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THE RAMIFIED ANALYTICAL HIERARCHY USING EXTENDED
LOGICS

PHILIP D. WELCH

Abstract. The use of Extended Logics to replace ordinary second order definability in
Kleene’s Ramified Analytical Hierarchy is investigated. This mirrors a similar investigation
of Kennedy, Magidor and Väänänen [11] where Gödel’s universe L of constructible sets is
subjected to similar variance. Enhancing second order definability allowsmodels to be defined
which may or may not coincide with the original Kleene hierarchy in domain. Extending the
logic with game quantifiers, and assuming strong axioms of infinity, we obtainminimal correct
models of analysis. A wide spectrum of models can be so generated from abstract definability
notions: one may take an abstract Spector Class and extract an extended logic for it. The
resultant structure is then a minimal model of the given kind of definability.

§1. Introduction. This article arises out of questions of Kennedy [9] and
the authors of [11]. From the first article cited:

We readGödel’s 1946 lecture as an important but perhaps overlooked
step in this line of thought [concerning formalism freeness], not with
respect to language necessarily [ . . . ] but with respect to formaliza-
tion altogether; in particular we will interpret Gödel there as making
the suggestion, albeit in a preliminary form, that tests of robustness
analogous to that which is implicit in the Church–Turing Thesis be
developed, not for the notion of computable function but for the
concept of definability—witnessing its formalism independence, as it
were.

The second article cited looks at building inner model hierarchies as
Gödel did, but instead using definability of the models using languages
with extended quantifiers, rather than just first order logic, thereby testing
the extent to which L was indeed “formalism-free” or independent of the
logic used. Of course in some cases the altered formalism did indeed return
L, however in others this was not the case, with new and interesting inner
models arising. We seek to follow up the question raised by the following
suggestion ([10], also raised in the previously cited article).

The method can be implemented not just for definability in the sense
of L or HOD as was done in [11], but in other settings as well.
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Thinking beyond definability toward other canonical concepts, one
might also consider this varying the underlying logic also in other
contexts. In fact any logical hierarchy, e.g.,Kleene’s ramified hierarchy
of reals is amenable to this treatment, conceivably. Suitable notions
of confluence and grounding must be formulated on a case by case
basis.

We shall attempt then to give one answer to a question of whether some-
thing similar might be done for theRamified Analytical Hierarchy of Kleene.
We shall first illustrate the methodology for inner models from [11], imme-
diately followed by an example: the “cof-�” quantifier, Qcf� . We then give
the definition of the Ramified Analytical Hierarchy (and note why the Qcf�
is inappropriate in this setting). We proceed then to talk about generalized
quantifiers that are appropriate. This theory goes back to Aczel, [1], and
to Moschovakis (see for example [14]), and we focus on examples given by
game quantifiers. As we shall see these provide a rich source of differing
hierarchies.
In Section 2 we define the minimum correct model of analysis. This uses
the game quantifier and a background theory of Projective Determinacy.
It is quite possible to define a correct model using a different background
theory such as is done in [16] assuming ‘V = L’. It is a feature of [11] that
varying the background theories, such as taking V = L or L[�], or forcing
extensions, or, . . . gives rise to different versions of a model defined by the
same logic. It may be argued that only when we have sufficiently strong
axioms can we obtain the definitive model. The same is true for correct
models of ramified analysis.
In Section 4 we parallel the result of Gandy and Putnam ([13]) that found
the least level of an inner model (namely Gödel’s L) whose reals corre-
sponded to the least �-model of analysis. We identify the level, Q, of the
least iterable inner model with infinitely manyWoodin cardinals whose reals
correspond to those of PProj , the minimal fully correct model of analysis
(‘fully correct’ in the sense that each Π1n formula is absolute between the
model PProj and standard model of analysis).
Thus:

Theorem 1.1. PProj = R ∩Q.
In the final section we argue that, using a representation theorem of
Harrington, for almost any notion of ‘definability’ for sets of integers in
some general sense, we can find an extended logic for it—this is the contents
of the following theorem:

