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The µ(I)-rheology was recently proposed as a potential candidate to model the
incompressible flow of frictional grains in the dense inertial regime. However, this
rheology was shown to be ill-posed in the mathematical sense for a large range of
parameters, notably in the low and large inertial number limits (Barker et al., J. Fluid
Mech., vol. 779, 2015, pp. 794–818). In this rapid communication, we extend the
stability analysis of Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818) to
compressible flows. We show that compressibility regularizes the equations, making
the problem well-posed for all parameters, with the condition that sufficient dissipation
be associated with volume changes. In addition to the usual Coulomb shear friction
coefficient µ, we introduce a bulk friction coefficient µb, associated with volume
changes and show that the problem is well-posed if µb > 1 − 7µ/6. Moreover, we
show that the ill-posed domain defined by Barker et al. (J. Fluid Mech., vol. 779,
2015, pp. 794–818) transforms into a domain where the flow is unstable but remains
well-posed when compressibility is taken into account. These results suggest the
importance of taking into account dynamic compressibility for the modelling of
dense granular flows and open new perspectives to investigate the emission and
propagation of acoustic waves inside these flows.
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1. Introduction
The so called µ(I)-rheology was recently proposed to model granular flows in the

dense inertial regime (GDR MiDi 2004; da Cruz et al. 2005). This rheology rests on
the fact that unidirectional granular shear flows are fairly well described using a single
friction coefficient µ – ratio of the shear stress τ to the confinement pressure p – that
varies with an inertial (dimensionless) number I, defined as the ratio of a microscopic
grain rearrangement time scale to a macroscopic flow time scale. This rheology may
be thought as a generalization of the basic Coulomb friction model τ/p = µ, with
a friction coefficient that varies according to the local shear rate and confinement
pressure.

This simple scaling was shown to break at low inertial numbers close to
the jamming limit, where non-local effects become important (Kamrin & Koval
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2012). On the other hand, at very high inertial numbers, granular flows enter the
collisional regime and are best described by kinetic theory. Regarding two-dimensional
incompressible flows, the µ(I)-rheology was also recently shown to lead to ill-posed
problems for a large range of parameters, notably for high and low inertial numbers
(Barker et al. 2015). For this range of parameters, infinitely small wavelengths
are indeed amplified at an unbounded rate, which yields non-physical solutions. In
comparison, Pitman & Schaeffer (1987) and Schaeffer (1987) showed that the constant
Coulomb friction rheology is always ill-posed in the incompressible limit but that
adding compressibility effects would ‘greatly regularize the equations’.

Granular flows are indeed prone to dilate or contract in response to deformation. In
the collisional limit, the volume occupied by granular flows depends directly on the
granular temperature, which itself is a function of the imposed shear, thus allowing
the propagation of acoustic waves. Forterre & Pouliquen (2002) showed that kinetic
theory taken in the compressible limit could reproduce the instability leading to
the longitudinal vortices observed in their experiments. Dense granular flows in the
inertial regime might also be strongly affected by acoustic waves, resonances and
instabilities due to dynamic density fluctuations as recently observed in numerical
and experimental studies (Melosh 1979; Börzsönyi, Ecke & McElwaine 2009; Brodu,
Richard & Delannay 2013; Trulsson et al. 2013; Krishnaraj & Nott 2016). A classic
example of such instability is also found in the pulsating flows frequently observed
out of silos (Muite et al. 2004).

In this rapid communication, we extend the Barker et al. (2015) analysis and show
that taking into account the weak compressibility of granular flows regularizes mostly
the µ(I)-rheology. We found that the problem is always well-posed providing that
the energy dissipation due to volume change is sufficiently important. In the limit of
incompressible flows, we recover the ill-posed criteria given by (Barker et al. 2015).
When compressibility is taken into account, the flow becomes linearly unstable (so
that flow structures may develop) but the problem remains well-posed.

The demonstration is organized as follows. We start by recalling the equations
pertaining to the µ(I)-rheology and generalize them for compressible flows. We then
consider the simple case of a plane shear flow and probe the stability of the equations
in the limit of perturbations of infinitely small wavelengths. We show that taking into
account compressibility changes the conclusions of Barker et al. (2015) concerning
the ill-posed behaviour of the µ(I) rheology. We finally validate our theoretical results
by numerical resolution of the general eigenvalue problem.

