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Bypass transition in boundary layers subject to
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This paper aims at characterizing the bypass transition in boundary layers subject to
strong pressure gradient and curvature effects. A series of highly resolved large-eddy
simulations of a high-pressure turbine vane are performed, and the primary focus is
on the effects of free-stream turbulence (FST) states on transition mechanisms. The
turbulent fluctuations that have convected from the inlet first interact with the blunt
blade leading edge, forming vortical structures wrapping around the blade. For cases
with relatively low-level FST, streamwise streaks are observed in the suction-side
boundary layer, and the instabilities of the streaks cause the breakdown to turbulence.
Moreover, the varicose mode of streak instability is predominant in the adverse
pressure gradient region, while the sinuous mode is more common in the (weak)
favourable pressure gradient region. On the other hand, for cases with higher levels
of FST, the leading-edge structures are more irregularly distributed and no obvious
streak instability is observed. Accordingly, the transition onset occurs much earlier,
through the breakdown caused by interactions between vortical structures. Comparing
between different cases, it is the competing effect between the FST intensity and the
stabilizing pressure gradient that decides the path to transition and also the transition
onset, whereas the integral length scale of FST affects the scales of the streamwise
streaks in the boundary layer. Furthermore, while the streaks in the low-level FST
cases are mainly induced by leading-edge vortical structures, the corresponding
fluctuations show a stage of algebraic growth despite the weak favourable pressure
gradient and curvature.

Key words: transition to turbulence, boundary layer structure, compressible boundary layers

1. Introduction

The laminar–turbulent transition is one of the most challenging problems in
turbulence research. In particular, the bypass transition (Klebanoff, Tidstrom &
Sargent 1962; Morkovin 1969), which bypasses the orderly process instigated by the
instability of Tollmien–Schlichting waves (Herbert 1984, 1988), is usually induced
by moderate or high levels of free-stream turbulence (FST). Because of its wide
occurrence in engineering applications, the bypass transition has been extensively
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investigated, and many results from theoretical, experimental and numerical studies
have been reported (see Durbin & Wu 2007; Schlatter et al. 2008; Zaki 2013).

It is known that the bypass transition in many cases is dominated by streaky
structures in the boundary layer showing alternative high- and low-speed velocity
fluctuations in the streamwise direction (Westin et al. 1994; Matsubara & Alfredsson
2001). These streaks are affected by FST, for which only low-frequency fluctuations
can penetrate into the boundary layer while high-frequency modes are prohibited. This
mechanism was named the shear-sheltering effect by Jacobs & Durbin (1998). Based
on the theory of optimal disturbances (Andersson, Berggren & Henningson 1999), it
was observed that streamwise vortices can cause the formation of streamwise streaks,
with the maximum spatial energy growth scaling linearly with the distance from
the leading edge. The streaks keep intensifying while convecting downstream which
then causes the final breakdown into turbulent spots, and the physical mechanism
for the amplification can be illustrated by the lift-up effects (Brandt 2014). Various
breakdown paths of the streaks, including the sinuous (anti-symmetric) (Andersson
et al. 2001) and the varicose (symmetric) (Skote, Haritonidis & Henningson 2002)
modes, have been carefully investigated in the numerical simulations of Brandt,
Schlatter & Henningson (2004). On the other hand, the numerical simulations of
Jacobs & Durbin (2001) showed that the breakdown of the near-wall streaks is due
to interactions with the free-stream disturbances when lifted up to the edge of the
boundary layer, rather than being caused by the secondary instability of the streaks
themselves. Based on experimental results, Mandal, Venkatakrishnan & Dey (2010)
found that the inclined shear with highly inflectional velocity profiles caused by
the streaks seems to be the precursor of turbulent spots. More recently, the concept
of edge state, which originates from the dynamics of systems, has been applied
in combination with the receptivity of boundary layers to explain the nucleation
mechanism for turbulent spots (Khapko et al. 2016; Kreilos et al. 2016). Based on
conditional statistics of the bypass transition in flat-plate boundary layers, Marxen
& Zaki (2019) found that turbulent spots can develop a core region with similar
statistics to fully turbulent boundary layers, while the edge shows elevated levels of
Reynolds stresses.

Despite the growing consensus achieved on the transition mechanisms, some
controversial results have been drawn from previous studies of the effects of FST on
the bypass transition. Brandt et al. (2004) reported direct numerical simulations of
the bypass transition under turbulence with different length scales. They found that
with the same level of turbulence intensity, cases with larger length scales tend to
have earlier transition onsets. Nevertheless, it was also presented that the spacing of
the streaks is only weakly affected by the integral length scale of the free-stream
disturbances, and the transition mechanisms do not obviously deviate with the varying
turbulence. On the other hand, Ovchinnikov, Choudhari & Piomelli (2008) conducted
high-quality numerical simulations and reported that the transition onsets in cases
with larger length scales were delayed due to reduced receptivity. Furthermore, the
transition path for the large-scale disturbance cases is through a different mechanism,
other than the streak instability. Specifically, the spot-like structures are formed via
the evolution of hairpin and quasi-streamwise vortices, showing the importance of
the FST length scale in determining the underlying physical mechanism. Though
possible reasons for the differences listed here have been discussed in Ovchinnikov
et al. (2008), it certainly suggests that the bypass transition is sensitive to various
factors including the shape of the leading edge and the states of FST.

It is noted that the existing knowledge on transition mechanisms is mainly from
studies on relatively canonical cases like flat-plate boundary layers, while the transition
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mechanisms can become even more intriguing when considering various factors
present in more complex applications. The effects of pressure gradients on boundary
layer transition were investigated experimentally in Abu-Ghannam & Shaw (1980),
showing that the transition onsets are sensitive to adverse pressure gradients (APGs),
especially when the FST intensity is lower than 3 %. Moreover, Gostelow, Blunden
& Walker (1992) found that the transition onset is not only affected by the local
pressure gradient, but also by the history of the pressure gradients in the boundary
layer. Recently, Brinkerhoff & Yaras (2015) performed numerical simulations of a
flat-plate boundary layer subject to favourable pressure gradients (FPGs) and APGs,
showing that the flow acceleration due to the FPG has stabilizing effects on the
streaks and prevents the development of the secondary streak instability, while the
APG can trigger rapid transition to turbulence. Furthermore, strong APGs can also
cause flow separations in boundary layers, and the separation-induced transition has
been studied in Alam & Sandham (2000) and Spalart & Strelets (2000), showing
different transition paths, via either linear instability or three-dimensional unsteadiness,
respectively.

The effect of blunt leading edges can also significantly affect the mechanisms of the
bypass transition. Goldstein & Wundrow (1998) studied the formation of streamwise
vorticities wrapped around the leading edge, showing that the vortices induce wake-
like disturbances which are closely related to the formation of spots and break down
to turbulence (Wundrow & Goldstein 2001). More recently, the leading-edge effects
were further studied in Nagarajan, Lele & Ferziger (2007), and a path different from
the streak instability was also found responsible for the breakdown. The wave packets
of disturbances, which were believed to be prominent for transition mechanisms under
strong FST and large leading-edge bluntness, were observed to originate from the
energetic vortical structures at the leading edge.

Considering the sensitivity of the transition mechanisms to various factors, the
transition phenomena in engineering applications, which usually couple several of the
factors listed above, can be much more complicated. For example, in a numerical
simulation of the T106 low-pressure turbine passage, Wu & Durbin (2001) showed the
effects of the distorted wakes coming from the inlet on the suction-side transitional
boundary layer. In the same configuration at a lower Reynolds number, Michelassi,
Wissink & Rodi (2002) observed Kelvin–Helmholtz instabilities responsible for the
transition in the rear part of the suction-side blade. As reported for the numerical
studies of a NACA-0012 airfoil (Jones, Sandberg & Sandham 2008) and a compressor
blade (Zaki et al. 2010), the APG can also cause flow separations in the boundary
layer, which in turn results in rapid breakdown to turbulence. Nevertheless, most of
the previous studies only focused on individual factors like pressure gradient, and the
effects of FST states coupling with these factors were rarely discussed. Therefore,
studies of the transition mechanisms in a configuration that combines many of these
critical factors are of great interest. One configuration that brings most of the above
effects together in a single set-up is the high-pressure turbine (HPT).

