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Abstract Let G be a linear algebraic group over an algebraically closed field k acting rationally on
a G-module V with NG,V its null-cone. Let δ(G, V ) and σ(G, V ) denote the minimal number d such
that for every v ∈ V G \ NG,V and v ∈ V \ NG,V , respectively, there exists a homogeneous invariant f

of positive degree at most d such that f(v) �= 0. Then δ(G) and σ(G) denote the supremum of these
numbers taken over all G-modules V . For positive characteristics, we show that δ(G) = ∞ for any
subgroup G of GL2(k) that contains an infinite unipotent group, and σ(G) is finite if and only if G is
finite. In characteristic zero, δ(G) = 1 for any group G, and we show that if σ(G) is finite, then G0 is
unipotent. Our results also lead to a more elementary proof that βsep(G) is finite if and only if G is
finite.
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global degree bounds
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1. Introduction

In invariant theory the notion of geometric reductivity is of great importance. It implies
finite generation of the invariants, the separability of disjoint orbit closures by invariants,
and in characteristic zero even algebraic properties like the Cohen–Macaulayness of the
invariant ring. It is defined to be the property that every non-zero fixed point of a
finite-dimensional rational representation can be separated from zero by a homogeneous
invariant of positive degree. Similarly, by definition every point outside the null-cone
can be separated from zero by a homogeneous positive degree invariant. It is a natural
question to ask what the maximum degree needed for a given representation is. While
in our recent paper [8] we gave some (partial) answers to these questions for the case of
finite groups, the current paper concentrates on the case of infinite groups. Before we go
into more detail, we fix our setup.

Let G be a linear algebraic group over an algebraically closed field k, let V be a finite-
dimensional rational representation of G (which we will call a G-module), and denote by
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k[V ] ∼= S(V ∗) the ring of polynomial functions V → k. The action of G on V induces an
action of G on k[V ] via (g · f)(v) := f(g−1v) for g ∈ G, f ∈ k[V ] and v ∈ V . The set
of G-invariant polynomial functions under this action is denoted by k[V ]G, and inherits
a natural grading from k[V ], since the given action is degree preserving. We denote by
k[V ]Gd the set of polynomial invariants of degree d and the zero-polynomial, and by k[V ]G�d

the set of polynomial invariants of degree at most d. For every subset S of k[V ] we define
S+ as the set of elements in S with constant term zero. Then NG,V := V(k[V ]G+) denotes
the null-cone of V . A linear algebraic group is said to be geometrically reductive if for
every G-module V we have V G ∩ NG,V = {0}, i.e. for all non-zero v ∈ V G there exists
f ∈ k[V ]G+ such that f(v) �= 0. This inspires the definition of a δ-set: for a linear algebraic
group G let us say a subset S ⊆ k[V ]G is a δ-set if, for all v ∈ V G \ NG,V , there exists
an f ∈ S+ such that f(v) �= 0. We shall call a subalgebra of k[V ]G a δ-subalgebra if it is
a δ-set. The quantity δ(G, V ) is then defined as

δ(G, V ) = min{d � 0 | k[V ]G�d is a δ-set}.

Define, furthermore,

δ(G) := sup{δ(G, V ) | V a G-module},

where we take the supremum of an unbounded set to be infinity. A reductive group
is called linearly reductive if δ(G) = 1. Note that in positive characteristics, due to
Nagata (see [12,14]), a linear algebraic group G is linearly reductive if and only if its
connected component G0 is a torus such that its index (G : G0) is not divisible by the
characteristic of the base field. Over a field of characteristic zero, Nagata and Miyata [16]
have shown that reductive groups are linearly reductive. In fact their proof shows that
in characteristic zero, for any linear algebraic group G and any G-module V , δ(G, V )
equals 1 or 0 (the latter being the case when V G ⊆ NG,V ); see Proposition 2.1. A
natural, but seemingly neglected, question is, for which geometrically reductive groups
G is δ(G) strictly greater than 1, but still finite? For finite groups, Elmer and Kohls gave
the following answer [8].

Theorem 1.1 (Elmer and Kohls [8, Theorem 1.1]). Let G be a finite group, let
k be an algebraically closed field of characteristic p and let P be a Sylow-p-subgroup of
G. Then δ(G) = |P |.

Thus, δ(G) is finite for all finite groups, and strictly greater than 1 if and only if |G|
is divisible by p. In this paper we investigate δ(G) for infinite groups. In particular, we
make and investigate the following conjecture.

Conjecture 1.2. For G a linear algebraic group over a field of positive characteristic,
we have that δ(G) is finite if and only if the connected component G0 is a torus or trivial.