2. Well- and ill-posed problems

The distinction between well- and ill-posed (equivalently well- or ill-set) Cauchy
problems is generally attributed to Hadamard (1922). Differential problems are termed
‘well-posed’ if they yield unique solutions depending continuously on the boundary
or initial conditions. These mathematical properties are extremely important for
numerical modelling, insuring that numerical schemes will converge to a unique
solution, regardless of the chosen discretization. Birkhoff (1954) showed that the
well-posed behaviour of a differential problem could be related to the existence of
well-defined Fourier modes, for which the growth rates are bounded.

In contrast, ill-posed problems lack continuous dependence or existence of solution.
They may lead to huge and unbounded oscillations as the wavelength tends to zero,
a phenomena called Hadamard instability. For instance, the governing equations
of Kelvin–Helmholtz and Rayleigh–Taylor instabilities neglecting surface tension
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suffer from the catastrophic short-wave instabilities of the Hadamard type (Joseph &
Saut 1990). Including higher-order contributions in the equations (invoking viscous
terms for instance), allows generally to stabilize the instability by cutting off high
wavenumbers, making the problem well-posed and suitable for numerical modelling.

It is interesting to note that numerical schemes themselves introduce some
‘viscosity’, that may regularize by chance the system and give an apparent good
behaviour to numerical solutions. However, numerical ‘viscosity’ obviously depends
on the chosen numerical method. Regularization has thus to be provided at a lower
level, by including the missing physics in the equations. Pitman & Schaeffer (1987)
showed that including compressible effects may regularize the classical Coulomb
friction rheology for shear flows.

We show in the following that, under certain conditions, compressibility may also
be a regularizing mechanism for the µ(I) rheology. As suggested by Birkhoff (1954),
we infer the well-posed behaviour of the problem by ensuring that the growth rates
of perturbations are bounded in the short-wave limit.

3. A compressible µ(I) rheology

Some experiments have shown that simple unidirectional shear flows the dense
inertial regime present an average friction coefficient µ= τ/p and volume fraction φ
that scale with a so-called inertial number defined as

I =
dγ̇
√

p/ρ
, (3.1)

with d the grain size, ρ the material density, γ̇ the shear rate, τ the shear stress
and p the imposed pressure (GDR MiDi 2004; da Cruz et al. 2005; Jop, Forterre &
Pouliquen 2006). Simple empirical laws were proposed such as

µ(I)=µs +
1µ

I0/I + 1
, φ(I)= φmax −∆φI, (3.2a,b)

where µs is a ‘static’ friction coefficient and φmax is the maximal random packing
fraction. 1µ≈ 0.3, I0 ≈ 0.3 and ∆φ ≈ 0.1 are empirical parameters which depend on
material properties (GDR MiDi 2004; da Cruz et al. 2005; Jop et al. 2006).

These scaling laws were established in the hypothesis of flow incompressibility,
transferring them to compressible flow requires thus some precautions. Indeed, the
material density ρ appears in the definition of I, so that the inertial number is
expected to show a direct dependence upon φ through ρ = %φ, with % the grain
density. This dependence may be justified physically by considering that, for equal
confinement pressure, the more dilute the flow, the higher the forces transmitted
through the granular skeleton. These forces scale as d2p/φ, implying a dependence
of the microscopic rearrangement time scale on volume fraction. However, as the
flow dilutes, rearrangement between grains are likely to take place over lengths of
the order of d/φ so that both effects may eventually balance each other when the
volume fraction changes. We thus chose to retain the usual incompressible definition
of the inertial number taking the grain density % instead of the material density ρ.

At this point, it is interesting to estimate the importance of the dynamical pressure
developing while shearing a granular media and its possible coupling with the main
flow (Trulsson et al. 2013). Based on the experimental scaling (3.2) and the definition
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of the inertial number (3.1), we may express the friction coefficient µ and the pressure
at equilibrium peq as a function of the volume fraction φ:

µ(φ)=µs +
1µ

I0∆φ/(φmax − φ)+ 1
, peq(φ)= %

(
dγ̇

φ − φmax

)2

. (3.3a,b)

The latter expression plays the role of an equation of state for the granular flow,
linking pressure and volume fraction to the kinetic properties of the medium and was
assessed numerically for unidirectional shear flows (Trulsson et al. 2013). From this
equation, the typical propagation speed of a pressure wave is

c=

√
∂peq

∂ρ
=

γ̇ d∆φ

(φmax − φ)3/2
. (3.4)

This ‘dynamic’ compressibility mechanism differs significantly from acoustical wave
propagation in static media in that, in the absence of shear rate, no propagation
is possible (c = 0). Taking U = Lγ̇ as a characteristic flow velocity (L being a
characteristic length scale), the Mach number of a granular flow reads

