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Abstract

In this paper, we consider a number of practical and theoretical aspects of the Wilkie asset model, many
of which apply to any similar model used for simulation over time. We discuss the experience of the
Wilkie model since 2009. We then discuss the variables that can form the working set, the input set and
the output set, all of which may be different. There are different ways of simulating, either in a linear
parallel structure or in a branching tree structure. We then discuss the initial conditions required, which
may be market conditions at some date, or may be “neutral” initial conditions, which may be defined in
different ways. One method of generating initial conditions would be to simulate them randomly, from
their own long-term distribution, and we show how to calculate the means, variances and covariances
of these. What we call “neutralising parameters” may have a role, and we discuss how these may be
found. Finally, we suggest using additional information in the first periods of the simulation to adjust
the formulae or parameters for a limited “select period”.
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1. Introduction

1.1. In Part 1 of this series of papers (Wilkie et al., 2011), we updated the parameters of the Wilkie
model to 2009, slightly modifying some parts of the model. We now have available 5 more years of
June data, and we start in section 2 by considering how the model has fared in this period. We then
in section 3 discuss the variables that can form the working set, the input set and the output set for a
simulation, all of which may be different. There are different ways of simulating, either in a linear
parallel structure or in a branching tree structure.

1.2. In section 4, we discuss the initial conditions required, which may be market conditions at some
date, or may be “neutral” initial conditions, which may be defined in different ways, and are
discussed in sections 5 and 6. In section 6 and Appendix, we give the long-term means, variances and
covariances of the variables and initial condition. What we call “neutralising parameters” may have
a role, and in section 7 we discuss how these may be derived. Finally, in section 8 we suggest using
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additional information in the first periods of the simulation to adjust the formulae or parameters for
a limited “select period”. Although we are mainly discussing the Wilkie model, many of the aspects
apply to any similar model used for simulation over time.

2. The Model and the Experience Since 2009

2.1. It is convenient to start by repeating, with minimum explanation, the formulae for the model
and the parameter values suggested in 2009. The variables considered at any time # are:

() a retail prices index (or some other index of consumer prices)
I(2) = InQ(#) -InQ(¢-1) the annual rate of price inflation

W(z) an index of personal earnings or wages

J(@#) = InW(t) -InW(z-1) the annual rate of wage inflation

P(z) a price index of ordinary shares, calculated as D(2)/Y(z)

Y(z) the dividend yield on an index of ordinary shares

D(t) the corresponding dividend index = P(z) x Y(¢)

K(t) = InD(t) -InD(z-1) the annual rate of dividend increase

C(z) an indicator of long-term yields on government stock
B(2) an indicator of short-term interest rates
R(z) an indicator of real yields on index-linked stocks

Note that although rates such as Y(z), C(¢), B(t) and R(z) are often popularly expressed as percentages
per year and have varying frequencies of compounding, we process them always per unit as decimal
fractions, as we do with I(#), J(#) and K(#), which, however, are continuously compounded annual rates.

2.2. For any variable modelled, denoted X, the following holds, except where especially noted in section 8:
XE(t) = XSD.XZ(t)

where XZ(t) has zero mean and unit standard deviation. We have generally assumed that each XZ(z) is
unit normal, but the residuals are in many cases clearly not normally distributed; we intend to discuss this
point further in a later part of this series.

For several variables we use XN(¢) = X(t) - XMU, so that each XN has zero mean. We also use a
suffix L to denote the logarithm of a variable, so we use QL(¢) = InQ(z), WL(#) = InW(z), etc.; we
use this also for certain parameters, so YMUL = InYMU, etc.

2.3. The basic formulae, expressed in a sequence for simulation, are, for inflation, QO(#)

QE(7) = OSD.QZ(z)
IN(2) = QA.IN(t—1)+ QE(2)
I(t) = OMU+IN(t)
QL(t) = QL(t=1)+1(z)
Q(t) = exp(QL(2))
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Parameters suggested in Part 1 were:

OMU = 0.043; QA = 0.58; OSD = 0.04

2.4. For wages, W(t):

WN(t) = WA.WN(t — 1)+ WE(t)
J(t) = WW1LI()+ WW2.I(t — 1)+ WMU+ WN(z)
WL(t) = WL(t —1)+](¢)
W(t) = exp(WL(1))

Parameters suggested in Part 1 were:

WA =0, WW1 =0.60; WW2 =0.27, WMU = 0.020; WSD = 0.0219

As the model seems satisfactory with WA = 0, we could omit WN(z) entirely, but it does also seem
possible that WA might have a use at a later period or in another economy, so it could be retained.

2.5. For share dividend yields, Y(z):
YN(¢) = YA.YN(z — 1)+ YE(¢)
YL(¢) = YW.I(¢)+ YMUL+ YN(t)
Y(¢) = exp(YL(t))
Parameters suggested in Part 1 were:

YW =1.55; YMU = 0.0375; YA = 0.63; YSD = 0.155
YMUL = —3.283414

2.6. For the share dividend index, D(z):

Parameters suggested in Part 1 were:
DW =0.43;, DD =0.16; DX =1—-DW = 0.57; DMU = 0.011; DY = —0.22;
DB =0.43; DSD = 0.07

The share price index, P(#), can be calculated as D(¢)/Y(¢) or by PL(¢) = DL(¢) - YL(z).
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2.7. For long-term interest rates, C(¢):

Parameters suggested in Part 1 were:
CD =0.045; CW =1; CMU =2.23%; CA=0.92; CY =0.37; CSD = 0.255
CMUL = —3.803169

Note that the constraint on CM(¢) has to be applied differently when looking backwards than when
looking forwards. When processing past data, the values of C(¢z) are given. CM(#) is our estimate of
the market’s estimate of future inflation rates, based on an exponentially weighted moving average of
past inflation rates. CM() is deducted from C(#) to give the implied “real” rate, CR(¢). If CM(z) is
bigger than C(#), then the calculated value of CR(t) becomes negative. As we wish to model InCR(z),
a negative value for CR(¢) is undesirable. So, for the past, we reduce the value of CM(¢) in any year so
that C(¢) - CM(¢) is no smaller than some minimum value, denoted CMIN, which we set at 0.005 or
0.5%. Thus, for analysing past data we have (as given in Part 1):

CM(t) = Min(CD.I(¢)+ (1 — CD).CM(z — 1), C(¢t) — CMIN)
For future simulation, CR(¢) is calculated so that it cannot be negative, but if CM(t) were to be
negative to too great an extent, which is possible in the simulations, though it has not happened in
the past data period we have used, then the calculated value of C(¢) = CM(¢) + CR(¢) might be
negative. This also is undesirable, so we would increase CM(z) so that C(¢) is no less than some

minimum, also called CMIN, and also set at set 0.005 or 0.5%. Thus, for the future, the formula for
CM(2) is:

CM(t) = Max (CD.I(t) + (1 — CD).CM(t — 1), CMIN—CR(#))

Strictly, this is a different constraint from the first one, and the values of CMIN could be different, so
perhaps we should call them CMIN1 and CMIN2. In practice there is no confusion.

In both cases we have chosen to alter the value of CM(#) to be carried forward; one alternative would
have been to alter the value of CR(¢#) and carry the altered value forward; another would have been
to adjust the values of CR(z) or C(¢) as appropriate without altering the carried forward values of
CM(t) and CR(t). We consider that our choice is the best of these. We are sorry that all this was not
made clear in Part 1, where only part of the story was explained.

2.8. For short-term interest rates, B(z):
BN(t) = BA.BN(t — 1)+ BE(t)
BD(t) = BMU+BN(t)
B(t) = C(t).exp(—BD(t))

4
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Parameters suggested in Part 1 were:
BMU =0.17; BA=0.73; BSD = 0.3

2.9. For “real” interest rates on index-linked stocks, R(z):
RN(t) = RA.RN(t—1)+ RBC.CE(t) + RE(z)
R(t) = RMU+RN()
Parameters suggested in Part 1 were (see Corrigenda):
RMU =3%; RA =0.95; RBC = 0.008; RSD = 0.003

2.10. In Part 1, we showed how to calculate one-step-ahead forecasts for each year on the basis of the
previous year, and also multi-step forecasts, in which forecasts for future years are calculated on the
basis of the experience up to some intermediate year. In this case we can calculate forecast one-step-
ahead values for 2010-2014, each on the basis of the data for the previous year and the data for
previous series in the same year, and also forecast multi-step values for these years, all on the basis of
the data only up to 2009. In each case the forecast values can be compared with the actual experience
to see how well the model is behaving relatively to the actual data. We have made these comparisons.
We do not give full details of them all, but we summarise them below.

2.11. The one-step-ahead forecasts for I(¢), Y(¢), K(t), C(t), R(t) and I(¢) with the ARCH model show
nothing surprising. We compare the differences between the observed figures for each year and those
expected by the model, QE(z), etc., each divided by the corresponding standard deviations, QSD,
etc., giving values of QZ(#), etc. These differences should be distributed as unit normal, so the sums
of their squares, which we denote X?, should be distributed as y* with 5 d.f. In Table 1 we show these
values, along with the corresponding probabilities, the p-values from the y* test.

2.12. In Table 1, we see that the values of X? for WZ and BZ are larger than for the other series. In
Table 2, we show the details for WZ, assuming Model W1 (with WA = 0 — see Part 1, {3.5). For
each year the values of WE(#) and hence WZ(¢) are negative, and the values of WZ(¢) are in each case
between -2 and -1. Thus, the wage index has increased by less than would have been expected given
the rates of inflation experienced the structure and parameters of the model. §,_; means all the data
given at time ¢- 1.

2.13. In Table 3, we show the corresponding figures for B. Bank Base Rate in the United Kingdom,
which we use as an indicator of short-term interest rates, was reduced to 0.5% in March 2009, and it

Table 1. Values of X* and probabilities from a y* test for one-step-ahead forecasts from 2009 to 2014.

x? P

oz 1.2889 0.9361
\\ V4 13.0766 0.0227
YZ 5.8144 0.3247
DZ 3.1633 0.6748
CZ 8.5096 0.1303
BZ 12.1667 0.0326
RZ 6.0164 0.3046
QOZ with ARCH 1.3965 0.9247

s
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Table 2. Comparison of actual and expected values of J(#), 2009-2014 conditional on & _; and I(¢), using

Model W1.

Year 1(2) J() E[J()9,_1 and I(2)] WE(t) WZ(1)
2009 -0.0158 0.0196

2010 0.0489 0.0143 0.0451 -0.0308 -1.4064
2011 0.0483 0.0211 0.0622 -0.0412 -1.8796
2012 0.0277 0.0193 0.0497 -0.0304 -1.3881
2013 0.0321 0.0095 0.0468 -0.0373 -1.7018
2014 0.0261 0.0081 0.0443 -0.0363 -1.6561
Total -0.1759 -8.0320
Twz? 13.0766

Table 3. Comparison of actual and expected values of BD(z), 2009-2014, conditional on &,_; and C(%).

Year B(t) (%) BD(t) E[BD(t)I,_, and C(2)] BE(t) BZ(t)
2009 0.5 -2.1725

2010 0.5 -2.1114 -1.6318 -0.4796 -1.60
2011 0.5 -2.1306 -1.5872 -0.5434 -1.81
2012 0.5 -1.8342 -1.6012 -0.2329 -0.78
2013 0.5 -1.9573 -1.3849 -0.5724 -1.91
2014 0.5 -1.9081 -1.4747 -0.4335 -1.44
Total -2.2617 -7.54
*BZ? 12.17

has remained there since then. We commented in Part 1 on the exceptionally low value of B(#) and
hence BD(¢) in June 2009. The values of long-term yields, indicated by C(t), have varied, and so
therefore has BD(t). However, the model “expects” BD(¢) and hence also B(t) to revert to more like
their “normal” values, and in each year they have not done so. Hence the value of X is large, at
12.1667, with a probability of 0.0326; this is not too extreme, but is nevertheless worth comment.

2.14. In Part 1, we made the suggestion that practitioners might like to take the value of QMU as
0.025 for the future, being more in line with the policies of the UK government and the Bank of
England. In fact the one-step-ahead results show a rather lower value of X* at 1.2184, with a
correspondingly higher value of p(y?) of 0.9048; but these values are also quite unremarkable.

2.15. In Table 4, we show results of the 5-year forecast, in which the values of different variables in
2014 are compared with those expected in 2009. All are unexceptional, except for B(t), which again
is shown to be significantly lower than might have been expected in 2009, even allowing for the fact
that its value was 0.5% even then. However, although it has been unusual in recent years for Bank
Base Rate to remain unchanged for so long as it has now, we should note that its predecessor, then
called Bank Rate, remained at 2% from June 1932 to November 1951, except for 2 months in mid-
1939, so long periods of stability are not unknown.

2.16. With extra data it is possible to calculate the new maximum likelihood estimates of the
parameter values. We have done this, but the results are so little different from those given in Part 1
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Table 4. Values of xZ(2014), that is, the error in forecasting the Z residual, and the maximum value of IxZ ()l
and the year in which it occurred, for multi-year forecasts from 2009.

Max IxZ(t)! Year xZ(2014)
OL 1.0008 2010 0.2705
WL -0.9426 2014 -0.9426
Y -1.4552 2011 -0.5859
DL 0.6782 2013 0.4610
PL 1.2111 2011 0.7164
C -2.0244 2012 -1.3911
B -3.0808 2014 -3.0808
R -2.0871 2012 0.9683
QO with ARCH 0.9478 2010 0.3637

that we think it would be confusing rather than helpful to quote them, though the model for B may
require reconsideration in due course.

3. Different Sets of Variables

3.1. Any model like the Wilkie model is designed for use by random simulation, nowadays often
under the name of an “economic scenario generator”. Often one starts at some simulation time
t = 0, generates a set of random numbers from some distribution from which random innovations
can be calculated and calculates the values of suitable variables for the next time step, ¢ = 1. This is
continued step by step to some final time ¢ = T. We can carry out S similar simulations, all starting at
¢t = 0 and continuing to ¢ = T, in parallel. We would have S different end-points and a total of Sx T
simulated “nodes”, excluding the first starting node at ¢ = 0. If we chose T = 10 and S = 100,000,
we would have one million nodes.

3.2. An alternative method that may be useful in some applications is to use a branching or tree
structure. One simulates from ¢ = 0 to ¢ = 1 say ten times. From each of the end-points at # = 1 one
simulates say ten times to ¢ = 2, giving now 100 nodes. From each of these one can simulate again
ten times to ¢ = 3, following this up with a narrower tree, where only two new branches are
simulated at each time step. If this continues to ¢ = 10, we would have 10°x2” = 128,000 end-
points, and have 255,100 simulated nodes.

3.3. If we use a binary tree with two branches at each node we would have only 1,028 end-points
over 10 years, and 2,046 simulated nodes. This seems to us rather sparse, though there are some
situations where a binary pattern may have its advantages. Using three branches at each node gives
us 59,049 end-points and 88,572 nodes. Using four gives us 1,048,576 end-points and 1,398,100
nodes. As the required time for a simulation is probably proportional to the number of nodes
simulated, this is not much more costly than 100,000 parallel simulations, and the much larger
number of end-points may have its advantages.

