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We consider strictly quasiconvex integrals

F [u] :=
∫

Ω
f(Du) dx for u : R

n ⊃ Ω → R
N

in the multi-dimensional calculus of variations. For the C2-integrand f : R
Nn → R we

impose (p, q)-growth conditions

γ|ξ|p � f(ξ) � Γ (1 + |ξ|q) for all ξ ∈ R
Nn

with γ, Γ > 0 and 1 < p � q < min{p + 1/n, p(2n − 1)/(2n − 2)}. Under these
assumptions we prove partial C1,α

loc -regularity for strong local minimizers of F and
the associated relaxed functional F .

1. Introduction

In this paper we investigate the regularity of strong local minimizers of autonomous
variational integrals

F [u] :=
∫

Ω

f(Du) dx (1.1)

defined on vector-valued maps u : Ω → R
N , N � 1. Here Ω denotes a bounded open

set in R
n, n � 2, and f : R

Nn → R is a C2-function satisfying suitable assumptions
described below.

The existence and the partial regularity of minimizers of F are classical issues in
the modern calculus of variations, and they have been studied extensively, especially
over the last 20 years. Specifically, we will focus here on gradient regularity under
the basic assumption that f is quasiconvex; that is

−
∫

B

f(ξ + Dϕ) dx � f(ξ)
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holds for all ξ ∈ R
Nn and all ϕ ∈ C∞

c (B; RN ), where B denotes the unit ball in R
n.

Quasiconvexity, introduced by Morrey in his seminal paper [39], generalizes the
classical convexity assumption in the calculus of variations and has turned out to
be a key concept for both the existence and the partial regularity of minimizers. In
addition, the central role of quasiconvexity in nonlinear elasticity was pointed out
in the fundamental work of Ball [5].

Before presenting our theorems, let us briefly describe some previous existence
and regularity results. Primarily, imposing the standard growth conditions

γ|ξ|p � f(ξ) � Γ (1 + |ξ|p) (1.2)

for some p > 1, Morrey [39] proved that quasiconvexity is a necessary and sufficient
condition for lower semicontinuity of F with respect to weak W 1,p-convergence (see
also [1,30,33,37,38]). This semicontinuity property is, in turn, via the direct method
of calculus of variations, intimately linked to the existence of minimizers of F .

As for regularity, classical examples of minimizers with singularities of the gra-
dient can be constructed [15, 41, 49, 50], even for smooth convex functionals and
n = 3, showing that in the vectorial case everywhere regularity of minimizers in
the interior of Ω does not hold. Therefore, one is led to consider partial regularity,
i.e. regularity outside a negligible closed subset of Ω, called the singular set. For
quasiconvex functionals and p � 2, partial C1,α

loc -regularity of minimizers was first
shown by Evans [21] (see [2, 4, 16, 23, 25, 31] for extensions and variants). Partial
regularity in the subquadratic case 1 < p < 2 was eventually proved in [13] (see
also [3, 17,48]).

Contrary to convex functionals, quasiconvex functionals may, in general, admit
non-trivial critical points, i.e. weak solutions of the Euler equation which are not
(absolutely) minimizing. Actually, Müller and Sverák [40] have even constructed
examples of critical points which are nowhere C1. This result is in sharp contrast to
the partial regularity of minimizers and leads to the investigation of an intermediate
notion, namely local minimizers of F in the sense of the following definition.

Definition 1.1 (W 1,q̄ local minimizer [32]). Let 1 � p � ∞ and 1 � q̄ � ∞. A
map ū ∈ W 1,p(Ω, R) with F [ū] < ∞ is called a W 1,q̄ local minimizer of F if there
exists some δ > 0 such that

F [ū] � F [ū + ϕ] holds for all ϕ ∈ W 1,q̄
0 (Ω, RN )

with ‖Dϕ‖Lq̄(Ω,RNn) � δ. In particular, we call ū a strong local minimizer for
1 � q̄ < ∞ and a weak local minimizer for q̄ = ∞.

Having introduced this notion, it is natural to ask whether non-trivial local min-
imizers of F exist and if they are still regular or not. Actually, the investigation of
the existence (and non-existence) of local minimizers has followed previous devel-
opments [26, 27] for critical points, and has, until now, focused on the case of L1

local minimizers with affine boundary data. For instance, if the underlying domain
Ω is an annulus in R

2, there exist non-trivial L1 local minimizers [32,44], while for
a star-shaped Ω every L1 local minimizer is already absolutely minimizing [51]. In
fact, generalizing these ideas, Taheri [52, 53] has provided multiplicity bounds for
local minimizers in terms of topological invariants of Ω.
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Clearly, the examples of L1 local minimizers are also W 1,q̄ local minimizers for
every 1 � q̄ � ∞. However, in the light of [32, § 2] it would be interesting to discuss
whether non-trivial examples of W 1,q̄ local minimizers still exist in the simple case
that Ω is a ball. Moreover, in view of remark 2.5 they should ideally possess the
additional feature that they are not W 1,p local minimizers. Indeed, for q̄ > p we are
not aware of any theoretical obstruction, but no such examples seem to be present
in the literature.

Assuming standard growth (1.2), the regularity theory for W 1,q̄ local minimizers
has been started in [32]. Let us restate this result.

Theorem 1.2 (Kristensen and Taheri [32]). Let 2 � p < ∞, 1 � q̄ < ∞. Assume
that f ∈ C2(RNn) is uniformly strictly quasiconvex with (1.2) and that

ū ∈ W 1,q̄
loc (Ω, RN ) ∩ W 1,p(Ω, RN )

is a W 1,q̄ local minimizer of F . Then there exists an open set Ω0 ⊂ Ω with |Ω\Ω0| =
0 such that ū ∈ C1,α

loc (Ω0, R
N ) for every 0 < α < 1.

A similar result for weak local minimizers is given in [32] and an analogous
statement in the subquadratic case 1 < p < 2 was established in [12]. We stress that
in the light of the counter-examples from [40] these theorems treat a borderline case
of regularity. Finally, we mention that it would be desirable to remove the technical
assumption ū ∈ W 1,q̄

loc (Ω, RN ) in theorem 1.2. However, at present it seems quite
difficult to achieve this.

Next we turn to a generalization of (1.2). Actually, starting with a series of papers
by Marcellini (see, for example, [35, 36]) an increasing interest in more flexible
growth conditions than (1.2) has emerged. In this paper, we concentrate on the
(p, q)-growth conditions

γ|ξ|p � f(ξ) � Γ (1 + |ξ|q) (1.3)

with two growth exponents 1 < p � q < ∞. In the general vectorial setting the
regularity theory for (1.3) was started in [42]. Assuming that f is strictly convex
and that q < min{p + 1, pn/(n − 1)} the authors showed partial C1,α

loc -regularity of
minimizers of F . Subsequently, considering less restrictive conditions on the growth
exponents, higher integrability results for the gradient of minimizers have been
given in [18, 19], and partial regularity has been established in [9]. Here, the most
general condition on the exponents, appearing in [9, 18], reads q < p(n + 2)/n. For
results concerning non-autonomous functionals we refer the reader to [8,10,14,20].