M=
U
c
=

L
d
(φmax − φ)

3/2

∆φ

(3.5)

due to volume change. When approaching the random close packing fraction φmax, the
wave speed diverges, leading to a flow with infinitely small Mach numbers. Close to
the jamming point, decoupling between flow and compressibility waves is thus likely
to occur. At smaller volume fractions, Mach numbers much larger than 1 may be
observed for typical parameter values observed in dense granular flows in the inertial
regime (e.g. ∆φ ≈ 0.1, φmax ≈ 0.8, φ ≈ 0.5− 0.7, L/d ≈ 10). Effective coupling may
thus arise between the compressibility waves and the flow. In the following, we show
how the µ(I) rheology may be adapted to compressible flows.

Jop et al. (2006) proposed applying the scaling laws found for unidirectional shear
flows to three-dimensional flows in the incompressible limit. Given the strain rate
tensor Dij = (∂iuj + ∂jui)/2, with ui the flow velocity components, and its second
invariant ‖D‖ =

√
tr(D2)/2, they proposed

τ

p
=µ(I)

D

‖D‖
, (3.6)

with I = 2d‖D‖/
√

p/%. This expression is similar to classical plasticity models with
associated flow rule and von Mises yield criterion, but with a rate dependence of
the friction coefficient (Goddard 2014). Barker et al. (2015) showed that the rheology
(3.6) together with the incompressible equations of motion led to ill-posed problems
for a large range of parameters, motivating an extension of the theory to compressible
flows.

In the compressible case, isochoric deformations (pure shear) need to be
distinguished from the deformations associated with a net change in volume by
splitting the strain rate tensor into deviatoric and isotropic parts, yielding

Dij = Sij +
1
3 tr(D)δij, (3.7)
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where δij is the Kronecker symbol and tr(S) = 0. In addition, the instantaneous
pressure p may now differ from the equilibrium pressure peq so that we take the
inertial number to be I = 2d‖S‖/

√
peq/%. Dimensional analysis then constrains the

admissible stress–strain relationship,

σij

peq(φ)
=−δij +µ(φ)

Sij

‖S‖
+µb(φ)

tr(D)
‖S‖

δij, (3.8)

with

peq(φ)= %

(
dγ̇

φ − φmax

)2

, (3.9)

where µ(φ) is the classical friction coefficient associated with shear and given by
(3.3a), µb(φ) is a bulk friction coefficient associated with non-isochoric deformations
(Alam & Nott 1997; Nott 2009; Trulsson et al. 2013) and peq is given by the equation
of state (3.3b). Note that (3.8) simplifies to the Jop et al. (2006) incompressible
formulation in the case of isochoric deformations. When dilation or compression
occurs, the normal stress in the medium departs from peq by

p=−
trσ
3
= peq(φ)

(
1−µb(φ)

tr(D)
‖S‖

)
(3.10)

so that µb directly controls the amplitude of the pressure variations in the compressible
flow. In contrast to µ, little is known about its value and its variations with φ; as a
first approximation, we take it as a constant.

The compressible rheology (3.8) may be considered as general. Indeed, we show in
appendix A that, in the limit of small volume changes, it is equivalent to alternative
compressible models based either on the critical state theory (Jackson 1983; Prakash
& Rao 1988) or on the dilatancy model introduced by Roux & Radjai (1998).

Equation (3.8) is associated with the conservation of mass and momentum

∂tφ + ∂i(φui)= 0 (3.11)
R2φ(∂tui + uj∂jui)=−∂jσij, (3.12)

where ui is a dimensionless component of the velocity vector, R2
= %ΦU2/P is an

effective Reynolds number (%, Φ, U, P, L are respectively the grain density, a unit
volume fraction, a unit velocity, a unit pressure and a unit length). Since peq is a one-
to-one function of φ (3.3b), so does I, and we can equivalently choose the latter as
the independent variable in the mass conservation equation, which transforms into

∂tI + ui∂iI =−
φ

φ′
∂iui, (3.13)

where the primes stand for a derivative with respect to I. φ and φ′ are then directly
given by (3.2b). This form is preferable since letting φ′→ 0 allows one to probe the
incompressible limit.
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FIGURE 1. Unidirectional shear in the plane (x1, x2). u0 and 2‖S0
‖ are the flow velocity

profile and shear rate. φ0 and p0
eq are the volume fraction and granular pressure. ξ is the

perturbation wavevector and θ/2 the inclination angle with respect to the axis x2.