The HPT, which is immediately downstream of the combustion chamber in gas
turbines, typically experiences high levels of incoming unsteadiness and turbulence
from the combustor, and the highest temperatures, pressures and velocities anywhere
in the engine. Consideration of this component under engine-relevant conditions is
therefore extremely challenging for numerical simulations. Therefore, only recently
have numerical simulations of HPT passages been performed (Bhaskaran & Lele
2010; Wheeler et al. 2016) to reveal the complex flow physics. However, the previous
simulations had very limited spanwise extent, and thus the length scales of the inlet
turbulence were too small to represent realistic conditions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.39


888 A4-4 Y. Zhao and R. D. Sandberg

Cax

Inlet/outlet
Periodic
Block interfaceUin

Ue

y

x
-1 0 1 2 3 4

FIGURE 1. Schematic for HPT case set-up. The computational grid is showing every
fifteenth line in x and y directions.

In the present study, we investigate the bypass transition in an HPT working under
conditions representative of a modern aircraft engine (Sandberg & Michelassi 2019).
By performing highly resolved simulations with up to 8.6× 108 grid points, the flow
physics can be investigated in detail. In particular, the effects of the FST with strong
intensities and large integral length scales, which resemble the flow conditions in
realistic applications (Nix 2004), will be discussed. In the present simulations, the
FST and the boundary layer are significantly affected by the strong pressure gradient
and high curvature around the blade, which makes the boundary layer transition more
challenging to understand. Furthermore, by varying the intensities and integral length
scales of the incoming turbulence in different cases, we are able to investigate the
effects of FST states on the transition mechanisms in the blade boundary layer.

The outline of this paper is as follows. An introduction to the numerical simulations
is given in § 2, with a description of the inlet turbulence and validation of the results
also presented. Then an overview of the flow fields obtained from the HPT simulations
is given in § 3, and the blade boundary layer is divided into different characteristic
regions. In § 4, we focus on the transition mechanisms in the suction-side boundary
layer, and discuss the different paths to turbulence observed in the present cases. In
addition, a discussion on the effects of the incoming turbulence on the transitional
behaviours is provided in § 5, and the results are compared to those of previous studies
for a flat-plate boundary layer with zero pressure gradient. Conclusions are drawn in
§ 6.

2. Numerical simulations
2.1. Case set-up

A schematic for the set-up of the HPT simulations is shown in figure 1. A linear
cascade set-up is used to replicate the experiments performed at the Von-Karman
Institute (VKI). In the present simulations, only one passage is calculated, and the
computational domain is enclosed by the red lines on the axial and pitchwise (x–y)
plane cut. Representative of a modern transonic HPT nozzle, the simulations are
performed at a Reynolds number of Re = U∗e C∗ax/ν

∗
= 5.7 × 105 and an exit Mach

number Mae = 0.92, which are in close agreement with the MUR224 case in the
VKI experiments (Arts, Lambertderouvroit & Rutherford 1990). Here, the superscript
∗ denotes dimensional quantities. Accordingly, C∗ax is the axial chord length, and ν∗

and U∗e are the kinematic viscosity and the velocity at the exit plane, respectively.
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The non-dimensionalized three-dimensional compressible Navier–Stokes equations
are solved using the in-house solver HiPSTAR:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0,

∂(ρui)

∂t
+
∂(ρuiuj + pδij)

∂xj
=
∂τij

∂xj
,

∂(ρe0)

∂t
+
∂[uj(ρe0 + p)]

∂xj
=
∂(τijui)

∂xj
−
∂qj

∂xj
.


(2.1)

Here, ρ, ui, p and T are the non-dimensionalized flow density, velocity components,
pressure and temperature, respectively. The non-dimensionalization results in dimen-
sionless parameters as Re∞ = (ρ∞U∞L∞)/µ∞ and Ma∞ = U∞/c∞. The reference
length scale L∞ is selected as C∗ax, and the reference velocity U∞ and density ρ∞ are
selected as the mean velocity and density at the inlet. Therefore, as non-dimensional
quantities we have Cax= 1, Uin= 1 and ρin= 1, and the non-dimensionalized flow-over
time is tF = Cax/Uin = 1. Moreover, µ∞ and c∞ are viscosity and acoustic velocity
for the reference state which are only dependent on the reference temperature T∞.
The total energy e0 is given by

e0 =
1
2
ρuiui +

T
γ (γ − 1)Ma2

∞

, (2.2)

where γ = 1.4 is the specific heat ratio. Moreover, the stress tensor is written as

τij = σij + τ
sgs
ij , (2.3)

which includes the viscous stress σij = (µ/Re∞)((∂ui/∂xj)+ (∂uj/∂xi)−
2
3(∂uk/∂xk)δij)

and the subgrid-scale stress τ
sgs
ij . The molecular viscosity µ is computed using

Sutherland’s law (White 1991), setting the ratio of the Sutherland constant over
free-stream temperature to 0.36867. Similarly, the heat flux qj is written as

qj =−
µ

(γ − 1)PrRe∞Ma2
∞

∂T
∂xj
+ qsgs

j , (2.4)

with Pr = 0.72 representing the Prandtl number. The subgrid-scale terms in the
governing equations, i.e. subgrid-scale stress τ sgs

ij and heat flux qsgs
j , are closed by

the WALE model of Nicoud & Ducros (1999). A fourth-order wavenumber-optimized
compact finite-difference scheme (Kim & Sandberg 2012) was applied in the x and y
directions, while a spectral method using fast Fourier transforms was applied in the
uniform spanwise direction z. Moreover, the ultra-low storage frequency optimized
explicit Runge–Kutta method (Kennedy, Carpenter & Lewis 2000) was used for time
integration. Therefore, the numerical schemes used in the present simulations ensure
fourth- or higher-order accuracy of both spatial and temporal discretizations.

In order to efficiently adapt the complex geometry without affecting the numerical
accuracy, the computational grid of the present configuration is decomposed into nine
blocks, and the characteristic interface conditions (Kim & Lee 2003) were employed at
the block interfaces as presented by the blue dashed lines in figure 1. This multi-block
set-up consists of an O-type grid around the blade and a background H-type grid,
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Case Tu/Uin Ls/Cax Lz 〈1s+〉 〈1n+w 〉 〈1z+〉 Total points
(%) (%)

A 6.5 5 0.3 25.6 1.8 10.0 3.2× 108

B 6.5 20 0.8 25.1 1.8 9.8 8.6× 108

C 20 5 0.3 27.1 1.9 10.5 3.2× 108

D 20 20 0.8 30.6 2.1 11.5 8.6× 108

TABLE 1. Parameters for HPT cases.
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FIGURE 2. Near-wall grid size along the blade surface measured in wall units for case A
in (a) the tangential direction 1s+, (b) the wall-normal direction 1n+ and (c) the spanwise
direction 1z+.

which allows one to accurately resolve the blade boundary layers and to enforce the
pitchwise periodicity at the same time. Moreover, a characteristic boundary condition
with a sponge layer is applied at the outlet to prevent spurious reflection (Sandberg &
Sandham 2006), and the blade surface is set as non-slip isothermal wall. At the inlet,
a Riemann boundary condition is applied, and fluctuations, as described in § 2.2, are
added to simulate the turbulence coming from upstream combustors in real engines.
It is noted that the numerical solver and the multi-block set-up for turbine cascades
have been extensively validated in previous studies, and more details can be found in
Sandberg et al. (2015).

