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Abstract

This paper explores the existence and distribution of primitive elements in finite field extensions with
prescribed traces in several intermediate field extensions. Our main result provides an inequality-like
condition to ensure the existence of such elements. We then derive concrete existence results for a special
class of intermediate extensions.
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1. Introduction

Given a prime power q and a positive integer n > 1, let Fq be the finite field with
q elements and Fqn the unique n-degree field extension of Fq. The intermediate
extensions of Fqn over Fq are exactly the finite fields Fqd with d a divisor of
n. It is well known that the multiplicative group F∗qn is cyclic; any generator of
such group is called primitive. Primitive elements play important roles in a wide
variety of applications in cryptography and, perhaps, the most notable one is the
Diffie–Hellman key exchange [4]. Primitive elements with further specified properties
have been extensively studied in the past few decades. The motivation comes from
both theoretical and practical matters.

For instance, the celebrated primitive normal basis theorem states that for any n ≥ 1
and any prime power q, there exists a primitive element α ∈ Fqn such that α is normal
over Fq, that is, the set {α,αq, . . . ,αqn−1} comprises an Fq-basis for Fqn . The primitive
normal basis theorem was proved by Lenstra and Schoof [6] and a proof without
any use of computers was later given by Cohen and Huczynska [2]. Cohen [1] also
explored the existence of primitive elements in Fqn with prescribed trace a ∈ Fq, that
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is, primitive elements α ∈ Fqn such that

Trqn/q(α) =
n−1∑
i=0

αqi
= a. (1-1)

He has shown that, up to genuine exceptions, it is possible to find primitive elements
in Fqn satisfying equation (1-1). More specifically, we have the following result.

THEOREM 1.1. Let q be a prime power, n a positive integer and a ∈ Fq. Then there
exists a primitive element α ∈ Fqn such that Trqn/q(α) = a unless a = 0 and n = 2 or
a = 0, n = 3 and q = 4.

In this paper, we discuss the existence of primitive elements in Fqn with prescribed
traces in several intermediate extensions Fqd of Fqn . In other words, for given n > 1,
d1 < · · · < dk < n divisors of n, and aj ∈ Fqdi , we discuss the existence of a primitive
element α ∈ Fqn such that, for each 1 ≤ j ≤ k,

Trqn/qdj (α) =
n/dj−1∑

i=0

αqidj
= aj.

Our main result, Theorem 2.4, provides an inequality-like condition to ensure the
existence of such elements. This condition might easily yield asymptotic existence
results. We then present a special instance where we can obtain effective results. In
particular, we prove that, up to a few critical cases, there exists a primitive element
α ∈ Fqn with arbitrary prescribed traces in any two intermediate Fq-extensions of Fqn :
see Theorem 5.1 for more details.

The structure of the paper is as follows. In Section 2 we introduce some useful
notation and present our main result. Section 3 provides background material that
is used along the way and some auxiliary results. In Section 4 we prove our main
result. Finally, in Section 5, we restrict our problem to a special class of intermediate
extensions, where our results are sharpened.

2. Main results

Before we state our main result, we introduce some notation and discuss a natural
condition that we have to impose in the problem. Throughout this paper, q is a prime
power and Fq is the finite field with q elements.

DEFINITION 2.1. For n > 1, d a divisor of n and α ∈ Fqn , we set

Trn/d(α) =
n/d−1∑

i=0

αqdi
,

the trace of α over Fqd .
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Recall that the trace is transitive, that is, if e divides d and d divides n, then for any
α ∈ Fqn we have that Trn/e(α) = Trn/d(Trd/e(α)). In particular, if d1 < · · · < dk < n are
divisors of n and we pick ai ∈ Fqdi , 1 ≤ i ≤ k, then the existence of an element α ∈ Fqn

with Trn/di (α) = ai is necessarily conditional on the following identities:

Trdi/ gcd(di,dj)(ai) = Trn/ gcd(di,dj)(α) = Trdj/ gcd(di,dj)(aj), 1 ≤ i, j ≤ k. (2-1)

REMARK 2.2. As recently shown by the first author in [7], the equations in (2-1) are
also sufficient and, in this case, there exist exactly qn−λ elements in Fqn with Trn/di (α) =
ai for 1 ≤ i ≤ k, where

λ = deg(lcm(xd1 − 1, . . . , xdk − 1))

= d1 + · · · + dk +

k∑
i=2

(−1)i+1
∑

1≤�1<···<�i≤k

gcd(d�1 , . . . , d�i ).