4. Base flow and perturbation in the short-wave limit

We consider for the base flow a two-dimensional plane shear (x= (x1, x2)) in the
absence of gravity (figure 1). The principal shear direction is along x1 so that the
velocity vector has a single non-zero component u = (u1, 0). The strain rate matrix
has thus a unique non-zero component D12 = ∂2u1/2. Plane shear is an isochoric
deformation (trD = 0) so that D = S. Conservation of momentum implies that the
pressure and the shear stress are uniform through the flow, yielding a uniform friction
coefficient µ, a uniform inertial number and a uniform volume fraction. By definition
of I, S is also uniform so that u1 is a linear function of x2 (figure 1). By choosing
appropriately the scales L, U, Φ and P we can always normalize the base flow so
that ‖S0

‖ = 1/2, φ0
= 1 and p0

eq = 1.
The base flow solution is perturbed by short-wave normal modes of the form

y= y0
+ ỹeiξ ·x+λt, |ξ |→∞, (4.1)

where y = (u, I)T is the vector of independent variables; y0 their values at the base
state and ỹ the perturbation intensity. ξ = (ξ1, ξ2) is the perturbation wavevector and
λ the growth rate. Note that the decomposition into normal modes in both the x1 and
x2 direction is valid in the high-wavenumber limit because the perturbation and the
base flow appear decoupled (coupling terms scale as |ξ | while leading-order terms as
|ξ |2). For arbitrary wavenumbers, the coupling precludes from any analytical treatment
and numerical resolution is required. Note also that we are only interested here in the
early growth rate of perturbations at short time, limit at which linear analysis remains
valid. Other methods are necessary to probe the asymptotic stability behaviour of the
flow (Alam & Nott 1997).

Inserting the perturbed variables in (3.8), (3.12) and (3.13), and keeping only linear
contributions and leading-order terms in the high-wavenumber limit (see details in
appendix B) leads to an eigenvalue problem of the form (A−λB)ỹ=0 with ỹ= (ũ, Ĩ)T
and A and B are 3× 3 constant coefficients matrices defined by

A=

2ξ 2
1α + 2µξ 2

2 − 2ξ1ξ2 2ξ1ξ2α − 2ξ 2
1 iξ2(βµ−µ

′)− iβξ1

2ξ1ξ2α − 2ξ 2
2 2ξ 2

2α + 2µξ 2
1 − 2ξ1ξ2 iξ1(βµ−µ

′)− iβξ2
iξ1 iξ2 0

 , (4.2)
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B=−

R2 0 0
0 R2 0
0 0 φ′

 , (4.3)

where µ, φ and I are taken at the base dimensionless state. The prime symbols stand
for derivatives with respect to I (φ′= ∂Iφ, µ′= ∂Iµ) and α=µb+ 2µ/3 and β = 2/I.
Non-trivial solutions to this system are obtained if det(A− λB)= 0, which simplifies
to

a3λ
3
+ a2λ

2
+ a1λ+ a0 = 0, (4.4)

with

a3 = φ
′R4,

a2 = 2φ′R2
|ξ |2(µb + 5µ/3− sin θ),

a1=−R2
|ξ |2β(1− (µ− r) sin θ)

+φ′|ξ |4µ(4µb + 8µ/3− 2 sin θ − (2µb +µ/3) sin2 θ),

a0 = |ξ |
4β(−2r+µ(µ− r) sin θ − (µ− 2r) sin2 θ),


(4.5)

where θ = 2 tan−1(ξ1/ξ2) and r = µ′/β. Note that θ/2 is the angle between the
wavevector and the x2 axis. To simplify notations, we dismissed hereafter the
superscript over all base flow variables.

Analysis of (4.4) shows that two different scaling arises for λ at large |ξ |: λ∝O(1)
and λ∝O(|ξ |2). Both cases are considered analytically in the following.

4.1. Case λ∝O(|ξ |2)

Writing λ= λ′|ξ |2, with λ′ ∝O(1), we retain only the O(|ξ |6) terms in (4.4) and get
the quadratic equation

λ′2 + 2aR−2λ′ + bR−4
= 0, (4.6)

with

a=µb + 5µ/3− sin θ, (4.7)
b=µ(4µb + 8µ/3− 2 sin θ − (2µb +µ/3) sin2 θ). (4.8)

This yields two solutions for λ:

λ1,2 =−
|ξ |2a
R2

(1±
√
∆), ∆= 1−

b
2a2

. (4.9)