In order to investigate the effects of the incoming turbulence on the HPT
performance, four large-eddy simulations with different turbulence intensities and
length scales have been performed in the present study, and the parameters of each
are summarized in table 1. It is noted that the integral turbulence length scale
Ls introduced in cases B and D is as large as 20 %Cax, which requires a much
larger domain in the spanwise direction compared to previous studies (Bhaskaran &
Lele 2010; Wheeler et al. 2016). Therefore, the number of grid points significantly
increases, and the final meshes applied in the present simulations have up to 8.6× 108

grid points. Furthermore, the grid resolution around the blade boundary layer for
case A is shown in figure 2. The grid spacings on the blade surface in the tangential,
wall-normal and spanwise directions are normalized with the local viscous length
scale δν = ν/uτ and denoted as 1s+, 1n+ and 1z+, respectively. Here uτ =

√
τw/ρ

is the wall-friction velocity with the wall shear stress τw and density ρ. Although
the grid sizes vary along the blade surface, they remain at a relatively low level,
and the grid spacings averaged around the blade surface are also given in table 1. It
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FIGURE 3. Incoming turbulence at a plane cut upstream of the blade leading edge at
x=−0.5. The contours of the instantaneous streamwise velocity component from (a) case
A and (b) case B. (c) The spanwise correlation of the pitchwise fluctuating velocity v′.

is also noted that the spanwise extents of the present cases, with the smaller ones
being Lz= 0.3 for cases A and C, are around six times the maximum boundary layer
thickness around the blade. By comparing case A to the direct numerical simulation
results of the same configuration with a much narrower spanwise extent (Lz = 0.1)
(Wheeler et al. 2016), the wall heat flux and other boundary layer statistics are in
close agreement, showing that the current grid resolution is sufficient to accurately
resolve the boundary layer and most of the energy-containing scales for the FST
(Pichler et al. 2017).

2.2. Inlet turbulence
The turbulent fluctuations at the inlet are introduced by a digital filter method
(Klein, Sadiki & Janicka 2003), in which the generated velocity fields can efficiently
reproduce first- and second-order one-point statistics as well as a locally given
autocorrelation function. Therefore, the turbulence intensities and integral length scales
can be prescribed for the different cases given in table 1. In order to investigate the
generated inlet turbulence formed in cases with different length scales, the contours
of instantaneous streamwise velocity at a y–z plane cut at x=−0.5 are presented in
figure 3. It is shown that the turbulent structures formed in case B, with a prescribed
Ls = 20 %Cax, indeed have much larger scales compared to the structures in case
A, with a prescribed Ls = 5 %Cax. Furthermore, the spanwise correlation of the
pitchwise fluctuating velocity Rv′v′(r) is also computed at this plane cut for cases A
and B and shown in figure 3(c). The integral turbulence length scales, therefore, can
be estimated as 2

∫ Lz/2
0 Rv′v′(r) dr, and the results for cases A and B are 4.8 %Cax

and 20.1 %Cax, respectively. Thus, it is shown that the integral length scales of the
incoming turbulence are in close agreement with the prescribed values. In addition,
it can also be inferred that the spanwise extents for the presented simulations are
sufficient for the large-scale inlet turbulence as

lim
r→Lz/2

Rvv(r)→ 0. (2.5)

The length scale of the prescribed inlet turbulence not only affects the large-scale
structures formed at the inlet, but also influences the decay rate of the incoming
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FIGURE 4. Characterization of the inlet turbulence: (a) evolution of pitchwise averaged
turbulence intensity Tu along the streamwise direction; (b) power spectral density (PSD)
of different velocity components normalized by T2

u in case A.

turbulence. This can be shown by the evolution of the pitchwise averaged turbulence
intensity

Tu =

√
u′2 + v′2 +w′2

3
in figure 4. The turbulence intensities at the inlet are set as 6.5 %Uin and 20 %Uin,
respectively. It can be observed that the cases with larger integral length scale
(Ls = 20 %Cax) have a lower dissipation rate compared to the ones with smaller
length scale (Ls = 5 %Cax). Before entering into the vane, the intensities at x=−0.2
for the different cases reach levels of 16.8 %, 9.5 %, 6.1 % and 5.2 % of the inlet
velocity Uin, respectively.

Furthermore, the turbulence spectra at a monitor point upstream of the blade leading
edge (x =−0.2, y= 0.0) have been extracted, and the power spectral density of the
three fluctuating velocity components for case A are presented in figure 4(b). The
curves for all of the three components show a range of −5/3 behaviour, indicating an
inertial range for the incoming turbulence. Moreover, it is noted that the streamwise
component is stronger at low frequencies compared to the other components, which
implies that the turbulence turns anisotropic downstream of the inlet due to the
streamwise flow acceleration, driven by the pressure ratio between the outlet and
inlet.

2.3. Validation with experiments
The results from the present simulations, particularly the accuracy of the prediction
of the blade boundary layers, have been quantitatively validated against the available
data from the VKI experiments (Arts et al. 1990). The isentropic Mach number Mais,
which is related to the pressure distribution around the blade boundary layer, is plotted
against the surface length s in figure 5(a). On the pressure side of the blade (s <
0), Mais increases monotonically from the leading edge at s = 0, which indicates a
FPG boundary layer across the pressure side of the blade, as shown in figure 5(a).
On the other hand, Mais on the suction-side surface (s > 0) first increases and then
decreases, and the peak of Mais divides the suction-side boundary layer into the FPG
and APG regions. While the Mais distribution for the same Re was not reported in
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FIGURE 5. Validation of the results: (a) isentropic Mach number Mais across the blade
surface, for negative s on the pressure side and for positive s on the suction side; (b) blade
surface heat flux qn, symbols representing experimental datasets with Tu levels at 6 %
and 4 %.

the experiment, an experimental case with the same pressure ratio but at a higher Re
is also selected for comparison in figure 5(a). It is shown that the numerical results
are in close agreement with the experimental data, and the cases with different inlet
turbulence do not show significant deviation for the mean pressure distribution around
the blade.

Furthermore, the blade surface heat flux

qn =−
µ

(γ − 1)PrRe∞Ma2
∞

∂T̃
∂n

is also presented in figure 5(b). Here, T̃ is the Favre-averaged temperature. The
experimental datasets shown here are from two cases at the same Re and Ma, while
the turbulence intensities are at the levels of 4 %Uin and 6 %Uin, respectively. As the
turbulence length scales or dissipation rate were not provided in the experiments, it
is not possible to reproduce the exact turbulence states in the numerical simulations
(Bhaskaran & Lele 2010). However, despite the potential differences of the boundary
conditions, the heat flux distributions from cases A, B and C agree well with the
experimental data, including the prediction of the transition onset. Moreover, case D
with high-intensity and large-scale inlet turbulence, which is more representative of
real engine environments, shows significant deviation from the other cases, and it is
therefore of great interest in the present study.

3. Overview of the flow field

An overview of the HPT flow field is given to present the complex flow phenomena
through the passage. Contours of the mean velocity magnitude U, along with the
iso-lines of the mean pressure p, are shown in figure 6(a). Through the HPT vane,
the flow accelerates significantly due to the pressure ratio between the inlet and the
outlet. From the blade leading edge, it first passes through a region of high curvature
and strong pressure gradient marked by the arrow M1. Then the flow acceleration
continues until the minimum of p, marked by the arrow M2, which is followed by
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FIGURE 6. Overview of the flow field: (a) contour of the mean velocity magnitude U with
iso-lines of time-averaged pressure p; (b) contour of the instantaneous density gradient
|∇ρ|.

the APG region on the blade suction side. Moreover, a pressure dipole marked by
M3 is caused by the vortex shedding at the blade trailing edge.