The proof of this result is a simple application of the Chinese remainder theorem for
the ring Fq[x]. For more details, see Theorem 4.1 in [7].

The equations in (2-1) imply that if di divides some dj, then the equality Trn/di (α) =
ai is already implied by Trn/dj (α) = aj. Therefore, we may restrict ourselves to divisors
d1 < · · · < dk of n such that di � dj for any 1 ≤ i < j ≤ k. In addition, the case k = 1
was completely settled by Cohen [1], so we assume that k > 1, that is, n is not a prime
power. We introduce some useful notation.

DEFINITION 2.3. Let n > 1 be an integer that is not a prime power and 1 < k < σ0(n),
where σ0(n) denotes the number of positive divisors of n.

(i) Λk(n) stands for the set of k-tuples d = (d1, . . . , dk), where d1 < · · · < dk < n are
divisors of n such that di does not divide dj for every 1 ≤ i, j ≤ k with i � j.

(ii) For d = (d1, . . . , dk) ∈ Λk(n), set F(d) =
∏k

i=1 Fqdi and

λ(d) = d1 + · · · + dk +

k∑
i=2

(−1)i+1
∑

1≤�1<···<�i≤k

gcd(d�1 , . . . , d�i ).

Moreover, for d = (d1, . . . , dk) ∈ Λk(n) and a = (a1, . . . , ak) ∈ F(d), the k-tuple a is
d-admissible if, for any 1 ≤ i < j ≤ k,

Trdi/ gcd(di,dj)(ai) = Trdj/ gcd(di,dj)(aj).

From previous observation, we only need to consider d-admissible k-tuples. Our
main result can be stated as follows.

THEOREM 2.4. Let n > 1 be an integer that is not a prime power, 1 < k < σ0(n), d =
(d1, . . . , dk) ∈ Λk(n) and a = (a1, . . . , ak) ∈ F(d) a d-admissible k-tuple. Then there
exists a primitive element α ∈ Fqn with prescribed traces Trn/di (α) = ai for every
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1 ≤ i ≤ k provided that

qn/2−λ(d) ≥ W(qn − 1), (2-2)

where W(t) denotes the number of squarefree divisors of t.

In the context of Theorem 2.4, we also obtain the following minor result.

THEOREM 2.5. We have that Theorem 2.4 also holds if the condition qn/2−λ(d) ≥
W(qn − 1) is replaced by the inequality lcm(d1, . . . , dk) < n.

While the proof of Theorem 2.5 is a straightforward combination of Theorem 4.1
in [7] and Theorem 1.1, the proof of Theorem 2.4 relies on character sum methods
to count elements in finite fields with specified properties. We follow the traditional
approach that is presented in [1, 2, 6]. In this approach, we frequently need to simplify
character sums by detecting trivial Gauss sums; in our case, we employ a result
from [7] concerning special zero sums in finite fields.

3. Preliminaries

This section provides background material that is used throughout the paper and
some auxiliary results.

3.1. Characters and characteristic functions. Here we provide character sum
expressions for the characteristic functions of elements in finite fields with specified
properties. We start by recalling some basics on characters over finite fields.

Fix a primitive element α ∈ Fqn . A typical multiplicative character of Fqn is a
function η : F∗qn → C given by η(αk) = e2πikt/(qn−1) for some positive integer t ≤ qn − 1.
The character η1 ≡ 1 is the trivial multiplicative character. The set of multiplicative
characters of Fqn forms a (multiplicative) cyclic group of order qn − 1. In particular,
for each divisor t of qn − 1, there exist exactly ϕ(t) multiplicative characters of order t;
we denote the set of such characters by Γ(t). We extend the evaluation of multiplicative
characters to the element 0 ∈ Fqn by letting η(0) = 0.

If p is the characteristic of Fq, say q = ps, and m is any divisor of n, the canonical
additive character of Fqm is the function χ : Fqm → C given by

χ(β) = e
2πiTm(β)

p ,

where Tm(β) =
∑ms−1

i=1 β
pi ∈ Fp is the absolute trace function from Fqm to Fp. For each

c ∈ Fqm , we set χc(β) = χ(c · β), which is another additive character of Fqm . In fact, the
set of additive characters of Fqm is a (multiplicative) group isomorphic to the additive
group Fqm and comprises the characters {χc | c ∈ Fqm}. The identity of such group is the
trivial additive character χ0. We introduce some useful notation.