3.4. In order to simulate in a tree structure it is necessary to hold enough data to go back to earlier
nodes in the tree. A convenient method of simulating a tree structure might be to do one linear
simulation from ¢ = 0 to ¢ = T, counting this at taking the first (or “left-hand”) branch at each node.
We might denote this as “1, 1,..., 1, 1” with T sequential numbers. We then back up one node to
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t = T-1 and simulate a second branch from T-1 to T giving the sequence “1, 1, ..., 1, 2”. If we are
following our tree as defined in 3.2 we would then back up two steps to ¢ = T-2, and add
sequences ending in “..., 2, 1” and “..., 2, 2”. We carry on moving backwards and forwards until
we end up with the sequence “10, 10, 10, 2, ..., 2, 2”. At any time we need the data for all previous
nodes, so that we can back-track to that node and start again from there. We call the set of data
required for each node the “working set”; it may also be called the “state space” but this has a wider
connotation. In a purely linear simulation the same data is necessary, but it is not so essential to
identify it and to store it.

3.5. There may be a choice of exactly what variables are in the working set. They are most con-
veniently chosen to make the calculations easier, but the variables are not necessarily the same as
those that are convenient to pass in as inputs at time ¢ = 0 to establish the starting point, nor are they
necessarily those that are most convenient to provide as output.

3.6. We exemplify this by discussing the model for inflation:

OE(t) = OSD.QZ(1)

IN(t) = QAIN(t—1)+ QE(t)
I(t) = OMU +IN(t)

OL(t) = OL(t-1)+1(t)

O(t) = exp(QL(1))

We can see that if we hold the values of IN(¢) and QL(#) for time ¢ we can readily progress to time
t+1. We simulate a new value for QZ(¢+ 1), hence calculate QE(¢+ 1), IN(2+1) and I(¢+ 1). We can
then put:

OL(t+1) = QL(#)+I(z+1)

from which we can, if we wish, get O(¢+1), but we use QL(¢#) in the working set. We could
alternatively use in the working set I(¢) instead of IN(¢) and Q(#) instead of QL(#), but this would
require more calculations in each step, and with very large numbers of steps to calculate, any small
efficiency is valuable.

3.7. Although it is convenient to use IN(#) and QL(z) in the working set, these are not convenient for
the initial input, for which I(0) and Q(0) are better. Q(~1) could be used instead of I(0) because 1(0)
can easily be calculated as an( )=1InQ(-1), but we prefer in general to use I(0). The value of O(0)
can be chosen arbitrarily. Q(#), like W(t), P(¢) and D(z), is a ratio scale, in that all that are interesting
are the various ratios Q(#1)/O(to) or equivalently InQ(#;) - InQ(#), and values derived from these.
One could choose O(0) = 1 or 100, or the value of the current price index, as desired.

3.8. It is worthwhile being economical with the output. What is eventually needed will depend very
much on the application that is being considered, but if one wishes to store the output for each step
of each simulation, then the quantity can be very large. In this case, values of Q(t), for all steps
(including ¢ = 0) give the minimum that is needed, because values of I() for each step can be
calculated from these. However, the ultimate application may not wish to retain either of these
variables, but just to use them for some other purpose and then discard them; or it may need other
variables from the model, and not need a price index or a rate of inflation at all.
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Table 5. Suggested input sets, working sets and output sets of variables.

Variable Input set Working set Output set
0 0(0), 1(0) IN(), OL() o
Wif WA=0 W(0) WL(z), I(t-1) W(z)
If WA#0 J(0), I(-1) WN(z) W(z)
Y Y(0) YN(z) Y(z)
D D(0) or P(0) DM(#), YE(t-1) D(¢), P()
DM(0), DE(0) DE(t-1), DL(t)
YE(0) or Y(-1)
C C(0), CM(0) CM(t), CN(z) C(z)
B B(0) BN(z) B(?)
R R(0) RN(?) R(?)

3.9. It would be tedious to go through every variable in the same way, so we just show in Table 5 our
suggested sets of input variables, working variables and output variables for each part of the model.
In each line only variables that are additional to those already stated are noted.

3.10. Some comments are necessary. For the wages model we need both I(z), which we get from
IN(2), and also I(¢ - 1), which therefore needs to be held as part of the time # working set, so we denote it
also as IP(¢#) (P for “previous” and we put YEP() = YE(¢-1), etc.). If WA is included at a non-zero
value, so that there is some autoregression in the “real” wages increments, then we need to calculate
WN(0) for which we need both J(0) and I(-1), that is, inflation in the year one previous to the last year
at time 0. For the dividend model we need a starting value for D(0); we can either insert this directly, in
which case the value of P(0), the share price index, can be calculated from it and Y(0), or we can input
P(0) and calculate D(0) from it. For this model we also need YE(0) to calculate K(1); this can either be
given directly or can be calculated if Y(-1) is given. More complicated are the long-run moving-average
terms, DM(0) and CM(0). To calculate these we need a long run of past values of inflation. Likewise,
the value of DE(0) depends on a long-run calculation based on past values of Q(.), D(.) and Y(.). To
help potential users of the model we show certain of these values in section 4; but these are based on the
2009 parameters, and would be altered if another set of parameter values were to be used.

4. Initial Conditions

4.1. We have shown in section 3 the set of variables that is needed for initialising any set of
simulations, what we have called the “initial conditions”. These can be the market conditions at any
chosen date, or any arbitrary set of values, or a set of “neutral initial conditions”, which we discuss
in sections 5 and 6. We start by showing in Tables 6-8 the sets of market initial conditions for the
United Kingdom for the end of each month during 2013 and 2014.

4.2. The index used for prices is the UK Index of Retail Prices. Advantages of this over the Consumer
Price Index (CPI), which is also published, are that the published value is never revised, so that by the
middle of the month, after that to which it applies, the value is known. For wages we now use the UK
index of average weekly wage rates. This may be less appropriate for actuarial uses, such as the
liabilities of salary-based pension funds or the expenses of insurance companies, than the formerly
published index of average monthly earnings. The different UK wages indices are frequently revised
and rebased, which requires us to alter the chain-linking with earlier indices. Thus, the values given
here may not be consistent with the values published in Part 1.
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Table 6. Initial conditions for the retail prices and wages models in 2013 and 2014.

Month end 0(0) 10) W(0) 7(0) 1(-1)

January 2013 245.8 0.032248 146.7 0.010278 0.038549
February 2013 247.6 0.031592 147.1 0.007506 0.036507
March 2013 248.7 0.032281 147.3 0.006129 0.035076
April 2013 249.5 0.028457 148.3 0.013578 0.033973
May 2013 250.0 0.030872 148.1 0.010862 0.030153
June 2013 249.7 0.032149 148.2 0.009492 0.027675
July 2013 249.7 0.030909 148.3 0.009485 0.031043
August 2013 251.0 0.032391 148.2 0.006091 0.028806
September 2013 251.9 0.031045 148.3 0.008125 0.026137
October 2013 251.9 0.025328 148.6 0.010826 0.031434
November 2013 2521 0.026122 148 4 0.006761 0.029335
December 2013 253.4 0.026391 149.1 0.012825 0.030442
January 2014 2526 0.027289 1493 0.017568 0.032248
February 2014 254.2 0.026307 148.9 0.012162 0.031592
March 2014 254.8 0.024232 148.8 0.010132 0.032281
April 2014 255.7 0.024546 149.0 0.004709 0.028457
May 2014 255.9 0.023326 149.1 0.006730 0.030872
June 2014 256.3 0.026088 149 4 0.008065 0.032149
July 2014 256.0 0.024917 149.6 0.008728 0.030909
August 2014 257.0 0.023623 150.0 0.012073 0.032391
September 2014 257.6 0.022376 151.0 0.016717 0.031045
October 2014 257.7 0.022764 151.3 0.018006 0.025328
November 2014 2571 0.019639 151.0 0.017369 0.026122
December 2014 257.5 0.016050 151.4 0.015308 0.026391

4.3. The index used for shares in Table 7 is the FTSE-Actuaries All-share index published daily in
The Financial Times and accessible on the FT web site (through http://markets.ft.com/ RESEARCH/
Markets/Data-Archive). This index has been published continuously since April 1962, though the
constituent companies have been changed frequently. In order to keep continuity with previous
dividend yield indices, we calculate a notional “gross™ yield by ratioing the published “actual yield”
by 10/9. This allows for a notional tax rate of 10%. To get the published yields, which may be more
convenient for current use, multiply the figures shown by 0.9. If actual yields are to be used, it is
consistent to multiply the value for YMU suggested in 2.6 also by 0.9, giving 0.03375. But this
depends on the tax assumptions that one wishes to make in the simulation application. We have
calculated the value of the dividend index, D(0), by multiplying the given share price index value by
the value of the grossed up dividend yield.

4.4. The values of DM(¢) are calculated from a long (theoretically infinite) series of past values of I(z).
The formula given in 2.6 is:

DM(t) = DD.I(t)+ (1 — DD).DM(t — 1)
This can be expanded:
DM(t) = DD.I(t)+ (1 — DD).DD.I(t=2)+ --- +(1 — DD)* ' DD.I(t—k)+ ---

Calculations using the suggested value of DD of 0.16 show that the coefficients decline fairly slowly,
going below 0.001 when k& = 30, below 0.0001 when k& = 43 and below 0.00001 when k = 56.
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Table 7. Initial conditions for the dividend yield and dividend index models in 2013 and 2014.

Month end Y(0) (%) D(0) DM(0) DE(0) Y(-1) (%)
January 2013 3.744 123.0941 0.0331 0.0653 3.733
February 2013 3.700 123.9274 0.0332 0.0448 3.656
March 2013 3.722 125.8349 0.0333 0.0151 3.833
April 2013 3.733 126.5667 0.0326 0.0353 3.867
May 2013 3.700 128.5313 0.0324 0.0548 4233
June 2013 3.922 129.0297 0.0320 0.0490 4.100
July 2013 3.678 129.0878 0.0322 0.0382 4.056
August 2013 3.856 131.4910 0.0323 0.0139 4.067
September 2013 3.789 130.4837 0.0322 -0.0106 4.044
October 2013 3.644 130.6650 0.0318 -0.0012 4.022
November 2013 3.711 131.6869 0.0318 0.0267 4.000
December 2013 3.644 131.5510 0.0321 0.0173 3.967
January 2014 3.756 131.3134 0.0322 -0.0063 3.744
February 2014 3.678 134.8516 0.0321 0.0231 3.700
March 2014 3.789 134.7174 0.0318 0.0151 3.722
April 2014 3.722 134.7381 0.0313 0.0013 3.733
May 2014 3.689 134.8293 0.0310 -0.0372 3.700
June 2014 3.633 130.8069 0.0310 -0.0541 3.922
July 2014 3.667 131.4727 0.0310 -0.0557 3.678
August 2014 3.611 131.4278 0.0310 -0.0542 3.856
September 2014 3.711 131.1481 0.0306 -0.0405 3.789
October 2014 3.744 131.1851 0.0304 -0.0504 3.644
November 2014 3.678 132.1543 0.0298 -0.0568 3.711
December 2014 3.744 1322815 0.0295 -0.0513 3.644

So to get precise values one would need a long run of data. But as this variable is intended to
represent the influence of past inflation on share earnings and hence share dividends, and as one
would not seriously expect that inflation many years ago still had an active influence, it may be quite
satisfactory to use a much shorter period back, setting perhaps the first used value of DM(.) to be the
same as the value of I(.) at the same date. The values shown in Table 7, however, use values starting
in 1901, simply because they are available.

4.5. The value of DE(0) also depends on a long run of past history, and the values shown in Table 7
are based on our data from 1919. But if one started the calculations 10 years ago, there would be
differences only in the last decimal place of the values for DE(.) shown in Table 7.

4.6. For long-term interest rates, C(.), we have used a succession of indicators, starting with the yield
on 2.5% Consols, which is available historically, then the yield on the Irredeemables Sector of the
FTSE-Actuaries BGS indices, which in recent years has included only 3.5% War Loan. However, the
yield on War Loan has often not been in line with the rest of the market; in the past the interest on it
was paid gross, without deduction of tax, so it was popular with those who did not need to (or
perhaps did not wish to) pay tax, and it had rather a high price and a low yield. The taxation system
changed for all government stocks in the mid-1990s, so the premium price disappeared. However, as
interest rates have fallen the possibility of War Loan being redeemed has risen; and the British
Government has now redeemed it at par on 9 March 2015. This was an option in favour of the
government, and against the holders, so the price was relatively low and the yield relatively high.
With the issuing of some quite long-term redeemable stocks, the published FTSE-Actuaries indices
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Table 8. Initial conditions for the interest rate models in 2013 and 2014.

Month end C(0) (%) CM(0) B(0) (%) R(0) (%)
January 2013 3.39 0.0260 0.5 -0.26
February 2013 3.34 0.0279 0.5 -0.25
March 2013 3.17 0.0267 0.5 -0.43
April 2013 3.05 0.0255 0.5 -0.47
May 2013 3.35 0.0254 0.5 -0.29
June 2013 3.54 0.0266 0.5 -0.03
July 2013 3.47 0.0254 0.5 -0.05
August 2013 3.51 0.0261 0.5 -0.04
September 2013 3.46 0.0266 0.5 -0.04
October 2013 3.41 0.0267 0.5 -0.10
November 2013 3.50 0.0259 0.5 -0.07
December 2013 3.57 0.0261 0.5 0.03
January 2014 3.46 0.0261 0.5 -0.03
February 2014 3.46 0.0278 0.5 -0.04
March 2014 3.49 0.0266 0.5 -0.10
April 2014 3.40 0.0255 0.5 -0.13
May 2014 3.33 0.0253 0.5 -0.17
June 2014 3.37 0.0265 0.5 -0.12
July 2014 3.26 0.0253 0.5 -0.16
August 2014 2.92 0.0242 0.5 -0.43
September 2014 3.03 0.0253 0.5 -0.37
October 2014 2.97 0.0247 0.5 -0.44
November 2014 2.67 0.0217 0.5 -0.68
December 2014 2.50 0.0200 0.5 -0.77

have included a 45-year redemption yield, and since March 2009 we have used the value of this
index. Since April 2014 this has been a “par yield” rather than a redemption yield.

4.7. For short-term interest rates, B(.), we use the Bank Base Rate published by the Bank of England.
This rate may remain the same for quite long periods, and has been at 0.5% since March 2009, but it
has the advantage of being available for a very long historical period. An alternative in recent years
might have been to use one of the many short-term LIBOR rates, but these rose very sharply in 2009
as a result of fears about the credit-worthiness of banks, and recent revelations about the dubious
way they have been calculated make them less suitable.

4.8. For R(.), the real rate on index-linked stocks, we use the real yield on the “over 5 years” index of
the FTSE-Actuaries BGS indices, calculated assuming 5% inflation. There is now enough data to
construct a yield curve for index-linked stocks, rather than using one rate to represent all terms, but
we have not yet done this.

4.9. The values of CM(.) are, in the first place, like those of DM(.), calculated recursively from past
values of I(.), and, with the suggested value for CD of 0.045, the factors decline even more slowly.
However, the values of CM(.) are subject to the Min(.,.) function given in §2.7. If the minimum “bites”
so that the recursive value is replaced by C()- CMIN, then the past history is irrelevant. With
CMIN = 0.005, this occurred at every month end from September 2011 to November 2012, so no
values of CM(.) before those dates are needed for the calculation of future market initial conditions.
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4.10. We can observe about the use of market conditions that all the values in the stock market
indices are available at the close of business each working day, so there is no delay in the possibility
of using them. The Retail Prices Index (RPI) for each month is published usually in the 2"¢ week of
the following month, but a close estimate of it can usually be made immediately if it is required. The
average earnings indices are published about 2 months after the applicable date, are often revised in
the following month and sometimes are heavily revised for some years back. This is inconvenient.