Furthermore, a snapshot of the density gradient |∇ρ| is presented in figure 6(b)
to show the instantaneous flow structures in case B. Large-scale structures, formed
due to the inlet turbulence, interact with the blade leading edge and then enter into
the vane. The structures are stretched because of the strong FPG, especially near the
region M1 shown in figure 6(a), and both the suction-side and pressure-side boundary
layers are affected. Moreover, scattered shocks are observed on the suction side of
the blade, which are located near the minimum of p, denoted by M2 in figure 6(a).
Further downstream, the vortex shedding at the blade trailing edge induces a wake
region with strong mixing, and the acoustic waves caused by the shedding and its
interaction with the blade surface propagate upstream and to the adjacent blade and
thus affect the suction-side boundary layer.

The blade boundary layer is further characterized in figure 7 based on the surface
curvature κ , the pressure gradient along the surface normalized by the wall-friction
velocity uτ given by

1P= ν
∂p
∂s
/u3

τ (3.1)
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FIGURE 7. Mean flow statistics for the HPT simulations: (a) blade boundary layer divided
by critical points marked by the blue circles (LE, leading edge; TE, trailing edge);
(b) blade surface curvature κ; (c) pressure gradient normalized by wall-friction velocity
1P; (d) wall-friction coefficient Cf .

and the wall-friction coefficient

Cf =
2τw

ρinU2
in
. (3.2)

The blade surface is first divided into the suction side and pressure side by the leading
edge and trailing edge as shown in figure 7(a). For the pressure-side boundary layer,
the amplitude of curvature is relatively low, and the pressure gradient has a near-
constant value of 1P ≈ −0.025, except for a short region near the leading edge,
which is considered to have strong stabilizing effects (Patel 1965; Araya, Castillo &
Hussain 2015). Accordingly, Cf for the pressure side increases gradually and implies
a laminar-state boundary layer, even for case D with FST of the largest amplitude.
Therefore, the pressure-side boundary layers are not further analysed in the current
study.

On the other hand, the suction-side boundary layer is characterized by varying
behaviours in different regions. We therefore divide the boundary layer into regions
dominated by different factors, and the boundaries of the regions are indicated by
the blue filled circles in figure 7. For the first stage, from the stagnation point at
x= 0.0 to the suction peak at x= 0.3, the blunt leading-edge region is dominated by
the high convex curvature and strong FPG, and the mean flow of the boundary layer
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Stage Coordinates Features Boundary layer state

I x= 0.0–0.3 Strong FPG and high curvature Laminar mean flow
II x= 0.3–0.8 Decreasing FPG and curvature Transition: case D
III x= 0.8–1.0 APG and negligible curvature Transition: cases A/B/C

TABLE 2. Different regions of the suction-side boundary layer.

at this stage stays laminar despite the disturbances caused by the turbulence coming
from the inlet for all of the cases, as shown by the wall friction in figure 7(d). In
the second stage of the suction-side boundary layer, from x = 0.3 to the pressure
minimum at x= 0.8, the curvature and the FPG gradually decrease. While for cases
A–C the wall-friction coefficient Cf remains laminar in this region, case D, which
is affected by the largest-amplitude FST, shows transition to turbulence at this stage.
Further downstream, the last stage, from x = 0.8 to the trailing edge, is the APG
boundary layer with negligible curvature. The boundary layers for all of the cases
transition to turbulence in this APG region, while the stronger FST in case C induces
a slightly earlier transition. A summary of the different regions of the suction-side
boundary layer is also presented in table 2.

4. Boundary layer transition

In this section, we focus on the suction-side boundary layer transition. An overview
of the instantaneous boundary layer flows for all of the cases is first presented in
figure 8, and the vortical structures are shown by iso-surfaces of the Q criterion (Hunt,
Wray & Moin 1988). In addition, the contours of the tangential velocity fluctuation
u′t on a surface parallel to the blade are also presented, and the distance between
the surface to the blade is around δ/2 at x = 0.5, with δ representing the boundary
layer thickness reaching 99 % of the local free-stream mean velocity. It is obvious that
the boundary layers show diverse transitional behaviours under the different states of
incoming turbulence. For cases with relatively low-level turbulence, i.e. cases A and
B, streamwise vortical tubes form in the leading-edge region (x< 0.3) and then stretch
downstream in the FPG part of the boundary layer (0.3< x<0.8). Further downstream,
the vortical structures quickly break down into turbulence in the APG region (x> 0.8).
At the same time, low-speed streaks, which are considered as dominant structures in
bypass transition induced by FST (Durbin & Wu 2007), are also shown to be present
in these cases. For cases C and D featuring increasing amplitude incoming turbulence,
the vortical structures are more ‘chaotic’, and the instability and meandering of the
low-speed streaks tend to appear farther upstream. Accordingly, the transition onsets
occur earlier compared to the cases with lower-level inlet turbulence, which is also
shown by the wall-friction coefficient in figure 7(d).

In the following subsections, the mechanisms for the suction-side boundary layer
transition will be discussed, with emphasis on the various phenomena caused by the
different FST characteristics. We will first investigate the effects of the blunt leading
edge, in which vortical structures start to wrap around the blade and streak-like
structures form in the boundary layer. Thereafter, several key mechanisms responsible
for the breakdown to turbulence will be presented.
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FIGURE 8. The vortical structures on the suction-side boundary layer: (a) case A;
(b) case B; (c) case C; (d) case D. Instantaneous iso-surfaces of Q= 4000 are presented,
and contours of the tangential velocity perturbations u′t on a surface parallel to the blade
are also shown. The distance between this surface and the blade is around δ/2 at x= 0.5.
In addition, the blue dashed lines indicate the locations of x= 0.3 and x= 0.8.

4.1. Leading-edge structures
As shown by the blade geometry in figure 1, the HPT in the present simulations
has a blunt leading edge, which is known to have direct effects on the receptivity
process of the boundary layer (see Kendall 1991). In addition, it has been reported
that streamwise vortices can form around the leading edge, which is due to the tilting
and stretching of the incoming wall-normal vortices (Goldstein & Wundrow 1998;
Wundrow & Goldstein 2001). The streamwise vortices thus can induce wake-like
disturbances similar to backward jets (Jacobs & Durbin 2001) or low-speed streaks
(Brandt et al. 2004), and the instability of these streamwise streaks finally results in
the breakdown to turbulence. Other than the instability of streaks, Nagarajan et al.
(2007) introduced a different path to transition considering the effects of the leading
edge, for which turbulent spots are formed via precursors which can be traced back
to leading-edge structures. This breakdown mechanism due to leading-edge structures
was observed to be dominant when the FST intensity or the leading-edge bluntness is
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FIGURE 9. Wall-normal profiles in the leading-edge region. (a) Mean tangential velocity
Ut at different locations for case A (lines) and case D (symbols). (b) Velocity fluctuations
at the leading edge x = 0.0 for case A (lines and symbols) and case D (symbols only).
(c) Mean tangential velocity profiles in wall units for case A (lines) and two-dimensional
laminar flow (symbols).

large. In the present study, the extraordinarily blunt leading edge of the HPT, along
with incoming turbulence of high amplitudes and large scales coming from the inlet,
is considered. It is clearly shown in figure 8 that the boundary layer transition taking
place in all of the cases is influenced by the vortical structures from the leading-edge
region. Therefore, the leading-edge structures will be studied to help understand the
downstream transition.

The basic boundary layer statistics, i.e. the profiles of the mean tangential velocity
and the velocity fluctuations at different locations, are presented in figure 9. In
particular, cases A and D, with the lowest and highest levels of inlet turbulence in
the present study, are selected for comparison. As shown in figure 9(a), the mean
velocity profiles for both cases are in close agreement with each other, despite
the remarkably strong fluctuations to which case D is subjected, as presented in
figure 9(b). Furthermore, the mean tangential velocity profiles in case A are plotted
in wall units in figure 9(c), in comparison with the profiles from a two-dimensional
case without any FST, and the close agreement implies that the boundary layers in
the leading-edge region (x< 0.3) stay laminar. This is due to the stabilizing effects of
the strong FPG and high convex curvature (see Muck, Hoffmann & Bradshaw 1985;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.39


Transition subject to strong pressure gradient and curvature 888 A4-15

0 0.1 0.2 n

w�

øt

0.02

0.04

z

n

(a) (b)

-0.2w�: -0.1 0 0.1 0.2

FIGURE 10. (a) Contour of spanwise velocity fluctuation at the leading-edge wall-normal
plane cut in case A. Iso-lines of tangential vorticity ω′t (normal to the plane cut) are
also shown, with solid and dashed lines indicating ω′t = 100 and ω′t =−100, respectively.
(b) Schematic for the wall-normal plane cut at the leading edge.