Theorem 1.2. Let Γ ⊆ P(N) be a Spector class, with corresponding quan-
tifier Q = QΓ from Harrington’s theorem. Then there is a minimum model of
analysisPΓ which is closed under positive inductions inLQ, and so that for any
X ∈ PΓ we have that Γ(X ) (the Spector class relativised to X ) is contained
in PΓ.
This might be considered a possible maximal answer to Kennedy’s
question. We close with some further open questions.
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§2. Extended logics for set theory and for ramified analysis. We first give
an example from inner model theory. This is done by varying the Gödelian
Def operator in the recursive definition of the constructible universe. By
‘a logic’ is meant a set of sentences S in a language and a truth (and so a
satisfaction) predicate T for them. It is intended that T give full information
for any structure (of the appropriate signature)M as to whether ϕ holds in
M or not, thus we may take T as a function T (M, ϕ) with values in 2. The
logic L∗ is then the pair (S, T ). (We may slip up in the sequel and speak just
of L∗ as a language, but the reader will know what is meant.) For ordinary
first order logic the following is just Gödel’s definition of his L.

Definition 2.1. If M is a set, let DefL∗(M ) denote the set of all sets of
the form

X = {a ∈M | (M,∈) |= ϕ(a, b)},
where ϕ(x, y) is an arbitrary formula of the logic L∗ and b ∈M . We define
a hierarchy (L′

α) of sets constructible using L
∗ as follows:

L′
0 = Ø ;

L′
� =

⋃
α<� L

′
α for Lim(�);

L′
α+1 = DefL∗(L′

α) and L
′ =

⋃
α∈On L

′
α.

One example: L∗ is the language L∈̇,=̇ of set theory together with a
cofinality � quantifier.

(M,∈) |= Qcf� xyϕ(x, y, a)⇔
{(c, d ) | (M,∈) |= ϕ(c, d, a)} is a linear order of cofinality �.

The model built here, L′, can be shown to be precisely L[C�] where C�

is the class of ordinals of cofinality �. One should note that then L′ ‘knows’
that certain ordinals have cofinality� inV , but they need not have countable
cofinality in L′: the construction does not provide a cofinal � sequence for
each α ∈ C�.
It is thus important to remark that this is not an absolute notion: the right
hand side is evaluated in V , not in any sense in the final, as yet to be built,
model L′. New information is thus imported from V into the construction
of L′.
To state the obvious: this importation of new information is an essential
feature of each of the logics/quantifiers of [11] that build something different
from L.
We take up the question of the second quotation above concerning analo-
gous constructions for the Ramified Analytical Hierarchy. This is expressed
in a suitable language L2 for analysis. (By ‘analysis’ we mean an axioma-
tisation of second order number theory, such as Z2, see for example [17].)
Such a language is appropriate for structures of the form

M = (M,N,+,×, 0,′ , . . .),
whereM ⊆ P(N). ThusL2 contains number variables x, y, z, . . . and second
order set variables X,Y,Z, . . ., for sets of numbers, and quantifiers of both
kinds: ∃x, ∀y, . . .∃X, ∀Y . . ., as well as function symbols for 0,+,×, . . ., etc.
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We let be the full model of analysis be Z = (P(N),N,+,×, 0,′ , . . .). We also
identify R with P(N) and use both interchangeably.

Definition 2.2 (Kleene [12]). Define by recursion on α, Pα ⊆ P(N):
P0 = Ø;

P� =
⋃
α<� Pα for Lim(�);

Pα+1 = {Y ⊆ N | Y is definable in L2 over Pα = (Pα,N,+,×, 0,′ , . . .)}.
On cardinality grounds there will be a fixed point P =df P�0 = P�0+1.

