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Abstract
This study examines whether pesticide risk indicators can be used to evaluate the environmental effects of pesticide

applications within integrated pest management (IPM) projects. Pesticide risk indicators, commonly used in European

countries, are mathematical equations that consider data inputs such as application rates, toxicity levels of a pesticide’s

active ingredient, meteorological data, the soil characteristics of farm fields, and other information to generate potential risk

scores for pesticide applications. These potential risk scores represent the best estimate of a pesticide’s impact on the

surrounding environment. This project analyzed eight pesticide risk indicators, developed throughout Europe and the United

States, with two years of pesticide application data from four farms using IPM. This two-year study allowed for a

determination of the validity and reliability of pesticide risk indicators. The findings reveal that only three pesticide risk

indicators performed consistently and gave valid results. These indicators are: the synoptic evaluation model for plant

protection agents (SYNOPS) indicator from Germany, the multi-attribute toxicity factor from the United States, and the

environmental impact quotient from the United States. As a result, the authors recommend these three indicators for future

research and for IPM evaluative efforts that emphasize the environmental effects of pesticides.
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Introduction

Consumers are increasingly concerned with how agricul-

tural practices impact the environment1. This concern has

translated into the growth of a variety of programs in-

cluding the United States Department of Agriculture

(USDA’s) National Organic Program, independently certif-

ied eco-label strategies, and integrated pest management

(IPM) programs. Traditionally, IPM can be defined as a

systems approach that employs biological, chemical and

other agricultural practices to minimize environmental,

health and economic risks from agricultural pests2,3. To re-

duce those types of risks, IPM practices commonly include

such things as reducing pesticide use, applying reduced risk

pesticides and releasing beneficial insects into a farming

area2.

While existing as an agricultural strategy for many

decades, IPM programs took on an increased level of

significance in the past ten years as new programs were

introduced emphasizing IPM strategies as a way to reduce

the environmental impacts from pesticide use. One of these

programs was the National IPM Initiative. The purpose of

this initiative was to have 75% of agricultural producers

implement IPM practices by the year 20004. However,

the General Accounting Office discovered a number of

problems with this initiative and IPM programs in general.

Among these problems were a lack of measurable goals for

IPM programs, an absence of a methodology to measure

any progress occurring in IPM programs, and inefficient

management of IPM programs by the USDA and the United

States Environmental Protection Agency (USEPA)4. From

a policy perspective, this report revealed a basic deficiency

in IPM programs. Without measurable goals, IPM programs

could not be evaluated properly and did not conform to the

Government Performance and Results Act (GPRA). In

addition, no data existed to indicate that IPM techniques

were better for the environment than conventional agri-

cultural techniques. Without this type of data, IPM
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stakeholders faced the prospect of reduced funding since

policymakers would not be able to determine if resources

spent on IPM programs actually achieved anything.

As a result of the GAO report, consensus has emerged on

the need to evaluate the environmental benefits of IPM

programs. Researchers traditionally evaluated IPM pro-

grams using ‘adoption surveys’ that measured how many

growers in one specific area consistently used an IPM

technique in their farming practices4. The assumption

behind such surveys was that an increased level of IPM

adoption equated to a decreased level of environmental

risk from agricultural practices. However, IPM programs

now have to quantitatively show program outcomes.

One way to quantitatively show that IPM programs can

reduce the environmental risk from pesticide applications is

with pesticide risk indicators.

Pesticide risk indicators generate a potential environ-

mental risk score based on certain data inputs like the

amount of pesticide applied to a field, the level of toxicity

of the pesticide to beneficial organisms, and the pesticide’s

ability to infiltrate groundwater. This potential risk score

represents the amount of potential environmental impact

that a pesticide application strategy causes in a particular

area (since only environmental sampling can indicate if an

actual environmental impact occurred, results from pesti-

cide risk indicators are always phrased with the word

potential impact). Researchers have not determined the

validity or reliability of these indicators with real applica-

tion data. Instead, researchers typically use estimates of

pesticide application data to determine validity and

reliability5. As a result, this study attempts to establish

the validity and reliability of eight pesticide risk indicators

with actual application data.