Katz, Seifert & Wygnanski 1990; Mukund et al. 2006), which are prominent in the
leading-edge region as identified in figure 7(b,c).

It is also demonstrated in figure 9 that compared to other components, the amplitude
of the spanwise fluctuation is much larger near the wall in both cases. The strong
spanwise disturbances at the leading edge are also shown by instantaneous contours
of the spanwise velocity component in figure 10(a), and a schematic for this plane
cut is given in figure 10(b). It appears that the large amplitude of tangential vorticity,
presented by the iso-lines, is basically located at those regions showing strong
gradients of the spanwise velocity fluctuation w′. This relation between the large
amplitude of spanwise disturbances and tangential vorticity can be expressed as
ω′t ∼ ∂w′/∂n, with n representing the wall-normal distance to the blade surface.
Similar to the observation in Goldstein & Wundrow (1998), the tangential vortices
at the leading edge will wrap around the blade surface, and the resulting streamwise
vortices are expected to play a key role in downstream transition.

The effects of the leading-edge structures on the boundary layer are further
investigated by scrutinizing flow variables in the wall-normal–spanwise planes, as
shown in figure 11. In the wall-normal plane cut near the suction peak at x= 0.3, the
iso-lines of Q represent the streamwise vortical structures wrapped around the leading
edge, which are also shown in figure 8, while the contours show the tangential
velocity fluctuation u′t and the temperature fluctuation T ′. For case A, it is noted that
the near-wall region as marked by the black dashed box in figure 11(a) is packed
with strips of positive and negative velocity fluctuations. In particular, the low-speed
fluid seems to be elevated and forms ‘mushroom-like’ structures, which are also
shown by the contour of temperature fluctuation T ′ from figure 11(c). The lift-up
effects of the vortical structures are clearly presented in figure 11(d,e), in which two
‘mushroom-like’ structures in figure 11(c) are extracted to provide a zoom-in view,
with the vectors showing the velocity fluctuations in the spanwise w′ and wall-normal
u′n directions. It appears that the vortical structures induce strong upward velocity
near the wall, driving the fluid with relatively low temperature away from the blade
and thus enhancing the heat flux. Therefore, the streamwise vortices are proven to
be directly linked to the low-speed streaks, which has also been presented in several
previous studies on flat-plate boundary layers with zero pressure gradients (Andersson
et al. 2001).

For comparison, the contour of u′t in figure 11(b) shows the velocity fluctuations
in case D, which are apparently much more violent compared to those in case A.
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FIGURE 11. Instantaneous snapshots for contours of spanwise and wall-normal plane
cuts at x = 0.3: (a) tangential velocity fluctuation u′t for case A; (b) u′t for case
D; (c) temperature fluctuation T ′ for case A; (d,e) zoom-in views of ‘mushroom-like’
structures of T ′ with fluctuating velocity vectors. The iso-lines of Q = 4000 are also
presented in the contours. Note that the wall-normal coordinate n is enlarged to clearly
show the structures.

Moreover, the iso-lines of Q are nearly randomly distributed over the plane cut,
corresponding to the ‘chaotic’ vortical structures as shown in figure 8(d). This
indicates that the high-level FST in case D drives stronger fluctuations and thus
‘chaotic’ vortical structures in the boundary layer, which are expected to cause much
earlier transition as presented in figure 7(d). The different states of the vortical
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FIGURE 12. Instantaneous snapshots for streaks and the breakdown to turbulence at t= t0
in case A. Contours of (a) streamwise component u′t, (b) wall-normal u′n and (c) spanwise
w′ are presented at the surface which is n= 1

2δ(x= 0.5) from the wall. The blue dashed
line indicates the boundary between FPG and APG at x= 0.8, and an incipient turbulent
spot is highlighted by the red dotted circle.

structures obviously cause different paths of transition, and the details will be further
discussed in § 4.2.

4.2. Breakdown mechanisms
Affected by the structures formed at the leading-edge region and the continuing
exposure to the FST, the suction-side boundary layers in the present simulations show
differences in their transition behaviours, e.g. different transition onsets indicated by
the wall-friction coefficient in figure 7(d) and various structures shown in figure 8.
In this section, we will investigate the various transition mechanisms, including the
instability of streaks in the cases with relatively low-level incoming turbulence, and
the breakdown caused by vortical structures in the case with higher-level turbulence.

4.2.1. Varicose breakdown
With the relatively low-level turbulence in cases A and B, the boundary layers

show elongated streaks across the FPG region as presented in figure 8(a,b), and the
transition onset is near the blade trailing edge under the APG. In figure 12, another
view of the suction-side boundary layer for case A is given, displaying the contours
of u′t, u′n and w′ on a surface at a distance of δ(x= 0.5) from the wall. The low- and
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FIGURE 13. Zoom-in view of the instability of the streak in case A indicated by the red
circle in figure 12. Instantaneous snapshots are presented at (a) t= t0, (b) t= t0 + 0.0115
and (c) t= t0 + 0.023, with t0 representing the snapshot shown in figure 12. Contours of
the wall-normal velocity fluctuation u′n are presented on the surface δ/2 away from the
wall, and the iso-lines of spanwise velocity fluctuation w′ are also shown, with solid lines
and dashed lines indicating w′ = 0.2 and w′ =−0.2, respectively.

high-speed streaks in the streamwise direction can be shown by the u′t contour. It is
also apparent that for the streamwise streaks in the suction-side boundary layer, the
tangential velocity fluctuation u′t is much stronger than the other components. These
streaks, which are usually considered as key features in bypass transition (Durbin &
Wu 2007), are closely related to the lift-up effects of the streamwise vortical structures
formed at the leading edge (Andersson et al. 2001).

The instability of the streaks in the APG region, as highlighted by the red dashed
circle in figure 12, is more clearly shown by the wall-normal and spanwise velocity
fluctuations, and it is further studied in a zoom-in view in figure 13. Corresponding
to the snapshot in figure 12 at t = t0, the contour of u′n in figure 13(a) shows a
symmetric distribution about the streamwise direction. In addition, the iso-lines of w′
are also presented, showing an antisymmetric pattern, with solid lines and dashed lines
indicating w′= 0.2 and w′=−0.2, respectively. It is noted that although the symmetry
presented in figure 13(a) is not perfect due to the strong upstream turbulence, this type
of instability corresponds well with varicose or symmetric modes (Andersson et al.
2001; Asai, Minagawa & Nishioka 2002).

The inception of the varicose instability, which was found to be driven by
the wall-normal shear of the streamwise flow by Skote et al. (2002), can be
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FIGURE 14. The inception of the varicose mode instability of the streak indicated by
the red circle in figure 12. The contours of the tangential velocity perturbations u′t on
a cross-spanwise plane cut across the streak are shown by the instantaneous snapshots at
(a) t= t0− 0.023, (b) t= t0− 0.0115, (c) t= t0 and (d) t= t0+ 0.0115, with t0 representing
the snapshot shown in figure 12. The iso-surfaces of u′t = 1.0 (red), u′t =−1.0 (blue) and
Q= 4000 (green) are also shown at (e) t= t0 − 0.023, ( f ) t= t0 − 0.0115, (g) t= t0 and
(h) t= t0 + 0.0115.

represented by the contours of u′t on a cross-spanwise plane cut across the streak.
In figure 14(a–d), the snapshots are from a sequence of time instants at t0 − 21t,
t0 − 1t, t0 and t0 + 1t, respectively, with t0 corresponding to the snapshot shown
in figure 12 and 1t = 0.0115. It is clearly shown that the varicose instability here
happens due to the interactions between the low- and high-speed streaks (Brandt
et al. 2004; Lundell & Alfredsson 2004). Specifically, the fast-moving high-speed
streak reaches the downstream low-speed region, and the instability is triggered at the
interface in between. This instability grows rapidly at the tilting interface between
the streaks, particularly with the presence of the APG which enhances the inflection
for the streamwise velocity profiles. The development of the varicose mode instability
can be further shown by the iso-surfaces of u′t in figure 14(e–h), highlighting the
formation of the vortical structures represented by the Q iso-surface. Convecting
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downstream, the streaks quickly break down as also suggested by the contours at two
subsequent snapshots at t0 +1t and t0 + 21t in figure 13(b,c).