It was Cohen in [4] who first showed that this ordinal �0 was countable.
(How could this have been ever in question given the Löwenheim–Skolem
theorem? Presumably in this relatively early period people were simply
unused to working with, and deploying arguments about, the absoluteness
of various constructions to the constructible hierarchy. Using this absolute-
ness, taking a countable substructure of a part of the universe containing the
hierarchy up to the fixed point would have revealed the latter’s countability.)
Cohen also conjectured that P�0 formed the minimal �-model of analysis.
(A model of a fragment of second order theory is a �-model if it is “correct”
or absolute for Π11 expressions. For a discussion of these notions cf. [17].)
This was subsequently proven independently byGandy and by Putnam ([3]).
Can we introduce nonstandard quantifiers here and see what models, now
not of set theory, but of analysiswe can build? One problem, or difference, is
that compared to the universe of sets, the Gandy–Putnam result shows that
model P is tiny:

P�0 = P(N) ∩ L�0
and L�0 is the least level of the Gödel hierarchy which is a ZF

− model.
(Later work by Boolos and Putnam [2] gave a level by level analysis of this
hierarchy and showed that Pα = P(N) ∩ Lα for α ≤ �0. From today’s
perspective these results seem again entirely straightforward, but we are
standing on the shoulders of Jensen’s magisterial fine structural analysis of
the constructible universe.)
Hence L�0 |=“V = HC” so there the Qcf� and other cardinality
quantifiers are not going to get any traction in this region of analy-
sis as everything is countable and provably so. Indeed for every level
α < �0, Lα+1 |=“card (Lα) = �”. So every ordinal is immediately collapsed
and made cofinal with �. It thus seems that set-theoretic based quantifiers
are not going to be appropriate. However, we may find in the articles of
Aczel relevant analytically (so to speak) generalised quantifiers suitable for
second order number theory. These are indeed entirely general, see [1]. Such
a quantifier on P(N) is a set Q with Ø � Q � P(N) which is monotone, that
is X ∈ Q ∧ X ⊆ Y −→ Y ∈ Q. It is usual to write interchangeably

Y ∈ Q ←→ Q(Y ) ←→ Qx(Y (x)).

The dual of Q is the quantifier Q̌ given by

Q̌xY (x) ←→ ¬Qx¬Y (x).
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Example (i). The Urexample of course is ∃ with dual ∀.
Example (ii). The Suslin quantifier. We assume 〈 〉 : ⋃n Nn ←→ N is a
recursive bijection. Then this is defined by

SuP(u)⇐⇒ ∀x0∀x1∀x2 · · · ∃nP(〈x0, . . . , xn〉).
It’s dual, Š , is usually written A. As can be seen, for an arithmetic P this is
equivalent to a Π11 expression, and for P Σ

1
n it remains Σ

1
n but only for n ≥ 2.

A common quantifier is the game quantifier. An infinite two person perfect
information game GA with A ⊆ NN and players I , II is set up as usual:

I n0 n1 . . .
II m0 m1 . . . z = (n0, m0, n1, m1, . . .)

I wins iff z ∈ A. Strategies and winning strategies for one or other of the
players are defined in an obvious way, and by recursive coding can be con-
sidered also elements ofNN .GA is determined if I or II has awinning strategy.

Example (iii). The open game quantifier �o:

�ouP(u)⇐⇒ ∃x0∀x1∃x2 · · · ∃nP(〈x0, . . . , xn〉)
with dual a closed game quantifier �c which we let the reader formulate.

§3. General infinite game quantifiers. Let R be a relation on N× NN. We
may also use the �-quantifier as embodying an operator on relations, as in
the next definition.

Definition 3.1.