5. Neutral Initial Conditions

5.1. We now turn to what we call “neutral initial conditions”. Wilkie (1986) introduced these without
giving any formal definition, but the values he gave show that these can be defined in two ways, either
as the values to which certain variables would tend if the model were to be projected forward from any
starting point with no future innovations, or, with the same results, as the values which, if used as initial
conditions and projected forward with no future innovations, would remain unchanged.

5.2. Both these definitions can be developed algebraically. For a straightforward first-order auto-
regressive time-series AR(1) model, such as for I(z), we have:

I(t+k) = OMU+ QA* (I(t) — OMU) + terms involving future values of QE(.)

from which we see that if future innovations (the QE(.) terms) are zero, then I(z + k) tends to QMU
as k tends to infinity, provided that QA < 1, as in practice it is. Alternatively, we can seek the values
of I(¢+1) and I(z) such that I(¢+ 1) is derived from I(¢) using the formula but with zero innovation,
and such that I(¢+ 1) = I(¢). This is seen to be when:

I(t+1) = OMU+ QA.(I(¢) — OMU) = I(z)
or when I(z+1) = I(t) = OMU.
5.3. If I(2) is stationary and constant, then Q(¢) is not stationary, but increases without limit, unless
OMU = 0. However, it will tend to increase in proportion to Q(0).exp(t.QMU), or, on a graph with

a vertical log scale, on a line parallel with this. As already noted, the initial values of Q(0), W(0) and
D(0) can be chosen arbitrarily.

5.4. Using these methods we can quickly derive neutral initial conditions of this type, with the
following formulae and values, calculated using the parameter values suggested in section 2:

1(0) = I(—1) = QMU = 0.043

J
Y(0

(WW1+WW2).OMU+ WMU = 0.057410
YMU.exp(YW.QMU) = 0.04008455 = 4.008455 %

DM(0) = OMU = 0.043

(0)=
(0)
(0)
K(0) = OMU+DMU = 0.0540
CM(0) = QMU = 0.043
(0)
(0)
(0)

C(0

OMU+CMUL = 0.0653 =6.53%
B(0

C(0).exp(-BMU) = 0.05509131 = 5.509131 %
R(0) = RMU = 0.03 = 3%
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Further, we assume that YE(0) = 0 and DE(0) = 0. Future values of these innovations are also
assumed to be zero for this purpose.

6. Long-Term Means and Variances

6.1. Alternative definitions of “neutral initial conditions” can be chosen. We could choose the long-
run, or unconditional, means of the values. In some ways the long-term means may be more justi-
fiable than those given in section 5, because they represent the mean values that the state variables
might take if one looked in on the process at an unspecified time, unconditional on any specific past
history.

6.2. In this section and in Appendix we discuss the long-term means, and also the long-term var-
iances and covariances, calculated using the methods described in appendix E of Wilkie (1995), but
developed further. The long-term means in some cases depend on the distribution of the innovations.
If the model is wholly linear, then the defined mean and variance are the same for all distributions of
innovations (so long as they have finite variance), though, if the distribution is not symmetrical about
the mean, the long-term mean need not be the same as the median or as the neutral value shown in
section 5. However, if the model includes non-linear parts, such as exponentiation, the situation is
different. If we assume that the innovations, the XE(.) values, are normally distributed, or equiva-
lently that all the XZ(.) values are unit normal, then, as the exponential of such a normally distrusted
variable is distributed lognormally, the long-run mean is not the same as what we have shown in
section 5 for a neutral value.

6.3. Another possibility is to use a randomly selected set of initial conditions, drawn from their
unconditional or long-term distribution. For this one needs the means, variances and covariances
which we have shown. But it is then convenient, and equally valid, to use only linear elements of the
model, so that the selected set of variables could be the same as the working set, omitting those, like
OL(¢) and WL(t), that are scale variables:

IN(t), IP(t), WN(t), YN(¢), YEP(t), DM(¢), DEP(t), CM(¢), CN(¢), BN(t), RN(t)

The mean of I(¢) is equal to the mean of IN(#) with the addition of QMU, and the variance and
covariances are the same as those of IN(z). The same is true for CN(t) and CRL(t), BN(¢) and BD(z),
and RN(¢) and R(z). But the similar relationships do not apply for J(¢) and YL(z), where other
elements come in, so it is interesting to show the means, variances and covariances for these and for
K(t), and over a finite period, for QL(¢), WL(¢), DL(¢) and PL(t). The means and variances of these
normally increase without limit as time tends to infinity; we say “normally”, because with particular
parameter values the means may remain constant, such as if QMU = 0.

6.4. Another way of estimating the same result would be to start with any set of initial conditions,
run the simulations for a quite long period and to start each effective simulation at the point that one
had now reached, in effect using a long run-in period. The length of the desirable run-in period is
worth investigating.

6.5. In Appendix we show the formulae for the means and variances for many relevant variables,
including all those that we might need as initial conditions, at time 0 +#, given the data at time 0, and

also the formulae as ¢ — oo, that is, the long-term means and variances. In addition, we show the
formulae for the covariances between pairs of variables, from which the correlation coefficients can
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Table 9. Means, standard deviations and correlation coefficients of variables given.

Correlation coefficients

Mean s.d. IN IP WN J YN YEP
IN 0.0 0.049103 1.0
Ip 0.043 0.049103  0.58 1.0
WN 0.0 0.0219 0.0 0.0 1.0
J 0.05741 0.044457 0.835658 0.682576  0.492606 1.0
YN 0.0 0.199589 0.0 0.0 0.0 0.0 1.0
YEP 0.0 0.155 0.0 0.0 0.0 0.0 0.489255 1.0
YL -3.216764 0.213608 0.356304 0.206656 0.0 0.297748 0.934370 0.457145
DM 0.043 0.024659 0.621313 0.706696 0.0 0.622486 0.0 0.0
DEP 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0
K 0.054 0.090738  0.381059 0.261485 0.0 0.330504 -0.183866 -0.375807
CM 0.043 0.013904 0.356248 0.432391 0.0 0.365028 0.0 0.0
CN 0.0 0.666898 0.0 0.0 0.0 0.0 0.158857 0.079116
BN 0.0 0.438951 0.0 0.0 0.0 0.0 0.0 0.0
RN 0.0 0.011619 0.0 0.0 0.0 0.0 0.0 0.0

YL DM DEP K CM CN BN RN

YL 1.0
DM 0.221376 1.0
DEP 0.0 0.0 1.0
K -0.036026 0.308502 0.331724 1.0
CM 0.126932 0.817038 0.0 0.205362 1.0
CN 0.148431 0.0 0.0 -0.029732 0.0 1.0
BN 0.0 0.0 0.0 0.0 0.0 0.0 1.0
RN 0.0 0.0 0.0 0.0 0.0 0.532830 0.0 1.0

be calculated. In Table 9 we show the numerical values of these long-term statistics, assuming the
parameters suggested in Part 1 and in section 2 of this paper.

6.6. Those who wish to start a simulation at a random point can use the values in Table 9 to pick

random starting values of the state variables, probably after converting the correlation matrix to its
Cholesky decomposition. If different parameter values are to be used, then the formulae in the

Appendix can be used to construct modified tables.

6.7. We can also note that:

E[I(00)] = E[IN(c0)] + OMU = 0.043

E[CRL(o0)] = E[CN(00)]+ CMUL = —3.8032

)
)
)
)

)
E[BD(c0)] = E[BN(c0)]+ BMU = 0.17
)

E[R(c0)] = E[RN(00)]+ RMU = 0.03

and that the standard deviations and correlation coefficients are the same as those of the corre-

sponding zero mean variable.
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6.8. Using the fact that, if X is lognormally distributed so that In(X) is normally distributed with
mean p and variance %, then E[X] = exp(,u+02/2) and Var[X] = E[X]Z.(exp(az) -1), we get:

E[Y(c0)] = exp(~3.2168+0.0456/2) = 0.0410
Var[Y(00)] = 0.04102.(exp(0.0456) — 1) = 0.00007851
s.d.[Y(c0)] = VVar[Y(c0)] = 0.0089

and
E(CR(0)] = exp(—3.8032+0.4448/2) = 0.0279

Var[CR(c0)] = 0.0279%.(exp(0.4448) — 1) = 0.0004361
s.d.[CR(c0)] = VVar[C(oc0)] = 0.0209
6.9. Observing that CM and CR are independent, we then get:
E[C(c0)] = E[CM(o0)]+ E[CR(00)] = 0.0709
Var[C(o0)] = Var[CM(o0)] + Var[CR(o0)] = 0.0006279
s.d.[C(c0)] = VVar[C(00)] = 0.0251

Now, if we assume first that CR(co) is approximately normally distributed, so that C(co) is
approximately normally distributed, and then, in contradiction of that, that C(co) is approximately
lognormally distributed, so that CL(¢) is approximately normally distributed we get:

Var[CL(c0)] = In(0.00062786/0.0709>+ 1) = 0.1178
E[CL(00)] = In(0.0709) — 0.1178/2 = —2.7061
5.d.(CL(c0)) = 0.3433

6.10. This allows us to derive statistics for BL(c0) = CL(c0) - BD(c0):
E(BL(c0)] = —2.7061 — 0.17 = —2.8761
Var[BL(c0)] = 0.1178+0.1927 = 0.3105
s.d.[BL(c0)] = 0.5572

and then if we assume, again in contradiction, that BL(o0) is lognormally distributed, we can get:

E[B(00)] = exp(-2.1861+0.3105/2) = 0.0658
Var[B(oc)] = 0.0658%.(exp(0.3105) — 1) = 0.001578
s.d.[B(o0)] = 0.03972
6.11. When a lognormal distribution has a small standard deviation it is almost indistinguishable
from a normal one. With 6 = 0.05, the distribution and density functions are almost the same; with
o = 0.1 they are still quite close; with ¢ = 0.2 they are noticeably different. The standard deviations
of YL and of CRL are bigger than 0.2, so our approximations are not very good. Further, we have

made no allowance above for the Max(.) function in the calculation of CM. An alternative approach
is to estimate some of these answers by simulation, as we discuss below.
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6.12. The various means, variances and covariances that do converge to a finite limit, do so at
different speeds, and for the means the convergence depends on the initial values. The means that
converge most slowly are those for CM, CRL and R, where the relevant factors CDC = 1-CD =
0.955, CA = 0.92 and RA = 0.95 are large, meaning that the past retains a stronger influence. The
mean for CM is the slowest but even so it is within about 1% of its final value by about 70 years, and
within 0.1% by 120 years. But these periods do depend on the initial conditions, for which we have
used those in June 2014.

6.13. The convergence of the standard deviations and correlation coefficients does not depend on the
initial conditions, and is rather faster. The same variables have the slowest convergence. The
standard deviation for CM and also the correlation coefficients involving CM are within 1% of their
final values by 45 years and within 0.1% by 70 years. So a run-in period of 100 years would seem to
be ample.

6.14. We have carried out one million simulations of the model, each for 500 years, using the
parameters noted above and the initial conditions as at June 2014. These allow us to confirm our
formula calculations, and to make estimates of other values.

6.15.In Table 10, we show the means and standard deviations of the variables discussed above, first,
as calculated above from the theoretical values at infinity, and second, as simulated at year 500 in
our 1,000,000 simulations. We can see first that for the variables that are normally distributed, YL,
CRL, CM and BD, the simulated means and standard deviations are very close to the theoretical
ones, and the skewness and kurtosis coefficients are close to zero and 3.0, as is appropriate for a
normally distributed variable. The means and standard deviations of the other variables are quite
close to what we calculated above. We can take it that Y and CR are indeed lognormally distributed,
but we can see that CL is not normally distributed, with negative skewness (-0.29) and quite high
kurtosis (4.6), and that BL is also not normally distributed, with slight negative skewness (-0.07)
and rather high kurtosis (3.24).

6.16. In the simulations we have also recorded the values of CM unadjusted for the Max(.) criterion
and CM adjusted for it. The results depend on the initial conditions as well as on the values of QMU
(0.043) and CMIN (0.5%), but we can observe that with these parameters both CM unadjusted and
CM adjusted converge close to their ultimate values of 0.043 within 100 years, and the long-term
difference between then stabilises at about 0.00000235, a very small value. The maximum function
“bites” in about 1.5% of simulations, on average for about 2.2 years in each simulation in which it
occurs, in effect in 1 year in about 15,000.

6.17. We have also done the same calculations with a lower value of QMU of 0.025. This increases
the proportion of simulations in which the maximum bites to about 36%, with an average of
3.5 years out of 500 in each simulation, in effect in 1 year in about 390. The difference between the
two values of CM is about 0.00013, compared with the mean of 0.025. Thus, although the limitation
occurs much more often, the effect is not large.

6.18. In a third trial we retained QMU = 0.043, but reduced the value of CMIN to 0.0001%.
This reduces the effect of the constraint, so that it occurs in about 0.4% of simulations, for an
average of 2 years in each simulation, or 1 year in about 60,000 years. The difference between the
two values of CM is about 0.00000075, a trivial amount. As our choice of CMIN as 0.5% was
arbitrary, and all that is needed is a value above zero, so that we can take the logarithm of CR, a tiny
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Table 10. Statistics of selected variables as calculated and as simulated.

Calculated Simulated

Mean s.d. Mean s.d. Skewness Kurtosis
YL -3.216764 0.213608 -3.216898 0.213636 0.0007 2.9953
Y 0.041010 0.008861 0.041004 0.008861 0.6572 3.7775
CRL -3.803169 0.666898 -3.803710 0.667264 -0.0015 3.0016
CR 0.027854 0.020846 0.027844 0.020835 2.6383 17.1249
CM 0.043000 0.013904 0.043007 0.013895 0.0007 2.9937
C 0.070854 0.025057 0.070850 0.025056 1.5216 9.7504
CL -2.706060 0.343280 -2.705664 0.345354 -0.2892 4.5995
BD -0.170000 0.438951 -0.170153 0.439103 -0.0019 3.0037
BL -2.876060 0.557243 -2.875817 0.558466 -0.0706 3.2357
B 0.065822 0.039719 0.065803 0.039696 2.2249 16.3799

value seems satisfactory, especially since short-term rates (though not long-term ones) are now
extremely low and in some countries even negative.

6.19. Although we describe the constraint as biting in one in so many years, the occasions are not
evenly distributed, but tend to occur in groups. One needs I(¢) to be negative, and CR(¢) to be small,
and as these are both autoregressive processes, the necessary conditions may apply for several years
in succession.

7. Neutralising Parameters

7.1. A model like the Wilkie model, which indicates different expected returns in stock markets
at different times, can be criticised by those who adopt an “efficient market” approach, roughly on
the lines: “If you are expecting the prices of shares to fall (e.g. because of a very low dividend
yield) and others agreed with you, would they not have fallen already? So why do you think you, or
your model, can outsmart the market?”. We do not discuss the theoretical aspects of this
arguments here, but we follow the suggestion of Lee & Wilkie (2000) that one way of reconciling
both points of view is to use what we call “neutralising parameters”, that is, to choose values of
the parameters, in particular the means of the series, so that the market conditions at any date are
the neutral initial conditions for those parameters. One can justify this by assuming that participants
in the market do use, for example, the Wilkie model but that the values of the parameters of the
model at any time are chosen to reflect correctly “the market’s” view of the future. In what follows
we discuss in detail how this might work. It fits some parts of the model more easily than others. We
use conditions as at the end of June 2014 as an example, but refer back to other dates where
appropriate.