When b> 0, ∆< 1 so that Re(λ1,2) < 0 and thus the growth rate is always negative.
When b < 0, then ∆ > 1 and one of the roots become positive with a growth rate
scaling as |ξ |2, indicating ill-posed behaviour of the equations. Setting X = 1/ sin θ ,
b> 0 is equivalent to

4(µb + 2µ/3)X2
− 2X − 2µb −µ/3> 0, |X|> 1. (4.10)

Since the determinant of this quadratic equation is always positive, roots are pure reals
and they must lie in the interval ]−1,1[ for b to be always positive. This gives a lower
bound µb > 1 − 7µ/6 under which b becomes negative and the rheology becomes
ill-posed (figure 2a). The ill-posed direction is found where b takes a minimum, that
is for θ/2=π/4.
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FIGURE 2. (a) Well-posed and ill-posed domains in the µ–µb plane. (b) Domain of linear
stability for short wavelength in the compressible µ(I)-rheology as given by the inequality
(4.14). µ′ is given by the empirical scaling (3.2) so that the inequality can be uniquely
represented by the black curve in the I/I0–1µ plane.

4.2. Case λ∝O(1)
In this case, the growth rate Re(λ) is always bounded for large |ξ |, so that this
particular solution does not lead to ill-posedness of the problem. To see that, as
λ∝O(1), we retain only the O(|ξ |4) terms and (4.4) simplifies to

λ3 =
β

−φ′b
(−2r+µ(µ− r) sin θ − (µ− 2r) sin2 θ), (4.11)

which proves the existence of an upper bound. In other words, if λ3 becomes positive,
the flow becomes unstable in the high wavenumber limit but the problem remains well-
posed. For b> 0 (b< 0 was proven to generate ill-posedness) and φ′< 0, the sign of
λ3 is determined by the sign of the nominator. The latter is negative if

−2rX2
+µ(µ− r)X − (µ− 2r) < 0, |X|> 1. (4.12)

This condition is verified if (i) the determinant ∆=µ2(µ− r)2− 8r(µ− r) is negative
or (ii) the determinant is positive, but the real roots lie inside the interval ]−1, 1[, that
is if
√
∆< 2r−µ(µ− r). Thus, λ3 is negative if

µ2(µ− r)2 − 8r(µ− r) <max(0, 2r−µ(µ− r))2. (4.13)

It is easy to show that 0< r<1µ/8 and thus, for usual rheology parameters (1µ≈
0.26, µs≈0.38), 2r−µ(µ− r) is always negative and the stability condition simplifies
to

µ2(µ− r)2 − 8r(µ− r) < 0. (4.14)

The stability domain is shown in figure 2(b) in the plane (I/I0, 1µ).
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4.3. Summary and discussion
To summarize, the compressible µ(I)-rheology leads to plane shear flows that
are unstable outside of the domain defined by (4.14) (figure 2). However, if
compressibility is associated with sufficient dissipation (i.e. µb > 1 − 7µ/6) the
growth rate of the unstable modes remains bounded in the high wavenumber limit,
and the rheology remains well-posed at any inertial number.

It is instructive to note that the stability domain in the high wavenumber limits
of compressible flows defined by (4.14) is independent of flow compressibility φ′

and equivalent to the well-posed domain defined by Barker et al. (2015) in the
incompressible limit. Another way to see this is by letting φ′ → 0 in (4.5). The
growth rate of the unique eigenvalue λ = −a0/a1 is now scaling as |ξ |2 so that,
when λ becomes positive outside of the domain defined by (4.14), the incompressible
rheology becomes ill-posed. In the compressible case however, the growth rate of the
positive eigenvalue is bounded since λ3 ∝O(1).

Another interesting limit is obtained putting µ′ = 0, which yields the classical
Coulomb constant friction model. In this case, it is immediate to see that (4.14)
is never verified for µ > 0 so that compressible shear flows described by a simple
Coulomb friction are always unstable but remain well-posed since the condition
µb > 1− 7µ/6 is not affected by the value of µ′.

Let us infer afterwards the impact of embracing the volume fraction variations
in the definition of the inertial number through the material density. Taking
I = 2d‖S‖/

√
peq/(%φ) has the sole effect of changing the coefficient β to 2/I − φ′,

making thus the stability domain (4.14) dependent on the particular value chosen for
compressibility. In contrast, the well-posedness criteria is not affected by this other
possible definition of the inertial number so that it can be considered as general.

A last remark can also be made on the choice, in the expression of the inertial
number, of the equilibrium pressure rather than the instantaneous pressure (A 4). As
long as a linear analysis is concerned, choosing the latter has no impact on the
stability and well-posed criteria derived above, since the terms introduced in the
expansion are all of higher order.