Pesticide Risk Indicators

There are two basic types of pesticide risk indicators. Those

that use a ranking approach to generate potential risk

scores, and those that use some combination of ranks and

predicted environmental concentrations (PECs) to generate

potential risk scores. In the ranking approach, the indicator

establishes unitless ranks that categorize data points on the

pesticide’s toxicity to humans and a variety of beneficial

organisms. In addition, indicators can use the ranking

methodology to categorize data points that reveal how long

a pesticide stays in surface water, ground water, or soil.

Depending on the indicator, different equations either

divide or multiply these two ranks to estimate a potential

risk score for a pesticide’s active ingredient. Then, by

multiplying or dividing the potential risk score by the

application rate, these types of indicators can generate a

potential risk score for each application of a pesticide’s

active ingredient.

Other pesticide risk indicators rely on a more quantifi-

able PEC methodology to assess potential risk. In this

type of methodology, the indicator uses environmental

engineering equations in order to calculate how much of

the pesticide remains in the soil, groundwater, surface water

and even air. The indicators that use a PEC methodology

often also employ a ranking approach, either to categorize

the amount of the pesticide’s concentration or to categorize

pesticide toxicity data. By multiplying or dividing PECs by

ranked data, the indicators using a PEC methodology

estimate a potential risk score for a pesticide application.

After reviewing the existing literature, the authors chose

eight indicators to analyze because they either appeared in

peer-reviewed journals or were actively used by govern-

mental agencies and European researchers (Table 1). The

design of these indicators, how they can be used, and the

equations behind the indicators have all been specifically

explained in previous studies5–14. Therefore, in considera-

tion of space, this research will only provide a brief

overview of each indicator (however, a complete overview

of each indicator’s equations is available at http://www.

aftresearch.org/ipm/risk/equations.pdf ).

EIQ: environmental impact quotient (USA)

J. Kovach, C. Petzoldt, J. Degni, and J. Tette6 developed

the EIQ indicator. EIQ is a pesticide risk indicator that

assesses the potential impact of pesticides on farmworkers,

consumers and terrestrial organisms. It ranks a pesticide’s

toxicity data to generate potential risk scores for beneficial

organisms and humans. It then multiplies these potential

risk scores by the pesticide’s application rate to determine a

final potential risk score.

CHEMS1: chemical hazard evaluation for
management strategies (USA)

M. Swanson7 led a group of researchers who designed

the CHEMS 1. CHEMS 1 is a chemical risk indicator

Table 1. Pesticide risk indicators and their country of origin.

Pesticide risk indicator Acronym Country

Environmental potential

risk indicator for

pesticides

EPRIP Italy

Environmental yardstick for

pesticides

EYP The Netherlands

Pesticide environmental

risk indicator

PERI Sweden

Synoptic evaluation model

for plant protection

agents

SYNOPS_2 Germany

System for predicting the

environmental impact of

pesticides

SyPEP Belgium

Environmental impact

quotient

EIQ USA

Chemical hazard evaluation

for management

strategies

CHEMS 1 USA

Multi-attribute toxicity

factor

MATF USA
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that considers the potential environmental impact of

chemicals on air, soil, groundwater and surface water.

CHEMS 1 uses a ranking approach to generate risk scores

for chemical applications. For example, the indicator ranks

chemical toxicity data to determine a chemical hazard value

for human health and the environment. These hazard values

are then multiplied by a ranked concentration factor that

shows how much of the chemical already resides in the

environment. To arrive at a ranked concentration factor,

the indicator adds the amount of chemical applied and

the amount of chemical already residing in the specific

environmental area, and then ranks that resulting value. It

is important to note that the design of CHEMS 1 favors

industrial chemicals rather than agricultural pesticides.

However, the authors decided to include it in the analysis

since it uses a ranking methodology similar to other risk

indicators designed exclusively for agriculture.

SYNOPS_2: synoptic evaluationmodel for
plant protection agents (Germany)

The Federal Biological Research Centre for Agriculture and

Forestry, Institute for Technology Assessment in Plant

Protection, Kleinmachnow, Germany developed SYNOPS8.