4.2.2. Sinuous breakdown
For case C with higher-amplitude incoming turbulence, early-stage turbulent spots

are observed in the FPG region, while the skin friction indicates that the mean
flow stays laminar. In figure 15, a sequence of the contours of wall-normal velocity
fluctuation u′n is shown to track the formation of a turbulent spot, with the evolution of
the spanwise-averaged wall-friction coefficient Cf for the corresponding snapshots also
plotted on the suction-side surface. The contour surface is inside the boundary layer,
at a distance of δ/2 away from the wall, where δ is the boundary layer thickness
at x = 0.5. In these snapshots, the spot precursor first stretches in the streamwise
direction from figures 15(a) to 15(b). As the amplitude of the disturbances is still
small, the variation of the Cf value near the spot is nearly negligible. Travelling
downstream, the disturbances rapidly amplify and the precursor starts to break down,
with the Cf value around the spot significantly increasing as shown in figure 15(c).
Specifically, the breakdown of the spot precursor initiates at the tail and expands
in the spanwise direction, resulting in a triangular shape, with the head towards the
downstream direction. The spot continues to grow in both size and amplitude moving
further downstream, which can be shown by the evolution of the Cf wave-packet
indicated by the blue arrow. Nevertheless, it is noted that the skin friction recovers
to the undisturbed state again once the spot has passed by, suggesting that the
disturbances for the formation and evolution of the turbulent spot are localized and
there are calming effects trailing the spot. The temporal evolution of the displacement
thickness of the boundary layer at x = 0.8, which is indicated by the blue dashed
line in figure 15, is presented in figure 16, showing that the displacement thickness
relaxes to a value even smaller than that in the undisturbed state after the spot-caused
peak. As suggested by Katz et al. (1990), the low displacement thickness trailing the
turbulent spot indicates the existence of a calmed region which is presumably caused
by the distortion of the local mean flow by some nonlinear process. Finally, the
enlarged spot merges with the turbulent boundary layer near the blade trailing edge,
while a new spot precursor forms in the FPG region again as shown in figure 15(e).

In order to further investigate the incipient spot, a zoom-in view of the spot
precursor is shown in figure 17, tracking the structures highlighted by the red
dashed circle in the snapshots of figure 15(a–c). Here, the vortical structures are
identified by the iso-surface of Q in figure 17(a–c), and the iso-surfaces of u′t are
also shown to track the development of the streamwise velocity fluctuation streaks.
It is shown in figure 17(a,d) that there exists a quasi-streamwise vortex filament
located in the strong spanwise shear region between the low- and high-speed streaks.
The streamwise-elongated vortex filament, which seems to be a remnant of the
leading-edge vortical structures, is tilting with the wall-normal vorticity component
ω′n ∼ ∂u′t/∂n. A secondary instability of the streak is then observed, caused by the
strong spanwise shear in figure 17(b,e), with the tail of the filament oscillating in
the spanwise direction. Furthermore, the streak breaks down and forms the triangular
spot seen in figure 17(c, f ).

It is noted that the spanwise oscillations observed in figure 17(b) are only on one
side of the streak, which is in close agreement with the one-sided sinuous mode.
As discussed by Brandt et al. (2004), the sinuous instability of low-speed streaks,
though many are symmetric, can be dominated by single-direction vorticity and
oscillate only in one direction. This one-sided instability is believed to be related
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FIGURE 15. Formation of the turbulent spot in case C. Contours of wall-normal velocity
fluctuation u′n at the instantaneous snapshots (a) t= t0, (b) t= t0+ 0.069, (c) t= t0+ 0.138,
(d) t= t0+ 0.207 and (e) t= t0+ 0.276. The blue dashed lines indicate x= 0.3 and x= 0.8,
respectively, and the spot precursor is highlighted by the red dashed circle. Meanwhile, the
wall-friction coefficient Cf on the suction-side surface is averaged in the spanwise direction
and plotted against x for the corresponding snapshots (red solid lines), with the mean Cf
represented by the black dashed lines for reference.
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FIGURE 16. Temporal evolution of the displacement thickness of the boundary layer
profile at x= 0.8 in case C. The instantaneous profile is spanwise-averaged, starting from
t0 corresponding to figure 15(a).

to the spanwise asymmetry of the streaks, which is indeed present for case C with
strong FST. Furthermore, contours of the streamwise velocity fluctuation u′t in four
cross-stream plane cuts at different streamwise positions, which correspond to the
sinuous disturbances in figure 17(b), are shown in figure 18. Along with the vectors
showing the fluctuating velocities in the wall-normal and spanwise directions, the
meandering of the low-speed streak also gives further credibility to the hypothesis of
the presence of a one-sided instability.

4.2.3. Breakdown induced by vortex interaction
For case D, the velocity fluctuations in the boundary layer are stronger than in other

cases and the vortical structures are more ‘chaotic’ from the blade leading edge, as
shown in figure 11. As a result, the transition onset shown by skin friction already
occurs in the FPG region (x < 0.8) for case D, which is much earlier than in the
other cases. In order to investigate the transition mechanisms, the breakdown process
is presented by the contours of the wall-normal velocity fluctuations u′n in figure 19.
As a result of the large-amplitude inlet turbulence, the contours of u′n for case D show
much stronger fluctuations, compared to case C shown in figure 15, that has the same
turbulence amplitude at the inlet but a smaller length scale and thus exhibits more
rapid decay of the incoming turbulence. In particular, once the flow enters into the
region with relatively weak FPG and convex curvature, which is downstream of the
first blue dashed line representing x= 0.5, the fluctuations originating from the leading
edge induce multiple structure breakdowns in the spanwise extent. One spot precursor,
as highlighted by the red dashed circle in figure 19, is considered as an example and
tracked through the formation process. The precursor is first observed just downstream
of x= 0.5, and it rapidly grows in size in both the streamwise and spanwise directions,
travelling downstream. Thereafter, while the precursor breaks down to form a region
packed with smaller-scale fluctuations, the shape of this region is obviously different
from the spot shown in figure 15.
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FIGURE 17. Zoom-in view of the instantaneous structures highlighted by the red dashed
circle in figure 15 to show the breakdown in case C. Contours of the streamwise velocity
fluctuation u′t are shown on the surface at δ/2 from the wall, and iso-surface of Q= 4000
is also shown at (a) t= t0, (b) t= t0+ 0.069 and (c) t= t0+ 0.138. Iso-surfaces of u′t= 1.0
(red) and u′t =−1.0 (blue) at (d) t= t0, (e) t= t0 + 0.069 and ( f ) t= t0 + 0.138.

The formation of the spot is further investigated in the zoom-in view presented in
figure 20, with the vortical structures identified by the iso-surface of the Q criterion
and the contours of u′t also shown. The instability of streaks, as presented for cases A,
B and C in §§ 4.2.2 and 4.2.1, is not clearly observed here. Rather, the spot precursor
results from the vortical breakdown. The pair of vortex filaments, as highlighted by
the blue dashed circle in figure 20(a), forms a Λ-shape with the tip pointing in
the negative streamwise direction, which is the opposite from the Λ-like structures
usually observed in natural transition (Zhao, Yang & Chen 2016a,b; Zhao et al.
2018). The resulting spot, as presented in figure 20(b), is therefore different from the
ordinary turbulent spots with the head towards the downstream direction, as shown
in figure 17(c).