We mention that the ‘only if’ part of the conjecture might only be generally true
under the additional assumption that G is reductive. Our main results concerning the
conjecture are that (1) the ‘if’ part of the conjecture holds and (2) the ‘only if’ part holds
for G a closed subgroup of GL2. Statement (1) follows from the following more precise
theorem, which is a generalization of Theorem 1.1.
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Theorem 1.3. Let G be a linear algebraic group over a field of characteristic p > 0
such that G0 is a torus or trivial. Let P be a Sylow-p-subgroup of the (finite) group
G/G0. Then δ(G) = |P |.

It is well known that an infinite linear algebraic group contains an infinite unipotent
subgroup if and only if its connected component G0 is not a torus (see, for example, [12,
Lemmas 3.1 and 3.2]). Therefore, statement (2) follows from the following theorem.

Theorem 1.4. Let k be an algebraically closed field of characteristic p > 0. Suppose
that G is a closed subgroup of GL2(k) containing an infinite unipotent subgroup. Then
δ(G) = ∞.

In particular, δ(SL2(k)) = δ(GL2(k)) = δ(Ga) = ∞ (where Ga = (k, +) is the additive
group of the ground field) in positive characteristics, supporting the conjecture.

In addition to δ(G), we study the closely related quantity σ(G). We shall say a subset
S ⊆ k[V ]G is a σ-set if, for all v ∈ V \ NG,V , there exists an f ∈ S+ such that f(v) �= 0.
We shall call a subalgebra of k[V ]G a σ-subalgebra if it is a σ-set. Then the quantities
σ(G, V ) and σ(G) are defined along the same lines as δ(G, V ) and δ(G). For a motivation
of the importance of this number we content ourselves here by saying that, at least for
linearly reductive groups in characteristic zero, the knowledge of σ(G, V ) gives upper
bounds for the maximal degrees of generating sets (for example, in Derksen’s famous
bound [4]), and refer the reader to [3,8] for more details and some elementary properties
of this number.

In the latter paper, Elmer and Kohls investigated σ(G) for finite groups G, mainly for
positive characteristic. In §§ 4 and 5 of this paper we investigate σ(G) for infinite linear
algebraic groups. Our main results are as follows.

Theorem 1.5. Let G be a linear algebraic group over a field of characteristic p > 0.
Then σ(G) is finite if and only if |G| is finite.

Theorem 1.6. Let G be a linear algebraic group over a field of characteristic 0. Then
if σ(G) is finite, G0 is unipotent, i.e. either G is finite or G0 is infinite unipotent.

As reductive groups do not contain a non-trivial connected unipotent normal subgroup,
we obtain the following as an immediate corollary.

Corollary 1.7. Let G be a reductive group over a field of arbitrary characteristic.
Then σ(G) is finite if and only if G is finite.

Somewhat surprisingly, for the (infinite) additive group Ga = (k, +) of a field k of
characteristic zero we will see that σ(Ga) = 2. We do not know whether σ(G) is finite
for all unipotent groups in characteristic zero.

Another quantity associated with δ(G, V ) and σ(G, V ), which has attracted some
attention in recent years, is βsep(G, V ). It is defined as follows: a subset S ⊆ k[V ]G

is called a separating set if, for every pair v, w ∈ V such that there exists f ∈ k[V ]G with
f(v) �= f(w), there exists s ∈ S with s(v) �= s(w). Now again, βsep(G, V ) and βsep(G)
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are defined along the same lines as σ(G, V ) and σ(G). Our point of view is that δ- and
σ-sets are ‘zero-separating’ sets. This leads to the inequalities [8, Proposition 1.4]

δ(G, V ) � σ(G, V ) � βsep(G, V ) � β(G, V )

for any linear algebraic group G and G-module V , and hence

δ(G) � σ(G) � βsep(G) � β(G).

Here β(G, V ) is the classical local Noether number, i.e. the maximal degree of an invariant
in a minimal generating set of k[V ]G, which in a similar way to before leads to the
definition of the global Noether number β(G). It is worth remarking that, due to results
of Bryant and Kemper [2] and Derksen and Kemper [6], for a linear algebraic group G we
have that β(G) is finite if and only if G is finite and the group order |G| is not divisible
by the characteristic of the base field.

Kohls and Kraft have shown [13] that βsep(G) is finite if and only if G is finite (inde-
pendently of the characteristic of k). Some parts of the proof of this result required some
deep results from geometric invariant theory. The results of our current paper allow one
to replace these parts of the proof by more elementary arguments (see § 4).

2. General results on the δ-number

In this section we prove various general results on δ(G). For the convenience of the reader,
we present the proof of the following result of Nagata and Miyata in language consistent
with this paper.

Proposition 2.1 (Nagata and Miyata [16, Proof of Theorem 1]). Let G be a
linear algebraic group over a field k and let V be a G-module. Suppose that v ∈ V G

and f ∈ k[V ]G+ is homogeneous such that f(v) �= 0. If the characteristic of k does not
divide the degree of f , then there exists a homogeneous invariant f̃ ∈ k[V ]G1 of degree
one satisfying f̃(v) �= 0.