�	yR(k, 	y) =df {k | Player I has a winning strategy playing into {Y |
R(k,Y )} }

= {k | ∃y0∀y1∃y2 · · ·R(k, 〈y0, yi , · · · 〉)}.
We also write this as �YR(k,Y ). For our purposes we adapt this as
follows: �XΦ(k,X, {n | ‘
(n,Y )’}) with both Φ, 
 ∈ L2, Y ∈ M, will be
a new formula in L2,� and we shall define

M |= “�XΦ(k, X, ‘
(v0, Y )’)”⇐⇒ �XΦ(k, X, {n ∈ N | (
(n/v0, Y ))M}).
The latter half is to be evaluated again inV . There is no suggestion that Φ
is absolute between the structureM and V (compare the situation with the
Qcof� quantifier logic), nor yet that strategies (as sets of integers) are inM’s
domain. Note also that Φ, 
 are in L2: we are not taking Φ or 
 possibly
from L2,�: there are thus (at this point) no nested � quantifiers.
For Φ from a particular class Γ = Π1n say, we are thus adding sets given by

�Φ definitions for Φ in Γ, with second order definable parameters.
We thus define a hierarchyP�Γ

α for α ∈ On using the logicL2,�Γ for Φ ∈ Γ:
(∗) P�Γ

α |= “�XΦ(k,X, ‘
(v0, Y )’)′′ ⇐⇒
�XΦ(k,X, {n ∈ N | (
(n/v0, Y ))P

�Γ
α }).
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By a Löwenheim–Skolem argument, this hierarchy will close off at some
countable ordinal ��Γ with resulting model P

�Γ. First we consider various
classes Γ.

Examples (I). Γ = Σ01. Then strategies for open games in real parameters
that areL2-definable (overP�Σ01

α ) will themselves beL
2,�-definable overP�Σ01

α

and hence will be in P�Σ01
α+1. (If I has a winning strategy in a game open in

the parameter x, then I has aHYP(x) winning strategy.)
We get simply:

P�Σ01 = P and ��Σ01 = �0.

This is because, as pointclasses, �Σ01 = Π
1
1, and we are, in essence, defining

the hyperjump (a complete Π11(Y ) set of integers) over Pα whenever Y
is also so definable. P�0 is closed under hyperjump, and thus for every
Y ∈ P(N) ∩ P�0 the complete �Σ01(Y ) set is in P�0 . In short we are re-
ordering the original Kleene hierarchy, but not adding any new sets. The
same holds of the next pair of examples.

Examples (II). Γ = Σ0i (i = 2, 3).

P�Σ0i = P and ��Σ0i = �0 (i = 2, 3).

For i = 2: it is a result of Solovay (cf. [15]) that the�Σ02 = Σ
1
1-IND, and indeed

that the least ordinal closed under such inductive definitions is less than the
next Σ2-admissible. Consequently Kleene’s hierarchy is already closed under
Σ11(Y )-IND for any Y ∈ P.
For i = 3: it is a result of the author [20] that the �Σ03 relations on integers
are precisely those generalised recursive in an ‘eventual jump’ type-2 func-
tional eJ, in a sense that generalises Kleene recursion in higher types. It is
also shown in [19] that the least Σ2-admissible ordinal � withL� additionally
a model of Σ2-Separation, is also a model of Det(Σ03). Thus L� is closed
under Y �→ G�Σ03(Y ). And again so is P.

In these two cases again P is the least �-model of Z2 + Det(Σ0i ) for
i = 1, 2, 3 so our Ramified Analytical Hierarchy has not grown by using this
extra quantifier.

Examples (III). Γ = Σ0i , (i > 3).

HereP�Σ0i is still the reals of an initial segment ofL for some countable ��Σ0i ,
but the latter ordinal is greater than �0 and necessarily so by results of H.
Friedman [6]. It is the smallest �-model of Z2+ Det(Σ0i ).

§4. The minimal correct model of analysis. Recall ([15] 6D.2) that the
pointclass �Π12n−1 is identical to Σ

1
2n, and assuming additionally Det(Σ

1
2n),

�Σ12n is Π
1
2n+1. We assume from now on PD or Projective Determinacy to get

the right behaviour of the �-quantifier on classes containing Π11.

https://doi.org/10.1017/bsl.2018.69 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.69


312 PHILIP D. WELCH

Examples (IV). The models P�Σ12k , P�Π12k+1 obtained by restricting � to be
applied to formulae Φ ∈ Σ12k (Π12k+1 respectively) for a fixed k.
Thus one obtains a model P�Π12k+1 built via a hierarchy of ordinal length
some �2k+1. ThemodelsP

�Σ12k built similarly via a hierarchy of ordinal length
�2k are defined analogously. We shall have

PΠ
1
1 ⊂ · · · ⊂ P�Σ12k ⊂ P�Π12k+1 ⊂ · · · ⊂ PProj .