The quasiconvex case is more recent. In [7, 22, 28, 29, 34, 43] the semicontinuity
properties in W 1,p(Ω, RN ) of quasiconvex functionals satisfying (1.3) have been
investigated. For our approach the following notion from [7] has turned out to be
crucial.

Definition 1.3 (W 1,p-quasiconvexity [7]). We say that f is W 1,p-quasiconvex if
and only if

−
∫

B

f(ξ + Dϕ) dx � f(ξ)

holds for all ξ ∈ R
Nn and all ϕ ∈ W 1,p

0 (B; RN ).
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Relying on [7, 22], it has been shown in [46] that (strict) W 1,p-quasiconvexity,
together with (1.3) and some restrictions on the exponents p and q, allows one to
establish both existence and partial regularity of absolute minimizers of F . Pre-
cisely, the restriction on the exponents reads q < np/(n − 1) for the existence and

1 < p � q < p +
min{2, p}

2n
(1.4)

for the regularity. We refer the reader to [45] for similar results in the higher-order
case.

For n = N , an important class of examples is given by the polyconvex integrands

f(ξ) = (1 + |ξ|2)p/2 + h(det ξ), (1.5)

where h is a convex function of growth rate q/n. These integrands are of some inter-
est in nonlinear elasticity, as pointed out in [5–7, 34]. Moreover, we recall from [7]
that f from (1.5) is W 1,p-quasiconvex if and only if p � n holds. Thus, in this case,
the above existence and regularity results apply. Let us mention, at this stage, that
polyconvex integrands with a structure related to the one in (1.5) and p > n−1, but
with a completely different growth behaviour, have previously been treated in [24]
by means of more specific methods taking into account the peculiar nature of the
functional.

In the case when p < n the integrands (1.5) are not W 1,p-quasiconvex and the
above-mentioned results do not apply. However, this case, in which F can potentially
admit discontinuous minimizers, is of particular physical interest. To extend the
existence and regularity results, a relaxation method, which is closely related to the
classical idea of the Lebesgue–Serrin extension, was introduced in [11, 22, 34, 47].
Precisely, we consider the relaxed functional

F [u] := inf
{

lim inf
k→∞

F [uk] : W 1,q
loc (Ω, RN ) � uk ⇀ u weakly in W 1,p(Ω, RN )

}
(1.6)

for u ∈ W 1,p(Ω, RN ). It is not difficult to see from this definition that the minimum
of F is attained on every Dirichlet class [47]. Furthermore, invoking representation
results from [11,22], the approach of [46] has been carried over to minimizers of F .
Precisely, partial regularity of minimizers of F has been established in [47], assuming
that f is strictly quasiconvex with (1.3) and (1.4).

The aim of the present paper is now to examine the regularity properties of local
minimizers of quasiconvex functionals satisfying (p, q)-growth conditions. Clearly,
our main interest remains the model case (1.5), for which examples of L1 local
minimizers have been provided in [53, § 4]. Precisely, our results are the following.
If f is strictly W 1,q̄-quasiconvex, we prove partial C1,α

loc -regularity for W 1,q̄ local
minimizers ū of F (see theorem 2.1). In addition, if f is only strictly quasiconvex,
following the approach of [47] we prove a similar regularity theorem for W 1,q̄ local
minimizers ū of the relaxed functional F (see theorem 2.2). In both cases we are
mainly interested in the case q̄ > p, where, as in [32], we need to impose the technical
integrability assumption ū ∈ W 1,q̄

loc (Ω, RN ). Note that, as a by-product, this assump-
tion allows us to work with W 1,q̄-quasiconvexity instead of W 1,p-quasiconvexity in
theorem 2.1. Our results generalize those obtained in [12,32,46,47].
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Finally, let us briefly comment on some technical issues. In the subquadratic case
1 < p < 2, we improve the condition (1.4), replacing it by

1 < p � q < min
{

2n − 1
2n − 2

p, p +
1
n

}
. (1.7)

Note that in the model case (1.5) with q = n = N = 2 the bound (1.7) allows
replacement of the condition p > 8

5 from (1.4) by p > 3
2 . However, the reason for this

improvement is mainly a technical one. Moreover, we mention that, following [12,
32], we use a blow-up argument based on the excess

E(x, r) = −
∫

Br(x)
(1 + |Dū − (Dū)x,r|2)(p−2)/2|Dū − (Dū)x,r|2 dx (1.8)

to prove the partial regularity. In particular, even in the case of absolute minimizers,
we provide an alternative proof of the results in [46, 47], where the A-harmonic
approximation method has been used.

2. Statement of the results

In this section we state our main results concerning partial regularity of strong local
minimizers. Starting with a growth and a coercivity condition we will now supply
precise statements of our assumptions.

(H1) q-growth. There exists a bound Γ > 0 such that we have

0 � f(ξ) � Γ (1 + |ξ|q) for every ξ ∈ R
Nn.

(H2) p-coercivity. There is a coercivity constant γ > 0 such that we have

f(ξ) � γ|ξ|p for every ξ ∈ R
Nn.

Next we state two quasiconvexity conditions, which will be imposed in theorems 2.1
and 2.2, respectively.

(H3) Strict W 1,q̄-quasiconvexity. For each L > 0 there is a convexity constant
νL > 0 such that we have

−
∫

Br(x0)
(f(ξ + Dϕ) − f(ξ)) � νL −

∫
Br(x0)

(1 + |Dϕ|2)(p−2)/2|Dϕ|2 dx

for all balls Br(x0) ⊂ R
n, for all ξ ∈ R

Nn with |ξ| � L + 1 and for all
ϕ ∈ W 1,q̄

0 (Br(x0), RN ).

(H4) Strict quasiconvexity. For each L > 0 there is a convexity constant νL > 0
such that we have

−
∫

Br(x0)
(f(ξ + Dϕ) − f(ξ)) � νL −

∫
Br(x0)

(1 + |Dϕ|2)(p−2)/2|Dϕ|2 dx
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for all balls Br(x0) ⊂ R
n, for all ξ ∈ R

Nn with |ξ| � L + 1 and for all
ϕ ∈ C∞

c (Br(x0), RN ).

Now we present our first main result, a regularity result for strong local minimiz-
ers of the functional F defined in (1.1).