Proof. Write d := deg(f). Choose a basis {v =: v0, v1, . . . , vn} of V and let
{x0, x1, . . . , xn} be the corresponding dual basis. Since f(v) �= 0, we can write f =∑d

i=0 xd−i
0 ci with ci ∈ k[x1, x2, . . . , xn]i for each i = 0, . . . , d and c0 ∈ k \ {0}. We may

assume that c0 = 1. Furthermore, since v ∈ V G, note that 〈x1, x2, . . . , xn〉 is a G-invariant
space and we can write g ·x0 = x0 + y(g) with y(g) ∈ 〈x1, x2, . . . , xn〉 for each g ∈ G. For
any g ∈ G we have

g · f = (g · x0)d + (g · c1)(g · x0)d−1 + (terms of x0-degree � d − 2)

= (x0 + y(g))d + (g · c1)(x0 + y(g))d−1 + (terms of x0-degree � d − 2)

= xd
0 + (dy(g) + (g · c1))xd−1

0 + (terms of x0-degree � d − 2)

= f,
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since f is invariant. Comparing coefficients of xd−1
0 tells us that for any g ∈ G we have

c1 = dy(g) + (g · c1). By assumption, the degree d is invertible in k, and we now set
f̃ := x0 + d−1c1. Notice that deg(f̃) = 1 and for any g ∈ G we have

g · f̃ = g · x0 + d−1(g · c1) = x0 + y(g) + d−1(c1 − dy(g)) = f̃ ,

so f̃ ∈ k[V ]G1 . Furthermore, f̃(v) = x0(v) + d−1c1(v) = x0(v) = 1 �= 0, completing the
proof. �

Corollary 2.2. Let G be a linear algebraic group and let V be a G-module. Then
δ(G, V ) equals either 0 or 1 or is divisible by the characteristic of k. In particular, if k is
a field of characteristic zero, then δ(G) = 1.

Proof. Note firstly that if V G ⊆ NG,V , then δ(G, V ) = 0. Otherwise, δ(G, V ) � 1.
Applying the above proposition shows that for any δ-set S consisting of homogeneous
invariants, the set k[V ]G1 ∪{f ∈ S | deg(f) divisible by the characteristic} is also a δ-set.
Finally, since δ(G, V ) = 1 when V = k is the trivial module, we must have δ(G) � 1 for
any linear algebraic group G. �

The proof of the following result is a slight adaption of [15, Lemma 3.1], where it is
shown that if N is a closed normal subgroup of G such that N and G/N are reductive,
then G is reductive.

Proposition 2.3. Let N be a closed normal subgroup of G such that G/N is reductive.
Then for any G-module V we have

δ(G, V ) � δ(N, V )δ(G/N) � δ(N)δ(G/N),

and so, in particular, we have δ(G) � δ(N)δ(G/N).

Proof. Take a point v ∈ V G \NG,V . As a G-invariant separating v from zero is clearly
also an N -invariant, we see that v ∈ V N \NN,V . Therefore, there is a homogeneous f0 ∈
k[V ]N of positive degree d � δ(N, V ) satisfying f0(v) �= 0. We may assume that f0(v) = 1.
Note that as N is a normal subgroup of G, we have that U := k[V ]Nd is a G-module on
which N acts trivially, so it can be considered as a G/N -module. Furthermore, we define
U0 := {f ∈ U | f(v) = 0}. Note that U0 is a G-invariant subspace of U , since v ∈ V G.
As f0 �∈ U0, we have U0 �= U . For any f ∈ U we have f = (f − f(v)f0) + f(v)f0

with f − f(v)f0 ∈ U0, and hence U = U0 ⊕ kf0 as a vector space. We can therefore
define ϕ ∈ U∗ by ϕ(u0 + λf0) := λ for u0 ∈ U0 and λ ∈ k. It is easily seen that
ϕ is G-invariant. As mentioned, we can consider U as a G/N -module, and then we
have ϕ ∈ (U∗)G/N \ {0}. By assumption, G/N is a reductive group, so there exists
a homogeneous F ∈ k[U∗]G/N

d′ = Sd′
(U)G/N of some positive degree d′ � δ(G/N) such

that F (ϕ) �= 0. Let {f1, . . . , fr} denote a basis of U0. Since ϕ|U0 = 0, the fact that
F ∈ Sd′

(〈f0, f1, . . . , fr〉)G/N such that F (ϕ) �= 0 implies that F = c · fd′

0 + F̃ , where
c ∈ k \ {0} and F̃ is an element of the ideal (f1, . . . , fr)S(U). Note that as U = k[V ]Nd ,
there is a canonical map Sd′

(U)G/N → k[V ]Gdd′ , so we can take F as an element of k[V ]Gdd′ .
Clearly, F (v) = cf0(v)d′ �= 0 as fi(v) = 0 for i = 1, . . . , r by the definition of U0, showing
that δ(G, V ) � δ(N, V )δ(G/N). �
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Corollary 2.4. Let G be a linear algebraic group and let G0 denote the connected
component of the identity. Then we have

δ(G) � δ(G/G0)δ(G0).