We investigate the models P�Π12k+1 a little more closely. By our assump-
tion of PD the Δ12k+2(X ) sets of integers from a basis for the Σ

1
2k+2(X )

relations (Moschovakis [13]). Since for any X ∈ P�Π12k+1
α we have any true

Δ12k+2(X ) ∈ P�Π12k+1 , we may conclude that P�Π12k+1 is Σ12k+2-correct. A cou-
ple of observations then follow. First, by work of Woodin (see [18]), if
M�2k−1(X ) is the least fully iterable X -mouse with a measure above 2k − 1
Woodin cardinals, then it is a Π12k+1-singleton set, and thus has a code as a

Δ12k+2 set of integers (such mice exist thanks to PD). Thus P
�Π12k+1 is closed

also under X −→M�2k−1(X ). Second, recall that
�1n = sup{rk(R) | R a Δ1n-prewellordering of N}.

(Recall also that �11 = �
ck
1 and �

1
2 = 
1 the least Σ1 stable ordinal.) Thus

P�Π12k+1 is also closed under X −→ �12n+2(X ). We should probably point out
that in no real sense is the hierarchy P�Π12k+3 an end-extension of P�Π12k+1 :
the sets in the latter appear all at the first or second stage of the former.

The minimal Σ12n-correct models were first identified by Enderton and H.
Friedman [5]. They built their models, for a given n, and obtained their
correctness, by assuming that Σ12n relations had a basis in the Δ

1
2n definable

reals (that is every Σ12n relation contains a Δ
1
2n definable point). In 1971,

as they noted in their conclusion, it was still a conjecture that PD implied
this latter basis result. They also noted a conjecture of Martin and Solovay,
which also turned out to be true under PD: that Σ12n+1 relations did not
have a basis in the Δ12n+1 definable reals. (The correct statement, under PD,
is that the set of reals recursive in the real of some (equivalently, of any)
Π12n+1, but not Δ

1
2n+1, definable singleton set, form a basis for Σ

1
2n+1, cf. [7]

or [15] 6C.10.) Thus under PD P�Π12k+1 is Σ12k+2-correct. But the failure of

the unamended basis theorem implies that P�Σ12k+2 is not Σ12k+3-correct.
(They also performed their construction of Σ12n+3-correct minimal mod-
els, whilst hypothesizing the (false under PD) basis assumption that Σ12n+1
relations did have a basis in the Δ12n+1 definable reals. They remarked that
the hypothesis is after all consistent since it holds in L[�] —but seemed
not to notice that in fact it holds in any case in L. As a final historical
remark Shilleto [16] constructed in a slightly complicated fashion minimal
Σ1n-correct models but assumed V = L. For n = 2 the Enderton-Friedman
construction is simpler.)
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Theorem 4.1. P�Π12k+1 is the minimal Σ12k+2-correct model of analysis.
Proof. We have seen correctness above. The issue is only minimality. We
only outline the steps. Let M be any other such Σ12k+2-correct model of
analysis. Let �2k+1 be the closure ordinal of the hierarchy of the model

P := P�Π12k+1 . (We abbreviate for this proof. P
�Π12k+1
α as Pα.) The idea is

just that of defining 〈PMα | α ≤ WM〉 where WM is the supremum of
ordinals representable by reals of M. One thus should show that we can
define within second order arithmetic the Pα hierarchy withinM for any α
representable inM and in an absolute fashion which ensures Pα = P

M
α .