Theorem 2.1. Let q̄ ∈ [1,∞) and

1 < p � q < min
{

p +
1
n

,
2n − 1
2n − 2

p

}
. (2.1)

Assume that f ∈ C2(RNn) satisfies (H1) and (H3) and that

ū ∈ W 1,q̄
loc (Ω, RN ) ∩ W 1,p(Ω, RN )

is a W 1,q̄ local minimizer of F in the sense of definition 1.1. Then there exists an
open set Ω0 ⊂ Ω with |Ω \Ω0| = 0 such that ū ∈ C1,α

loc (Ω0, R
N ) for every 0 < α < 1.

Our second main result concerns strong local minimizers of F from (1.6), where
we define local minimizers of F along the lines of definition 1.1 with F replaced
by F . Before stating the result, we recall some properties of the functional F .
Assuming (H1) with 1 < p � q < np/(n − 1), from [22,47] we have

F [u] �
∫

Ω

Qf(Du) dx for u ∈ W 1,p(Ω, RN ), (2.2)

F [u] =
∫

Ω

Qf(Du) dx for u ∈ W 1,q(Ω, RN ), (2.3)

where Qf denotes the quasiconvex envelope of f . Furthermore, it has been shown
in [11,22] that F depends on the domain Ω like a Radon measure, whose absolutely
continuous part has density Qf(Du). These facts will be crucial in the proof of the
following result. In particular, we mention that, by an argument of [47], they can
be used to prove the validity of Euler’s equation for minimizers of F . This is an
important observation for the proof of the following theorem.

Theorem 2.2. Let q̄ ∈ [1,∞) and

1 < p � q < min
{

p +
1
n

,
2n − 1
2n − 2

p

}
. (2.4)

Assume that f ∈ C2(RNn) satisfies (H1), (H2) and (H4) and that

ū ∈ W 1,q̄
loc (Ω, RN ) ∩ W 1,p(Ω, RN )

is a W 1,q̄ local minimizer of F on Ω. Then there exists an open set Ω0 ⊂ Ω with
|Ω \ Ω0| = 0 such that ū ∈ C1,α

loc (Ω0, R
N ) for every 0 < α < 1.

We highlight some features of the previous theorems.
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Remark 2.3. In some sense W 1,q̄-quasiconvexity is necessary for the existence of
W 1,q̄ local minimizers. Precisely, adapting the proof of [53, proposition 4.1] one
finds that if ū ∈ W 1,p(Ω, RN ) is a W 1,q̄ local minimizer of F , then for every
ϕ ∈ W 1,q̄(B, RN ) the following holds:

−
∫

B

f(Dū(y) + Dϕ(x)) dx � f(Dū(y)) for a.e. y ∈ Ω.

Remark 2.4. If q̄ � q, then (strict) W 1,q̄-quasiconvexity is equivalent to (strict)
quasiconvexity. Combining this with (2.3), theorems 2.1 and 2.2 turn out to be
equivalent in this case.

Remark 2.5. In the case q̄ � p, it follows from [32, § 2] that theorem 2.1 can be
reduced to the case of absolute minimizers.

Remark 2.6. Under the additional assumption

lim sup
r→0+

‖Du − (Du)x,r‖L∞(Br(x),RNn) < δ,

theorems 2.1 and 2.2 also hold in the case of weak local minimizers, i.e. for q̄ = ∞.
This generalization is straightforward, along the lines of [12,32].

Remark 2.7. The proofs of the theorems will show that we can choose Ω0 such
that

Ω \ Ω0 ⊂
{

x ∈ Ω : lim inf
r→0+

E(x, r) > 0 or lim sup
r→0+

|(Du)x,r| = ∞
}

holds, where E(x, r) is defined in (1.8).

Remark 2.8. Under the assumptions of theorem 2.1 or 2.2, if f ∈ C∞(RNn), then
we have u ∈ C∞(Ω0, R

N ). Once C1,α
loc -regularity is proved, this higher-regularity

result follows from the application of linear theory to the Euler equation.

3. Preliminaries

Throughout this paper we denote by a c a positive constant possibly varying from
line to line. The dependencies of such constants will only occasionally be high-
lighted. We write Br(x) for the open ball with centre x and radius r in R

n and set
Br := Br(0) and B := B1. In addition, we will use the common abbreviations

ux,r := −
∫

Br(x)
u dx :=

1
|Br(x)|

∫
Br(x)

u dx

and ur := u0,r for mean values, where | · | denotes the n-dimensional Lebesgue mea-
sure. Moreover, for β > 0 we define the functions Vβ : R

k �→ R
k and Wβ : R

k �→ R
k

by
Vβ(ξ) = (1 + |ξ|2)(β−1)/2ξ, Wβ(ξ) = (1 + |ξ|)β−1ξ (3.1)

for ξ ∈ R
k, k ∈ N. Since we are mostly dealing with β = p/2, where p is a

fixed exponent, we use the abbreviations V = Vp/2 and W = Wp/2. Next, we will
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collect some useful properties of V and W . Clearly, we have |Vβ(ξ)| = Vβ(|ξ|),
|Wβ(ξ)| = Wβ(|ξ|) and

c−1|Wβ(ξ)| � |Vβ(ξ)| � c|Wβ(ξ)|, (3.2)

where c depends only on β. Furthermore, the functions Vβ(t) and Wβ(t) are both
non-decreasing in t � 0 and some elementary calculations show that |W |2 is convex
for 1 � p < ∞ and |W |2/p is convex for 1 � p � 2 (in contrast to |V |2 and |V |2/p).
Some additional properties are summarized in the following lemma.

Lemma 3.1. Let β > 0, 1 < p < ∞ and M > 0. Then, for all ξ, η ∈ R
k and t > 0,

we have

(i) |V (tξ)| � max{t, tp/2}|V (ξ)|,

(ii) |Vβ(ξ + η)| � c(|Vβ(ξ)| + |Vβ(η)|),

(iii) (1 + |ξ|2 + |η|2)p/2 � c(1 + |V (ξ)|2 + |V (η)|2),

(iv) |Vp−1(ξ)||η| � |V (ξ)|2 + |V (η)|2.

Here, c depends only on β and p, respectively.

Proof. Assertions (i) and (iii) are easy to check. Part (ii) has been proved for
1
2 < β < 1 in [13, lemma 2.1] and is easily seen to hold for all β > 0. Part (iv)
follows from the fact that Vp−1 is non-decreasing.

Next we restate an integral inequality for V (see, for instance, [46]).

Lemma 3.2. Let 1 < p < ∞ and u ∈ W 1,p(Ω, RN ). Then we have
∫

Ω

|V (Du − (Du)Ω)|2 dx � c

∫
Ω

|V (Du)|2 dx

with a constant c depending only on p.

Furthermore, we recall a Poincaré-type inequality and a Sobolev–Poincaré-type
inequality for V .