In particular, δ(G) is finite if δ(G0) is finite.

Remark 2.5. If N is a normal subgroup of G, then δ(G/N) � δ(G), since any
G/N -module becomes a G-module via the map G → G/N .

Proof of Theorem 1.3. As tori are linearly reductive, δ(G0) = 1. Hence, we obtain
δ(G/G0) � δ(G) � δ(G0)δ(G/G0) = δ(G/G0), so δ(G) = δ(G/G0). As G/G0 is a finite
group, the value of δ(G/G0) is the size of a Sylow-p-subgroup by Theorem 1.1. �

Theorem 1.3 shows that there are many examples of infinite groups G with finite
δ(G) > 1; simply define G = P × T , where P is a finite p-group and T is a non-trivial
torus, then δ(G) = |P |. For a more interesting example, consider G = O2(k) with k an
algebraically closed field of characteristic 2. It is well known that G ∼= k

∗
� Z2, where Z2

denotes the cyclic group of order 2. Therefore, G0 ∼= k
∗ is a torus, and G/G0 ∼= Z2. By

Theorem 1.3, δ(O2(k)) = 2.

3. The δ-number for subgroups of GL2(k)

The goal of this section is to prove Theorem 1.4. Throughout we assume that k is a
field of characteristic p > 0. We begin by introducing another number associated with a
representation of a group, which is useful for finding lower bounds for both the δ-number
and the σ-number. Let G be a linear algebraic group and let V be a G-module. Let
v ∈ V . Then we set

ε(G, v) := inf{d ∈ N>0 | there exists f ∈ k[V ]Gd such that f(v) �= 0},

where the infimum of an empty set is infinity. Notice that if V G \ NG,V �= ∅, then

δ(G, V ) = sup{ε(G, v) | v ∈ V G \ NG,V },

and if V \ NG,V �= ∅, then

σ(G, V ) = sup{ε(G, v) | v ∈ V \ NG,V }.

For a submodule W ⊆ V we define

ε(G, W, V ) := inf{ε(G, v) | v ∈ W \ NG,V }

and we set
ε(G, V ) := ε(G, V G, V ) and τ(G, V ) := ε(G, V, V ).

It is immediately clear that for any linear algebraic group G we have δ(G, V ) � ε(G, V )
if V G \ NG,V �= ∅, and σ(G, V ) � τ(G, V ) if V \ NG,V �= ∅. In fact we have the following
slightly stronger result, which we mainly use for H a finite subgroup of G (the second
inequality is not used and is only stated for completeness).
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Lemma 3.1. Let G be a linear algebraic group, let V be a G-module and let H be
a subgroup of G. Then δ(G, V ) � ε(H, V ) if V G \ NG,V �= ∅, and σ(G, V ) � τ(H, V ) if
V \ NG,V �= ∅.

Proof. Choose a v ∈ V G \ NG,V such that δ(G, V ) = ε(G, v). Clearly, v ∈ V H \
NH,V , and hence δ(G, V ) = ε(G, v) � ε(H, v) � ε(H, V H , V ) = ε(H, V ). For the second
inequality choose v ∈ V \ NG,V such that σ(G, V ) = ε(G, v). As also v ∈ V \ NH,V ,
σ(G, V ) = ε(G, v) � ε(H, v) � ε(H, V, V ) = τ(H, V ). �

We believe a thorough investigation of the numbers ε(G, V ) when G is a finite group
may hold the key to proving Conjecture 1.2. In order to prove Theorem 1.4, we require
the following lemma, whose proof is very similar to the proof of [8, Proposition 2.5], but
the point of view is different. For any finite group G, let Vreg,G := kG denote its regular
representation.

Lemma 3.2. Suppose that G is a finite group and that P is a Sylow-p-subgroup of
G. If V = V n

reg,G is a free G-module over k, then ε(G, v) = |P | for any v ∈ V G \ {0}.

Proof. For each i = 1, . . . , n choose a permutation basis {vg,i | g ∈ G} of the ith
summand (which is isomorphic to Vreg,G), so that {vg,i | g ∈ G, i = 1, . . . , n} is a
basis of V . Let {xg,i | g ∈ G, i = 1, . . . , n} be the basis dual to our chosen basis
of V so that k[V ] = k[xg,i : g ∈ G, i = 1, . . . , n]. The fixed-point space of the ith
summand is spanned by vi :=

∑
g∈G vg,i, and therefore V G = 〈v1, . . . , vn〉. For a point

v =
∑n

i=1 λivi ∈ V G \ {0} with scalars λi ∈ k (not all of them zero), we will show
that ε(G, v) = |P |. We show first ε(G, v) � |P |, i.e. deg(f) � |P | for any homogeneous
f ∈ k[V ]G+ such that f(v) �= 0. Since V is a permutation module, such an f is a linear
combination of orbit sums of monomials

OG(m) :=
∑

m′∈G·m
m′,

where m is a monomial in k[V ]+. It follows that there exists a monomial m ∈ k[V ]+,
whose degree is the same as deg(f), such that OG(m)(v) �= 0. Now, if m′ ∈ G · m, then
m′ = g · m for some g ∈ G, and m′(v) = (g · m)(v) = m(g−1v) = m(v) since v ∈ V G.
Therefore,

OG(m)(v) = |G · m|m(v) = (G : StabG(m))m(v) �= 0.