The articles of [3] and [5] give in great detail how this may be done in the
simpler second order number-theoretic sense (in the first article), and using
additional assumptions of basis theorems (in the second article). We shall
assume that readers will believe that such formalisations are possible without
wearing them out with the details here. Perhaps there are two points to be
emphasised here. The first is in the transition from Pα to Pα+1 that by the
Σ12k+2-correctness ofM (and Moschovakis’ Third Periodicity Theorem) all
the necessary strategies needed to give the correct evaluation of a formula
are available in the modelM. (In more detail: Third Periodicity says that
any Π12k+1(X ) game that is won by Player I has a winning strategy that is

Σ12k+2(X ). But as a consequence that winning strategy will be in P
�Π12k+1 ifX

is.) Thus we shall have (for Φ ∈ Γ = Π12k+1 and assuming inductively that
Pα = (Pα)

M):

�XΦ(k,X, {n ∈ N | (
(n/v0, Y ))P�Γ
α })⇐⇒

⇐⇒ (�XΦ(k,X, {n ∈ N | (
(n/v0, Y ))P�Γ
α }))M

and hence Pα+1 = PM
α+1. We shall not say any more on this point.

We may set �̄ =df WM. Clearly Lim(�̄). Then �2k+1 ≤ �̄ must hold
thus establishing the required minimality as then P is an initial segment
of PM. For if �2k+1 > �̄ , we should have a failure of comprehension (in
our expanded sense, meaning closure of definability in the extended logic)
over P�̄ and thence over P

M
�̄
. The latter is a definable ‘class’ of M, not

being coded by any set ofM. Indeed that failure of comprehension can be
strengthened to show that we actually have a code for a wellordering u of
type �̄ definable over P�̄ . However then we have a wellorder u of order type

�̄ which is definable over P�̄ = P
M. But the latter is a definable class ofM;

so u is definable overM, and so must be inM as the latter is a model of full
Π1�-comprehension, thus leading to an obvious contradiction. Q.E.D

The last argument shows immediately:

Corollary 4.2. �2k+1 = sup{rk(Y ) | Y ∈WO ∩ P�Π12k+1}.
Examples (V). Let Γ = Π1� = Proj.
So now DefL2,� yields a model

PProj = P�Π1� .
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Let �Proj be the closure ordinal of P
Proj .

Theorem 4.3 (PD). P := PProj is the minimal projectively correct model
of Analysis (and so also the minimal projectively correct model of Analysis +
PD). Moreover

P =
⋃

k

P�Π12k+1 =
⋃

k

P�Σ12k .

Remark. By “PD” we mean the scheme that contains for every n ∈ N the
statement that “For every Π1n set A ⊆ NN, and tree T ⊆ �<�, G(A,T ) is
determined.”
Proof.We have for each k: P�Π12k−1 is the minimal Σ12k-correct model. We

may naturally write: P�Π12k−1 ≺Σ12k Z. From this it follows easily that
⋃

k

P�Π12k−1 ≺Σ1� Z

is theminimal fully correct model of analysis. The same follows for
⋃
k P

�Σ12k .

By definition PProj ⊃ P�Σ12k , P�Π12k+1 . An induction on α < �Proj shows that

PProjα ⊆ ⋃
k P

�Π12k+1 also. The statement “Determinacy(Π1n)” is expressible
by a projective formula, and as true in Z it will be true in PProj . Q.E.D

To give some further idea of what these models contain we use further
descriptive set theoretical ideas.

Theorem 4.3 (Woodin). ([18]) (∀nM�n exists) R ∩M2n = C2n; R ∩
M2n−1 = Q2n+1.
Here C2n is the largest countable Σ12n set of reals; Q2n+1 is the set of reals
each of which is Δ12n+1 definable in (a code for) a countable ordinal. Because
PProj contains for every X (a code for)M�n(X ), it will in particular contain
all the reals ofMn(X ) for each n (as such reals are all recursive inM

�
n(X ));

relativising the last result we shall have:

Corollary 4.5. For every n, for all X ∈ PProj :
C2n(X ), Q2n+1(X ) ⊆ PProj .