Lemma 3.3. We consider 1 < p < ∞, a ball Br(x0) in R
n and a function u ∈

W 1,p(Br(x), RN ). Then, we have

∫
Br(x0)

∣∣∣∣V
(

u − ux0,r

r

)∣∣∣∣
2

dx � c

∫
Br(x0)

|V (Du)|2 dx. (3.3)

In addition, setting p# := 2n/(n − p) > 2 for 1 < p < 2, we have

(
−
∫

Br(x0)

∣∣∣∣V
(

u − ux0,r

r

)∣∣∣∣
p#)1/p#

dx � c

(
−
∫

Br(x0)
|V (Du)|2 dx

)1/2

. (3.4)

The constant c depends only on n, N and p in both inequalities.
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Here, (3.4) has been proved in [17, theorem 2] and (3.3) follows easily from the
standard Poincaré inequality for p � 2 and from (3.4) for 1 < p < 2. The reader
should note that a weaker version of (3.4) was established in [13].

Next we restate some estimates for smoothing operators, which will be crucial
for our approach. These estimates, introduced first in [22, lemma 2.2], have already
been used in the regularity theory of integrals with (p, q)-growth (see [42, 46, 47]).
We state them in the form of [46, lemma 6.3].

Lemma 3.4. Let 0 < r < s and Bs ⊂ Ω. We define a linear smoothing operator

Tr,s : W 1,1(Ω; RN ) → W 1,1(Ω; RN )

for u ∈ W 1,1(Ω; RN ) and x ∈ Ω by

Tr,su(x) := −
∫

B1

u(x + ϑ(x)y) dy, where ϑ(x) := 1
2 max{min{|x| − r, s − |x|}, 0}.

(3.5)
With this definition, for all 1 � p � q < np/(n − 1) and all u ∈ W 1,p(Ω; RN ), the
following assertions are true:

Tr,su ∈ W 1,p(Ω; RN ),
u = Tr,su almost everywhere on (Ω \ Bs) ∪ Br, (3.6)

Tr,su ∈ u + W 1,p
0 (Bs \ Br; RN ), (3.7)

|DTr,su| � c(n)Tr,s|Du| almost everywhere on Ω, (3.8)

‖Tr,su‖p;Bs\Br
� c(n, p)‖u‖p;Bs\Br

, (3.9)
‖DTr,su‖p;Bs\Br

� c(n, p)‖Du‖p;Bs\Br
, (3.10)

‖Tr,su‖q;Bs\Br
� c(n, p, q)(s − r)n/q−(n−1)/p

×
[

sup
t∈ ]r,s[

Ξ̃(t) − Ξ̃(r)
t − r

+ sup
t∈ ]r,s[

Ξ̃(s) − Ξ̃(t)
s − t

]1/p

, (3.11)

‖DTr,su‖q;Bs\Br
� c(n, p, q)(s − r)n/q−(n−1)/p

×
[

sup
t∈ ]r,s[

Ξ(t) − Ξ(r)
t − r

+ sup
t∈ ]r,s[

Ξ(s) − Ξ(t)
s − t

]1/p

. (3.12)

Here we have used the abbreviations

Ξ̃(t) := ‖u‖p
p;Bt

and Ξ(t) := ‖Du‖p
p;Bt

.

Further estimates of the terms on the right-hand sides of (3.11) and (3.12) can
be obtained by means of the following simple lemma.

Lemma 3.5. Let −∞ < r < s < ∞ and a continuous non-decreasing function
Ξ : [r, s] → R be given. Then, there exist r̃ ∈ ]r, 1

3 (2r + s)[ and s̃ ∈ ] 13 (r + 2s), s[ for
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which the following hold:

Ξ(t) − Ξ(r̃)
t − r̃

� 4
Ξ(s) − Ξ(r)

s − r

Ξ(s̃) − Ξ(t)
s̃ − t

� 4
Ξ(s) − Ξ(r)

s − r

⎫⎪⎪⎬
⎪⎪⎭

for every t ∈ ]r̃, s̃[. (3.13)

In particular, we have
1
3 (s − r) � s̃ − r̃ � s − r. (3.14)

Proof. An elementary proof is given in [22].

Remark 3.6. Assume that Ξ is absolutely continuous and non-decreasing and a
set N ⊂ R of Lebesgue measure zero is given. Then, we can choose r̃ and s̃ as in
lemma 3.5 even with the additional property r̃, s̃ /∈ N (see [47, lemma 4.6]).

Finally, we state another useful lemma concerning the smoothing operator Tr,s.

Lemma 3.7. Let 1 < p < ∞, 0 < r < s and Bs(x0) ⊂ Ω. Then, for u ∈
W 1,p(Ω, RN ) we have

|V (DTr,su)|2 � cTr,s[|V (Du)|2] almost everywhere on Ω, (3.15)

where c depends only on n and p.

Proof. Due to (3.2) it suffices to show the claim with V replaced by W . Since |W |2
is a non-decreasing and convex function, using (3.5), (3.8) and Jensen’s inequality,
we obtain

|W (DTr,su)|2 � c|W (Tr,s|Du|)|2 � cTr,s[
∣∣W (Du)|2] almost everywhere on Ω.

This proves the claim.

4. Proof of theorem 2.1

First we note that the definition (1.8) of the excess reads

E(x, r) = −
∫

Br(x)
|V (Dū − (Dū)x,r)|2 dx

in the terminology of § 3. We will establish a decay estimate for this excess in the
following proposition, which we prove by an indirect blow-up argument.

Proposition 4.1. Under the assumptions of theorem 2.1 for every L > 0 there is
a constant C > 0 with the following property: for each 0 < τ � 1

2 there exists a
number ε > 0 such that the conditions

|(Dū)x,r| � L, r < ε and E(x, r) < ε

for a ball Br(x) ⊂⊂ Ω imply that

E(x, τr) � Cτ2E(x, r).
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Proof. We argue by contradiction. Assuming the proposition to be false, there exist
L > 0 and 0 < τ � 1

2 , corresponding to a constant C that will be chosen later, such
that the following holds. There is a sequence of balls Brj (xj) ⊂⊂ Ω with rj → 0
such that

|(Dū)xj ,rj
| � L and 0 < λj :=

√
E(xj , rj) → 0 as j → ∞, (4.1)

but
E(xj , τrj) > Cτ2E(xj , rj). (4.2)

Step 1 (blow-up). We define ξj := (Dū)xj ,rj and

uj(y) :=
1

λjrj
[ū(xj + rjy) − (ū)xj ,rj

− ξjrjy] for y ∈ B.

Then we have

λjDuj(y) = Dū(xj + rjy) − ξj for y ∈ B, (uj)0,1 = 0, (Duj)0,1 = 0

and

−
∫

B

∣∣∣∣V (λjDuj)
λj

∣∣∣∣
2

dx = 1. (4.3)

Since λj(Duj)0,τ = (Dū)xj ,τrj − ξj , from (4.2) we obtain

λ−2
j −

∫
Bτ

|V (λj(Duj − (Duj)0,τ ))|2 dx > Cτ2. (4.4)

Furthermore, we define

fj(ξ) :=
f(ξj + λjξ) − f(ξj) − Df(ξj)λjξ

λ2
j

for ξ ∈ R
Nn.

