definitions differ from those used in
Short (1997). The current choices, beginning with (2.6) and (2.9), are used to derive
non-dimensional equations that can be interpreted physically in terms of parameters
significant to the physical phenomena.

If a high-activation-energy analysis is used to describe the thermal induction period
when µ= 1, the dependent variables are

(p, ρ, T)= (1+ ε(P, R, ϕ)+O(ε2)), Y = 1− εW (5.3a,b)

u= εU, (5.3c)

where (5.3c) is needed to derive a momentum equation capable of describing the
thermomechanically induced velocity. In particular, the model is constructed for a hot
spot of specific dimension `′ and a non-dimensional heat of reaction, qR, defined
relative to the characteristic initial internal energy rather than the enthalpy. Equation
(5.2) enables the model equation (5.1c) to display explicitly the role of the heat of
reaction in the energy dynamics of the problem.
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If (5.2) and (5.3) are used in (5.1) and the limit ε → 0 is taken, the reduced
conservation and state equations for the thermodynamic perturbation quantities, the
fuel concentration and induced velocity U are given by

Rt +Ux = 0 (5.4a)
Ut =−Px/γ (5.4b)

ϕt =−(γ − 1)Ux + qReϕ (5.4c)
Wt = eϕ (5.4d)

P= R+ ϕ. (5.4e)

These equations are subject to the following initial conditions:

t= 0; P= 0, ϕ = ϕi(x), W = 0, R=−ϕi(x), U = 0. (5.5)

These Eulerian coordinate equations describe perturbation variable changes due
to chemical heat release, modelled by eϕ , and the initial temperature disturbance.
In the absence of the heat source term, eϕ , they describe classical linear acoustical
disturbances (Lieuwen 2012) driven by an initial disturbance. Equation (5.4c) shows
that local gas expansion, Ux > 0, retards growth in the temperature disturbance, noted
earlier by Short (1996) as well as by Vasquez-Espi’ & Liñan (2001), among others.
The scaling on u in (5.3c) enables a fully integrated thermoacoustic model with the
induced speed generated by a pressure gradient in (5.4b).

Familiar manipulations with (5.4) enable a pressure–temperature relationship to be
derived:

P−
(

γ

γ − 1

)
ϕ =

(
γ

γ − 1

)
ϕi(x)− qR

(γ − 1)

∫ t

0
eϕ d̂t, (5.6)

a result that replaces the standard isentropic relation for an adiabatic system. The
integral represents the accumulated effect of chemical heat addition during an interval
of time, t. Equation (5.6) can then be used to derive the following set of describing
equations:

Utt =Uxx − qR

γ
eϕϕx (5.7a)

Ptt = Pxx + qReϕϕt (5.7b)

ϕtt = ϕxx + qR

γ

(
eϕϕt −

∫ t

0
(eϕϕx)x d̂t− ϕ′′i (x)

)
. (5.7c)

Equations (5.7a,b) describe a thermoacoustic wave propagation process within the
hot spot driven by transient, spatially resolved chemical heat release. The integro-
differential equation, (5.7c), provides a related description for the thermoacoustic
response of the hot spot gas to autoignition and is an alternative to the Clarke
equation,

(ϕt − qReϕ)tt =
(
ϕt − qR

γ
eϕ
)

xx

. (5.8)

The former can be differentiated with respect to t to derive the latter. It is often
stated that (5.8) describes the competition between simultaneous constant-volume and
constant-pressure heat addition. Equation (5.7) appears to provide a clearer, physically
oriented interpretation of the impact of localized heating on the generation of small-
amplitude disturbances associated with the common wave equation operator in each
equation.
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6. Conclusions
A comprehensive, systematic, asymptotic analysis is employed to quantify the

evolution of a ‘spontaneous reaction wave’ propagating within a finite hot spot,
defined by an imposed weak temperature non-uniformity embedded in a larger volume
of relatively cold reactive gas. One-step, high-activation-energy (ε→ 0) kinetics define
the reaction process. Ignition is initiated at the local temperature maximum, only O(ε)
larger than the colder value external to the spot. The reaction spreads down the O(ε)
negative temperature gradient. Classical thermal explosion induction-period analysis
for both fast (µ→ 0) and modest (µ= 1) heat release time scales describes a period
of O(ε) reactant consumption, limited energy addition leading to O(ε) increases in
temperature and pressure, and a concomitant weak gas expansion with the hot spot,
the source of expelled gas at the surface of the hot spot.