The purpose of the indicator is to assess the environmental

risk potential of a pesticide application strategy in a region

and to compare pest management strategies with different

pesticide options. The indicator calculates PECs in soil,

groundwater and surface water for each pesticide. Then, the

indicator divides those values by toxicity data for beneficial

organisms and humans to produce a potential risk value.

PERI: pesticide environmental risk
indicator (Sweden)

C. Nilsson9 developed the PERI indicator as part of a

system of indicators that Swedish farmers could use to

evaluate potential environmental risk as part of an ISO

14001 certification process. To evaluate potential environ-

mental risk, PERI uses a ranking methodology that assesses

pesticide properties and toxicity values on a 1–5 scale.

Once calculated, the indicator multiplies the potential

environmental risk score by the pesticide application rate to

arrive at a final estimate of potential environmental risk for

groundwater, surface water and air.

SyPEP: system for predicting the environmental
impact of pesticides (Belgium)

L. Pussemier10 developed the SyPEP model to help

farmers, extension services and regulating agencies by

providing information on the environmental impact of

pesticides. The indicator calculates a long-term PEC for

groundwater, a short-term PEC for groundwater, and a PEC

for surface water. It then divides toxicity information by the

PEC in each environmental compartment. The resulting

value in each of the three compartments is then ranked on a

0–5 scale to arrive at a SyPEP score.

EYP: the environmental yardstick for pesticides
(The Netherlands)

J. Reus and P. Leendertse11 developed EYP for use by

Dutch farmers and governmental officials. The EYP

indicator calculates a PEC of a pesticide for groundwater,

surface water and soil. The indicator then multiplies the

PEC by the pesticide’s toxicity data in order to produce

Environmental Impact Points that reflect potential risk to

beneficial organisms and humans.

EPRIP: environmental potential risk indicator for
pesticides (Italy)

M. Trevisan, G. Errera, E. Capri, L. Padovani, and A. Del

Re12 developed EPRIP for Italian agriculture. EPRIP

calculates and compares PECs across the environmental

compartments of air, soil, groundwater and surface water.

To arrive at a PEC, the indicator uses a variety of equations

that consider a pesticide’s exposure potential and site-

specific application data. Then, EPRIP divides the PEC

by the pesticide’s toxicity data in order to generate an

EPRIP potential risk score for beneficial organisms and

humans.

MATF: multi-attribute toxicity factormodel (USA)

C. Benbrook14 led a research team that designed the MATF

indicator to calculate the toxicity of pesticides for the

‘Healthy Grown’ Wisconsin Potato IPM Labeling Project.

The MATF indicator ranks toxicity data in order to

generate toxicity factor scores for beneficial organisms

and humans. It then multiplies these scores by the

pesticide’s application rate in order to produce toxicity

units for each application, with more toxicity units

indicating more potential risk. It is important to note that

researchers designed this indicator specifically for Wiscon-

sin potatoes. However, the present authors included it in

this analysis because its methodology is similar to the other

indicators analyzed.

Method of Analysis

Building upon the results of other research, stressing the

need to develop systems that can evaluate the impacts of

pesticide applications15,16, this study analyzed eight

pesticide risk indicators with actual pesticide application

data from four IPM farms in Southwest Florida that grew

either tomatoes or peppers (Table 2). These farms were

small with field acreage ranging in size from 8 ha (20 acres)

for farms A, B and C, and 34 ha (85 acres) for farm D. All

of the farms had sandy soil, resided near water bodies and

routinely implemented advanced IPM tactics as part of their

growing strategy. By analyzing these indicators with actual

pesticide application data from these farms, this analysis

reached a basic conclusion on the validity and reliability of

these indicators.
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As shown in Table 3, each pesticide risk indicator

calculated a potential risk score based on certain input

parameters. For example, all of the indicators required

pesticide application data, which was obtained from four

vegetable growers over two growing seasons. For these

years, the growers grew either tomatoes or peppers, or left

their fields fallow. In addition to pesticide application data,

some of the indicators required soil data. To obtain these

data, researchers used soil probes to collect the top 20 cm of

topsoil from representative sites on each farm. In total,

12 soil samples were taken: five from Farm A, one

from Farm B, one from Farm C, and five from Farm D.