5. Numerical solution at arbitrary wavenumbers

To test the validity of the normal mode decomposition in the short-wave limit and
the obtained criteria for µb, we solve numerically the stability problem at arbitrary
wavenumbers. To that end, we consider the case of a granular media sheared between
two plates located at x2 = ±1/2 (in dimensionless units). As a coupling arises
between the base flow and the perturbation in the sheared direction, we look for
generic perturbations of the base flow of the form

y= y0(x2)+ ỹ(x2)eiξ1x1+λt. (5.1)

Inserting the solution (5.1) into the mass and momentum conservation equations
and keeping only linear contributions leads to a system of second-order ordinary
differential equations in the variable ỹ= (ũ, Ĩ)T, of the form

C2
d2ỹ
dx2

2
+ C1

dỹ
dx2
+ C0(x2)ỹ=−λCλỹ,

ũ(±1/2)= 0,

 (5.2)
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where the C i matrices are given by

C2 =

−2µ 0 0
2 −2α 0
0 0 0

 , C1 =

 −2iξ1 −2iαξ1 µ−µ′

−2iαξ1 2iξ1 −β

0 1 0

 ,
C0 =

2αξ 2
1 + iR2ξ1u0

1 R2
− 2ξ 2

1 −iβξ1

0 2µξ 2
1 + iR2ξ1u0

1 iξ1(µβ −µ
′)

iξ1 0 iφ′ξ1u0
1

 ,
Cλ =

R2 0 0
0 R2 0
0 0 φ′

 ,


(5.3)

with u0
1 = x2, the base flow velocity. Coupling between base flow and perturbation

clearly appears in the term C0(x2), precluding a simple analytical treatment. The
system (5.2) is discretized in the direction x2 and solved numerically via a Chebychev
collocation method. The perturbed velocities and the momentum equations are
approximated on N Gauss–Lobatto collocation points while Ĩ and the continuity
equation are solved on a staggered grid made of N − 1 Gauss collocation points
(Khorrami 1991). No-slip and no-penetration boundary conditions are imposed at
x2± 1/2 for the perturbed velocity. Ĩ being computed on the staggered grid, its value
is free to adapt at the boundary. The discretized system and the boundary conditions,
reduce to an eigenvalue problem of dimension 3(N − 1):

(A′ − λB′)X = 0, (5.4)

X being the discretized version of ỹ which is solved with the QR algorithm. Grid
convergence of solutions is reached for N> 3ξ1, keeping a minimum of 20 grid points.
Following the value of sup(Re(λ)) while varying ξ1 allows us to probe the stability of
the coupled system depending on its parameters (figure 3a,b). The ill-posedness of the
system clearly appears for ξ1 > 10, where the growth rate of perturbation dramatically
increase as ξ 2

1 . Increasing the bulk viscosity has the effect of regularizing the system
against short waves. It is interesting to note that in this case, while remaining bounded,
growth rates may not cancel at infinitely large wavenumbers (figure 3b). In contrast
to the low bulk viscosity case however, the maximum growth rate is now located at
a finite wavenumber, giving an upper bound for the necessary grid size in order to
capture the evolution of the most unstable mode in numerical simulations.

To check the validity of the condition on µb, we compute rξ1 = sup(Re(λ)) for
ξ1 = 30, 40 and 50. If r50 − r40 > r40 − r30 (increasing growth rate of sup(Re(λ))),
the system is said to be ill-posed. Inversion of the inequality provides the condition
for well-posedness. We explored the domain of µ and µb values and found that the
condition µb > 1− 7µ/6 for well-posedness is verified almost everywhere (figure 3c).

It is interesting to note that compressible shear flows appear stable in the
high-wavenumber limit even outside of the condition for stability defined by (4.14)
(right part of figure 3c). This may be caused by the role played by the boundaries in
filtering the admissible wavelengths. Indeed, the high-wavenumber limit considered
above do not carry information on the presence of boundary conditions, that may
have a stabilizing role on the flow. This said, the ill-posed criteria µb < 1− 7µ/6 is
not modified by such finite size effect and can thus be considered as general.
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FIGURE 3. (Colour online) (a) Maximum real eigenvalue of the system (5.2) depending
on the wavenumber (constant parameters are n = 2, R = 0.1, φ′ = −0.5, µs = tan(21◦),
1µ = 0.4, I0 = 0.3). Black line indicates the ξ 2

1 scaling in the ill-posed problem, while
the dashed line indicates marginal stability. (b) Close up of (a) showing that, in the
compressible rheology, the most unstable mode is found at ξ1 = 1.4 for µ = 0.4 and
µb= 0.59. (c) Numerical simulations of various (µb, µ) pairs. Well-posedness is assessed
by comparing sup(λξ1) at 3 large wavenumbers: ξ1 = 30, 40 and 50. For sup(λ50) < 0 or
sup(λ40) − sup(λ30) > sup(λ50) − sup(λ40) (bounded growth rate), the system is assumed
well-posed, and ill-posed otherwise. The four triangles in (b) (up and down) indicate where
stands, in the parameter space, the computations presented in the left figure.