This implies that StabG(m) contains a Sylow-p-subgroup of G, which without loss of
generality we can assume to be P . Therefore, if xg,i is any variable dividing m, then m is
also divisible by xg′g,i for every g′ ∈ P . In particular, since m is not constant, we obtain
deg(f) = deg(m) � |P | as required. Secondly, choose an i such that λi �= 0 and define
m :=

∏
g∈P xg,i. Then OG(m) is an invariant of degree |P | satisfying

OG(m)(v) = (G : StabG(m))m(v) = (G : P )λ|P |
i �= 0,

showing that ε(G, v) � |P |. �
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Proposition 3.3. Let p > 0 be a prime and let k be an algebraically closed field of
characteristic p. Let Gn = (Fpn , +) be the additive group of the finite subfield Fpn of k.
Let V be the Gn-module spanned by vectors X and Y such that the action ∗ of Gn on
V is given by

t ∗ X = X and t ∗ Y = Y + tX for all t ∈ Gn.

Then Spn−1(V ) is isomorphic to the regular representation of Gn.

Proof. We will show that S := {t ∗ Y pn−1 | t ∈ Gn} is a basis of Spn−1(V ), which
clearly implies that Spn−1(V ) ∼= Vreg,Gn . As |Gn| = pn equals the dimension of Spn−1(V ),
it is enough to show that the pn × pn matrix A with columns formed by the coordinate
vectors of the elements t∗Y pn−1, t ∈ Gn, with respect to the standard basis {Y pn−1−iXi |
i ∈ {0, . . . , pn−1}} of Spn−1(V ) has a non-zero determinant. Using the binomial theorem
and Lemma 3.4 we compute

t ∗ Y pn−1 = (Y + tX)pn−1 =
pn−1∑
i=0

(
pn − 1

i

)
Y pn−1−i(tX)i

=
pn−1∑
i=0

(−1)iY pn−1−i(tX)i (by Lemma 3.4)

=
pn−1∑
i=0

(−t)iY pn−1−iXi.

Thus, A = ((−t)i)i∈{0,...,pn−1}, t∈Gn
∈ k

pn×pn

, where we enumerated the pn columns of
A by the set Gn, which is harmless as the order of the columns only affects the sign of
the determinant of A. Note that A is the pn ×pn Vandermonde matrix of the pn different
elements of −Gn(= Gn), and hence det(A) �= 0, which proves the claim. �

In the preceding proof we used the following number-theoretic lemma, of which we
provide a proof for the convenience of the reader.

Lemma 3.4. Let p be a prime number and let 0 � k � pn − 1. Then
(

pn − 1
k

)
≡ (−1)k mod p.

Proof. We have (
pn − 1

k

)
=

k∏
m=1

pn − m

m
.

We show that the reduced fraction of each factor has a denominator coprime to p, and
equals −1+pZ if computed in the field Z/pZ. Because of this, for 1 � m � k � pn−1 write
m = prs, where s and p are coprime. Then r < n and (pn − m)/m = (pn − prs)/prs =
(pn−r − s)/s. In the field Z/pZ, the last fraction equals −1. �
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Having set up all the necessary machinery, we are now in a position to prove Theo-
rem 1.4. Let G be a subgroup of GL2(k) containing an infinite unipotent subgroup U .
As U is conjugate in GL2(k) to the subgroup of unipotent upper triangular 2 × 2 matri-
ces (see [11, Corollary 17.5]), we can replace G by a conjugate subgroup and assume
that U = {ut | t ∈ k}, where ut = ( 1 t

0 1 ) ∈ G. Note that U is isomorphic to the addi-
tive group of the ground field Ga = (k, +). Let V denote the restriction of the natural
two-dimensional GL2(k)-module to G. We may choose a basis {X, Y } of V such that

ut ∗ X = X and ut ∗ Y = Y + tX for all t ∈ Ga.

Theorem 1.4 follows immediately from the following proposition.

Proposition 3.5. For any integer n set Vn := Homk(Spn−1(V ), Spn−1(V )). Then
δ(G, Vn) � pn.