More samples were taken on Farms A and D because fields

in those areas had slightly more variability in soil

characteristics. In addition, more samples were taken on

Farm D because of its larger size. When multiple samples

were taken on a farm, researchers divided the farm into four

identical rectangular quadrants and then randomly chose

five locations for sample sites with at least one sample

originating from each quadrant. All of these samples were

then analyzed separately to determine organic content

levels, pH levels, and sand/silt/clay levels. These results

were then averaged for Farms A and D so that each farm

had one set of soil data. As shown in Table 3, some of the

indicators used this type of information to calculate the

ability of a pesticide’s active ingredient to leach into

groundwater.

Additional information collected included the acreage

size of each field, meteorological data, a field’s distance to

a body of water, and toxicity data for beneficial organisms.

Toxicity data came from the US Environmental Protection

Agency’s Ecotox Database (http://www.epa.gov/ecotox/)

and The Pesticide Manual17. Once collected, all of these

data points allowed each pesticide risk indicator to generate

a potential risk score for each farm over 2 years.

If the indicators possess validity, then high-risk pesticide

applications should result in higher potential risk scores.

These types of high-risk pesticide applications can include

the use of high-risk active ingredients such as methyl

bromide. But they can also include large applications of

newer, safer pesticides since all pesticides possess some

amount of toxicity. This type of basic validity, where a

measure produces accurate assessments, is known as

measurement validity18.

Additionally, if the indicators possess reliability, then

they should generate consistent potential risk scores across

different farms and through different years. For example,

two different indicators should similarly assess methyl

bromide applications even as other site-specific variables

change across different farms and through different years.

This is known as measurement reliability, since it examines

whether a measurement tool such as a pesticide risk

indicator produces similar results with repeated uses18.

Assessing this type of validity and reliability is not easy

with pesticide risk indicators. As detailed in the preceding

section, each indicator has a different methodology with

different sets of data inputs. This makes a direct

comparison of each indicator’s potential risk scores mean-

ingless. Researchers on European pesticide risk indicators

associated with the Concerted Action on Pesticide Envi-

ronmental Risk Indicators project (more commonly known

as the CAPER project) solved this problem by ranking

pesticide application rates and the potential risk scores of

each indicator from highest to lowest, and then analyzing

those ranks with Spearman’s Rho correlations for ranked

data5.

In a Spearman’s Rho correlation analysis, interval level

data cases are ranked on an ordinal scale from highest to

lowest with tied data cases resulting in averaged ranks. This

results in ranked data for each variable of interest. After

ranking each variable’s data cases, the ranked results

between each variable of interest can be analyzed with

Spearman’s Rho correlations to determine if there is a

statistically significant correlation between the ranks of one

variable and the ranks of another variable. This type of

analysis helped CAPER researchers determine if different

pesticide risk indicators from Europe assessed the same

application strategy similarly. Building upon the results of

the CAPER project, such an analysis will also be performed

in this project to help assess measurement validity and

reliability for both European and American pesticide risk

indicators.

When the application rate of the pesticide’s active

ingredient and the potential risk score from each indicator

are ranked in such a manner, a determination of validity can

Table 2. Crop scenarios for each farm participating in the study.

Year 1 crop Year 2 crop Size (ha)

Farm A Pepper No crops/fallow 8

Farm B Tomato Pepper 8

Farm C Pepper Pepper 8

Farm D Tomato Tomato 34

Table 3. Required data inputs for each pesticide indicator.

EPRIP EYP PERI SYNOPS_2 SyPEP EIQ CHEMS 1 MATF

Pesticide application rate $ $ $ $ $ $ $ $

Toxicity to beneficials $ $ $ $ $ $ $ $

Organic content of soil $ $ $

Weather data $ $ $ $

Distance to water bodies $ $ $
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occur since the ranked potential risk scores should correlate

with the ranked application rates (i.e. higher potential risk

scores should correlate with higher risk application rates).