Noting that |ξj | � L we get from [2, lemma II.3] that there is a positive constant
k(L) with

|fj(ξ)| � kλ−2
j |Vq/2(λjξ)|2,

|Dfj(ξ)| � kλ−1
j |Vq−1(λjξ)| (4.5)

for all ξ ∈ R
Nn. Moreover, we rewrite the quasiconvexity hypothesis (H3) in the

following form:

νL

∫
B

∣∣∣∣V (λjDϕ)
λj

∣∣∣∣
2

dx �
∫

B

(fj(ξ + Dϕ) − fj(ξ)) dx (4.6)

for all ξ ∈ R
Nn with |λjξ| � 1 and for all ϕ ∈ W 1,q̄

0 (B, RN ). In addition, setting

Fj [u] =
∫

B

fj(Du) dx,

the minimizing property of ū can be rephrased as follows. For all ϕ ∈ W 1,q̄
0 (B, RN )

with
‖Dϕ‖Lq̄(B,RNn) � δ

λjr
n/q̄
j

(4.7)
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we have

Fj [uj ] � Fj [uj + ϕ]. (4.8)

Next we claim

−
∫

B

|Duj |min{2,p} dx � c. (4.9)

Actually, (4.9) follows immediately from (4.3) for p � 2. In contrast, for p � 2 we
first deduce

−
∫

B

|V (Duj)|2 dx � c

from (4.3) by virtue of lemma 3.1(i) and then get (4.9) by lemma 3.1(iii). Thus,
passing to subsequences we may assume that for some u ∈ W 1,min{2,p}(B, RN ) and
some ξ∞ ∈ R

Nn we have

uj → u weakly in W 1,min{2,p}(B, RN ),

uj → u strongly in Lmin{2,p}(B, RN ),
λjDuj → 0 almost everywhere on B,

ξj → ξ∞ in R
Nn.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.10)

Step 2 (linearization). In this step we will show that u is a weak solution of a
linear system. Precisely, we claim

∫
B

D2f(ξ∞)(Du, Dϕ) dx = 0 for all ϕ ∈ C1
c (B, RN ). (4.11)

Actually, the derivation of the limit equation (4.11) is well known (see, for instance,
[2,9,21,32,42]) and we will only sketch it. From the minimality property of uj in (4.8)
we get the following Euler–Lagrange equation:

∫
B

Dfj(Duj)Dϕ dx = 0 for all ϕ ∈ C1
c (B, RN ).

We will show that the preceding equation converges to (4.11) as j → ∞. Setting
B+

j := {x ∈ B : |λjDuj(x)| > 1} and using (4.5) and q � p + 1, we obtain

∣∣∣∣
∫

B+
j

Dfj(Duj)Dϕ dx

∣∣∣∣ � c

λj

∫
B+

j

|Vq−1(λjDuj)| dx sup
B

|Dϕ|

� c sup
B

|Dϕ|λj −
∫

B

|V (λjDuj)|2
λ2

j

dx.

By (4.3) we infer that this term vanishes as j → ∞ and it remains to treat the
integral over B−

j := {x ∈ B : |λjDuj(x)| � 1}. Here, noting |B+
j | � cλ2

j → 0 as
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in [32], we have∫
B−

j

Dfj(Duj)Dϕ dx =
1
λ j

∫
B−

j

(Df(ξj + λjDuj) − Df(ξj))Dϕ dx

=
∫

B−
j

∫ 1

0
D2f(ξj + tλjDuj) dt(Duj , Dϕ) dx

→
∫

B

D2f(ξ∞)(Du, Dϕ)

and (4.11) follows. The condition (H3) implies that D2f(ξ∞) is elliptic in the the
sense of Legendre–Hadamard with ellipticity constant 2νL and upper bound KL :=
sup|ξ|�L D2f(ξ). Thus, we can apply linear theory to deduce that u is C1 on B and

−
∫

Bτ

|Du − (Du)0,τ |2 dx � cτ2 (4.12)

is valid. Here, c depends only on n, N , νL and KL. The remainder of the proof is
now mostly devoted to showing that

λ−2
j

∫
Bτ

|V (λj(Duj − Du))|2 dx → 0 as j → ∞. (4.13)

Once we have proved (4.13) we will see that (4.12) contradicts (4.4).

Step 3 (construction of test functions and preliminary estimates). We consider

Br(x0) ⊂⊂ Bσ

and fix τ < σ < 1, 0 < α < 1. We define affine functions aj(x) := (uj)x0,r +
(Duj)x0,r(x − x0) and set

vj(x) := uj(x) − aj(x).

Moreover, we introduce the abbreviation

Ξj(t) := λ−2
j

∫
Bt(x0)

(∣∣∣∣V
(

λjvj

(1 − α)r

)∣∣∣∣
2

+ |V (λjDvj)|2
)

dx

and choose for this function αr � r̃j < s̃j � r as in lemma 3.5. In particular, we
have

1
3 (1 − α)r � s̃j − r̃j � (1 − α)r. (4.14)

Now we consider smooth cut-off functions ηj : R
n → [0, 1] which satisfy ηj ≡ 1

in a neighbourhood of Br̃j (x0), ηj = 0 in a neighbourhood of R
n \ Bs̃j (x0) and

|∇ηj | � 2/(s̃j − r̃j) on Br(x0). We define

χj = [(1 − ηj)vj ], ψj := Tr̃j ,s̃j χj and ϕj := vj − ψj ,

where the smoothing operator T is defined in lemma 3.4. According to (3.6) and
(3.7) we have ϕj ∈ W 1,p

0 (Bs̃j
(x0), RN ), ϕj = vj , ψj = 0 on Br̃j

(x0) and

Duj − Daj = Dvj = Dϕj + Dψj on B. (4.15)
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In addition, the product rule and (4.14) give

|Dχj | � |Dvj | +
∣∣∣∣ vj

(1 − α)r

∣∣∣∣. (4.16)

Next, we will derive two preparatory estimates for χj , namely (4.17) and (4.18).
Setting

Yj := λ−2
j

∫
Br(x0)\Bαr(x0)

(∣∣∣∣V
(

λjvj

(1 − α)r

)∣∣∣∣
2

+ |V (λjDvj)|2
)

dx,

we apply in turn (3.8), lemma 3.7, (3.9) (with p = 1), (4.16) and lemma 3.1(ii) to
get the estimate

λ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

|V (λjDψj)|2 dx

� cλ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

|Tr̃j ,s̃j
[|V (λjDχj)|2]| dx

� cλ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

|V (λjDχj)|2 dx � cYj . (4.17)

Arguing in a similar way, but using (3.11) (with p = 1, q = κ) instead of (3.9), we
find for 1 � κ < n/(n − 1) that

λ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

|V (λjDψj)|2κ

� cλ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

∣∣Tr̃j ,s̃j
[|V (λjDχj)|2]

∣∣κ dx

� cλ−2
j (s̃j − r̃j)n−(n−1)κ

(
sup

t∈ ]r̃j ,s̃j [

1
t − r̃j

∫
Bt(x0)\Br̃j

(x0)
|V (λjDχj)|2 dx

+ sup
t∈ ]r̃j ,s̃j [

1
s̃j − t

∫
Bs̃j

(x0)\Bt(x0)
|V (λjDχj)|2 dx

)κ

� cλ2κ−2
j (s̃j − r̃j)n(1−κ)+κ

(
sup

t∈ ]r̃j ,s̃j [

Ξj(t) − Ξj(r̃j)
t − r̃j

+ sup
t∈ ]r̃j ,s̃j [

Ξj(s̃j) − Ξj(t)
s̃j − t

)κ

.