7.2. We assume that we have data up to time ¢, and that we wish to choose initial conditions and
altered parameters at that time in order to start future simulations from time #. We denote values of
variables at time # to be used as initial conditions and also parameters altered for the neutralising
process by one or more following asterisks *, **, etc., and, as the neutralising parameters depend on
time ¢, we denote that also by a following (¢). We can distinguish between those initial conditions
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which are externally given, which as far as possible we apply as they are, and those which are derived
from the past history of the model itself, which include DM(#), DE(¢), YE(#) and CM(z). It is not
inconsistent with current market conditions to alter these as required, in particular to set
DE*(t) = YE*(¢) = 0 as inputs at time ¢. Throughout this section we use the definition of neutral
initial conditions given in section 5, the central or median values, rather than the long-term means
described in section 6.

7.3. The value of I(¢) in June 2014 was, as shown in Table 6, 0.0261, and we would wish to set
I*(¢) = I(t) = 0.0261. The neutral initial condition for I(.) is QMU (see 45.2). So, if we were to set
OMU*(t) = I'*(¢) = 0.0261, then at that date the neutral value of I(.) would be the actual value. In
Part 1 we showed that, on the basis of the 1923-2009 data, the maximum likelihood estimate of
OMU was 0.0429 with a standard error of 0.0101. So a value of 0.0261 is more than 1 s.e. away,
but <2. Thus, 0.0261 is a not unreasonable estimate of the value of QMU for the future, well within
a 95% confidence interval.

7.4. However, in June 2009, the observed value of () was —0.0158, and this compares with the
previous year’s value of 0.0448 and the subsequent year’s value of 0.0489. There were specific local
reasons for the decrease in the UK RPI value over the period 2008-2009, because housing costs in it
are represented, not by rents, but by interest payments on loans for house purchase; the sharp drop
in general interest rates meant corresponding drops in the payments on house purchase loans, so the
value of the RPI fell. However, the value of other inflation indicators, such as the CPI, did not fall. To
have taken QMU*(¢) = -0.0158, implying a general fall in prices for the foreseeable future, would
have seemed perverse at that time, though there are economic circumstances when a long-term fall in
prices might seem plausible.

7.5. The RPI value is not, however, determined by market trading, so it cannot easily be argued that
“the market” has it right. Different participants in the investment market do have their views on the
likely level, or average level, of future inflation. One measure of this might be the “implied inflation”,
observed in the fixed interest markets, which we shall take (a little crudely, because we are blurring
the difference between annual rates and logarithmic estimates and ignoring yield curves for different
terms) as the difference between C(#) and R(¢), our measures of long-term conventional fixed interest
rates and the rates on index-linked stocks. For “implied inflation” we can put II(t) = C(¢) - R(¢).
At the end of June 2014 this was 3.49 %, rather higher than the value of I(¢) at that date; the value in
June 2009 was very similar at 3.55%. An alternative view of a market estimate of QMU *(¢), which
we shall denote QMU**(¢) at that time might therefore be 0.0349.

7.6. We have data at monthly intervals for a long period, with values of R(z) since May 1981, so we
can calculate what the values of QMU*(¢) and QMU™*(¢) would have been since that date. The
latter is rather more stable than the former. QMU*(¢) varies from -0.0158 (in June 2009) to 0.1137
(in December 1981), whereas QMU™ *(t) varies from 0.0242 (in September 1998) to 0.1096 (in
September 1981). We plot them in Figure 1, and one can see that QMU** is much more stable than
QOMU*, and therefore it might be a better candidate as a neutralising parameter. However, using its
value at any time means that the expected central path of I(¢) from whatever its value is to its long-
term central value, is curved, so if I(#) # OQOMU™*(¢) we are making an implicit forecast of future
values of inflation in the short term.

7.7. When we move on to wages, W(¢), we have similar problems. Wages are not set by the stock
market, and there is no obvious market in which expectations of future wage growth are traded.
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Figure 1. Values of QMU* and QMU**, 1981-2014.

The value to be selected is WMU, and the neutralised value of that is:

WMU'(t) = J(t)—(WW1+ WW2).OMU"(t)

We could, alternatively, use QMU** giving an alternative value:

WMU™ () = J(t)—(WW1+ WW2).OMU"(t)

7.8. In June 2014, J(¢) = 0.0087, so WMU*(¢) = -0.0140 and WMU**(¢) = -0.0216. Both have
been negative since 2009, and both have been negative at intervals before that. This can be seen from
Figure 2; note that it is not on the same vertical scale as Figure 1. One can also see that both WMU*
and WMU™* are variable. This is all rather uncomfortable. As our parameter values show
WW1+WW2 = 0.87, wages are not credited with the full rate of growth of prices, and WMU needs
to be at least a small positive number for wages in the long run even to keep pace with prices. In the
data that we have, which goes back to 1809, there has been a small, but steady, positive real growth
of wages, of about 1.3%, and this rate of growth has been fairly steady over quite long periods. So a
change to a negative rate of growth of real wages would indicate a very different sort of economy
than we have had for a long time. As there are no market conditions influencing our choice of a value
for WMU, perhaps leaving it at the fitted value of 0.020 is as good as any.

7.9. We now consider, Y(#), the dividend yield. This is straightforward. We can put either:

YMU(t) = Y(t).exp(—YW.QMU")
or

YMU*(t) = Y().exp(—YW.QMU™)

depending on which version of the neutralised mean rate of inflation we wish to use. In either case the value
of YMU*(#) or YMU**(¢) is a little less than the value of Y(#), and their values are very close (see Figure 3).

7.10. The share dividend yield is the most fundamental element in the neutralisation. It is one item
that is wholly controlled moment to moment by the market, whereas share dividends, the other
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Figure 3. Values of YMU* and YMU**, 1981-2014.

factor in share prices, depend on decisions by the directors of companies from time to time. The next
step in the sequence of the model would be to consider share dividends, D(z), but we leave these till
after we have considered interest rates.

7.12. We start our consideration of interest rates with the real yield on index-linked stocks, R(z). We
have not yet modelled a yield curve for index-linked stocks, though this is obviously desirable and is

now possible, which it was not when the Wilkie model was first published. We hope to consider this
in a later part of this series. The neutralising value for R(z) is simple. We put RMU*(¢) = RMU(z);

21

https://doi.org/10.1017/5174849951500010X Published online by Cambridge University Press


https://doi.org/10.1017/S174849951500010X

A.D. Wilkie and Sule Sahin

there are no other influences. In June 2014, the value, at -0.12%, was negative as it has been for
most of the time since late 2011. One may think that to accept a negative yield, even on an inflation
protected stock, is unwise or even irrational, but there are local reasons in the United Kingdom
which justified this; the UK government is the only issuer; the supply is quite large, but still limited;
UK pension funds and insurance companies wish to invest heavily in such bonds to match the index-
linked pensions they have promised to pay; so for these reasons a small premium in the price may
exist. Moreover, to make the current market value neutral, we have no other choice.

7.13. The more difficult variable is the long-term interest rate, C(¢). We need to consider both this and
CM(¢), because both are needed as initial state variables. The obvious way to do this is to alter CM(#) to
equal OMU* or OQMU**, and to calculate CMU*(#) by C(z) - QMU*(¢), but this fails because we need
to take the logarithm of CMU* and this is not possible if it is zero or negative. In June 2014, the value
of C(t) was 3.37% or 0.0337. Our alternative mean rates for inflation were 0.0261 and 0.0349. The
latter would make CMU**(¢) negative (and by construction it equals the value of R(#), so it would
always have the same sign), though the former gives a value of CR(#) of 0.0076, low but acceptable.
Perhaps this exposes a problem with the model. CM(z) was designed to be an estimate of the market’s
estimate of future inflation, and was proposed before index-linked stocks had sufficient history to
contribute. But a measure such as implied inflation, as we have proposed in 7.4, might now be better.
The relationship between implied and actual inflation is worth further study, and we hope to consider
this also in a later part of this series. We moved, in Part 1, from modelling R() rather than In(R(%)), as in
Wilkie (1995), because observed values of R(¢) had become negative. We might assume, however, that
interest rates on conventional bonds would not become negative, though recent events in some other
countries (Denmark, Switzerland, Finland) might contradict this.

7.14. A compromise is to take CM*(t) as Min(QMU* or QMU**(¢), C(¢) - CMIN), and then take
CMU*(t) as C(¢) - CM*(¢). If the constraint applies, this makes CMU*(¢) equal to CMIN, a number
which has been chosen arbitrarily. This situation would have applied for most month ends in the 3
years from 2010 to 2013. It is not altogether a satisfactory solution, but it does avoid the criticism
that the model is trying to outsmart the market.

7.15. The short-term interest rate, B(), is now straightforward to calculate, but difficult to assess. We put:
BMU*(¢) = In(C(¢)/B(t)) = BD(t)

At the end of June 2014 this had the value of 1.9081; the value of C(t) was 6.7 times that of B(z), or B(z)
was about 15% of the value of C(#). This is a quite extreme value. Between January 1900 and
December 2008, BMU* (¢) ranged from 0.7683 (in October 1977, when B(¢) = 5%, C(#) = 10.78%) to
0.8540 (in December 1907, when B(t) = 7%, C(t) = 2.98%), corresponding to the value of B(¢)
ranging from 46% to 2.35 times the value of C(#). Since May 2009 the value of B(t) has been between
10% and 17% of the value of C(z). To use the calculated value of BMU*(¢) makes a rather strong
assumption about the continuation of the present regime. It seems likely to continue in the short term,
but who knows for how long?

7.16. We now revert to the share dividend index, D(t), and the associated value of DM(t). If we
choose to use the value QMU*(t) = I(¢) defined in 7.3, set the value of DM(#) equal to this, set
YE(¢) = DE(¢) = 0, to leave no adjustments from the past, then the value of DMU*(¢) = K(¢) -
OMU*(t). In June 2014 this has the value -0.0124. This is a lot lower than the standard value of
DMU based on the whole period, of 0.011. But K(2) is very variable, and the value of DMU*(#) so
calculated would have ranged from -0.3541 (in May 1932) to 0.2255 (in November 1925); these are
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many years ago, but the range in very recent years has been almost as great from -0.2619
(in October 2009) to 0.1740 (in June 2008). Even in January 2013 it was 0.0848, so it has fallen a lot
in 18 months. We feel that it would be difficult to argue that the market’s view about long-term
future real increases in share dividends would change by this much.

7.17. An alternative approach is possible. If long-term bonds yielding C(¢) are bought, and any
interest income is reinvested also at rate C(z), then the long-term return on such an investment (in
money terms) is C(#). The long-term central value of this, as shown in 5.4 is OMU + CMU = 6.53%
with our usual parameters. If long-term index-linked bonds are bought at yield R(¢) and interest
similarly reinvested, the real yield is R(z). The long-term central value for this is RMU and allowing
for inflation at its central value, the long-term money return is RMU + QMU = 7.3% with our usual
parameters. This is higher than the long-term yield on fixed money bonds because our value of
RMU = 3.00% is higher than our value of CMU = 2.23%. If shares are bought at a dividend yield
of Y(t), and dividends are reinvested at the same yield, then the long-term return depends on the rate
of inflation and the rate of real dividend growth, added to the initial yield. The central long-term
central value of all these elements is YMU.exp(YW.QOMU) + OMU + DMU = 9.41%. So in the long
run, shares carry a premium of 2.88% over long-term bonds, and of 2.11% over index-linked bonds;
we denote these premiums as PSC and PSR, respectively, and we assume that they apply at all times.

7.18. We can then apply this rationale to conditions at time ¢. If long-term bonds yield C(z), we need
to adjust the parameters for shares to have a long-term return of C(#) + PSC. We have then to choose
what we denote DMU™*(¢) so that:

Y(t)+ OMU¥(t) + DMU*(t) = C(t)+ PSC

or
DMU*(t) = C(t)+ PSC — Y(t) — QMU*(z)

As at June 2014 the wvalue of DMU**(t), calculated in this way, was
3.37% +2.88% —3.63% - 2.61% = 0.01%. This is higher than the value of -0.0124 found in {7.15,
but it is still rather low. DMU**(¢) varies very much less than DMU*(t) but its recent range is from
-3.0% (in September 2011) to 6.31% in (May 1993). We would prefer to use a less varying method;
but one of our assumptions is that the premium for shares is constant. If instead the premium is assumed
to vary with time, we have an extra degree of freedom, and we are left having to use our judgement.

7.19. Another, simpler, method of achieving a sort of market neutrality is to assume that the real rate
of return on shares, roughly equal to Y(z) + DMU* **(¢) (another new variable) remains constant, not
adjusting at all to changes in fixed interest rates. Its long-term value is represented by YMU.exp(YW.
OMU)+DMU = 5.11%. Thus, at time ¢, DMU***(z) is easily calculated as 0.0511 - Y(¢). At June
2014 this gives DMU***(¢) = 0.0148, only a little higher than the constant value of DMU of 0.011.
It has been much more stable than our other suggestions, ranging from -0.0668 (in November 1974,
when Y(#) equalled 11.79%) to 0.0282 (in August 2000 when Y(#) equalled 2.29%). It is not
unreasonable to assume that share prices are bid up to lower than normal yields when the prospects
of rises in future dividends are thought to be good, and that they fall to lower prices and higher than
normal yields when dividend prospects are thought to be poor. The market was very pessimistic,
with good reason, in late 1974, though events turned out differently, and the market was very
optimistic, as it turned out with less than good reason, in 1999 and 2000. However, this method
does not adjust the expected return on shares to be consistent with fixed interest yields, which some
may think unsatisfactory. We show graphs of the three variables, DMU*(¢), DMU**(t) and
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Figure 4. Values of DMU*, DMU** and DMU***, 1923-2014.

DMU***(¢) in Figure 4, from which we see that the last of the three is much more stable than either
of the others.

7.20. Our conclusions are that using neutralising parameter values has merits, but it is not always
easy to make good sense of the values observed in the markets, and one ends up having to use one’s
economic judgement about which method, or which values to use.

8. Select Periods

8.1. Any model like the Wilkie model, intended for simulations many years ahead, necessarily contains
only endogenous variables, that is, every variable needed has to be simulated by the model. However, for
a great deal of econometric forecasting other items that are known at the time, that is exogenous
variables, can be used to make shorter-term forecasts of the items of interest. It is possible to use this
concept within a real-world model, by the use of a “select period”, as described by Lee & Wilkie (2000).

8.2. We can explain this most easily by some detailed examples. Consider the forecast for inflation,
and assume that we use our model with parameters QMU = 0.043, QA = 0.58 and QSD = 0.04.

Assume ¢ = 0 as at June 2014 and we know that I(0) = 0.026088. The model gives the expected
value of inflation over the coming year as:

I(1) = QMU+ QA.(I(0) — OQMU) = 0.043+0.58x (0.026088 — 0.043) = 0.033191
with a standard deviation of QSD = 0.04.

8.3. However, the Bank of England publishes Inflation Forecasts, see for example its Inflation
Report, August 2014 (Bank of England, 2014), based on a much more complicated macro-economic
model than ours, with many other variables. It shows more than one forecast based on different
assumptions. It is not easy to pick up numerical information from the fan charts, but one can attempt
to make rather rough estimates from them. In one forecast for inflation, of a different index, the CPI
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rather than the RPL and of the annual rate, not the logged continuous rate, for the next 3 years, our
estimates for the mean values of annual rates are about 1.6%, 1.8% and 2.0%, with possible
standard deviations of about 1.2%, 1.3% and 1.4%.