This type of Spearman’s Rho correlation analysis can also

help determine reliability since statistically significant

Spearman’s Rho correlations between one indicator’s

ranked potential risk scores and another indicator’s ranked

potential risk scores should remain as pesticide application

strategies change from farm to farm and from year to year.

For example, if the EIQ and MATF indicators reliably

generate potential risk scores that correlate with one

another, then that correlation should remain across different

farms and through different years. This helps to determine

if the indicators possess measurement reliability.

Results

Establishing validity

We performed this methodology on each indicator, for each

farm, for 2 years. Basic conclusions on validity became

apparent without even using the Spearman’s Rho analysis.

As shown in Tables 4 and 5, most indicators gave higher

Table 4. Total ranked scores for farms in year 1 (with tied ranks averaged according to Spearman’s Rho analytic protocol19).

Active ingredients (a.i.) Rate CHEMS 1 EIQ EPRIP EYP MATF PERI SYNOPS_2 SyPEP

Farm A

Methyl bromide 1 7 1 1 2 1 1 3 2

Chloropicrin 2 5 2 2 6 2 4 2 8.5

Maneb 3 8 4 4.5 7 3 9 4 8.5

Copper hydroxide 4 6 3 7 1 4 6 1 2

Methomyl 5 2 5 3 4 6 5 5 4

Metolachlor 6 4 7 8.5 9 8 7 6 6.5

Glyphosate 7 11 6 6 3 7 10 9 10

Tebufenozide 8 9 8 10 10 10 8 8 6.5

Cyfluthrin 9 1 9 8.5 5 5 3 7 2

Abamectin 10 3 10 4.5 8 9 2 10 5

Spinosad 11 10 11 11 11 11 11 11 11

Farm B

Copper hydroxide 1 4 1 8 1 1 4 2 1

Endosulfan 2 1 2 1 2 2 7 1 3

Maneb 3 6 3 3 3 4 8 4 6

Chlorothalonil 4 3 4 2 6 5 6 3 3

Dimethoate 5 2 5 6 7 3 5 5 7

Tebufenozide 6 7 6 6 8 8 2 7 5

Mefenoxam 7 8 7 6 5 6 1 8 8

Azoxystrobin 8 5 8 4 4 7 3 6 3

Farm C

Maneb 1 5 1 1 2 1 7 2 4.5

Copper hydroxide 2 4 2 7 1 2 4 1 1

Oxamyl 3 3 4 3 5 4 2 5 4.5

Dimethoate 4 1 3 5 7 3 3 3 7

Methomyl 5 2 6 2 3 6 5 6 2

Tebufenozide 6 6 5 5 6 7 6 4 3

Mefenoxam 7 7 7 5 4 5 1 7 6

Farm D

Methyl bromide 1 9 1 2 3 1 1 3 1.5

Copper hydroxide 2 4 2 7 1 2 7 1 1.5

Mancozeb 3 6 3 4 9 3 11 4 11

Chlorothalonil 4 3 4 3 5 4 10 2 6.5

Paraquat dichloride 5 5 5 5 2 5 14 6 10

Methomyl 6 2 9 8 4 10 6 8 3

Imidacloprid 7 11 6 10.5 8 6 3 9 12

Cyromazine 8.5 14 7 13 13 12 5 12 6.5

Tebufenozide 8.5 8 8 10.5 12 14 2 10 6.5

Metribuzin 10 12 10 13 11 9 12 13 9

Spinosad 11 10 11 6 14 8 4 11 13

Esfenvalerate 12 1 13 1 6 7 9 5 6.5

Mefenoxam 13 13 12 13 7 13 13 14 14

Abamectin 14 7 14 9 10 11 8 7 6.5
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potential risk scores to higher risk pesticide applications

that included active ingredients in restricted use pesticides,

organophosphates and carbamates. The highest potential

risk scores generally went to methyl bromide applications.

This indicates at least a rudimentary level of measurement

validity: the pesticide risk indicators gave higher potential

risk scores to higher risk pesticide applications.

However, the best evidence for validity is from the

Spearman’s Rho correlation analysis with ranked applica-

tion rates and ranked potential risk scores. If these

indicators measure the potential risk of pesticides correctly,

then larger application rates should result in larger potential

risk scores. That would result in statistically significant

correlations between the ranked potential risk score of each

indicator and the application rate. As detailed in Tables 6

and 7, most of the indicators had a statistically significant

correlation with the application rate on at least one farm.