6. Conclusion

In this article we showed that introducing compressibility effects generally
regularizes the µ(I)-rheology proposed for dense inertial granular flows. Volume
changes need to be associated with a sufficient dissipation to make the problem
well-posed at all inertial numbers. This condition is expressed in terms of an inequality
between µb, the bulk friction coefficient associated with volume changes and µ the
friction coefficient associated with shear, which reads µb > 1− 7µ/6.
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While being generally well-posed, the compressible µ(I)-rheology was also shown
to be unstable for some flow conditions, both at large and small inertial number,
calling for a deeper analysis of the unstable modes appearing in compressible
flows. Indeed, secondary flows and resonances of dense inertial granular flows may
originate from such instabilities (Börzsönyi et al. 2009; Trulsson et al. 2013; Brodu
et al. 2015; Krishnaraj & Nott 2016). Although the asymptotic analysis at large
wavenumbers provides precious information on the good behaviour of the problem,
it is not sufficient to probe the general linear stability picture of the flow, neither its
asymptotic stability at long times. To go further, the full dispersion relation needs to
be solved numerically to find the most unstable wavelength which will predominate
in the system.

Finally, it is legitimate to wonder if any hypothetical variations of µb with I or
other flow variables would modify significantly the preceding results. In the case of
a pure shear base flow, the contributions arising from the variations of µb would not
appear in the linearized equations so that our conclusions are still valid. In any case,
additional experimental and numerical work is needed to quantify the bulk friction
associated with volume changes in dense granular flows.

In addition, to provide a possible way to regularize the short-wave instabilities
appearing in numerical simulations of the incompressible µ(I) rheology, this study
more generally shows that the generation and propagation of acoustic waves inside
granular flows are likely to play a crucial role in their rheology. Depending on their
geometry and their elastic properties, boundaries may also absorb or restitute part of
the acoustic energy to the flow and produce apparent non-local effects. In this aspect,
the acoustic probing and characterization of flowing granular media form a rather
new and promising perspective to improve our knowledge of dense granular flows.

Acknowledgement
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in Journal of Fluid Mechanics, a similar study had been published in another journal
(Barker et al. 2017). In this study, compressibility is introduced based on the critical
state concept borrowed from soil mechanics while we preferred a fluid mechanics-like
formulation based on a second viscosity (both formulations are shown to be equivalent
in appendix A). Although the methods diverge, both studies points to the same
conclusion – that compressibility generally regularizes the µ(I) rheology, providing
that certain criteria on the parameters are respected.

Appendix A. Comparison of compressibility models
A.1. Critical state theory

In plasticity, a material is assumed to flow on a yield surface taking the general form

‖τ‖ =µpeq(φ)F(p/peq(φ)), (A 1)

where p is the total normal stress, ‖τ‖ is the shear stress, φ is the volumic fraction,
peq(φ) the pressure at the critical state (when the material deforms without volume
change) at the volume fraction φ (given by an empirical equation of state), µ is the
friction coefficient and F a function controlling the curvature of the yield surface
close to the critical state. Prakash & Rao (1988) proposed

F(x)=mx− (m− 1)xm/(m−1), (A 2)
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where 1<m<µ is an empirical constant. Postulating the existence of an associated
flow rule (co-axiality of stain rate and stress tensors), the rate of volume change is
linked to the gradient of the yield surface by

∇ · v ≡ tr(D)= ‖S‖
∂‖τ‖

∂p
. (A 3)

In addition, it is required that the derivative of F is a monotonic function so that p
can be uniquely determined from (A 3), (A 2) and (A 1):

p= peq(φ)

(
1−

1
mµ

tr(D)
‖S‖

)m−1

. (A 4)

The stress–strain relationship then reads

σ

peq(φ)
=−δ

(
1−

1
mµ

tr(D)
‖S‖

)m−1

+µF
S

‖S‖
, (A 5)

with δ the identity tensor (Krishnaraj & Nott 2016). Linearizing for small volume
changes gives

σ

peq(φ)
=−δ +µ

S

‖S‖
+µb

tr(D)
‖S‖

δ, (A 6)

with µb= (m− 1)/(mµ), the equivalent of a bulk friction. Equation (A 6) is equivalent
to (3.9).