Combining the last inequality with the estimates of lemma 3.5, we obtain

λ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

|V (λjDψj)|2κ � c

(
λ2

jYj

((1 − α)r)n

)κ−1

Yj . (4.18)

Step 4 (the main estimate). In this step we will combine ideas of [32,46] to estab-
lish a key estimate. This estimate will lead to (4.13) later in the proof. Here, our
first aim is to verify (4.7) for ϕj with j large, which will enable us to use (4.8). We
start with the following computation and use for this purpose (4.14), (3.9) and the
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Poincaré inequality:∫
B

|Dϕj |q̄ dx �
∫

Br̃j
(x0)

|Dvj |q̄ dx +
∫

Bs̃j
(x0)\Br̃j

(x0)
|Dψj |q̄ dx

�
∫

Br(x0)
|Dvj |q̄ dx + c

∫
Bs̃j(x0)\Br̃j

(x0)
|Dχj |q̄ dx

�
∫

Br(x0)
|Dvj |q̄ dx

+ c

( ∫
Bs̃j

(x0)\Br̃j
(x0)

|Dvj |q̄ dx +
∫

Bs̃j
(x0)\Br̃j

(x0)

(
|vj |

(1 − α)r

)̄q

dx

)

� c

(
1 +

1
1 − α

)̄q ∫
Br(x0)

|Dvj |q̄ dx.

Changing coordinates in view of Brrj
(xj + rjx0) ⊂ Brj (xj), we obtain

‖Dϕj‖Lq̄(B,RNn) � c

λjr
n/q̄
j

(
1 +

1
1 − α

)( ∫
Brj

(xj)
|Dū|q̄ dx

)1/q̄

.

Therefore, the condition (4.7) is fulfilled if

c

(
1 +

1
1 − α

)( ∫
Brj

(xj)
|Dū|q̄ dx

)1/q̄

� δ

holds and this is satisfied for sufficiently large j, say for j � j1(α). Furthermore,
from the definition of aj and (4.9) we see that |Daj | � cr−n. Hence, there exists
a j2(r) such that |λjDaj | � 1 holds for all j � j2(r). We define j0(α, r) :=
max{j1(α), j2(r)}. Then, for j � j0(α, r), we use (4.6), (4.8) and (4.15) to get

νL

∫
Br̃j

(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx � νL

∫
Bs̃j

(x0)

∣∣∣∣V (λjDϕj)
λj

∣∣∣∣
2

dx

�
∫

Bs̃j
(x0)

(fj(Daj + Dϕj) − fj(Daj)) dx

=
∫

Bs̃j
(x0)

(fj(Duj − Dψj) − fj(Duj)) dx

+
∫

B

(fj(Duj) − fj(Duj − Dϕj)) dx

+
∫

Bs̃j
(x0)

(fj(Daj + Dψj) − fj(Daj)) dx

�
∫

Bs̃j
(x0)

(fj(Duj − Dψj) − fj(Duj)) dx

+
∫

Bs̃j
(x0)

(fj(Daj + Dψj) − fj(Daj)) dx. (4.19)
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Recalling ψj = 0 on Br̃j (x0), we estimate the right-hand side by using inequal-
ity (4.5) and lemma 3.1(ii):

νL

∫
Br̃j

(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx

�
∫

Bs̃j
(x0)

∫ 1

0
(Dfj(Daj + tDψj) − Dfj(Duj − tDψj))Dψj dt dx

� c

∫
Bs̃j

(x0)\Br̃j
(x0)

(∣∣∣∣Vq−1(λjDaj)
λj

∣∣∣∣|Dψj |

+
∣∣∣∣Vq−1(λjDvj)

λj

∣∣∣∣|Dψj | +
∣∣∣∣Vq/2(λjDψj)

λj

∣∣∣∣
2)

dx

=: c(I + II + III)

with the obvious labelling.

Estimation of III. We estimate the last integral by lemma 3.1(iii), (4.17) and
(4.18) with κ = q/p < n/(n − 1) = 1 + 1/(n − 1):

III =
∫

Bs̃j(x0)\Br̃j
(x0)

∣∣∣∣Vq/2(λjDψj)
λj

∣∣∣∣
2

dx

� λ−2
j

∫
Bs̃j(x0)\Br̃j

(x0)
(1 + |λjDψj |2)(p/2)(q−p)/p|V (λjDψj)|2 dx

� cλ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

(1 + |V (λjDψj)|2)(q−p)/p|V (λjDψj)|2 dx

� cλ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

(|V (λjDψj)|2 + |V (λjDψj)|2q/p) dx

� c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)(q/p)−1

Yj

)

� c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)1/(n−1)

Yj

)
.

Estimation of II. We estimate the integral II, distinguishing the cases p > 2(n −
1)/n and p � 2(n − 1)/n.

Case 1 (p > 2(n − 1)/n). In this case, (2.1) reads q < p+1/n and we have 1
2p+1 <

p + 1/n. Hence, enlarging q if necessary, we may assume that q � 1
2p + 1 (without

destroying q < p + 1/n). Next we give a pointwise estimation of the integrand in
II. For |λjDvj | � 1 with Young’s inequality we obtain

(1 + |λjDvj |2)(q−2)/2|Dvj ||Dψj |
= λ−2

j (1 + |λjDvj |2)(p−2)/4+(2q−p−2)/4|λjDvj ||λjDψj |

https://doi.org/10.1017/S0308210507001278 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210507001278


Strong local minimizers of quasiconvex integrals with (p, q)-growth 611

� cλ−2
j (1 + |λjDvj |2)(p−2)/4|λjDvj ||λjDψj |

� c

(∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

+ λ−2
j |λjDψj |2

)
,

while for |λjDvj | > 1 a similar computation yields

(1 + |λjDvj |2)(q−2)/2|Dvj ||Dψj |

= λ−2
j (1 + |λjDvj |2)((p−2)/2)(q−1)/p+(2q−p−2)/2p|λjDvj ||λjDψj |

� cλ−2
j (1 + |λjDvj |2)((p−2)/2)(q−1)/p|λjDvj |2(q−1)/p|λjDψj |

� c

(∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

+ λ−2
j |λjDψj |p/(p+1−q)

)
.