DEFINITION 3.1. Fix a positive integer n, d a divisor of n and a ∈ Fqd . Let In,d,a be
the characteristic function for elements in Fqn with trace a over Fqd , and let Ωn be the
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characteristic function for primitive elements in Fqn , that is, for α ∈ Fqn ,

In,d,a(α) =

⎧⎪⎪⎨⎪⎪⎩1 if Trn/d(α) = a,
0 otherwise

and Ωn(α) =

⎧⎪⎪⎨⎪⎪⎩1 if α is primitive,
0 otherwise.

In addition, set θ(q) = (ϕ(qn − 1)/(qn − 1)).

The following results provide expressions for the functions Ωn and In,d,a by means
of characters.

LEMMA 3.2. For every β ∈ Fqn ,

Ωn(β) = θ(q)
∑

t|qn−1

μ(t)
ϕ(t)

∑
η∈Γ(t)
η(β),

where μ is the Möbius function over the integers.

For the proof of the previous lemma, see Theorem 2.8 of [5] and the comments
thereafter.

LEMMA 3.3. Let m be a divisor of n and γ ∈ Fqn be such that Trn/m(γ) = a ∈ Fqm . If χ
denotes the canonical additive character of Fqn , then, for any β ∈ Fqn ,

In,d,a(β) =
1

qm

∑
c∈Fqm

χc(β − γ) = 1
qm

∑
c∈Fqm

χc(β)χc(γ)−1.

For the proof of the previous lemma, see Subsection 2.3.1 of [5].

3.2. Auxiliary lemmas. From Corollary 1.2 in [7], we have the following result.

LEMMA 3.4. Let n > 1 be an integer that is not a prime power, 1 < k < σ0(n) and
let d = (d1, . . . , dk) ∈ Λk(n). Then the number of k-tuples (x1, . . . , xk) ∈ F(d) such that
x1 + · · · + xk = 0 equals

qd1+···+dk−λ(d).

We further require effective upper bounds on the functions W and λ(d). We have
the following results.

LEMMA 3.5.

(i) If W(t) is the number of squarefree divisors of t, then, for all t ≥ 3,

W(t − 1) < t(0.96/log log t).

(ii) If n > 1 is an integer that is not a prime power, 1 < k < σ0(n) and d ∈ Λk(n),
then

λ(d) ≤ n − ϕ(n),

where ϕ(n) is the Euler totient function.
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PROOF. Item (i) is a straightforward consequence of inequality (4.1) in [3]. For item
(ii), observe that, as stated in Remark 2.2, λ(d) equals the degree of the least common
multiple of the polynomials xd1 − 1, . . . , xdk − 1. Since d1 < · · · < dk < n, if p1, . . . , pt

are the distinct prime divisors of n, we have that the polynomials xd1 − 1, . . . , xdk − 1
divide the polynomial

lcm(xn/p1 − 1, . . . , xn/pt − 1).

An inclusion–exclusion argument shows that the previous polynomial has degree n −
ϕ(n) and the result follows. �

LEMMA 3.6 (see Lemma 4.1 of [5]). If a is a positive integer and p1, . . . , pj are the
distinct prime divisors of t such that pi ≤ 2a, then

W(t) ≤ ct,at1/a, where ct,a :=
2j

(p1 · · · pj)1/a .

In particular,

ct,4 <

⎧⎪⎪⎨⎪⎪⎩4.9 for t even,
2.9 for t odd

and ct,8 < 4514.7.

4. Proof of the main result

Let N(n, d, a) be the number of primitive elements α ∈ Fqn such that Trn/di (α) = ai.
In particular,

N(n, d, a) =
∑

w∈Fqn

Ωn(ω) ·
k∏

i=1

In,di,ai (w).

Since the k-tuple (a1, . . . , ak) is d-admissible, we have seen that there exists β ∈ Fqn

such that Tr(n/t)/di (β) = ai for 1 ≤ i ≤ k. Write D = d1 + · · · + dk and, for a generic c =
(c1, . . . , ck) ∈ F(d), write s(c) =

∑k
i=1 ci. From Lemmas 3.2 and 3.3,

qDN(n, d, a)
θ(q)

=
∑

w∈Fqn

∑
t|qn−1

μ(t)
ϕ(t)

∑
η∈Γ(t)
η(w) ·

k∏
i=1

( ∑
ci∈Fqdi

χci (w) · χci (β)
−1
)

=
∑

w∈Fqn

∑
c∈F(d)

∑
t|qn−1

μ(t)
ϕ(t)

∑
η∈Γ(t)
η(w) · χs(c)(w) · χs(c)(−β)