Proof. First note that V G
n \ NG,Vn

�= ∅. To see this consider the identity homomor-
phism id: Spn−1(V ) → Spn−1(V ), which is an element of V G

n . The determinant map
det : Vn → k is an element of k[Vn]G, and det(id) = 1 �= 0, so id ∈ V G

n \ NG,Vn
. There-

fore, we can apply Lemma 3.1 to G and its finite subgroup Un := {ut | t ∈ Fpn}, and
hence δ(G, Vn) � ε(Un, Vn). Note that Un

∼= (Fpn , +). By Proposition 3.3, Spn−1(V ) is
a free Un-module. Recall that tensoring a free/projective module with any other module
again yields a free/projective module (see [1, p. 47, proof of Lemma 7.4]), and hence
Vn = Homk(Spn−1(V ), Spn−1(V )) ∼= Spn−1(V ) ⊗ (Spn−1(V ))∗ is also a free Un-module.
Using Lemma 3.2 we obtain

δ(G, Vn) � ε(Un, Vn) = |Un| = pn,

as required. �

We record the following observation for later use.

Corollary 3.6. Let G be an infinite connected unipotent algebraic group over an
algebraically closed field of positive characteristic. Then δ(G) = ∞.

Proof. It is well known that such a group G contains a closed normal subgroup N

such that G/N ∼= Ga. We can embed Ga in GL2(k) as above. Now, using Remark 2.5
and Theorem 1.4, we have δ(G) � δ(G/N) = δ(Ga) = ∞. �

Combining Theorem 1.4 and Proposition 2.3 leads to more examples of groups with
infinite δ-value: whenever δ(G) = ∞ and N is a closed normal subgroup of G such that
G/N is reductive, either δ(N) = ∞ or δ(G/N) = ∞.

Example 3.7. Take G = GL2(k) and consider its centre Z(G) = {aI2 | a ∈ k \ {0}}.
As a torus, Z(G) is linearly reductive, and hence δ(Z(G)) = 1. Therefore, δ(PGL2(k)) =
δ(G/Z(G)) = ∞.
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4. The σ-number of infinite groups

In this section we prove Theorems 1.5 and 1.6. Some of the groundwork was done in [8].
In particular, we recall the following result.

Proposition 4.1 (Elmer and Kohls [8, Corollary 3.13]). Let G be a linear
algebraic group with G0 the connected component of G containing the identity. We have
the inequalities

σ(G0) � σ(G) � (G : G0)σ(G0).

In particular, σ(G) and σ(G0) are either both finite or both infinite.

The following proposition is key to the proofs.

Proposition 4.2. Let G be a linear algebraic group over a field k of arbitrary char-
acteristic. Suppose that G contains a non-trivial torus. Then σ(G) = ∞.

Proof. We exhibit a sequence of G-modules {Um | m ∈ N} such that σ(G, Um) � m+1
for all m ∈ N. By assumption, G contains a subgroup T ∼= k

∗, so there is an isomorphism
k

∗ → T , t �→ at. As a linear algebraic group, G can be considered as a closed subgroup
of some GLn+1(k), and then V = k

n+1 becomes a faithful G-module. We can choose a
basis {v0, v1, . . . , vn} of V on which T acts diagonally, and as T acts faithfully, it acts
non-trivially on at least one basis vector, say v0. Therefore, for some r ∈ Z \ {0}, we
have at ∗ v0 = trv0 for all t ∈ k

∗. Write {y0, y1, . . . , yn} for the basis of V ∗ dual to
{v0, v1, . . . , vn}. A basis for Sm(V ∗) is then given by the set of monomials

{
ye :=

n∏
i=0

yei
i ∈ Sm(V ∗) | e ∈ N

n+1
0 , |e| :=

n∑
i=0

ei = m

}

of degree m. Furthermore, let

{Ze ∈ Sm(V ∗)∗ | e ∈ N
n+1
0 , |e| = m}

denote the corresponding dual basis of Sm(V ∗)∗, i.e. Ze(ye′
) = δe,e′ (the Kronecker-

delta). Now we set Um := V ⊕ Sm(V ∗). We may identify k[Um] with

S(U∗
m) = S(V ∗ ⊕ Sm(V ∗)∗) = k[y0, y1, . . . , yn][Ze : e ∈ N

n+1
0 , |e| = m].

Consider the point v := v0 + ym
0 ∈ Um. We claim that v �∈ NG,Um , and we will show that

ε(G, v) = m + 1. As a consequence, σ(G, Um) � ε(G, v) = m + 1, finishing the proof. To
see this, we define the polynomial

f :=
∑

e∈N
n+1
0 , |e|=m

yeZe ∈ k[Um],

which can be interpreted as the identity map id: Sm(V ∗) → Sm(V ∗), and is hence an
invariant, i.e. f ∈ k[Um]G. Note that here we used the isomorphism