Corollary 4.6. P := P�Π12k+1 is closed under

∀X ∈ P, C2k−2(X ), Q2k+1(X ) ⊆ P.
We now try to identify the reals of PProj in terms of a level of an inner
model (just as forGandy–Putnam, the original ramified hierarchy continued
for �0 steps, and whose reals were precisely those of L�0 ). Let �Proj be the
closure ordinal of the PProjα hierarchy. We use another result of Woodin:

Theorem 4.7 (Woodin). ([18], 4.7)AssumeM�2n exists. ThenM2n is Σ
1
2n+2-

correct.

Hence the P
�Π12k+1
α hierarchy will be absolute between V andM2k . Hence:

(a) P
�Π12k+1
α ⊆M�2k.
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Note also that

(b) M�2n /∈ P�Π12k+1 but it is in P�Π12k+3 .

LetM� = L[E�] be the minimal iterable model of � Woodin cardinals.
(This is somewhat overkill: we need simply a hierarchy containing all the
M�n’s.) Let �n be the index in L[E�] which attaches the topmost sharp filter
for the model M2n. In other words, so that M

�
2n = 〈JE��n ,∈, E� � �n, F�n〉

(where we have followed the usage of the Jensen J -hierarchy when defining
such models). Let � = supn �n. We let Q =df 〈JE�� ,∈〉 be union of these
levels. Then for any k, Q is closed under X −→M�k(X ).
Theorem 4.8. PProj = R ∩Q.
Proof. Note that Q |= “V = HC” (as there is definably over each
structure 〈JE��n ,∈, E� � �n, F�n〉 an onto map from � onto its domain).
As P

�Π12k+1
α ⊆ R ∩ JE��n , (by (a) following on Theorem 4) we have that

PProj ⊆ R∩Q. Conversely any realY ∈ R∩Q is in someM�2n and the latter
is in P�Π12k+3 by (b). Hence: PProj = R ∩Q. Q.E.D.

§5. Some intermediate models. To discuss further models we introduce
Moschovakis’s notion of aSpector class of pointsets inP(N). Broadly speak-
ing this is a notion of a class of sets of integers arising from some general
abstract notion of definability. Such a family must exhibit a number of prop-
erties: (i) Some elementary closure; (ii) be �-parametrized; (iii) have the
all-important Scale Properties. The reader is referred to [15] for a full defini-
tion and discussion. The following are all examples of this notion, starting
with the least, and canonical, one:

Π11 = �Σ01 ; �Σ
0
n ; Σ

1
2 ; (and under PD) Π

1
2n+1, Σ

1
2n+2 . . . .

Initially we disbarred nested applications of the game quantifier to formulae.
We can lift that restriction to obtain another sub-hierarchy of models.
For Γ′ a Spector class we set Δ′ = Γ′ ∩ Γ̌′ to be the self-dual part of Γ′.
For Spector classes Γ,Γ′ we set Γ ≺ Γ′ iff Γ ⊆ Δ′.
Definition 5.1 (Spector Ordinal). Let Γ be a Spector Class, Δ = Γ∩ Γ̌ its
self-dual part. We set

κΓ =df sup{rk(P) | P ∈ Δ, P a prewellordering of �}.
Lemma 5.2 (Moschovakis). (Spector Criterion) Let Γ,Γ′ be two Spector
classes on N.

Γ ⊆ Γ′ −→ (Γ ≺ Γ′ ←→ κΓ < κΓ′).

Examples (VI). Allow formulae with nested � quantifiers.
Let �nΓ be the pointclass of sets defined by formulae of the form � · · · �Φ
for a Φ ∈ Γ. These are also Spector pointclasses. Set Γ2n+1 = Π12n+1 and
Γ2n = Σ12n. We adopt the abbreviation: Γk,n = �nΓk . Then each Γk,n is a
Spector pointclass and

Π12k+1 = Γ2k,1 ≺ Γ2k,2 ≺ · · · ≺ Γ2k,n ≺ · · · Σ12k+2
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with corresponding models:

PΓ2k,1 ⊆ PΓ2k,2 ⊆ · · · ⊆ PΓ2k,n ⊆ · · · ⊆ PΠ12k+3
and similarly for Γ2k+1 m.m. (see [8] 2.5.2).