8.4. One may wish to use the Bank of England’s forecasts in the model for the relevant periods.
But we do not know what distribution the Bank of England assumes. There are two ways of
implementing this, one a little more convenient for a 1-year-ahead forecast, the other much more
convenient for subsequent years. First, we assume (artificially) that the Bank’s forecasts are
distributed lognormally, rather than normally, with the given means and standard deviations, but
changing 1.6% into an assumed mean of a lognormal of 1.016. Converting to the parameters of the
underlying normal, the “x” and “6” equivalents, we get means of about 0.0158, 0.0178 and 0.0197,
and standard deviations of 0.0118, 0.0128 and 0.0137, very little different from our first figures.

8.5. We now wish to replace our expected value for inflation from June 2014 to June 2013, that is
I(1), originally 0.033191, by the Bank’s equivalent number of 0.0158. The easy way to do this is just to
use this value as E[I(1)], ignoring the value generated by the model, but carrying forward this value in
the rest of the calculations, and for next year. But as we shall see, this cannot easily be done for the
subsequent years. Better is to introduce an offset, QO(z), into the formulae, so that we have, as usual:

I(t+1) = OMU+ QA.(I(t) — OMU) + QE(t)
but with QE(t+1) = QO(t+1)+QOSD(¢+1).0Z(¢ +1).

The mean of QE(¢+ 1) is QO(t + 1) and the standard deviation is QSD(t + 1), both of which are used
as temporary modifications. By analogy with the actuarial use of a “select period” in mortality
tables, we could denote them by the subscript [¢] + 1, implying a starting point specifically of z.

8.6. To alter our model forecast mean of 0.036706 to the Bank’s means of 0.0158, we need to make
QO(1) = -0.021591. We can use the Bank’s standard deviation of 0.0118 as QSD(1) if we wish.
To adjust for the next year we need to base our 1-year-ahead forecast on our new forecast for the
mean of I(1), which gives a conditional forecast, which we denote E[I(2)IE[I(1)] = 0.0158] = 0.043 +
0.58x(0.0158 - 0.043) = 0.027224. To change this to the Bank’s forecast for year 2 of 0.01783 we
need to put QO(2) = -0.009424. Note that it would not have been satisfactory to simply put E[I
(2)] = 0.020873, because that is the expected value in 2016 on the basis of what the Bank knows in 2014.
By 2015 conditions will have altered, more data will be available, and possibly the Bank will have
changed its forecast for 2016. Similarly, in our simulations, once we have simulated the value for 2015,
that is I(1), the model’s forecast for 2016 will depend on this simulated value. So the offset method seems
essential.

8.7. Continuing to the next year, the Bank’s mean value is 0.0197, which we assume is conditional
on the Bank’s forecast value of 0.00178. Using the same method, we need an offset,
QO(3) = -0.008684 to get our conditional forecast to the same point. The Bank offers no forecasts
beyond 2017 so we can either use the model with no adjustment, or as successive offsets have
reducing values one might use QO(4) = -0.005, and for > 5 put QO(t) = 0.

8.8. The Bank’s estimated standard deviations of 0.0118, 0.0128 and 0.0137 are all much smaller
than the model’s value of OQSD = 0.04, based on a much longer period of varied economic cir-

cumstances. In an autoregressive model such as we are using, successive variances, conditional on the
data at ¢ = 0, would be QSD?, (1 + QA%).0OSD? and (1+ QA+ QA*).QSD?. The Bank’s values are
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not far away from what they would be if QA = 0.42 and QSD = 0.0118. We do not suggest that the
Bank does use the same model as we do; we only observe the coincidence. But it would be reasonably
consistent with the Bank’s forecasts to use the same values for QSD(2) and OSD(3) as for QSD(1).
Instead we would prefer, and perhaps other users also would, to increase the values of QSD in the
select period rather steadily towards the “ultimate” wvalue 0.04, for example putting
QOSD(1) = 0.0118, OSD(2) = 0.02, OSD(3) = 0.03 and for >4 putting QSD(z) = 0.04.

8.9. For other variables we may not have the same sort of authoritative forecasts as those supplied by
the Bank for inflation; but there may still be circumstances that we know about that we wish to take
into account. In recent years we have known that certain large banks and other large companies had
cut their dividends to zero, and that these companies were large enough to affect the whole index. In
earlier years the UK government has introduced dividend controls, and then later has relaxed them,
and this exogenous knowledge would have allowed us to modify the model’s forecasts. In general the
offset method works nicely for this sort of adjustment.

8.10. A different situation may, however, arise for other series, as in our example about interest rates.
Our measure of short-term interest rates, the UK Bank Base Rate has been set at 0.5% since March
2009, though there are indications that it might be increased a little within the next year. So we may
wish to establish values for B(1) as say 0.0075 with certainty, and possibly 0.01 for B(2). However, our
values of B(.) depend on values of C(.) as well as its on their own random process, BD(#), so applying an
offset to BD(t) would not be sufficient. We assume that we still wish to generate values of C(#)
randomly. So our preferred method is to say that B(1) = 0.0075, with certainty, and then when the
value of C(1) has been generated for each simulation, to back out the value of BD(1) that would have
generated that value of B(1), and carry it forward. If we wish to fix the value of B(2) at 1% similarly, we
can do so, but if we wish to apply uncertainty to it, then it is probably better to work through an offset
to BD(2), although this allows the randomly generated value of C(2) to affect the value of B(2).

8.11. Using a select or run-in period has clear advantages in making the model more realistic, but it

has to be done with care, and we recommend allowing for the offset method and for the directly
fixing method as both being necessary each in appropriate circumstances.

9. Conclusion

9.1. In this paper, we have elaborated on a number of practical aspects of using a stochastic asset
model or an economic scenario generator. We have used the Wilkie model as an example, and
explained its features very fully, but just the same aspects would apply to any other model. The very
simplest model, say a random walk for share total return, would have correspondingly simple
features. However, such a simple model is of limited practical use among practising actuaries, so we
hope that what we have described for the example we have used is of practical use for those who
prefer other comparable models.
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Appendix. Statistics of Variables

A.1. General

A.1.1. In this Appendix we give formulae for the means, variances and covariances of many of the
variables in the model, including those that are used as the working set. We follow the methods and
notation of appendix E of Wilkie (1995), and explain new material, in particular covariances, in
more detail. We assume that “now” is time 0, and that we know all the relevant facts for <0, &,.

A.1.2. The general method is to express each future value of any variable, X(¢), as a linear function,
consisting of a fixed part, dependent wholly on elements known at time 0, and a future stochastic part
dependent on successive innovations, XZ(1), XZ(2), ..., up to XZ(t), and possibly other innovations,
YZ(0), YZ(1), ..., up to YZ(z). As each XE(t) = XSD.XZ(t) and each YE(#) = YSD.YZ(#) the function
can be expressed, where there may be zero or more Y terms

X(t) = EX()]+ > Wxx(i).XSD.XZ(i)+ »_ Wxv(i).YSD.YZ(2)

i=1t i=1t

The “Y-weights” Wxx(i) and Wxy(i) show the dependence of X on XE(i) and X on YE(i), respectively.
The variable Y(.) would have a similar formula and if it is dependent on XE(.) as well as on
YE(.) then its formula would include weights ¥yx(i) as well as Pyy(i).

Then Var[X(£)] = 3, _ ,(¥xx (1)) XSD*+ 3, ,(¥xy(i)*).YSD? and s.d.[X(#)] = y/Var[X(z)].

Covar[X(t), Y(t)] = Zi:l,z lPxx(i).‘Pyx(i).XSD2+ Zi:l,t Txy(i)).lpyy(i).YSDz and the correlation
coefficient CC[X(2), Y(#)] = Covar[X(z), Y(&))/{s.d.[X(?)].s.d.[Y(2)]}

A.1.3. Observe that, for a linear model, generally E[X(#)] depends on the values of the state variables
at t = 0, but not on the values of XSD, etc., whereas Var[X(#)] does not depend on the initial state
variables, but does depend on the values of XSD, etc. As t— oo the dependence on the initial state
variables declines to zero. These observations do not apply to an ARCH model, which is more
complicated, as the model is non-linear in the innovations.

A.1.4. If it is the logarithm of X(¢), XL(¢), that is modelled linearly, and if we assume that XL(¢) is
normally distributed, then X(#) = exp(XL(#)) is lognormally distributed with mean:

E[X(#)] = exp(E[XL(1)] + Var[XL(1)]/2)
and variance:

Var[X(#)] = E[X(2)]>.(Var[XL(#)] - 1)
A.1.5. We use a notation for the sum of a geometric series with ¢ terms:

SumGS(x, t) = T+x+x*+ - +x 1 =1 —x")/(1 -x)
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In Wilkie (19935) this was denoted as d(x, ), but this is specifically an actuarial notation, so we avoid
it here. Note that as # — co SumGS(x, ¢) - 1/(1 - x), provided Ix| < 1. We assume, throughout, that the
values of the parameters are always such that the series is convergent.

A.1.6. Some of the formulae are almost trivially simple. Others require a great deal of tedious
algebraic manipulation. In principle, all the linear elements could be expressed as a large VARMA
(vector autoregressive moving average) model, in matrix notation, but this would have lost the
intuitive understanding that is brought out by many of the explicit formulae.

A.1.8. The formulae for the means can be readily confirmed numerically by recursive calculation year
by year, with all innovations zero to give values say X(¢), which are the expected values. The formulae
for W-weights can be confirmed similarly, by putting XZ(1) as unity, or as some other convenient
constant, performing the same recursive calculations with all other innovations zero, to give new values
of future variables, say X*(t), then calculating ¥(¢) = (X*(¢) - X(#))/XZ(1). The formulae for variances
and covariances can be checked by summing the squares or products of the relevant W-weights.

A.2. Expected values

A.2.1. We give formulae for the means, expected values, at future time ¢, and as #— oo.
A.2.2. Inflation
E[IN(¢)] = QA".IN(0)
E[IN(c0)] =0

Note that: E[I(#)] = E[IN(#)] + OMU
E[IP(¢)] = E[I(t — 1)] = I(0) t=1

= OMU+ QA" 1.IN(0) t>1
E[IP(c0)] = QMU
E[QL(t)] = QL(0)+t.OMU+QA.SumGS(QA, t).IN(0)

E[QL(c0)] = oo unless QMU = 0when E[QL(sc)] = OL(0)
A.2.3. Wages
E[WN(t)] = WA* . WN(0)
E[WN(c0)] = 0

E[J(1)] = WW.QMU+ WQ.QA" " .IN(0)+ WMU + WA’ WN(0)
where WW = WW1+ WW2 and WO = WW1.0A + WW2
E[J(c0)] = WW.QMU+ WMU
E[WL(z)] = WL(0)+ WW1.(QMU+ QA.IN(0))+ WW2.1(0) + WW.(t — 1).0MU
+ WW.QA.SumGS(QA, t — 1).IN(0)+£ WMU + WA.SumGS(WA, £). WN(0)

E[WL(c0)] = o0 unless WW.QOMU+ WMU = 0
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A.2.4. Dividend yields

E[YN(2)] = YA".YN(0)

E[YN(0)] =0
E[YEP(t)] = YE(0) t=1
=0 t>1
E[YEP(<)] =0

E[YL(t)] = YW.(QMU+ QA" .IN(0))+ YMUL + YA’ YN(0)
E[YL(c0)] = YW.QMU+YMUL
A.2.5. Share dividends and prices
E[DM(t)] =DD.SumGS(DDC, ¢).QMU + DD.SumGS(QD, t).DDC'™!
.QA.IN(0)+DDC'.DM(0)

where DDC = 1-DD and OD = QA/DDC (and provided OD #1)
E[DM(c0)] =DD/(1 — DDC).QMU

=OMU since (normally) DDC = 1 — DD
E[DEP(t)] =DE(0) t=1
=0 t>1
E[DEP(cc)] =0

E[K(t)] =(DW.DD+DX).(OQMU+ QA.IN(0))+ DW.DDC.DM(0)
+DMU+DY.YE(0)+DB.DE(0) t=1
= (DW.DDSumGS(DDC, t)+DX).QMU
+(DW.DD.SumGS(QD, t). DDC' '+ DX.QA"1).QA.IN(0)
+DW.DDC*.DM(0) + DMU t>1
E[K(0)] =(DW.DD/(1 — DDC)+DX).QMU + DMU
=DW.QMU +DMU since DDC = 1 — DD
= QMU+DMU ifDW+DX = 1
E[DL(t)] =DL(0)+(DW.DD+DX).{OMU+ QA.IN(0)} + DW.DDC.DM(0)
+DMU+DY.YE(0)+ DB.DE(0) t=1
=DL(0)+{DW.DD(t — DDC.SumGS(DDC, ¢))/(1 — DDC) +¢.DX}.QMU
+{DW.DD.(SumGS(DDC, t) — QA.SumGS(QA, t)/DDC)/(1 — OD)
+DX.SumGS(QA, 1)}.QA.IN(0)
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+DW.DDC.SumGS(DDC, t).DM(0)
+t.DMU+DY.YE(0)+ DB.DE(0) t>1

E[DL(x0)] =0 unless (DW.DD+ DX).OMU+DMU = 0

E[PL(t)] =DL(0)+(DW.DD+DX).{OMU+QA.IN(0)}+DW.DDC.DM(0)
+DMU+DY.YE(0)+ DB.DE(0)
— {YW.(OMU+ QA.IN(0)) + YMUL+ YA.YN(0)} t=1

=DL(0)+{DW.DD(t — DDC.SumGS(DDC, £))/(1 — DDC)+¢.DX}.OMU

+{DW.DD.(SumGS(DDC, t) — QA.SumGS(QA, ¢)/DDC)/(1 — OD)
+DX.SumGS(QA, £)}.0A.IN(0)
+DW.DDC.SumGS(DDC, ).DM(0)
+t.DMU+DY.YE(0)+ DB.DE(0)
— {YW.(OMU+ QA".IN(0))+ YMUL+ YA".YN(0)} t>1

E[PL(x0)] = o0 unless (DW.DD+DX).QMU+DMU = 0

A.2.6. Long-term interest rates
E[CM(t)] = CD.SumGS(CDC,t).QMU + CD.SumGS(QC,t).CDC''.QA.IN(0)
+CDC'.CM(0)

where CDC = 1-CD and QC = QA/CDC. This ignores the constraint, which we comment on in
section A.2.9 below.

E[CM(c0)] =CD/(1 — CDC).OMU
=QMU since (normally) CDC = 1 - CD
E[CN(#)] =CA".CN(0)

)
E[CN(o0)] =
E[CRL(t)] =E[CN(t)]+ CMUL
E[CRL(c0)] = CMUL

A.2.7. Short-term interest rates
E[BDN(t)] = BA".BDN(0)
E[BD()] =0
A.2.8. Index-linked rates
E[RN(#)] = RA’".RN(0)
E[RN(0)] =0
A.2.9. As can be seen from the formula in 2.7 CM(¢) is subject also to a Max(.) function, to ensure

that it is not so small that the value of C(¢) would be smaller than a small positive minimum (which
can be made as small as one likes; our use of 0.005 is arbitrary). The algebraic development above

30

https://doi.org/10.1017/5174849951500010X Published online by Cambridge University Press


https://doi.org/10.1017/S174849951500010X

Yet more on a stochastic economic model, Part 2

ignores this feature, which would, if applied, increase the value to some extent. If one is choosing a
random initial position, one can apply the maximum at that point to ensure a valid starting position;
but this does not take into account the possibility of earlier occasions when the maximum would
have applied. If a simulated run-in period is used, the maximum can be applied in each year, so a
correct distribution of starting positions can be obtained. We have simulated the values of CM(z)
with and without the constraint, and we discuss these in §6.15-6.17 of the main report.