Thus, using p/(p+1−q) � 2, q < p+1/n, (4.17) and (4.18) (with κ = 1/(p+1−q) <
n/(n − 1)) we argue essentially as for III:

II � c

∫
Bs̃j

(x0)\Br̃j
(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx

+ cλ−2
j

∫
Bs̃j

(x0)\Br̃j
(x0)

(|λjDψj |2 + |λjDψj |p/(p+1−q)) dx

� c

∫
Bs̃j

(x0)\Br̃j
(x0)

(∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

+
∣∣∣∣V (λjDψj)

λj

∣∣∣∣
2

+ λ−2
j |V (λjDψj)|2/(p+1−q)

)
dx

� c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)(1/(p+1−q))−1

Yj

)

� c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)1/(n−1)

Yj

)
.

Case 2 (p � 2(n − 1)/n). In this case (2.1) reads q < (2n − 1)p/(2n − 2) and we
have, in particular, q � 1

2p + 1. Again we will give an estimate for the integrand in
II. In the case when |Dvj | � |Dψj |, since Vq−1 is non-decreasing we find

∣∣∣∣Vq−1(λjDvj)
λj

∣∣∣∣|Dψj | �
∣∣∣∣Vq/2(λjDψj)

λj

∣∣∣∣
2

and in the case when |Dvj | > |Dψj | with Young’s inequality and q � 1
2p+1 we get

∣∣∣∣Vq−1(λjDvj)
λj

∣∣∣∣|Dψj | = λ−2
j (1 + |λjDvj |2)(p−2)/4+(2q−p−2)/4|λjDvj ||λjDψj |

� λ−2
j |V(2q−p)/2(λjDψj)||V (λjDvj)|

� λ−2
j (|V(2q−p)/2(λjDψj)|2 + |V (λjDvj)|2).
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Arguing essentially as supplied above and using q/p � (2q − p)/p < n/(n − 1), we
derive the following estimate for II in this case:

II � c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)((2q−p)/p)−1

Yj +
(

λ2
jYj

((1 − α)r)n

)(q/p)−1

Yj

)

� c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)1/(n−1)

Yj

)
.

Estimation of I. It remains to control I. Here, employing |λjDaj | � 1 for j �
j0(α, r), lemma 3.1(iv) and (4.17), we get

I � c

∫
Bs̃j

(x0)\Br̃j
(x0)

∣∣∣∣Vp−1(λjDaj)
λj

∣∣∣∣|Dψj | dx

� c

∫
Bs̃j

(x0)\Br̃j
(x0)

(∣∣∣∣V (λjDaj)
λj

∣∣∣∣
2

+
∣∣∣∣V (λjDψj)

λj

∣∣∣∣
2)

dx

� c

( ∫
Br(x0)\Bαr(x0)

∣∣∣∣V (λjDaj)
λj

∣∣∣∣
2

dx + Yj

)
.

Collecting the estimates for I–III, we have proved that

∫
Bαr(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx

� c

(
Yj +

(
λ2

jYj

((1 − α)r)n

)1/(n−1)

Yj

)
+ c

∫
Br(x0)\Bαr(x0)

∣∣∣∣V (λjDaj)
λj

∣∣∣∣
2

dx.

By the Poincaré-type inequality (3.3), lemmas 3.1(i) and 3.2 and (4.3), we have

Yj � λ−2
j

∫
Br(x0)

(
|V (λjDvj)|2 +

∣∣∣∣V
(

λjvj

(1 − α)r

)∣∣∣∣
2)

dx

�
(

1 +
c

(1 − α)max{2,p}

) ∫
Br(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx

� c

(1 − α)max{2,p} .

Combining the last two inequalities we find

∫
Bαr(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx

� c

(
Yj +

∫
Br(x0)\Bαr(x0)

∣∣∣∣V (λjDaj)
λj

∣∣∣∣
2

dx

)
+ cα,rλ

2/(n−1)
j ,

where cα,r > 0 is a fixed constant depending, in particular, on α and r. The reader
should note that, contrarily, the constants c in the preceding estimates do not
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depend on α or r. Applying lemma 3.1(ii), we deduce
∫

Bαr(x0)

∣∣∣∣V (λj(Duj − Du))
λj

∣∣∣∣
2

dx

� c

[ ∫
Bαr(x0)

∣∣∣∣V (λjDvj)
λj

∣∣∣∣
2

dx +
∫

Br(x0)

∣∣∣∣V (λj(Du − Daj))
λj

∣∣∣∣
2

dx

]

� c

[ ∫
Br(x0)\Bαr(x0)

∣∣∣∣V (λj(Duj − Du))
λj

∣∣∣∣
2

dx +
∫

Br(x0)

∣∣∣∣V (λj(Du − Daj))
λj

∣∣∣∣
2

dx

+
∫

Br(x0)\Bαr(x0)

∣∣∣∣V (λjDaj)
λj

∣∣∣∣
2

dx

+ λ−2
j

∫
Br(x0)

∣∣∣∣V
(

λjvj

(1 − α)r

)∣∣∣∣
2

dx

]
+ cα,rλ

2/(n−1)
j .

By Widman’s hole-filling trick, that is, adding

c

∫
Bαr(x0)

∣∣∣∣V (λj(Duj − Du))
λj

∣∣∣∣
2

dx

on both sides, we finally arrive at the main estimate,
∫

Bαr(x0)

∣∣∣∣V (λj(Duj − Du))
λj

∣∣∣∣
2

dx

� θ

∫
Br(x0)

∣∣∣∣V (λj(Duj − Du))
λj

∣∣∣∣
2

dx +
∫

Br(x0)

∣∣∣∣V (λj(Du − Daj))
λj

∣∣∣∣
2

dx

+
∫

Br(x0)\Bαr(x0)

∣∣∣∣V (λjDaj)
λj

∣∣∣∣
2

dx

+ λ−2
j

∫
Br(x0)

∣∣∣∣V
(

λjvj

(1 − α)r

)∣∣∣∣
2

dx + cα,rλ
2/(n−1)
j (4.20)

for j � j0(α, r) with θ = c/(1+ c) < 1. We stress that θ does not depend on α or r.

Step 5 (strong convergence). Recalling that u is C1 on B, it follows from (4.3)
that

λ−2
j

∫
Bσ

|V (λj(Duj − Du))|2 dx

remains bounded as j → ∞. Thus, there exists a non-negative Radon measure µ
on Bσ such that, passing to subsequences again, we have

λ−2
j |V (λj(Duj − Du))|2Ln ∗

⇀ µ weakly in the sense of measures on Bσ.