However, only EIQ, MATF and SYNOPS had statistically

significant correlations on each farm throughout the 2

years of application data. This reveals that these indicators

possess the most measurement validity since they had

constant, statistically significant correlations with the

application rate across different farms, application strate-

gies and different years.

Establishing reliability

Tables 6 and 7 also reveal conclusions on measurement

reliability. These tables show that significant correlations

between many pesticide risk indicators are not consistent

from year to year or even from farm to farm. This indicates

that certain pesticide risk indicators do not generate reliable

potential risk scores. For reliability, we would expect to

find that significant correlations between pesticide risk

indicators would remain from farm to farm and from year

to year, even though pesticide application strategies

changed. Instead, we find that significant correlations be-

tween many of the indicators disappear and reappear when

the analysis shifts to new farms or new years that have

different pesticide application strategies.

Table 5. Total ranked scores for farms in year 2 (with tied ranks averaged according to Spearman’s Rho analytic protocol19).

Active Ingredients (a.i.) Rate CHEMS 1 EIQ EPRIP EYP MATF PERI SYNOPS_2 SyPEP

Farm A (left fallow) – – – – – – – – –

Farm B

Methyl bromide 1 4 1 1 2 1 1 2 1.5

Maneb 2 6 2 2.5 3 2 7 3 5.5

Copper hydroxide 3 3 3 6 1 5 6 1 1.5

Oxamyl 4 2 5 2.5 4 3 5 4 5.5

Dimethoate 5 1 4 5 6 4 4 5 7

Tebufenozide 6 5 6 4 5 8 3 6 3.5

Imidacloprid 7.5 7 8 7.5 7 7 8 7 8

Thiamethoxam 7.5 8 7 7.5 8 6 2 8 3.5

Farm C

Methyl bromide 1 4 1 1.5 2 1 1 3 1.5

Maneb 2 5 2 3 3 2 6 4 6

Copper hydroxide 3 3 3 6 1 4 7 2 1.5

Endosulfan 4 1 4 1.5 4 5 3 1 5

Dimethoate 5 2 5 4.5 7 3 4 5 7

Tebufenozide 6 6 6 4.5 6 8 5 6 3.5

Imidacloprid 7 7 8 7.5 5 7 8 7 8

Thiamethoxam 8 8 7 7.5 8 6 2 8 3.5

Farm D

Methyl bromide 1 9 1 1.5 3 1 1 2 1.5

Copper hydroxide 2 3 2 9 1 2 4 1 1.5

Mancozeb 3 6 3 4 7 3 9 5 10

Chlorothalonil 4 2 4 3 4 4 10 4 3.5

Paraquat dichloride 5 8 5 5 2 5 13 6 8.5

Buprofezin 6 13 8 11.5 13 13 11 12 8.5

Endosulfan 7 1 6 1.5 5 6 8 3 5

Metribuzin 8 12 9 13 8 7 6 9 6.5

Clethodim 9 4 10 7 14 9 5 14 13.5

Tebufenozide 10 10 7 11.5 10 11 7 7 6.5

Spinosad 11 11 11 7 12 8 3 8 12

Pyriproxyfen 12 5 13 10 9 12 2 10 11

Mefenoxam 13 14 12 14 6 10 14 13 13.5

Indoxacarb 14 7 14 7 11 14 12 11 3.5
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These inconsistencies make a final interpretation on

reliability difficult. Perhaps the best interpretation of the

data is that the rankings of potential pesticide risk from the

indicators SYNOPS, EIQ and MATF generally correlate

with each other at statistically significant levels. In contrast,

the other indicators do not have consistent correlations. As

a result, this study’s results indicate that these three

pesticide risk indicators have the most measurement

reliability. That is, the ranked values of potential risk

scores correlate fairly consistently with these three indi-

cators from different farms over different years.