A.3. W-weights

A.3.1. The variances and covariances are all expressed through W-weights, which can either be used
recursively in the calculations, or compressed into a single formula. We therefore first give formulae
for the W-weights, omitting those cases where they are zero.

A.3.2. Inflation
Wino (i) = QA™!
WYipo (i) =0 i=1
= QA2 i>1
Yoro(i) =SumGS(QA, i)
A.3.3. Wages
Yynw (i) = WA
¥io(i) = WW1 i=1
=WQ.0A2 i>1
where WQ = WW1.QA + WW2
W (i) = WA'~1
Pwiro(i) = WW1 i=1
= WQ.SumGS(QA, i — 1) i>1
Yywrw(i) =SumGS(WA, i)
A.3.4. Dividend yields
Pyny(i) = YA !
Pyro(i) = YW.QA™!

TYLy(i) =YA™!

Wyepy (i) =0 i=1
=1 i=2
=0 i>2

A.3.5. Share dividends and prices
Ypmo(i) = DD.(DDC' — QA")/(DDC — QA) unless DDC = QA
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where DDC = 1-DD

\PDEPD(i) =0 i=1
=1 i =2
=0 i>2

Yxo(i) =DF1.DDC™! — DF2.QA™

where DF1 = DW.DD/(1-QD), DF2 = DF1.QD - DX and QD = QA/DDC

Yry(i) =0 i=1
=DY i=2
=0 i>2

Yrp(i) =1 i=1
=1+DB i=2
=0 i>2

Wpro(i) = DF1.SumGS(DDC, i) — DF2.SumGS(QA, i)DDC)

=DG1.(1 - DDC') — DG2.(1 — QA"

where DG1 = DF1/(1-DDC) and DG2 = DF2/(1 - QA)

Ypry(i) =0 i=1
=DY' i>1

Yprp(i) =1 i=1
=1+DB i>1

Yrro(i) =¥pro(i) — Yyro(d)
=DG3 - DG1.DDC' + DG4.QA™!
where DG3 = DG1-DG2 and DG4 = DG2.QA-YW
Wrry(i) =¥pry(i) — Pyry (i)
— _YA"! i=1
=DY — YA™! i>1
Yrrp(7) =¥prp(i) — Yyrp(i)
=1 i =1

=1+DB i>1
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A.3.6. Long-term interest rates
Yeumo(i) = CD.(CDC' — QAY)/(CDC — QA) unless CDC = QA
Wene(i) = CA™!
Yeny(i) =CY.CA™!

A.3.7. Short-term interest rates
Wppp(i) = BA™!

A.3.8. Index-linked rates
Yrc(i) = RBC.RA™!

YRR (l) = RA™!

A.4. Variances

A.4.1. The variances can be calculated by summing the squares of the W-weights, or by direct
calculation by the following formulae. The advantage of the formulae is that we can get precise
expressions for the values as ¢ — co.

A.4.2. Inflation

Var[IN(z)] =SumGS(QA?, t).QSD?
Var[IN(c0)] =1/(1 — QA?).QSD?
Var[IP(t)] =SumGS(QA?, t —1).QSD?
Var[IP(c0)] =1/(1 — QA?).QSD?
Var[QL(2)] = {t — 2.0A.SumGS(QA, t)+ QA2.SumGS(QA?, £)}/(1 — QA)*.QSD?
Var[QL(o0)] =00

A.4.3. Wages

Var[WN(t)] =SumGS(WA?2, £).WSD?
Var[WN(co)] =1/(1 — WA2).WSD?
Var/(t) = WW12.QSD? + WSD> t=1
=[WW1%+ WQ?.SumGS(QA?, t — 1)].QSD? + SumGS(WA?2, ¢).WSD> t>1
Var[J(c0)] = [WW1*+ WQ?/(1 — QA?).QSD*+1/(1 — WA?).WSD?

Var[WL(t)] = WW12.WSD? t=1
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={WW12+[WW12+2.WW1.WQ/(1 — QA)+ WQ?/(1 — QA)*].(t — 1)
—2.WQ.[WW1+WQ/(1 — QA)]/(1 — QA).QA.SumGS(QA, ¢t — 1)’
+WO?/(1 — QA)* QA% SumGS(QA?, ¢t — 1)}.0SD?

+{t — 2.WA.SumGS(WA, 1)+ WA2.SumGS(WA?, t)}

/(1 = WA)*}. WSD? t>1
Var[WL(c0)] =00

A.4.4. Dividend yields

Var[YN(t)] =SumGS(YA?, t).YSD?
Var[YN(co)] =1/(1 — YA?).YSD?
Var[YL(t)] = YW?.SumGS(QA?, t)).QSD?* + SumGS(YA?, t).YSD?
Var[YL(c0)] = YW?/(1 — QA?).QSD* +1./(1 — YA?).YSD?
Var[YEP(t)] =0 t=1
=YSD? t>1

Var[YEP(xc)] = YSD?

A.4.5. Share dividends and prices

Var[DM(z)] = {DD*(DDC?.SumGS(DDC?, t) — 2.DDC.QA.SumGS(DDC.QA, t)
+QA2.SumGS(QA?, 1))/(DDC — QA)*}.QSD?
unless DDC = QA
Var[DM(o0)] = {DD*{DDC?/(1 — DDC?*) — 2.0ADDC/(1 — QADDC)
+QA%/(1 - QA*)}/(DDC — QA)*}.QSD*
Var[DEP(t)] =0 t=1
=DSD? t>1
Var[DEP(c0)] = DSD?
Var[K(t)] =(DW.DD+DX)*.QSD?+ DSD? t=1
= {DF12.SumGS(DDC?, t) — 2.DF1.DF2.SumGS(DDC.QA, t)
+DF2%.SumGS(QA?, 1))}.0SD* + DY2.YSD? + (1+ DB?) - DSD?
t>1
Var[K(o0)] ={DF1?/(1 — DDC?) — 2.DF1.DF2/(1 — DDC.QA)

+DF2%/(1 — QA?)}.QSD?>+ DY?.YSD? + (1+ DB?) - DSD?
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Var[DL(t)] =(DW.DD+DX)*.QSD?+ DSD? t=1
={(DG1 - DG2)*.t —2DG1.(DG1 — DG2) DDC.SumGS(DDC, )
+DG1> DDC?.SumGS(DDC?, ¢)
—2.DG1.DG2.QA.DDC.SumGS(QA.DDC, t)
+2DG2.(DG1 — DG2).QA.SumGS(QA, t)
+DG22.QA*SumGS(QA?, )}.QSD?
+(t—1).DY?YSD?>+{1+(t — 1).(1+ DB)*}.DSD? t>1

Var[DL(o0)] =00

Var[PL(t)] =(DW.DD+DX — YW)>.QSD? + YSD? + DSD? t=1
={DG3%*t+DG1*>.DDC? .SumGS(DDC?, t)
+DG4% SumGS(QA?, 1)
—2.DG3.DG1.DDC.SumGS(DDC, t)
+2.DG3.DG4.SumGS(QA, t)
—2.DG1.DG4.DDC.SumGS(QA.DDC, t)}.QSD?
+{1+DY?*(t—1) —2DY.YA.SumGS(YA, t — 1)
+YA2SumGS(YA?, t — 1)}.YSD?
+{1+(t—1).(1+DB)*}.DSD? t>1
Var[PL(0)] =00

A.4.6. Long-term interest rates
Var[CM(z)] ={CD? (CDC*.SumGS(CDC?, t) — 2.CDC.QA.SumGS(CDC.QA, t)
+QA2.SumGS(QA?, 1))/(CDC — QA)*}.OSD?
unless CDC = QA
Var[CM(c0)] ={CD*{CDC?/(1 — CDC?) — 2.0ACDC/(1 — QA - CDC)
+QA%/(1 - QA*)}/(CDC — QA)*}.QSD*
Var[CN(z)] =SumGS(CA2, t).(CY2.YSD?+ CSD?)
Var[CN(oc)] = (CY2.YSD?+CSD?)/(1 — CA?)
A.4.7. Short-term interest rates
Var[BDN(t)] =SumGS(BA?, t).BSD?
Var[BDN(c0)] =1/(1 — BA?).BSD?
A.4.8. Index-linked rates
Var[RN(t)] = (RBC>.CSD*+ RSD* SumGS(RA, t)

Var[RN(o0)] = (RBC?.CSD*+RSD?)/(1 — RA?)
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A.5. Covariances

A.5.1. Like the variances, the covariances can be calculated by summing the cross-products of the
Y-weights, or by direct calculation by the following formulae. Again, the advantage of the formulae
is that we can get precise expressions for the values as ¢ — co0. A covariance exists wherever two
variables are dependent on the common innovations; other covariances are zero, and are
omitted below.

A.5.2. Inflation

Covar[IN(z), IP(t)] = QA.SumGS(QA?, t).QSD?

Covar[IN(co), IP(c0)] =QA/(1 — QA?).QSD?
As the formulae are very simple we can calculate the correlation coefficients, which are:

CC[IN(2), IP()] = QA.(1 - QA*"" )/ /{(1 — QA™)(1 — QA**" 1)}
CC[IN(c0), IP(c0)] =CC[I(c0), IP(c0)] = QA as we would expect
Covar[IN(z), OL(t)] ={SumGS(QA, t) — QA.SumGS(QA?, £)}/(1 — QA).QSD?

Covar[IN(co), QL(c0)] = 1/(1 — QA)/(1 — QA?).QSD?

But as Var[QL()}] > 0 as #— oo, CC[I(c0), OL(0)] — 0. In the very long run, there is no corre-
lation between the value of inflation in any year and the value of the price index in the same year,
although in the first year the correlation is unity:

Covar[IP(t), QL(t)] ={SumGS(QA, t — 1) — QA2.SumGS(QA?, t — 1)} /(1 — QA).QSD?

Covar[IP(c0), OL(c<)] ={1 — QA?/(1+ QA)}/(1 — QA)*.QSD?
A.5.3. Wages

Covar[IN(z), J(t)] ={WW1+WQ.QA.SumGS(QA?, t — 1)}.OSD?
Covar[IN(c0), J(c0)] ={WW1+WQ.QA/(1 — QA*)}.QSD?
Covar[IP(z), J(¢)] =0 t=1
= WQ.SumGS(QA?, t — 1).0SD? t>1
Covar[IP(c0), J(c0)] = WQ/(1 — QA?).QSD?
Covar[QL(t), J(t)] =[WW1+ WQ.{SumGS(QA, t — 1) — QA*.SumGS(QA?, t — 1)}

/(1 — OA)].OSD?
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Covar[QL(c0), J(c00)] =[WW1+WQ.{1/(1 - QA) — OA*/(1 - QA*)}/(1 — QA)].OSD?
Covar[WN(2), J(¢)] =SumGS(WA?, t).WSD?
Covar[WN(o0), J(c0)] =1/(1 — WA?).WSD?
Covar[IN(z), WL(t)] = WW1.QSD? r=1
={WW1+(WW1+WQ/(1 - QA)).QA.SumGS(QA, t — 1)
— WQ/(1 — QA).QA*.SumGS(QA?, ¢t — 1)}.QSD? t>1

Covar[IN(co), WL(c0)] ={WW1+(WW1+WQ/(1 - QA)).QA/(1 — QA)
— WQ/(1 - QA).0A%/(1 — QA*)}.0SD?
Covar[IP(¢), WL(¢)] =0 t=1
={(WW1+WQ/(1 — QA)).SumGS(QA, ¢t — 1)
— WQ/(1 - QA).QA.SumGS(QA? ¢ — 1)}.QSD? t>1
Covar[IP(c0), WL(00)] ={(WW1+WQ/(1 - QA))/(1 - QA)
— WQ/(1 - QA).0A/(1 - 0A%)}.0SD?
Covar[QL(t), WL(t)] = WW1.QSD? r=1
=WW1.QSD?
+{{(WW1+WQ/(1 - QA)).(t—1)
— (WW1+WQ/(1 — QA)).QA.(QA+1).SumGS(QA, t — 1)

+WQ/(1 — QA).QA3 SumGS(QA* 1)}/(1 — QA).QSD? t>1
Covar[QL(c0), WL(o0)] =0
Covar[WN(£), WL(t)] = {SumGS(WA, t) — WA.SumGS(WA?2, £))/(1 — WA)}.WSD?
Covar[WN(o0), WL(c0)] ={1/(1 — WA) — WA/(1 — WA?))/(1 — WA).WSD?
Covarl[J(t), WL(t)] = WW12.QSD? + t=1

=[WW1*+{WQ.(WW1+WQ/(1 — QA)).SumGS(QA, ¢t — 1)
— WQ?*/(1 - QA).QA.SumGS(QA? ¢ — 1)}].0SD?
+{(SumGS(WA, t) — WAZ.SumGS(WA?2, t)}/(1 — WA).WSD?> t>1
Covar[J(co), WL(c0 t] =[WW12+{WQ.(WW1+ WQ/(1 — QA))/(1 — QA)
— WQ?/(1-0QA).0A/(1 - QA*)}.0SD?
+{1/(1 - WA) — WA/(1 — WAH)}/(1 — WA)}.WSD?