A.2. Dilatancy model
Based on geometrical considerations, Roux & Radjai (1998) proposed a description of
the deformation of granular flows through a dilatancy angle ψ

−
1
φ

dφ
dt
= ‖S‖ tanψ ≡ tr(D), (A 7)

where tanψ is taken as a function of φ − φeq (Paihla & Pouliquen 2009)

tanψ =K(φ − φeq). (A 8)

The dilatancy also modifies the shear stress

τ = τeq + tanψpeq(φeq), (A 9)

with peq, the pressure at equilibrium. It is possible to interpret this model as a
compressible rheology of the type of (3.9) by equating tr(D) in (3.10) and (A 7) to
yield

tanψ =
1
µb

(
1−

p
peq

)
, (A 10)

which, upon linearization around φ = φeq, gives

tanψ ≈
1
µb

φ − φeq

peq

∂peq

∂φ

∣∣∣∣
φeq

. (A 11)
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By analogy with (A 9), we can deduce the value of the bulk friction in the model of
Roux & Radjai (1998)

µb ≈
1

Kpeq

∂peq

∂φ

∣∣∣∣
φeq

(A 12)

tr(D)= ‖S‖ tanψ, with tanψ =K(φ − φeq), (A 13)

where ψ is an angle of dilatancy and φeq is the volumic fraction at the critical state.
This formulation shares similarities with (A 3) and (A 1), but differs in that p do not
appear explicitly in the equations. Alternatively, Bouchut et al. (2016) proposed

tanψ =Kp(peq(φ)− p), (A 14)

yielding a stress–strain rate relationship similar to (A 6) with µb = 1/Kp and µ =
(tan δ + tanψ).

Appendix B. Derivation of the eigenvalue problem
The perturbed deformation rates read

D̃ = i
(

ξ1ũ1
1
2(ξ2ũ1 + ξ1ũ2)

1
2(ξ2ũ1 + ξ1ũ2) ξ2ũ2

)
, (B 1)

S̃ = i
( 1

3(2ξ1ũ1 − ξ2ũ2)
1
2(ξ2ũ1 + ξ1ũ2)

1
2(ξ2ũ1 + ξ1ũ2)

1
3(ξ2ũ2 − 2ξ1ũ1)

)
. (B 2)

Since µ and φ are considered sole functions of I, we write µ̃ = µ′Ĩ and φ̃ = φ′Ĩ,
where the primes stand for a derivative with respect to I0. To first order, we find
‖S̃‖ = 2‖S0

‖|S̃12| and the definition of I gives

Ĩ
I0
=
‖S̃‖

‖S0
‖
−

p̃eq

2p0
eq

, (B 3)

which allows us to eliminate p̃eq in the equations. Given the rheological law (3.9), the
stresses are, to first order,

σ̃ij =

{
−p̃eq + p0

eq(µ
0S̃ij +µbtr(D̃))/‖S0

‖ for i= j,

σ̃ij =µ
0p̃eq +µ

′p0
eqĨ for i 6= j.

(B 4)

Normalizing with respect to the base flow (‖S0
‖=1/2, φ0

=1 and p0
eq=1), inserting

the perturbed variables and stresses into (3.12) and keeping only linear contributions
and leading-order terms in the high-wavenumber limit (according to table 1) leads to
an eigenvalue problem of the form (A− λB)ỹ= 0 with ỹ= (ũ, Ĩ)T and

A=

2ξ 2
1α + 2µξ 2

2 − 2ξ1ξ2 2ξ1ξ2α − 2ξ 2
1 iξ2(βµ−µ

′)− iβξ1

2ξ1ξ2α − 2ξ 2
2 2ξ 2

2α + 2µξ 2
1 − 2ξ1ξ2 iξ1(βµ−µ

′)− iβξ2

iξ1 iξ2 0

 , (B 5)

B=−

R2 0 0
0 R2 0
0 0 φ′

 , (B 6)
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Equations ũ Ĩ

Continuity O(|ξ |) O(|ξ |)
Momentum O(|ξ |2) O(|ξ |)

TABLE 1. Order of the leading terms in (3.12) depending on the variable and the
equation for |ξ |→∞.

where we used the simplified notation µ≡µ0 and I≡ I0 together with α=µb+ 2µ/3
and β = 2/I.
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