Homk(Sm(V ∗), Sm(V ∗)) ∼= Sm(V ∗) ⊗ Sm(V ∗)∗
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and that
k[Um] ∼= S(V ∗ ⊕ Sm(V ∗)∗) ∼= S(V ∗) ⊗ S(Sm(V ∗)∗)

contains a direct summand isomorphic to Sm(V ∗) ⊗ Sm(V ∗)∗. Clearly, f(v) = 1 �= 0,
which shows that v �∈ NG,Um . Furthermore, we have deg(f) = m+1, so we have ε(G, v) �
m+1. It remains to show that ε(G, v) � m+1. Suppose that a homogeneous f ′ ∈ k[Um]G+
also satisfies f ′(v) �= 0; we will show that deg(f ′) � m + 1. Observe that a fortiori we
have f ′ ∈ k[Um]T+. Therefore, f ′ can be written as a sum of T invariant monomials, so
in particular there exists a T -invariant monomial h (of the same degree as f ′) satisfying
h(v) �= 0. As v = v0 + ym

0 , the only variables that can appear in h are those dual to v0

and ym
0 , i.e. the variables y0 and Ze0 with e0 := (m, 0, 0, . . . , 0). We thus have h = yk

0Zl
e0

with k, l ∈ N0 and deg(h) = k + l > 0. On the other hand, since h ∈ k[Um]T , we have

yk
0Zl

e0
= h = at ∗ h = (at ∗ y0)k(at ∗ Ze0)

l = (t−ry0)k(tmrZe0)
l

= tmrl−kryk
0Zl

e0
for all t ∈ k

∗,

i.e. r(ml − k) = 0. Since r �= 0 and k + l > 0, it must be the case that k = ml � m and
l � 1. Therefore, deg(f ′) = deg(h) = ml + l � m + 1, as required. �

Corollary 4.3. Suppose that G is a linear algebraic group such that σ(G) is finite.
Then G0 is unipotent, i.e. either G is finite or G0 is infinite unipotent.

Proof. If σ(G) is finite, σ(G0) is finite by Proposition 4.1. It follows from Proposi-
tion 4.2 that G0 does not contain any non-trivial torus, i.e. the rank of the connected
group G0 (the dimension of a maximal torus) is zero, and hence G0 is unipotent by [11,
Exercise 21.4.1]. �

Specializing to the case in which k is a field of characteristic zero, this completes the
proof of Theorem 1.6. To finish the proof of Theorem 1.5, it remains to show that over
a field of positive characteristic, if G0 is infinite unipotent, we have σ(G) = ∞. This
follows from σ(G0) � σ(G) (Proposition 4.1), the inequality δ(G0) � σ(G0) and from
δ(G0) = ∞ (Corollary 3.6). The following proposition, which provides some examples
of their own interest, gives a more direct proof that δ(Ga) = σ(Ga) = ∞ for a field of
positive characteristic. Additionally, it gives another proof of βsep(Ga) = ∞ for such a
field, which is also shown in [13, Proposition 4] (see also the following remark for more
details). As before, it follows that δ(G) = σ(G) = ∞ for any infinite unipotent connected
group with a normal subgroup N such that G/N ∼= Ga. We mention that Ga-modules
of the type as in the proposition are also investigated in [9,17]. The generators of the
considered invariant ring would also follow from the latter paper, but we give a self-
contained argument.

Proposition 4.4. Assume that k is a field of characteristic p > 0 and let Vn = k
3

(n � 1) be the Ga = (k, +)-module given by the representation

Ga �→ GL3(k), t �→

⎛
⎜⎝

1 0 0
−t 1 0

−tp
n

0 1

⎞
⎟⎠ .
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If we write k[Vn] = k[x0, x1, x2], then we have

k[Vn]Ga = k[x0, x2x
pn−1
0 − xpn

1 ] and δ(Ga, Vn) = σ(Ga, Vn) = pn.

Consequently, δ(Ga) = σ(Ga) = ∞.

Proof. The action ∗ of Ga on k[Vn] is given by

t ∗ f(x0, x1, x2) = f(x0, x1 + tx0, x2 + tp
n

x0) for t ∈ Ga, f(x0, x1, x2) ∈ k[Vn].

If f is an invariant, the equation t ∗ f = f for all t ∈ Ga implies that for an additional
independent variable t the equation

f(x0, x1, x2) = f(x0, x1 + tx0, x2 + tp
n

x0)

holds in the polynomial ring k[Vn][t]. Substituting t := −x1/x0 leads to

f(x0, x1, x2) = f

(
x0, 0, x2 − xpn

1

xpn

0
x0

)
= f

(
x0, 0,

x2x
pn−1
0 − xpn

1

xpn−1

0

)
. (4.1)

We have to show that k[Vn]Ga ⊆ k[x0, x2x
pn−1
0 − xpn

1 ], as the reverse inclusion is checked
immediately. For an f ∈ k[Vn]Ga write f =