A.5.4. Dividend yields
Covar(IN(z), YL(t)) = YW.SumGS(QA?, t).QSD?
Covar(IN(c0), YL(c0)) = YW/(1 — QA?).QSD?
Covar(IP(¢), YL(¢)) =0 t=1

=YW.QA.SumGS(QA?, t — 1).0SD? t>1
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Covar(IP(c0), YL(c0)) = YW.QA/(1 — QA?).QSD?
Covar(QL(t), YL(z)) = YW/(1 — QA){SumGS(QA, t) — QA.SumGS(QA?, t)}.QSD?
Covar(QL(c0), YL(00)) = YW/{(1 - QA).(1 — QA?)}.QSD?
Covar(J(t), YL(t)) = WW1.YW.QSD? t=1

=YW.{WW1+WQ.QA.SumGS(QA?, t —1)}.0SD* t>1

Covar(J(o0), YL(00)) = YW.{WW1+WQ.QA/(1 — QA?)}.QSD?
Covar(WL(t), YL(t)) = WW1.YW.QSD? r=1
=YWAWWI1+(WW1+WQ/(1— QA)).QA.SumGS(QA, t — 1)
— WQ/(1 - QA).QA%2.SumGS(QA?, t — 1}.QSD? t>1

Covar(WL(c0), YL(c0)) = YW.{WW1+(WW1+WQ/(1 - QA?)).0A/(1 — QA)}.QSD?
Covar(YN(t), YL(t)) =SumGS(YA?, t).YSD?> = Var[YN(t)]

Covar(YN(c0), YL(c0)) =1/(1 — YA?).YSD?
Covar(YL(t), YEP(¢)) =0 t=1ort>2

=YA.YSD? t=2
Covar(YL(cx), YEP(c0)) =0

A.5.5. Share dividends and prices

Covar(IN(¢), DM(t)) =DD/(DDC — QA)
{DDC.SumGS(QA.DDC, t) — QA.SumGS(QA?, )}.QSD?
Covar(IN(c0), DM(c0)) =DD/(DDC — QA)
{DDC/(1 — QA.DDC) — QA/(1 — QA?)}.QSD?
Covar(IP(t), DM(t)) =0 t=1
=DD/(DDC — QA).{DDC?.SumGS(QA.DD, t — 1)
— QA%.SumGS(QA?, t — 1)}.0SD? t>1
Covar(IP(c0), DM(c0)) =DD/(DDC — QA){1/(1 — QA.DDC) — QA?/(1 — QA?)}.QSD?
Covar(QL(t), DM(t)) =DD/{(1 — QA).(DDC — QA)}
A{DDC.SumGS(DDC, t) — QA.SumGS(QA, t)
— QA.DDC.SumGS(QA.DDC, t)+ QA%.SumGS(QA?, t)).QSD?
Covar(QL(c0), DM(c0)) =DD/{(1 - QA).(DDC — QA)}
{DDC/(1 - DDC) — QA/(1 — QA)

— QADDC/(1 — QA.DDC)+QA?/(1 — QA?)}.QSD?
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Covar(J(t), DM(t)) = WW1.DD.QSD? t=1
=[WW1.DD+WQ.DD/(DDC — QA)
{DDC?*SumGS(QA.DDC, t — 1) — QA?.SumGS(QA?, t — 1)}].QSD?
t>1
Covar(J(c0), DM(0)) =[WW1.DD+ WQ.DD/(DDC — QA)
A{DDC?/(1 — QA.DDC) — QA*/(1 — QA?)}].0SD?
Covar(WL(t), DM(t)) = WW1.DD.QSD? t=1
=[WW1.DD+DD/(DDC — QA)
A(WW1+WQ/(1— QA))
(DDC*.SumGS(DDC, t — 1) — QAZSumGS(QA, t — 1))
— WQ/(1 - QA).QA.
(DDC?.SumGS(QA.DDC, t — 1)+ QA2 .SumGS(QA?2, ¢ — 1))}].QSD?
t>1
Covar(WL(c0), DM(c0)) =[WW1.DD+DD/(DDC — QA)
A(WW1+QA/(1 — QA).(DDC?*/(1 — DDC) — QA%/(1 — QA))
— WQ/(1 - QA).QA.[DDC?/(1 — DDC) — QA%/(1 — QA?)}.QSD?
Covar(YL(t), DM(t)) =YW.DD/(DDC — QA)
{DDC.SumGS(DDC.QA,t) — QA.SumGS(QA?, 1)}.QSD?
Covar(YL(c0), DM(c0)) = YW.DD/(DDC — QA)
{DDC/(1 — DDC.QA) — QA/(1 — QA?)}.QSD?
Covar(IN(z), K(t)) ={DF1.SumGS(QA.DDC, t) — DF2.SumGS(QA?, t)}.QSD?
Covar(IN(co), K(c<)) ={DF1/(1 — QA.DDC) — DF2/(1 — QA?)}.QSD?
Covar(IP(t), K(¢)) = {DF1.DDC.SumGS(QA.DDC, t) — DF2.QA.SumGS(QA?, t)}.QSD?
Covar(IP(c0), K(c00)) ={DF1.DDC/(1 — QA.DDC) — DF2.QA/(1 — QA?%)}.QSD?
Covar(QL(t), K(t)) ={DF1.SumGS(DDC, t) — DF1.QA.SumGS(DDC.QA, t)
— DF2.SumGS(QA, t)+ DF2.QA.SumGS(QA?, 1)} /(1 — QA).QSD?
Covar(QL(c0), K(0)) ={DF1/(1 — DDC) — DF1.QA/(1 — DDC.QA)
—DF2/(1 - QA)+DF2.0A/(1 — QA*)}/(1 — QA).QSD?
Covar(J(t), K(t)) = WW1.(DW.DD + DX).QSD? t=1
=[WW1.(DW.DD+ DX)
+{WQ.(DF1.DDC.SumGS(QA.DDC, t — 1)
— DF2.QA.SumGS(QA?, t — 1))}].0SD? t>1
Covar(J(c0), K(c0)) =[WW1.(DW.DD+ DX)

+{WQ.(DF1.DDC/(1 — QA.DDC) — DF2.QA/(1 — QA?))}].QSD?

39

https://doi.org/10.1017/5174849951500010X Published online by Cambridge University Press


https://doi.org/10.1017/S174849951500010X

A.D. Wilkie and Sule Sahin

Covar(WL(z), K(t)) = WW1.(DW.DD + DX).QSD? =1
=[WW1.(DW.DD+DX)
+{WW1.(DF1.DDC.SumGS(DDC, t — 1) — DF2.QA.SumGS(QA, t — 1))
+WQ/(1 — QA).[DF1.DDC.(SumGS(DDC, t — 1) — QA.SumGS(DDC.QA, t — 1))
— DF2.QA.(SumGS(QA, t — 1) — QA.SumGS(QA?, t — 1))]}].0SD?
Covar(WL(c0), K(c0)) =[WW1.(DW.DD + DX)
+{WW1.(DF1.DDC/(1 — DDC) — DF2.QA/(1 — QA)]
+WQ/(1 — QA).[DF1.DDC/(1 — DDC) — DF1.DDC.QA/(1 — DDC.QA)
—DF2.0A.(1/(1 - QA) — QA/(1 — OA?%))]}].OSD?
Covar(YN(t), K(¢)) =0 t=1
=YA.DY.YSD? t>1
Covar(YN(co), K(c0)) = YA.DY.YSD?
Covar(YEP(t), K(¢)) =0 t=1
=DY.YSD? t>1
Covar(YEP(c0), K(c0)) =DY.YSD?
Covar(YL(t), K(t)) ={YW.[DF1.SumGS(DDC.QA, t) — DF2.SumGS(QA?, #)]}.0SD* ¢ = 1
={YW.[DF1.SumGS(DDC.QA, t) — DF2.SumGS(QA?, )]}.0SD?
+YA.DY.YSD? t>1
Covar(YL(c0), K(o0)) ={YW.[DF1/(1 — DDC.QA) — DF2/(1 — QA?)]}.QSD?
+YA.DY.YSD?
Covar(DM(t), K(t)) ={DW.DD?*/(DDC — QA)*
(DDC*.SumGS(DDC?, t) — 2QA.DDC.Sum(QA.DDC, 1)
+QA%.SumGS(QA?, t)
+[DX.DD/(DDC — QA).(DDC.SumGS(DDC.QA, )
— QA.SumGS(QA?, 1)]}.0SD?
Covar(DM(oo), K(o<)) ={DW.[DD?/(DDC — QA)*
(DDC? /(1 — DDC?) —2QA.DDC/(1 — QA.DDC)
+0A?/(1 - 0A%))
+[DX.DD/(DDC — QA).(DDC/(1 — DDC.QA)

— OA/(1 - 0A%)]}.0SD?
Covar(DEP(t), K(t)) =0 t=1

=DB.DSD? t>1
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Covar(DEP(c0), K(c0)) = DB.DSD?
Covar(IN(), DL(t)) =[(DG1 — DG2).SumGS(QA, t) — DG1.DDC.SumGS(DDC.QA, t)
+DG2.QA.SumGS(QA?, 1)].QSD?
Covar(IN(c<), DL(c0)) =[(DG1 — DG2)/(1 — QA) — DG1.DDC/(1 — DDC.QA)
+DG2.QA/(1 — QA?)].OSD?
Covar(IP(t), DL(t)) =0 t=1
=[(DG1 — DG2).SumGS(QA, t — 1) — DG1.DDC?.SumGS(QA.DDC, ¢ — 1)
+DG2.QA%.SumGS(QA?, t — 1)].0SD?
Covar(IP(x0), DL(c0)) =[(DG1 — DG2)/(1 — QA) — DG1.DDC?/(1 — QA.DDC)
+DG2.QA?/(1 — QA?).QSD?
Covar(QL(t), DL(¢)) ={DG1.(t — QA.SumGS(QA, t) — DDC.SumGS(DDC, ¢)
+QA.DDC.SumGS(QA.DDC, t))
— DG2.(t — 2QA.SumGS(QA, 1)+ QA2.SumGS(QA?, 1))}

/(1 - QA).QSD?
Covar(QL(),DL(x0)) =00

Covar(J(t), DL(t)) = WW1.(DW.DD+ DX).QSD? t=1
=[WW1.(DW.DD+DX)
+WQ.{(DG1 — DG2).SumGS(QA, ¢t — 1)
— DG1.DDC*.SumGS(QA.DDC, t — 1)
+DG2.QA?. SumGS(QA?, t — 1)}].OSD?*  t>1
Covar(J(cc), DL(0)) =[WW1.(DW.DD + DX)
+WQ.{(DG1 - DG2)/(1 — QA) — DG1.DDC*/(1 — QA.DDC))

+DG2.QA%/(1 — QA?)}].QSD?
Covar(WL(t), DL(t)) = WW1.(DW.DD+ DX).QSD?

=[WW1.(DW.DD+DX)
+{WW1.[(DG1 — DG2).(t — 1) — DG1.DDC? .SumGS(DDC, t — 1)
+DG2.QA%.SumGS(QA, t — 1)]
+WQ/(1 - QA).[(DG1 — DG2).(t — 1) — QA.SumGS(QA, ¢ — 1))
— DG1.DDC*(SumGS(DDC, t — 1) — QA.SumGS(QA.DDC, t — 1))

+DG2.0A%.(SumGS(QA, t — 1) — QA.SumGS(QA?, t — 1))}].0SD?*  t>1
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Covar(WL(c0), DL(0)) =00
Covar(YN(t),DL(t)) =DY.YA.SumGS(YA, ¢t — 1).YSD?
Covar(YN(co), DL(0)) =DY.YA/(1 — YA).YSD?
Covar(YL(t), DL(t)) ={YW.((DG1 — DG2).SumGS(QA, t)
— DG1.DDC.SumGS(QA.DDC, t)
+DG2.QA.SumGS(QA?, 1))}.OSD?

+DY.YA.SumGS(YA, ¢t — 1).YSD?

Covar(YL(00), DL(c0)) ={YW.((DG1 — DG2)/(1 — QA)
— DG1.DDC/(1 — QA.DDC)
+DG2.QA/(1 — QA?))}.0SD?

+DY.YA/(1 - YA).YSD?

Covar(YEP(t),DL(¢)) =0 t=1

=DY.YSD? t>1

Covar(YEP(c0), DL(c0)) = DY.YSD?
Covar(DM(t), DL(¢)) = DD(DDC — QA)
{(DG1 - DG2).(DDC.SumGS(DDC, t) — QA.SumGS(QA, t))
— DG1.DDC*SumGS(DDC?, 1)
+(DG1+DG2).DDC.QA.SumGS(DDC.QA, t)
— DG2.QA%.SumGS(QA?, t)}.QSD?
Covar(DM(oo), DL(c0)) =DD(DDC — QA)
{(DG1 - DG2).(DDC/(1 — DDC) — QA/(1 — QA))
- DG1.DDC?*/(1 — DDC?)
+(DG1+DG2).DDC.QA/(1 — DDC.QA)

— DG2.QA%/(1 — QA?)}.QSD?

Covar(DEP(¢t), DL(t)) =0 t=1
=(1+DB).DSD? t>1

Covar(DEP(c0), DL(c0)) = (1+DB).DSD?
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Covar(K(t), DL(t)) =[(DG1 — DG2).DF1.SumGS(DDC, ¢)
— DG1.DF1.DDC.SumGS(DDC?, ¢)

+(DG2.DF1.QA+DG1.DF2.DDC).SumGS(DDC.QA, t)
— (DG1 — DG2).DF2.SumGS(QA, t)
— DG2.DF2.QA.SumGS(QA?, 1)]}.0QSD?
+DSD? t=1
=[(DG1 — DG2).DF1.SumGS(DDC, t)
— DG1.DF1.DDC.SumGS(DDC?, t)
+(DG2.DF1.QA+DG1.DF2.DDC).SumGS(DDC.QA, t)
— (DG1 — DG2).DF2.SumGS(QA, t)
— DG2.DF2.QA.SumGS(QA?, t)]}.0SD?

+DY2.YSD? + (1+DB.(1+ DB)).DSD? t>1

Covar(K(c0), DL(c0)) =[(DG1 — DG2).DF1/(1 — DDC)
— DG1.DF1.DDC/(1 — DDC?)
+(DG2.DF1.QA+DG1.DF2.DDC)/(1 — DDC.QA)
— (DG1 - DG2).DF2/(1 — QA)
— DG2.DF2.QA/(1 — QA%)]}.QSD?
+DY2.YSD* + (1+ DB.(1+DB)).DSD>
Covar(IN(t), PL(t)) = Covar(IN(¢), DL()) — Covar(IN(2), YL(z))
=[(DG1 — DG2).SumGS(QA, t) — DG1.DDC.SumGS(DDC.QA, 1)
+DG2.QASumGS(QA?, 1)].0QSD?
— YW.QA.SumGS(QA?, 1).0SD?
Covar(IN(00), PL(c0)) =[(DG1 — DG2)/(1 — QA) — DG1.DDC/(1 — DDC.QA)
+DG2.QA/(1 — QA?)).QSD?
—YW/(1 - QA?).QSD?
Covar(IP(¢),PL(t)) =0 t=1
=[(DG1 — DG2).SumGS(QA, t — 1) — DG1.DDC*.SumGS(QA.DDC, t — 1)
+DG2.QA?.SumGS(QA?, ¢ — 1)].0SD?

— YW.QA.SumGS(QA?,  — 1).QSD? t>1
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Covar(IP(c0), PL(c0)) =[(DG1 — DG2)/(1 — QA) — DG1.DDC*/(1 — QA.DDC)
+DG2.0A%/(1 — QA?).QSD?
—YW.QA/(1 — QA?).QSD?
Covar(QL(t), PL(t)) = Covar(QL(z), DL(t)) — Covar(QL(z), YL(z))
={DG1.(t — QA.SumGS(QA, t) — DDC.SumGS(DDC, t)
+QA.DDC.SumGS(QA.DDC, t))
— DG2.(t — 20A.SumGS(QA, )+ QA% SumGS(QA?, 1))}
/(1 — QA).QSD?
— YW/(1 — QA) {SumGS(QA, t) — QA.SumGS(QA?, t)}.QSD*
Covar(QL(c0), PL(c0)) =00
Covar(J(t), PL(t)) = WW1.(DW.DD+DX).QSD* — WW1.YW. QSD? t=1
=[WW1.(DW.DD+DX)
+WQ.{(DG1 — DG2).SumGS(QA, t — 1)
— DG1.DDC?.SumGS(QA.DDC, t — 1)
+DG2.QA%.SumGS(QA?, ¢t — 1)}].0SD?
YW.{WW1+WQ.QA.SumGS(QA?, t — 1)}.QSD? t>1
Covar(J(c0), PL(c0)) =[WW1.(DW.DD + DX)
+WQ.{(DG1 - DG2)/(1 — QA) — DG1.DDC?/(1 — QA.DDC))
+DG2.QA?/(1 — QA?)}].OSD?
YW {WW1+WQ.QA/(1 — QA)}.QSD?
Covar(WL(¢), PL(t)) = WW1.(DW.DD+ DX).QSD* — WW1.YW.QSD? t=1
—[WW1.(DW.DD+DX)
+{WW1.[(DG1 — DG2).(t — 1) — DG1.DDC* SumGS(DDC, ¢ — 1)
+DG2.QA%.SumGS(QA, t — 1))
+WQ/(1 - QA).[(DG1 — DG2).(t — 1) — QA.SumGS(QA, ¢ — 1))
— DG1.DDC*(SumGS(DDC, ¢ — 1) — QA.SumGS(QA.DDC, t — 1))
+DG2.0A% (SumGS(QA, ¢ — 1) — QA.SumGS(QA?, t — 1))}].0SD?
—YWAWWI1+(WW1+WQ/(1 — QA)).QA.SumGS(QA, t — 1)

— WQ/(1 - QA).QA?.SumGS(QA?, t — 1}.QSD? t>1
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Covar(WL(c0), PL(c0)) =00
Covar(YN(t),PL(t)) =DY.YA.SumGS(YA, t — 1).YSD? — SumGS(YA?, t).YSD?
Covar(YN(c0), PL(c0)) =DY.YA/(1 — YA).YSD2 — 1/(1 — YA?).YSD?
Covar(YL(t), PL(t)) = Covar(YL(t), DL(¢)) — Var[YL(t)]
= {YW.((DG1 — DG2).SumGS(QA, t)
— DG1.DDC.SumGS(QA.DDC, t)
+DG2.QA.SumGS(QA?, 1))}.OSD?
+DY.YA.SumGS(YA, t — 1).YSD?
— YW?2.SumGS(QA?, t)).0SD? — SumGS(YA2, t).YSD?
Covar(YL(c0), PL(cc)) ={YW.((DG1 — DG2)/(1 — QA)
-~ DG1.DDC/(1 — QA.DDC)
+DG2.QA/(1 — QA?))}.0SD?
+DY.YA/(1 — YA).YSD?