§6. Generalised logics from Spector Classes: some conclusions. Seeing
that game quantifiers give rise to Spector classes when applied to Spector
classes, one may start to query whether a given notion of definability as
encapsulated in an abstract Spector class Γ can be in turn used to create
a model of analysis, PΓ, in this way. The thought is that the notion of
generalised definability can be applied in a hierarchical fashion, level by
level, to bring more sets into the hierarchy. But how is this to be done, or
rather, can it be done in a manner that fits this investigation of extended
logics coupled with a ramified approach? The answer turns out that this can
indeed be done and relatively easily, thanks to the following result.

Theorem 6.1 (Harrington ([8] 3.2)). Let Γ ⊆ P(N) be a Spector Class.
Then there is a generalized quantifier Q so that Γ = IND(Q).
By IND(Q) we mean the class of sets of integers inductive using now
formulae in L1,Q over 〈N,+,×, · · ·〉. More specifically we adjoin to the first
order language the quantifier Q, call thisL1,Q, and consider anL1,Q formula
ϕ(v0, S) where S is a second order variable which only appears positively
in ϕ—that is within an even number of negations. (See Moschovakis [14]
Chapter 9.) Then one may build up successive extensions of S0 = Ø, Sα+1 =
{n | 〈N,+,×, · · · , Sα〉 |= ϕ[n, Sα]} in the familiar fashion. By the positivity
requirement on S this is a monotone increasing hierarchy, which by taking
unions at limits, S�, reaches a fixed point S∞. The theorem above then
says that for any Spector Class Γ there is a corresponding QΓ which will
inductively define in L1,QΓ precisely all and only the members of Γ.

Theorem 6.2. Let Γ ⊆ P(N) be a Spector class, with corresponding quanti-
fier Q = QΓ from the last theorem. Then there is a minimum model of analysis
PΓ which is closed under positive inductions inLQ, and so that for anyX ∈ PΓ
we have Γ(X ) (the Spector class relativised to X ) is contained in PΓ.
Proof. It should be clear that for any parameterX ∈ P(N)∩PΓα that if S�
is a stage in some inductive definition using some L1,Q formula ϕ(v0, X, S)
with S� ∈ Pα, then S�+1 will be placed in PΓα+1. Thus PΓα continues to
grow until we reach a closure point that contains all fixed points for all such
inductions using all possible parameters. Q.E.D

Moral: we can add an abstract quantifier QΓ to obtain a language L2,QΓ

to close up under inductions in QΓ and so define a ramified hierarchy using
the kind of definability given by Γ. In other words, Spector classes Γ give
rise to models PΓ which are minimum models of analysis closed under
X −→ Γ(X ). It is in this sense that we claim, as in our introduction, that
if we identify plausible notions of definability with Spector classes, then
we can find a quantifier, and hence an extended logic, to build a ramified
hierarchy to exemplify it.
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We conclude with some loose ends in the guise of open questions:

Question 6.3. Characterise for which Spector classes Γ,Γ′ we have that

Γ ≺ Γ′ ⇒ PΓ ⊂ PΓ′ .
Note that this is a nontrivial question: for Γi = �Σ0i (0 < i < 4), we have
that Γi ≺ Γi+1 but all three classes Γi have the same PΓi namely Kleene’s
original P. Here is another specific case where we do not know the answer:

Question 6.4. For a fixed k, are the inclusions between the models PΓ2k,n in
Examples (VII) strict?

We have left open the question of models with an odd levels of correctness
in the projective hierarchy:

Question 6.5.Assume PD. Identify a logic which builds the minimal Σ12k+1-
correct model of analysis.

Question 6.6. Assume PD. Is there some further characterization of the
length of the ordinals �2k, �2k+1?
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