∑m
k=0 ak(x0, x1)xk

2 with polynomials ak ∈
k[x0, x1]. Equation (4.1) implies that

f =
m∑

k=0

ak(x0, 0)
(

x2x
pn−1
0 − xpn

1

xpn−1
0

)k

=
m∑

k=0

bk(x0)
(xpn−1

0 )k
(x2x

pn−1
0 − xpn

1 )k (4.2)

with polynomials bk(x0) := ak(x0, 0) ∈ k[x0]. Substituting x2 := 0 leads to

f(x0, x1, 0) =
m∑

k=0

bk(x0)
(xpn−1

0 )k
(−xpn

1 )k ∈ k[x0, x1],

which implies that ck(x0) := bk(x0)/(xpn−1
0 )k is actually a polynomial, i.e. an element of

k[x0]. Resubstituting in (4.2) implies that

f =
m∑

k=0

ck(x0)(x2x
pn−1
0 − xpn

1 )k ∈ k[x0, x2x
pn−1
0 − xpn

1 ],

as desired. It follows that σ(Ga, Vn) � pn and NGa,Vn = {(0, 0, a2) ∈ Vn | a2 ∈ k}, and
clearly we have V Ga

n = {(0, a1, a2) ∈ Vn | a1, a2 ∈ k}. Now the point v := (0, 1, 0) ∈ V Ga
n \

NGa,Vn
satisfies x0(v) = 0 and (x2x

pn−1
0 − xpn

1 )(v) = −1, which shows that δ(Ga, Vn) =
σ(Ga, Vn) = pn. �

Remark 4.5. Theorems 1.5 and 1.6 were proved by ‘elementary’ means, in the sense
that we did not use any geometric invariant theory. We can use these results to give
an elementary proof of [13, Theorem A], which states that βsep(G) is finite if and only
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if G is finite. That βsep(G) is finite for a finite group G is well known (see [5, Corol-
lary 3.9.14]), so it remains to prove the converse. Suppose that βsep(G) is finite. The
inequality σ(G) � βsep(G) implies in particular that σ(G) is finite, so if k has character-
istic p > 0, we are done, by Theorem 1.5. Otherwise we conclude that G0 is unipotent
from Theorem 1.6. Now the results βsep(Ga) = ∞ and βsep(G0) � βsep(G), which are
both proven in elementary fashion in [13, Proposition 5 and Theorem B], imply that
βsep(G) = ∞ when G0 is an infinite unipotent group. Hence, if βsep(G) < ∞, G0 and G

are finite.

We do not know very much about σ(G) when G is an infinite unipotent group over
a field of characteristic zero. Unlike βsep(G), it is not always infinite, as the following
surprising result shows.

Proposition 4.6. Assume that k is a field of characteristic 0. Then σ(Ga) = 2.

Proof. In [7, § 3] we give for any Ga-module V an explicit set of invariants of degree
at most 2 that cuts out the null-cone. It follows that σ(Ga) = 2. �

We conclude with an example that shows that σ(Ga × Ga) � 3.

Example 4.7. Let k be an algebraically closed field of characteristic zero and let
V = k

4. Consider an action of G := Ga × Ga defined as follows: (s, t) ∈ k × k acts on V

as multiplication by the matrix
⎛
⎜⎜⎜⎝

1 0 0 0
−s 1 0 0

1
2s2 − t −s 1 0

− 1
6s3 + st 1

2s2 − t −s 1

⎞
⎟⎟⎟⎠ .

Let {x0, x1, x2, x3} denote the basis of V ∗ dual to the standard basis of V . Then
we claim that the ring of invariants k[V ]G is generated by the invariants x0 and f :=
x3

1 − 3x0x1x2 + 3x2
0x3. Under this assumption we have that the point v = (0, 1, 0, 0) ∈ V

is not contained in the null-cone, since f(v) = 1 �= 0, and is not separated from zero by
any invariant of degree less than 3, which shows that σ(G, V ) = 3, and hence σ(G) � 3.

To prove the claim, consider the subgroup H := {(0, t) ∈ G | t ∈ k} of G. The action
of H on k[V ] is given by

(0, t) ∗ x0 = x0,

(0, t) ∗ x1 = x1,

(0, t) ∗ x2 = x2 + tx0,

(0, t) ∗ x3 = x3 + tx1 for all t ∈ k.

This Ga-action corresponds to the direct sum of two copies of the natural representation
of Ga, and the invariant ring is well known to be given by k[V ]H = k[x0, x1, x0x3 −x2x1].
Crucially, this is a polynomial ring in three variables. Now, k[V ]G = k[x0, x1, x0x3 −
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x2x1]G/H is isomorphic to the ring of invariants of a nonlinear action of Ga on a poly-
nomial ring in three variables; by a theorem of Miyanishi (see [10, Theorem 5.1]) this
ring of invariants is again polynomial, with two generators. Therefore, k[V ]G is a graded
polynomial ring with two generators. One may readily check that x0 is the only invariant
of degree one, and as f is an invariant of smallest possible degree not contained in k[x0],
we see that k[V ]G = k[x0, f ] as claimed.
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