The breakdown of the precursor highlighted in figure 20(a) can be further shown
by the contours of u′t in the cross-spanwise plane cut at the tip of the precursor. In
figure 21(a), the tip of the Λ-shaped vortex pair is located at the interface between
the high- and low-speed region, as indicated by the black solid arrow. The vortex
pair induces a downward movement of relatively high-speed fluid and elevates the
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FIGURE 18. The inception of the varicose mode instability in case C, corresponding to the
snapshot shown in figure 17(b) at the instantaneous snapshot t= t0+ 0.069. The contours
of the tangential velocity perturbations u′t are shown on four cross-streamwise plane cuts
between the two blue dashed lines in figure 17(b) at (a) x= 0.70, (b) x= 0.705, (c) x=
0.71 and (d) x= 0.715, and the vectors present the fluctuating velocities on the plane.

upstream low-speed fluid from the wall, and the instability of the interface rapidly
develops and then breaks down under the strong background turbulence, as shown in
the subsequent snapshots in figure 21(b–d).

We remark here that the Λ-shaped vortex in figure 20(a) is just one example of
the key structures. Due to the ‘chaotic’ nature of the vortical structures under the
strong background turbulence, structures of different forms have also been identified
in the formation of spot precursors in case D. The consistent mechanism for this
type of breakdown, however, is that the precursors always originate from energetic
vortical structures that can be traced back to the blade leading edge. The transition
breakdown resulting from leading-edge structures seems to be in close agreement with
the leading-edge effects discussed in Nagarajan et al. (2007), in which the vortical
effect is dominant when the bluntness is large and the FST is strong.

As a summary, the transition onsets in cases A and B are in the APG region
close to the blade trailing edge. High- and low-speed streaks are observed, which are
induced by the lift-up effects of the streamwise vortices formed at the leading edge.
The structures then transform while convected downstream, due to a varicose mode
instability that occurs as a result of the wall-normal inflectional instability under
the APG, and which rapidly amplifies and causes the final breakdown to turbulence.
For cases with stronger FST, however, the transition onsets occur much earlier. For
case C, spot precursors form in the weak FPG region, and the formation process
is through the secondary instability of streaks, which is observed to be the sinuous
mode. Furthermore, with the even stronger FST entering the HPT cascade in case D,
the vortical structures formed at the leading edge are in a chaotic manner and have
a direct effect on the transition breakdown.
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FIGURE 19. Formation of the turbulent spot in case D. Contours of wall-normal velocity
fluctuation u′n at the instantaneous snapshots (a) t= t0, (b) t= t0+ 0.046, (c) t= t0+ 0.092
and (d) t = t0 + 0.138. The blue dashed lines indicate x = 0.5 and x = 0.8, respectively,
and the spot precursor is highlighted by the red dashed circle.
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FIGURE 20. Zoom-in view of the instantaneous structures highlighted by the red dashed
circle in figure 19 to show the breakdown in case D, at (a) t= t0 and (b) t= t0 + 0.046.
Contours of the streamwise velocity fluctuation u′t are shown on the surface at δ/2 from
the wall, and iso-surfaces of Q= 4000 are also shown.

5. Discussion on effects of incoming turbulence

In this section, we will summarize the effects of the inlet turbulence on transition
mechanisms in the present cases in which the suction-side boundary layers are subject
to pressure gradients and surface curvature, and the results will be compared to those
of previous studies which have predominantly focused on flat-plate boundary layers
with zero pressure gradient.
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FIGURE 21. The incipient of the spot in case D. The contours of the instantaneous
tangential velocity perturbations u′t on a cross-spanwise plane cut at z= 0.29 as indicated
by the blue dashed arrow in figure 20: (a) t= t0, (b) t= t0+ 0.023, (c) t= t0+ 0.046 and
(d) t= t0+ 0.069, with t0 representing the snapshot shown in figure 20(a). The window is
moving at a speed of c= 1.74 to track the spot precursor highlighted by the blue dashed
circle in figure 20(a).

First of all, the effects of the turbulence length scales, in addition to the resulting
different decay rate as presented in figure 4(a), are analysed by comparing the
transitional structures in cases A and B. It is noted that cases A and B have
significantly different integral length scales of the incoming turbulence, as shown in
figure 4(b), while the turbulence intensities upstream of the leading edge (x=−0.2)
are relatively close to each other with Tu = 6.1 %Uin and 5.2 %Uin, respectively. The
transition onsets agree well with each other as observed in figure 7(d), and streak-like
structures and their instability are observed in both cases A and B as discussed in
§ 4.2.1. Therefore, a qualitative comparison between cases A and B implies that the
transition mechanisms in relatively low-level FST cases are not directly influenced by
the significant difference in integral length scales. Considering cases C and D which
show distinctive levels of turbulence upstream of the leading edge (Tu = 16.8 %Uin
and 9.5 %Uin at x = −0.2) and thus significantly different transitional behaviours as
discussed in § 4, the leading factor dominating the transition behaviours in the present
cases seems to be whether the turbulence intensity is strong enough to overcome the
stabilizing effect of the FPG.

However, a quantitative analysis is still needed to answer one open question –
whether the length scales of the FST affect the scales of the transitional structures,
especially the streamwise streaks in the boundary layer. In previous studies of bypass
transition in flat-plate boundary layers, the spanwise spacing of the streaks induced
by FST was usually observed in experiments to be at the scale of the boundary
layer thickness (Matsubara & Alfredsson 2001), and it was reported in numerical
simulations (Brandt et al. 2004) that the spanwise scale of the streaks is only weakly
dependent on the scale of the disturbance in the free stream. Also, these are in
accordance with the theoretical results of Luchini (2000) and Andersson et al. (1999),
which show an optimal scale of 1.4 times the boundary layer thickness on a flat
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FIGURE 22. (a) Spanwise correlation of the tangential velocity fluctuation u′t on the
suction-side boundary layer at x = 0.5. (b) Development of the spanwise spacing of the
streaks ∆z compared to the local boundary layer thickness δ, and spacing normalized in
the local wall units ∆+z .

surface. On the other hand, Ovchinnikov et al. (2008) reported that the FST length
scale can affect not only the onset of transition, but also the underlying physical
mechanism including the critical vortical structures and spacing of the streaks. More
recently, the importance of the integral length scales for predicting transition onset is
stressed based on the experimental data consisting of 42 FST states (Fransson 2017).

In the present study, the spanwise spacings of the streaks in cases A and B,
quantified by twice the distance to the minimum of the spanwise correlations of
u′t shown in figure 22(a), are compared with the local boundary layer thickness.
As becomes evident from figure 22(b), the spanwise spacings at the suction peak
x = 0.3 in cases A and B are ∆z = 0.058 and 0.18, respectively, which are of the
order of the integral length scales from the inlet turbulence and much larger than the
boundary layer thickness. Furthermore, the spanwise spacings of the streaks slightly
increase in the FPG boundary layer, corresponding to the growth of the streaks in
both size and intensity. We thus conclude here that the spanwise spacings of the
streaks in the present study depend on the FST and are not directly connected to the
boundary layer thickness. It is also interesting to compare the present streaks in the
transitional boundary layers with the well-known streaks as key coherent structures
in fully turbulent boundary layers. The spanwise spacing of wall-turbulence streaks
was found to exhibit consistent values of ∆+z ≈ 100 in the near-wall region (Smith &
Metzler 1983) and can go as high as ∆+z ≈ 1500 in the outer layer (Jiménez 2018),
while the spanwise spacings of the streaks in the present study, normalized in wall
units, are ∆+z ≈ 1000–1500 in case A and ∆+z ≈ 3000–4000 in case B. Moreover,
Brinkerhoff & Yaras (2015) found in a numerical simulation of a flat-plate boundary
layer with pressure gradient that although the stabilizing effects of a FPG can cause
a larger streak spacing in wall units, resulting in typical spacing of ∆+z ≈ 198, the
streak spacing seems to be at the scale of the local boundary layer thickness with
the existence of acceleration. Therefore, considering the much larger streak spacing
compared to the local boundary layer thickness found in the current work, and
the significant variations of streak spacings in cases A and B, it is likely that the
streaks here mainly originate from the vortical structures formed at the blunt blade
leading edge as a consequence of the incoming turbulence, rather than through a
scale selection of the boundary layer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.39