=
∑

c∈F(d)

∑
t|qn−1

μ(t)
ϕ(t)

∑
η∈Γ(t)
χs(c)(−β) · Gn(η, χs(c)),
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where Gn(η, χs(c)) =
∑

w∈Fqn η(w) · χs(c)(w) denotes a Gauss sum. We use the orthogo-
nality relations to obtain

Gn(η, χs(c)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
qn if η ∈ Γ(1) and s(c) = 0,
0 if η ∈ Γ(1) and s(c) � 0,
0 if η � Γ(1) and s(c) = 0,

and in the remaining cases we have the well-known identity |Gn(η, χs(c))| = qn/2. In
addition, if s(c) = 0, then χs(c)(−β) = χ0(−β) = 1. In particular, we may rewrite

qDN(n, d, a)
θ(q)

=
∑
c∈F(d)
s(c)=0

qn +
∑
c∈F(d)
s(c)�0

∑
t|qn−1

t�1

μ(t)
ϕ(t)

∑
η∈Γ(t)
χs(c)(−β) · Gn(η, χs(c))

︸�����������������������������������������������︷︷�����������������������������������������������︸
S

.

From Lemma 3.4, we obtain the following equality:

qDN(n, d, a)
θ(q)

= qn+D−λ(d) + S.

We observe that |χs(c)(−β)| = 1 and |Gn(η, χs(c))| = qn/2 in every term of the sum S.
Recall that there exist exactly ϕ(t) elements in Γ(t) and the function μ has absolute
value 1 at squarefree integers and vanishes everywhere else. In particular, we obtain
the following inequality:

|S| <
∑
c∈F(d)
s(c)�0

∑
t|qn−1

t squarefree

qn/2 = qn/2+D ·W(qn − 1).

Hence,

qDN(n, d, a)
θ(q)

> qn+D−λ(d) − qn/2+D ·W(qn − 1) ≥ 0

provided that qn/2−λ(d) ≥ W(qn − 1).

4.1. Proof of Theorem 2.5. Set lcm(d1, . . . , dk) = n/t, where t > 1 is a divisor of
n. Since there do not exist 1 ≤ i, j ≤ k such that di divides dj, we have that di < n/t
for any 1 ≤ i ≤ k and then, from Lemma 3.5, we have that λ(d) ≤ n/t − ϕ(n/t). From
hypothesis, the k-tuple (a1, . . . , ak) is d-admissible and then, as stated in Remark 2.2,
Theorem 4.1 of [7] implies that there exist qn/t−λ(d) ≥ qϕ(n/t) > 1 elements θ ∈ Fqn/t

such that Tr(n/t)/di (θ) = ai for 1 ≤ i ≤ k. In particular, there exists a nonzero element
θ0 ∈ Fqn/t with such traces in a way that θ0 � 0. Since θ0 � 0, Theorem 1.1 implies
that there exists a primitive element α ∈ Fqn such that Trn/(n/t)(α) = θ0 and then, by the
transitivity of the trace,

Trn/di (α) = Tr n
t /di (θ0) = ai, 1 ≤ i ≤ k.
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5. Theorem 2.4 under the condition gcd(di, dj) = 1

In this section we discuss the existence of primitive elements of Fqn with arbitrary
prescribed traces over extensions Fqdi under the following condition:

gcd(di, dj) = 1 for 1 ≤ i < j ≤ k .

We observe that the above condition is not restrictive when k = 2. In fact, if d1 < d2 are
divisors of n and d = gcd(d1, d2), we have that Fqdi = FQei , for Q = qd, where ei = di/d
satisfy gcd(e1, e2) = 1. We obtain asymptotic and concrete results that are displayed in
the following theorem.

THEOREM 5.1. Let n > 1 be an integer that is not a prime power, 1 < k < σ0(n)
and d = (d1, . . . , dk) ∈ Λk(n) be such that gcd(di, dj) = 1 for every 1 ≤ i < j ≤ k.
Furthermore, let a = (a1, . . . , ak) ∈ F(d) be a d-admissible k-tuple. Then there exists
a primitive element α ∈ Fqn with prescribed traces Trn/di (α) = ai provided that one of
the following holds:

(a) k ≥ 3;
(b) k = 2 and

(b.1) d1 ≥ 5 and q ≥ 5 if (d1, d2) = (5, 6);
(b.2) d1 = 4 and d2 ≥ 11, or d2 ≥ 9 and q ≥ 3, or d2 = 5, 7 and q ≥ ee6.7

;
(b.3) d1 = 3 and either d2 ≥ 38, or d2 ≥ 5 and q ≥ ee26.1

.