—YW?/(1 - QA%).0SD?* — 1/(1 — YA?).YSD?

Covar(YEP(t),PL(¢)) =0 t=1
=DY.YSD? — YA.YSD? P=2
=DY.YSD? £>2

Covar(YEP(c0), PL(c0)) = DY.YSD?
Covar(DM(t), PL(t)) = DD(DDC — QA)

{(DG1 - DG2).(DDC.SumGS(DDC, t) — QA.SumGS(QA, 1))

— DG1.DDC?.SumGS(DDC?, ¢)

+(DG1+DG2).DDC.QA.SumGS(DDC.QA, t)

— DG2.QA%.SumGS(QA?, 1)}.QSD?

— YW.DD/(DDC — QA)

{DDC.SumGS(DDC.QA, t) — QA.SumGS(QA?, )}.QSD?

Covar(DM(c0), PL(0)) =DD(DDC — QA)

{(DG1 - DG2).(DDC/(1 — DDC) — QA/(1 — QA))
- DG1.DDC* /(1 — DDC?)
+(DG1+DG2).DDC.QA/(1 — DDC.QA)
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— DG2.QA%/(1 — QA?)}.QSD?
— YW.DD/(DDC — QA)
{DDC/(1 — DDC.QA) — QA/(1 — QA?)}.QSD?

Covar(DEP(¢),PL(¢)) =0 t=1
=(1+DB).DSD? t>1
Covar(DEP(c0), PL(c0)) = (1+DB).DSD?
Covar(K(t),PL(t)) =[(DG1 — DG2).DF1.SumGS(DDC, t)
— DG1.DF1.DDC.SumGS(DDC?, t)
+(DG2.DF1.QA +DG1.DF2.DDC).SumGS(DDC.QA, t)
— (DG1 — DG2).DF2.5umGS(QA, 1)

— DG2.DF2.QA.SumGS(QA?, 1)]}.QSD?

— {YW.[DF1.SumGS(DDC.QA, t) — DF2.SumGS(QA?, t)]}.QSD?

+DSD? t=1
=[(DG1 — DG2).DF1.SumGS(DDC, t)

— DG1.DF1.DDC.SumGS(DDC?, t)

+(DG2.DF1.QA+DG1.DF2.DDC).SumGS(DDC.QA, t)

— (DG1 — DG2).DF2.SumGS(QA, t)

— DG2.DF2.QA.SumGS(QA?, t)]}.0SD?

+DY2.YSD* + (1+DB.(1+ DB)).DSD?

— {YW.[DF1.SumGS(DDC.QA, t) — DF2.SumGS(QA?, ¢)]}.QSD?

— YA.DY.YSD?

Covar(K(o0), PL(c0)) =[(DG1 — DG2).DF1/(1 — DDC)
— DG1.DF1.DDC/(1 — DDC?)
+(DG2.DF1.QA+DG1.DF2.DDC)/(1 — DDC.QA)
— (DG1 - DG2).DF2/(1 — QA)
— DG2.DF2.QA/(1 — QA%)]}.QSD?
+DY2.YSD*+(1+DB.(1+DB)).DSD?
—{YW.[DF1/(1 — DDC.QA) — DF2/(1 — QA%)]}.QSD?

— YA.DY.YSD?
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Covar(DL(¢),PL(t)) =Var[DL(t)] — Covar(YL(t), DL(2))

= (DF1 — DF2)*.QSD? + DSD?
— {YW.((DG1 — DG2).SumGS(QA, 1)
— DG1.DDC.SumGS(QA.DDC, t)
+DG2.QA.SumGS(QA?, 1))}.OSD?
— DY.YA.SumGS(YA, t — 1).YSD? t=1

—{(DG1 - DG2)*.t —2DG1.(DG1 — DG2)DDC.SumGS(DDC, ¢)
+DG12DDC?.SumGS(DDC?, t)
—2.DG1.DG2.QA.DDC.SumGS(QA.DDC, t)
+2DG2.(DG1 — DG2).QA.SumGS(QA, t)
+DG22.QA*SumGS(QA?, )}.QSD?
+(t—1).DY>YSD?+{1+(t — 1).(1+ DB)*}.DSD?
— {YW.((DG1 — DG2).SumGS(QA, 1)
— DG1.DDC.SumGS(QA.DDC, t)
+DG2.0A.SumGS(QA?, 1))}.0SD?

— DY.YA.SumGS(YA, ¢ — 1).YSD? t>1

Covar(DL(00), PL(0)) = o0

A.5.6. Long-term interest rates

Covar(IN(t), CM(t)) =CD/(CDC — QA)
{CDC.SumGS(QA.CDC, t) — QA.SumGS(QA?, £)}.QSD?
Covar(IN(cc), CM(c0)) = CD/(CDC — QA)

(CDC/(1 — QA.CDC) — QA/(1 — QA?))}.QSD?
Covar(IP(¢), CM(¢)) =0 t=1

=CD/(CDC — QA) {CDC*.SumGS(QA.CDC, t — 1)

— QA% .SumGS(QA?, t — 1))}.0SD? r>1
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Covar(IP(c0), CM(c0)) = CD/(CDC — QA)
(1/(1 — QA.CDC) — QA%/(1 — QA?))}.OSD?
Covar(QL(t), CM(t)) =CD/{(1 — QA).(CDC — QA)}
(CDC.SumGS(CDC, t) — QA.SumGS(QA, 1)
— QA.CDC.SumGS(QA.CDC, t)+ QA%.SumGS(QA?, t)).0QSD?
Covar(QL(0), CM(o0)) =CD/{(1 — QA).(CDC - QA)}

{CDC/(1 - CDC) — QA/(1 — QA) — QA.CDC/(1 — QA.CDC)
+QA?/(1 - QA?)}.0SD?

Covar(J(t), CM(t)) = WW1.CD.QSD? t=1
=[WW1.CD+WQ.CD/(CDC — QA)
{CDC?.SumGS(QA.CDC, t — 1)

— QA%.SumGS(QA?, ¢ — 1)}].0SD? t>1
Covar(J(cc), CM(c0)) =[WW1.CD+WQ.CD/(CDC — QA).

{CDC?*/(1 - QA.CDC) — QA?/(1 — QA*)}].0SD?
Covar(WL(t), CM(t)) = WW1.CD.QSD? t=1

=[WW1.CD+CD/(CDC — QA)

A(WW1+WQ/(1 — QA)).(CDC2.SumGS(CDC, t — 1)

— QA?SumGS(QA, t — 1))

— WQ/(1 - QA).QA.(CDC?*.SumGS(QA.CDC, t — 1)

+ QA% SumGS(QA?, t — 1)}].0SD? t>1

Covar(WL(c0), CM(c0)) =[WW1.CD+CD/(CDC — QA)
{(WW1+WQ/(1 - QA).[CDC?*/(1 — CDC) — QA%/(1 — QA)]

— WQ/(1 - QA).QA.[CDC?/(1 — CDC) — QA%/(1 — QA)}].QSD?

Covar(YL(t), CM(t)) = YW.CD/(CDC — QA).

{CDC.SumGS(CDC.QA, t) — QA.SumGS(QA?, £)}.QSD?

Covar(YL(c0), CM(o0)) =YW.CD/(CDC — QA)

{CDC/(1 — CDC.QA) — QA/(1 — QA?)}.QSD?
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Covar(DM(t), CM(t)) =DD.CD/{(DDC — QA).(CDC — QA)}
A{DDC.CDC.Sum(DDC.CDC, t) — DDC.QA.Sum(DDC.QA, t)

— QA.CDC.Sum(QA.CDC, t)+ QA*Sum(QA?, t).QSD?

Covar(DM(co), CM(cc)) =DD.CD/{(DDC — QA).(CDC — QA)}
{DDC.CDC/(1 — DDC.CDC) — DDC.QA/(1 — DDC.QA)

— QA.CDC/(1 — QA.CDC)+ QA?/(1 — QA?).QSD?

Covar(K(t),CM(¢)) ={CD/(CDC — QA).[DF1.CDC.SumGS(DDC.CDC, t)
— DF1.QA.SumGS(DDC.QA, 1)
— DF2.CDC.SumGS(QA.CDC, t)

+DF2.0A.SumGS(QA?, 1))].0SD?

Covar(K(c0), CM(c0)) ={CD/(CDC — QA).[DF1.CDC/(1 — DDC.CDC)
— DF1.0A/(1 — DDC.QA) — DF2.CDC/(1 — QA.CDC)

+DF2.QA/(1 — QA?))].OSD?

Covar(DL(¢), CM(¢)) =CD/(CDC — QA)
.(DG1 — DG2).(CDC.SumGS(CDC, t) — QA.SumGS(QA, 1))
— DG1.DDC.(CDC.SumGS(DDC.CDC, t) — QA.SumGS(DDC.QA, t))

+DG2.QA.(CDC.SumGS(QA.CDC, t) — QA.SumGS(QA?, t)).QSD?

Covar(DL(o0),CM()) =CD/(CDC — QA)
.(DG1 - DG2).(CDC/(1 — CDC) — QA/(1 — QA))
— DG1.DDC.(CDC/(1 — DDC.CDC) — QA/(1 — DDC.QA))

+DG2.QA.(CDC/(1 — QA.CDC) — QA/(1 — QA?)).QSD?

Covar(PL(¢),CM(¢)) = Covar(DL(t), CM(¢)) — Covar(YL(z), CM(¢))
=CD/(CDC — QA)
(DG1 — DG2).(CDC.SumGS(CDC, t) — QA.SumGS(QA, 1))
— DG1.DDC.(CDC.SumGS(DDC.CDC, t) — QA.SumGS(DDC.QA, 1))

49

https://doi.org/10.1017/5174849951500010X Published online by Cambridge University Press


https://doi.org/10.1017/S174849951500010X

A.D. Wilkie and Sule Sahin

+DG2.QA.(CDC.SumGS(QA.CDC, t) — QA.SumGS(QA?, t)).QSD?
— YW.CD/(CDC — QA)
{CDC.SumGS(CDC.QA, t) — QA.SumGS(QA?, ¢)}.QSD?

Covar(PL(o0), CM(c0)) =CD/(CDC — QA)
(DG1—DG2).(CDC/(1 — CDC) — QA/(1 — QA))
— DG1.DDC.(CDC/(1 — DDC.CDC) — QA/(1 — DDC.QA))
+DG2.QA.(CDC/(1 — QA.CDC) — QA/(1 — QA?)).QSD?
— YW.CD/(CDC — QA)

{CDC/(1 — CDC.QA) — QA/(1 — QA%)}.QSD?

Covar(YN(t), CRL(t)) = CY.SumGS(YA.CY, t).YSD?
Covar(YN(co), CRL(c0)) = CY/(1 — YA.CY).YSD?
Covar(YL(z), CRL(t)) =CY.SumGS(YA.CY, t).YSD?
Covar(YL(c0), CRL(c0)) =CY/(1 — YA.CY).YSD?
Covar(YEP(¢), CRL(t)) =0 t =1
= CY.CA.YSD? t>1
Covar(YEP(c0), CRL(c0)) = CY.CA.YSD?
Covar(K(¢), CRL(¢)) =0 t =1
=DY.CY.CA.YSD? t>1
Covar(K(co), CRL(c0)) =DY.CY.CA.YSD?
Covar(DL(t), CRL(¢)) =0 t=1
=DY.CY.CA.SumGS(CA, t — 1).YSD? t>1
Covar(DL(c0), CRL(c0)) =DY.CY.CA/(1 — CA).YSD?
Covar(PL(t), CRL(z)) = — CY.YSD? r=1
={CY. - 1+DY.CA.SumGS(CA, t — 1)
— YA.CA.SumGS(YA.CA, t — 1)}.YSD? t>1

Covar(PL(c0), CRL(c0)) =CY.{—1+DY.CA/(1 — CA) — YA.CA/(1 — YA.CA)}.YSD?

A.5.7. Short-term interest rates
BD(¢#) depends only on BZ(t), and no other variable is connected with it, so all covariances

are Zero.
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A.5.8. Index-linked rates
Covar[CRL(t), R(t)] =RBC.SumGS(CA.RA, t}.CSD?

Corrigenda

Covar(CRL(c0), R(00)) =RBC/(1 — CA.RA).CSD>

In Part 1, Table 8.1 was incorrectly presented, with three columns of numbers all the same, and all

with wrong numbers in it, although the totals and the conclusions were correct.

Table 8.1. Comparison of actual and expected values of InR(z), 1995 -2009, conditional on & _; and on CE(t).

Year R(2) (%) In(R(2)) E[InR(2)$,_; and CE(1)] RE(1) RZ(#)
1994 3.95 -3.2315
1995 3.78 -3.2754 0.00 -0.06 -1.14
1996 3.82 -3.2649 -0.04 -0.01 -0.16
1997 3.63 -3.3159 -0.13 0.03 0.57
1998 2.65 -3.6306 -0.30 -0.11 -2.16
1999 1.90 -3.9633 -0.25 -0.50 -9.93
2000 1.83 -4.0009 -0.43 -0.35 -7.06
2001 2.41 -3.7255 -0.29 -0.21 -4.29
2002 2.14 -3.8444 -0.33 -0.30 -5.98
2003 1.76 -4.0399 -0.50 -0.32 -6.34
2004 1.87 -3.9792 -0.38 -0.38 -7.68
2005 1.39 -4.2759 -0.56 -0.49 -9.85
2006 1.43 -4.2475 -0.55 -0.47 -9.49
2007 1.67 -4.0923 -0.47 -0.40 -8.00
2008 0.86 -4.7560 -0.55 -0.99 -19.81
2009 0.84 -4.7795 -0.89 -0.67 -13.32
Total -5.23 -104.65
>CZz? 1,129.12
In Part 1, 8.8, the possible parameters were given as:
RMU = 3%; RA = 0.95; RBC = 0.008; RSD = 0.3

The last should have been RSD =0.003.
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