888 A4-28 Y. Zhao and R. D. Sandberg

0.4 0.6 0.8
x x

1.0
0

0.5m
ax

n(
u� t)2

m
ax

n(
u� t)2

m
ax

n(
w� )21.0

1.5(a) (b)

(c)

Case A
Case B
Case C
Case D

0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

200 000 300 000
Res

400 000
0

0.1

0.2

0.3
Case A
Case B
Case C

x = 0.5

x = 0.8

FIGURE 23. Development of the wall-normal maximum of the streamwise velocity
fluctuation.

The development of the fluctuations in the boundary layer can be characterized
by the wall-normal maximum of the tangential velocity fluctuation maxn(u′t)

2. As
shown in figure 23(a), maxn(u′t)

2 in case A first decreases due to the large-amplitude
curvature and the strong pressure gradient, as indicated in figure 7(b,c). Downstream
of x = 0.5, the curvature effect and the FPG turn much weaker, and the streamwise
streaks start growing. As a comparison, figure 23(b) shows that the spanwise
component maxn(w′)2 monotonically decreases until the transition onset, after which
the growth rate of maxn(u′t)

2 also significantly increases. This suggests that the
streamwise streaks in the boundary layer are dominated by the fluctuations in the
streamwise direction, and the strength of the streaks keeps increasing for the weak
FPG and APG regions.

In addition, the effects of the inlet turbulence can be studied by comparing results
between all the cases. It is shown that compared to cases A, B and C, the growth rate
of maxn(u′t)

2 in case D is much larger and the spanwise fluctuations are apparently
much stronger, which is in accordance with the structures being more chaotic and
consistent with the fact that a different path from streak instability is responsible
for the transition. Furthermore, for cases A, B and C which show obvious streak
instabilities during transition, the growth rates in the weakly FPG region (from x= 0.5
to x= 0.8) are compared in figure 23(c), showing that maxn(u′t)

2 grows approximately
linearly with the Reynolds number based on the surface distance Res. This observation
agrees with previous experimental (Kendall 1985; Matsubara & Alfredsson 2001)
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and theoretical (Andersson et al. 1999; Luchini 2000) results obtained for flat-plate
boundary layers with zero pressure gradient. Furthermore, the algebraic growth of
streaks was also observed in the flat-plate boundary layer simulation with pressure
gradient by Brinkerhoff & Yaras (2015), in which the variation of FPG seems to
not affect the growth rate. The differences observed in the present cases compared
to the flat-plate boundary layer in Brinkerhoff & Yaras (2015), especially the strong
stabilizing effects causing the decrease of the streak intensity at x< 0.5 as shown in
figure 23(a), highlight the influence of the strong FPG and convex curvature of the
blunt leading edge. To summarize, even though the streamwise streaks in the present
cases are mainly induced by the vortical structures formed near the leading-edge
region, and thus have spanwise scales much larger than the local boundary layer
thickness, the growth of the streaks at the downstream stage with weak pressure
gradient and curvature is still closely related to the algebraic or transient growth
theory. Moreover, it is shown that the growth rates of maxn(u′t)

2 in cases with
stronger FST are slightly larger, implying that the growth of the streaks is also
affected by the FST (Asai et al. 2007).

The development of the velocity fluctuations along the suction-side boundary layer
can be further characterized by the spanwise spectra, as presented in figure 24. The
spectra in the streamwise û′t, the wall-normal û′n and the spanwise ŵ′ directions are
obtained as

û′i(x, kz)=Fz{u′i(x, z)}, (5.1)

where Fz represents the Fourier transform in the spanwise direction. In figure 24, the
time-averaged spectra 〈|û′i(x, kz)|

2
〉 for case A are plotted against x at the surface which

is 1
2δ(x= 0.5) from the wall, and case D with much higher levels and greater length

scales of FST is presented for comparison. It is apparent that the velocity fluctuations
are mainly at low wavenumbers before the boundary layer transitions into turbulence,
which suggests the boundary layer is predominately affected by the large-scale part of
the FST. After transition, the high-wavenumber amplitudes for all of the components
significantly amplify, and the spectra become broadband. Furthermore, the streamwise
fluctuating velocity is shown to be dominant for most of the boundary layer, while
the wall-normal component 〈|û′n(x, kz)|

2
〉 is negligible, until transition to turbulence

has occurred. The spanwise component 〈|ŵ′(x, kz)|
2
〉, however, is prevailing in the

leading-edge region, but the amplitude gradually decreases in the FPG region (x< 0.8).
This is presumably due to the stabilizing effects of the FPG and the convex surface.
Compared to case A, the transition in case D takes place much earlier due to the
higher-amplitude FST. This is also shown in figure 8(d–f ), in which the spectra of
fluctuating velocities in case D turn broadband at around x= 0.8.

In addition, it is worth noting that one peak of the 〈|û′t(x, kz)|
2
〉 spectrum in the

leading-edge region is shown by the red arrow in figure 24(a), which indicates a
wavelength of

λz =
2π

kz
≈ 0.058. (5.2)

This wavelength corresponds to the spanwise spacing of the low-speed streaks at the
leading-edge region x= 0.3 in case A, as also observed in figure 22(b).

6. Conclusions
In the present study, large-eddy simulations of an HPT at realistic Reynolds and

Mach numbers have been performed, and the inlet turbulence was varied in four cases
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FIGURE 24. The evolution of the spanwise spectra of the fluctuating velocities along
the suction side of the blade. The spectra of the velocity components are extracted at
the surface which is n = 1

2δ(x = 0.5) from the wall and plotted against the streamwise
coordinate x and spanwise wavenumber kz. The contours are (a) 〈|û′t(x, kz)|

2
〉 in case

A, (b) 〈|û′n(x, kz)|
2
〉 in case A, (c) 〈|ŵ′(x, kz)|

2
〉 in case A, (d) 〈|û′t(x, kz)|

2
〉 in case D,

(e) 〈|û′n(x, kz)|
2
〉 in case D and ( f ) 〈|ŵ′(x, kz)|

2
〉 in case D.

to study the effects of turbulence intensities and length scales on the boundary layer
transition. Due to the interactions between the incoming turbulence and the blunt blade
leading edge, vortical structures wrap around the leading edge and thus affect the
boundary layer transition on the suction side. For cases with different FST, various
paths for transition are observed, including the sinuous and varicose modes of streak
instability and the breakdown caused by vortical interactions.

In cases with relatively low-level turbulence, i.e. cases A, B and C, the low- and
high-speed streaks are observed to originate from the leading-edge vortical structures,
and the spanwise length scales of the streaks are related to the integral length scales
of the upstream turbulence. While the streaks are mainly induced by the leading-edge
vortical structures and subject to FPG and curvature effects, the boundary layer
fluctuations grow linearly with Res, which is in close agreement with the algebraic or
transient growth originally proposed in a flat-plate boundary layer with zero pressure
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gradient. Furthermore, the streaks break down and the transition onsets are through
the instability of the streaks, either the varicose mode in the APG region or the
sinuous mode earlier in the weak FPG region. For cases with higher levels of FST,
however, the leading-edge structures are more chaotic and no obvious streak instability
is observed. Accordingly, the transition onset occurs much earlier on the suction side,
through a breakdown caused by interactions between vortical structures.
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