Discussion

Using pesticide risk indicators to evaluate IPM programs

has certain advantages. Perhaps most importantly, using

these indicators to evaluate IPM programs allows policy-

makers and stakeholders to determine if IPM programs

actually reduce the environmental and health risks from

pesticide use. However, there are also disadvantages to

using these indicators. Currently, there is disagreement in

the toxicology literature regarding the most effective

method to measure environmental and health impacts

from agricultural chemical applications. The literature

recognizes that agricultural operations can result in

negative environmental impacts and pose some risk to

human health20. Yet, no agreed upon methodology exists to

measure these impacts. For example, methods for measur-

ing the environmental effects of pesticide use include

hazard indicators that assess environmental effects by

analyzing chemical property data associated with a

particular pesticide and methods that attempt to predict

Table 6. Spearman’s Rho correlations for Farms A–D, year 1.

Rate CHEMS 1 EIQ EPRIP EYP MATF PERI SYNOPS_2

Farm A

CHEMS 1 0.00900

EIQ 0.982** - 0.0360

EPRIP 0.740** 0.247 0.740**

EYP 0.582 0.145 0.691* 0.571

MATF 0.882** 0.200 0.882** 0.753** 0.709*

PERI 0.300 0.709* 0.300 0.598 0.400 0.491

SYNOPS 0.900** 0.227 0.900** 0.562 0.618 0.855** 0.364

SyPEP 0.244 0.645* 0.272 0.259 0.562 0.401 0.765** 0.452

Farm B

CHEMS 1 0.524

EIQ 0.976** 0.500

EPRIP 0.122 0.415 0.122

EYP 0.619 0.238 0.690 0.122

MATF 0.857** 0.667 0.905** 0.000 0.667

PERI - 0.667 - 0.619 - 0.643 - 0.659 - 0.381 - 0.571

SYNOPS 0.881** 0.786* 0.857** 0.415 0.643 0.810* - 0.762*

SyPEP 0.488 0.439 0.415 0.125 0.537 0.342 - 0.220 0.683

Farm C

CHEMS 1 0.321

EIQ 0.929** 0.250

EPRIP 0.259 0.148 0.074

EYP 0.500 - 0.214 0.321 0.111

MATF 0.857* 0.179 0.857* 0.074 0.464

PERI - 0.393 - 0.0360 - 0.464 - 0.408 - 0.286 - 0.107

SYNOPS 0.786* 0.179 0.929** - 0.222 0.321 0.714 - 0.500

SyPEP 0.216 - 0.0360 0.0900 - 0.112 0.631 - 0.126 - 0.450 0.270

Farm D

CHEMS 1 0.306

EIQ 0.968** 0.121

EPRIP 0.450 0.720** 0.347

EYP 0.590* 0.596* 0.490 0.493

MATF 0.772** 0.402 0.741** 0.723** 0.618*

PERI 0.176 - 0.156 0.187 0.0130 - 0.222 - 0.0150

SYNOPS 0.689** 0.741** 0.613* 0.804** 0.684** 0.810** 0.0370

SyPEP 0.446 0.468 0.342 0.299 0.452 0.257 - 0.385 0.569*

* Correlation is significant at the 0.05 level (two-tailed).
** Correlation is significant at the 0.01 level (two-tailed).
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the actual environmental concentration of the pesticide

in the environment21. Consequently, choosing one environ-

mental assessment method over another becomes a

complex process that often depends on which environ-

mental threat the evaluators, stakeholders or policymakers

wish to assess.

When choosing pesticide risk indicators for IPM

evaluation, evaluators, stakeholders and policymakers

should analyze how the pesticide risk indicator actually

generates potential risk scores. In this analysis, the most

consistent pesticide risk indictors (SYNOPS, EIQ and

MATF) all differ in terms of methodology. When compared

to the MATF and EIQ indicators, the SYNOPS indicator is

more complex. It considers daily weather information and

specific soil information while the MATF and EIQ

indicators do not. The SYNOPS indicator also predicts

environmental concentrations of the pesticide used in soil,

air, surface water and groundwater. In contrast, indicators

like EIQ and MATF categorize data points with a ranking

methodology to arrive at a potential risk score. Therefore, if

an evaluator needs an actual prediction of environmental

concentration (PEC) for part of an IPM evaluation, then

indicators like SYNOPS have to be used.