PROOF. We may assume that lcm(d1, . . . , dk) = n since otherwise the result is directly
implied by Theorem 2.5. For k ≥ 2, the condition gcd(di, dj) = 1 implies that

λ(d) = d1 + · · · + dk − k + 1.

From Lemma 3.6, Theorem 2.4 and the equation above, it suffices to verify that

n
2
−

k∑
i=1

di + k − 1 ≥ n
a
+ logq(cqn,a) (5-1)

for some a ≥ 3. We always take a = 4 or a = 8. Since

lcm(d1, . . . , dk) = n, 2 ≤ d1 < · · · < dk

and gcd(di, dj) = 1,

d1 · · · dk = n.
We provide the proofs of items (a) and (b) separately.

5.1. The case k ≥ 3. We split the proof into cases.
(i) k ≥ 4: Let 2 = p1 < p2 < · · · be the increasing sequence of the prime numbers. We
have that p� ≤ d� and then

p� ≤ d� ≤
( n

p1 · · · p�−1

)1/(k+1−�)
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for 1 ≤ � ≤ k, where the empty product equals 1. Furthermore,

n
2
−
[

log7

( n
30

)
+ 2
]√n

2
− n

30
+ 3 ≥ n

4
+ 2 (5-2)

for n ≥ 39. Since (n/(p1 · · · p�−1))1/(k+1−�) <
√

n/2 for every 1 ≤ � ≤ k − 1 and also
n ≥ 2 · 3 · 5 · 7k−3 ≥ 210, the left-hand side of inequality (5-1) is greater than the
left-hand side of inequality (5-2). Taking a = 4, the right-hand side of inequality (5-2)
is greater than the right-hand side of inequality (5-1). This concludes the case k ≥ 4.
(ii) k = 3: In the same way, we have that the inequality

n
2
− 3√n −

√
n
2
− n

6
+ 2 ≥ n

8
+ 12.2 (5-3)

holds true for n ≥ 107. Since the left-hand side of inequality (5-1) is greater than
the left-hand side of inequality (5-3), and the right-hand side of inequality (5-3) is
greater than the right-hand side of inequality (5-1) with a = 8, we are done unless
n ∈ {30 = 2 · 3 · 5, 42 = 2 · 3 · 7, 60 = 3 · 4 · 5, 66 = 2 · 3 · 11, 70 = 2 · 5 · 7, 78 = 2 ·
3 · 13, 84 = 3 · 4 · 7, 90 = 2 · 5 · 9, 102 = 2 · 3 · 17, 105 = 3 · 5 · 7}, which are the
numbers smaller than 107 that split into at least three nontrivial relatively prime
factors. We now consider the following cases.

(ii.1) (d1, d2) = (3, 5): If n ≥ 60, then (n/2) − 3 − 5 − (n/15) + 2 ≥ (n/4) + 2 and we
argue as above with a = 4.

(ii.2) (d1, d2) = (3, 4): If n ≥ 42, then (n/2) − 3 − 4 − (n/12) + 2 ≥ (n/4) + 2 and we
argue as above with a = 4.

(ii.3) (d1, d2) = (2, 5): If n ≥ 47, then (n/2) − 2 − 5 − (n/10) + 2 ≥ (n/4) + 2 and we
argue as above with a = 4.

(ii.4) (d1, d2) = (2, 3): If n ≥ 60, then (n/2) − 2 − 3 − (n/6) + 2 ≥ (n/4) + 2 and we
argue as above with a = 4. Hence, there only remains n ∈ {30, 42}.

For n = 30, the inequality

30
2
− 2 − 3 − 5 + 2 ≥ (30/8) + logq(4514.7)

holds true if q ≥ 14 and we argue as above with a = 8. Therefore, there
only remain the cases q ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13}, for which the inequality
qn/2−λ(d) ≥ W(qn − 1) can be directly verified.

For n = 42, the inequality

42
2
− 2 − 3 − 7 + 2 ≥ 42

8
+ logq(4514.7)

holds true if q ≥ 5 and we argue as above with a = 8. Therefore, there only
remain the cases q ∈ {2, 3, 4}, for which the inequality qn/2−λ(d) ≥ W(qn − 1)
can be directly verified.
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5.2. The case k = 2. As in previous cases, it suffices to prove that

n
2
− d1 − d2 + 1 ≥ n

a
+ logq(cqn,a) (5-4)

for a ∈ {4, 8}. Notice that if d1 ≥ 8, then d2 ≥ 9 and (d1 − 4)(d2 − 4) ≥ 20 ≥ 12 +
4 logq(cqn,4). Therefore, inequality (5-4) holds true with a = 4. Table 1 provides the
ranges of q, d1, d2 where inequality (5-4) holds and the value of a that is used.