When the induction time scale (characteristic of chemical heat release) is short
compared to the acoustic time scale of the hot spot (the limit µ → 0), a nearly
constant-volume process characterizes the thermomechanical response of the gas. An
O(ε) spatial pressure distribution corresponding to the temperature disturbance of the
same size is the source of an O(εµ) induced gas seed. Gas expelled through the hot
spot surface is the source of weak acoustic compression waves (the ‘piston’ effect
(Kevorkian & Cole 1968)) in the gas external to the spot. A complete analytical
solution of the asymptotically reduced equations is possible in the limit (ε → 0,
µ→ 0). Results define the end of the induction period at each x-location when a
local thermal explosion singularity occurs at te(x). The propagation of the singularity
down the asymptotically small negative temperature gradient defines the Zeldovich
‘spontaneous reaction wave’ properties. The value of te(x) increases from the hottest
to the coldest locations in the spot and can be inverted to define the supersonic
propagation Mach number for the translating singularity.

When the induction time scale is equal to the local acoustic time (µ = 1), the
asymptotically reduced equations describe compressible heat addition. The O(ε)
temperature perturbation is described by a physically transparent alternative to the
‘Clarke’ equation. The O(ε) pressure and induced speed responses to transient,
spatially resolved heat release are described by non-homogeneous linear wave
equations. These equations have no obvious analytical solutions, but define clearly
the character and properties of the induction-period physics. Numerical results from
Clarke’s equation are reported by many authors cited in the introduction. They can
be interpreted to mean that a classical logarithmic thermal explosion singularity will
occur at finite values of time, t∗(x), to be distinguished from the analytically obtained
value te(x) for the fast heating limit. New results from numerical solutions of (5.7)
will be the subject of future work.

The post-induction period analyses offer new opportunities to understand the
physics of extremely fast (explosive) reaction processes. In the limit µ → 0, the
nonlinear transformations define exponentially short time and length scales. During
and within these two scales, respectively, the reactant is totally consumed as the
spatially homogeneous temperature rises to the adiabatic explosion value in a nearly
constant-volume process, with a concomitant increase in the spatially homogeneous
pressure. In the absence of a pressure gradient, there is no additional change in the
fluid speed induced during the induction period. The analytical results are interpreted
to mean that the reaction front, located at the thermal explosion singularity, propagates
through the hot spot on the induction time scale, leaving behind a spatially uniform
ephemeral high-pressure, high-temperature hot spot located in a larger volume of
colder, low-pressure gas. In analogy with a shock tube, the spot will begin to expand
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on the much longer acoustic time scale, with the result that a strong compression
wave moves through the spot itself. In this regard the thermomechanical response
of the spot, initiated by a tiny temperature gradient, is the primary source of a
subsequent major mechanical disturbances in the gas external to the original spot.

When µ = 1, the high-activation-energy limit ε→ 0 for the post-induction period
produces the result that the temperature-dependent part of the reaction term in the
energy equation, exp((1/ε)[1− (1/T)]), is unbounded in the limit when T > 1. This
type of singular behaviour implies that the time derivative term in the energy equation
must be equally large to obtain physically viable O(1)-increases in temperature.
These mathematical properties of the describing equations motivate the use of a
nonlinear time rescaling, similar to that described earlier, but entirely independent
of the logarithmic thermal explosion singularity found in the fast heating limit. It is
hypothesized that an ‘explosion time’, t∗(x), can be defined and used to describe the
exponentially short time scale. Here again one can expect essentially constant-volume
heating, with pressure and temperature rising together as the adiabatic value is
approached. The ephemeral high-temperature, high-pressure spot will relax, with a
process similar to that in a shock tube, on the longer acoustic time scale of the spot.
It is important to recall that the reaction wave will cross the spot on the acoustic time
scale so that the spot expansion process will be initiated during the induction period
of the modest heating rate problem. The explicit analysis of the physical process is
the subject of current research and will be reported in the future. The present study
describes physical phenomena occurring when transient, spatially distributed chemical
heat addition takes place in a compressible gas. In particular, the quantitative analysis
provides a cause–effect source for mechanical disturbances arising from localized
energy addition. Applications to combustion chamber instability and engine knock
are of interest. These phenomena can occur in a turbulent reactive flow environment
characterized by localized temperature and/or mixture concentration inhomogeneities,
which can act as preferential sites for ignition.
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