These types of issues comprise the main concerns over

using any pesticide risk indicators in IPM policy.

Evaluators can use any pesticide risk indicator as part of

an overall approach to evaluate an IPM growing strategy.

However, based on this analysis, we recommend that

evaluators use the EIQ, MATF or SYNOPS indicators.

Additionally, we recommend that evaluators or researchers

validate the results of these indicators with actual environ-

mental samples. Only then, can we be sure that pesticide

risk indicators generate accurate potential risk scores for

pesticide applications.

Conclusion

In many cases, the pesticide risk indicators analyzed

are either used by governmental agencies or by farming

groups to assess environmental impact from pesticide

applications5,14. However, in order to achieve a fully

integrated approach to assessing IPM programs, a variety of

other components have to be assessed other than pesticide

use. Such things as nutrient management as well as the

economic costs of switching to reduced risk must be

included when policymakers or agricultural professionals

attempt to measure the impact of IPM programs. As a

result, the importance of these indicators is in their ability

to contribute to a comprehensive risk assessment for IPM

practices.

Table 7. Spearman’s Rho correlations for Farms B–D, year 2.

Rate CHEMS 1 EIQ EPRIP EYP MATF PERI SYNOPS_2

Farm B

CHEMS 1 0.443

EIQ 0.970** 0.452

EPRIP 0.812* 0.422 0.747*

EYP 0.898** 0.452 0.833* 0.627

MATF 0.850** 0.381 0.833* 0.747* 0.571

PERI 0.096 0.0710 0.190 0.289 - 0.0480 0.143

SYNOPS 0.922** 0.548 0.881** 0.602 0.976** 0.667 - 0.0710

SyPEP 0.470 0.0240 0.485 0.276 0.594 0.182 0.582 0.509

Farm C

CHEMS 1 0.571

EIQ 0.976** 0.548

EPRIP 0.764* 0.655 0.764*

EYP 0.833* 0.405 0.762* 0.436

MATF 0.833* 0.476 0.857** 0.582 0.524

PERI 0.143 0.143 0.286 0.473 - 0.214 0.333

SYNOPS 0.786* 0.857** 0.762* 0.727* 0.762* 0.524 - 0.0950

SyPEP 0.386 0.0600 0.494 0.202 0.446 0.205 0.422 0.349

Farm D

CHEMS 1 0.314

EIQ 0.960** 0.323

EPRIP 0.529 0.642* 0.542*

EYP 0.613* 0.319 0.684** 0.376

MATF 0.846** 0.371 0.868** 0.593* 0.763**

PERI 0.200 0.209 0.165 0.150 - 0.0460 0.284

SYNOPS 0.745** 0.481 0.833** 0.617* 0.776** 0.815** 0.301

SyPEP 0.515 0.347 0.559* 0.390 0.546* 0.418 0.133 0.716**

* Correlation is significant at the 0.05 level (two-tailed).
** Correlation is significant at the 0.01 level (two-tailed).
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Researchers need to place more emphasis on interdisci-

plinary assessments of the economic, environmental and

human health impacts of agricultural programs such as

IPM. In general, IPM researchers have not included such an

assessment in their work. In addition, since the passing of

GPRA, there is a growing demand by the public as well as

government to be socially and economically accountable for

all publicly funded research. Under increased funding

constraints, IPM programs must show that IPM techniques

result in less environmental risk. Pesticide risk indicators

can help that occur. But this research shows that these

indicators, as currently devised, need more scrutiny. Future

analyses should examine how specific data inputs influence

a pesticide risk indicator’s potential risk score. In addition,

researchers must determine if potential risk scores heavily

influenced by application rates actually give usable

information on how the pesticide application scheme is

affecting the environment, or whether such scores are just

an extension of the qualitative scheme that equated reduced

application rates of pesticide with reduced environmental

risk. Lastly, future research has to examine the economic

effects of reducing environmental risk. Using pesticide

risk indicators to measure environmental risk means

nothing if the grower has no incentive to reduce risk in

the first place.
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