Table 1 compiles exceptions (q, d1, d2) for inequality (5-4), assuming that d1 ≥ 5,
or d1 = 4 and d2 ≥ 7, or d1 = 3 and d2 ≥ 38. With respect to these ranges, the
exceptional triples have reasonably small parameters. Using the software SageMath
we verify that such triples (q, d1, d2) satisfy inequality (2-2) with the exception of
(q, d1, d2) = (q, 5, 6) with q < 5 and (q, d1, d2) = (2, 4, 9).

For (q, d1, d2) = (q, 3, 4), inequality (2-2) does not hold for any prime power q. For
the remaining cases, that is, (q, d1, d2) = (q, 4, 5) and (q, d1, d2) = (q, 3, d2) with 5 ≤
d2 ≤ 37, Lemma 3.5(i) (or inequality (5-4) with a = 8 provided that d1 = 3 and 17 ≤
d2 ≤ 37) ensures that there exists a computable constant q0 depending only on d1 and
d2 such that inequality (2-2) holds for every q ≥ q0. �

REMARK 5.2. For k = 2, d1 = 2 and n = lcm(2, d2), we have that qn/2−λ(d) < 1 <
W(qn − 1) and so Theorem 2.4 is inconclusive. Moreover, in this setting we can

TABLE 1. Ranges of q, d1, d2 where inequality (5-4) holds true and the value of a that is used.

d1 d2 q a
7 ≥ 11 for all q 4
7 10 ≥ 5 4
7 9 ≥ 8 4
7 8 ≥ 37 8
6 ≥ 15 for all q 4
6 13 ≥ 3 4
6 11 ≥ 3 8
6 7 ≥ 11 8
5 ≥ 19 for all q 8
5 ≥ 14 ≥ 3 8
5 ≥ 12 ≥ 4 8
5 11 ≥ 5 8
5 9 ≥ 9 8
5 8 ≥ 17 8
5 7 ≥ 53 8
5 6 ≥ 839 8
4 ≥ 31 for all q 8
4 ≥ 23 ≥ 3 8

d1 d2 q a
4 ≥ 19 ≥ 4 8
4 17 ≥ 5 8
4 15 ≥ 7 8
4 13 ≥ 13 8
4 11 ≥ 29 8
4 9 ≥ 274 8
4 7 ≥ 2.039 · 107 8
3 ≥ 114 for all q 8
3 ≥ 78 ≥ 3 8
3 ≥ 65 ≥ 4 8
3 ≥ 58 ≥ 5 8
3 ≥ 52 ≥ 7 8
3 ≥ 49 ≥ 8 8
3 47 ≥ 9 8
3 46 ≥ 11 8
3 ≥ 43 ≥ 13 8
3 ≥ 40 ≥ 17 8
3 38 ≥ 23 8
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actually provide genuine exceptions. In fact, let n = 2 · N, N > 1 odd, and choose
b ∈ Fq2 in such a way that TrN/1(b) = 0. In particular, the pair (b, 0) ∈ Fq2 × FqN is
(2, N)-admissible. However, there is no primitive element α ∈ Fqn with zero trace over
FqN . In fact, any element α ∈ Fqn with zero trace over FqN satisfies αqN

= −α and,
consequently, α2(qN−1) = 1. But such an α cannot be primitive since 2(qN − 1) < qn − 1
for every q ≥ 2.

6. Conclusion

In this paper we discuss the existence of primitive elements of finite fields with
prescribed traces in intermediate extensions. Our main result provides a sufficient
condition for the existence of such elements. This condition is encoded in an inequality
that is further explored in order to obtain concrete results on the existence of these
elements; this is presented in Theorem 5.1.

It would be desirable to explore the validity of Theorem 5.1 without the restriction
gcd(di, dj) = 1 or at least complete this theorem, exploring the remaining cases under
this restriction. For instance, by using a sieving method that is traditional in this kind
of problem (see [2, 3]), one can remove the restrictions q ≥ 5 and q ≥ 3 in items
(b.1) and (b.2) of Theorem 5.1. Within the approach of this paper, we believe that
any such improvement would have to go through sharper estimates on the character
sums appearing in the proof of Theorem 2.4.
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