Introducing the affine function a(x) := (u)x0,r +(Du)x0,r(x−x0) we obviously have
aj → a and λ−1

j V (λjDaj) → Da. Furthermore, setting v := u − a, we claim that

∫
Br(x0)

λ−2
j

∣∣∣∣V
(

λj(vj − v)
(1 − α)r

)∣∣∣∣
2

dx → 0. (4.21)
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For 1 < p < 2 we will now prove (4.21) following an argument of [13]. We choose
t ∈ (0, 1) such that 1

2 = t + (1 − t)/p# holds (recall that p# = 2n/(n − p) > 2) and
apply the interpolation inequality and the Sobolev type inequality (3.4) to get
∫

Br(x0)

∣∣∣∣V (λj(vj − v))
λj

∣∣∣∣
2

dx

� λ
2(t−1)
j

( ∫
Br(x0)

|vj − v| dx

)2t( ∫
Br(x0)

|V (λj(vj − v))|p#
dx

)2(1−t)/p#

�
( ∫

Br(x0)
|vj − v| dx

)2t( ∫
Br(x0)

∣∣∣∣V (λj(Dvj − Dv))
λj

∣∣∣∣
2

dx

)(1−t)

.

By (4.3) and (4.10) the right-hand side converges to 0 for j → ∞ and (4.21) is
verified for p < 2. For p � 2, (4.21) follows from (4.10) and (4.3) by a simpler
argument and we omit further details.

Returning to the general case, for every measurable subset A of Bσ we have

µ(intA) � lim inf
j→∞

∫
A

λ−2
j |V (λj(Duj − Du))|2 dx

� lim sup
j→∞

∫
A

λ−2
j |V (λj(Duj − Du))|2 dx � µ(Ā).

Keeping this in mind and passing to the limit in (4.20), we obtain

µ(Bαr(x0)) � θµ(Br(x0)) +
∫

Br(x0)
|Dv|2 dx + (1 − αn)rn|Da|2

+ c

∫
Br(x0)

∣∣∣∣ v

(1 − α)r

∣∣∣∣
2

dx.

Here, for the treatment of the fourth term on the right-hand side we have used
lemma 3.1(ii) and (4.21). Since 0 < α < 1 is arbitrary, we can, by virtue of a
continuity argument, replace µ(Bαr(x0)) by µ(Bαr(x0)) on the left-hand side of
the previous inequality. Hence, dividing by rn, we have established that

αn µ(Bαr(x0))
αnrn

� θ
µ(Br(x0))

rn
+ ε1(r) + |Da|2(1 − αn) +

ε2(r)
(1 − α)2

, (4.22)

where we have set

ε1(r) =
1
rn

∫
Br(x0)

|Dv|2 and ε2(r) =
c

rn+2

∫
Br(x0)

|v|2 dx.

Since u is C1, we have ε1(r) + ε2(r) → 0 and Da → Du(x0) as r → 0+. Next we
claim that

lim inf
r→0+

µ(Br(x0))
rn

= 0. (4.23)

To prove (4.23), following [32], we first suppose that

lim sup
r→0+

µ(Br(x0))
rn

> 0.
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Then, by an argument of [32, pp. 78–79] we can pass r → 0+ in (4.22), arriving at

αn � θ + |Du(x0)|2(1 − αn) lim sup
r→0+

rn

µ(Br(x0))

for all 0 < α < 1. Thus, passing α → 1− (recall that θ < 1 is independent of α) we
get (4.23) in any case and for all x0 ∈ Bσ. Hence, following [32] again, by Vitali’s
covering theorem we deduce that

µ(Bτ ) = 0,

which, in turn, implies the strong convergence stated in (4.13).

Step 6 (conclusion). Noting that (Duj)0,τ → (Du)0,τ , from lemma 3.1(ii), (4.12)
and (4.13) we deduce that

lim
j→∞

1
λ2

j

−
∫

Bτ

|V (λj(Duj − (Duj)0,τ ))|2 dx

� lim
j→∞

c

λ2
j

−
∫

Bτ

[|V (λj(Duj − Du))|2 + |V (λj(Du − (Du)0,τ ))|2

+ |V (λj((Du)0,τ − (Duj)0,τ ))|2] dx

= c −
∫

Bτ

|Du − (Du)0,τ |2 dx

� C∗τ2

for some constant C∗ > 0. Finally, the last inequality contradicts (4.4) if we choose
C = C∗ +1 and the proof is finished. The reader should note that C and C∗ depend
only on n, N , p, νL and KL.

Once proposition 4.1 is established, theorem 2.1 follows by a well-known iteration
argument and Campanato’s integral characterization of the Hölder continuity. For
further details see, for instance, [13,21].

5. Proof of theorem 2.2

In this section we present the proof of theorem 2.2, modifying the proof of theo-
rem 2.1 along the lines of [47].

First we recall some simple estimates for the non-degenerate p-energy

ep(ξ) := (1 + |ξ|2)p/2 (5.1)

(see, for example, [47] for a proof).

Lemma 5.1. For 1 < p < ∞, L > 0, ξ ∈ R
Nn with |ξ| � L+1, a ball Br(x0) in R

n

and ϕ ∈ W 1,p
0 (Bρ(x0), RN ) we have

C−1
1

∫
Br(x0)

|V (Dϕ)|2 dx �
∫

Br(x0)
[ep(ξ + Dϕ) − ep(ξ)] dx

� C1

∫
Br(x0)

|V (Dϕ)|2 dx

for some constant C1 > 0 depending only on p and L.
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In the following lemmas we collect several properties of the relaxed functional F .
These lemmas have been proposed in [47] and rely heavily on (2.2), (2.3) and the
measure and integral representation results obtained in [11,22]. Later in this section
we will also apply (2.3) and the measure representation result [22, theorem 3.1]
explicitly. Next we give a reformulation of [47, lemma 7.1]. Note that the growth
condition imposed on Df in [47] follows from (H1) and the quasiconvexity of f .

Lemma 5.2. We suppose that f ∈ C1 is quasiconvex with (H1) and 1 < p � q <
min{p + 1, np/(n − 1)}. Then, for u ∈ W 1,p(Ω, RN ) with F [u] < ∞ and ψ ∈
W 1,p/(p+1−q)(Ω, RN ) we have

F [u + ψ] − F [u] = F [u + ψ] − F [u].

As in [47, lemma 7.3] we see that lemma 5.2 implies the validity of Euler’s equa-
tion for W 1,q̄ local minimizers of F .

Lemma 5.3 (Euler’s equation). Let 1 � q̄ � ∞. We suppose that f ∈ C1 is quasi-
convex with (H1) and 1 < p � q < min{p + 1, np/(n − 1)}. Then, every W 1,q̄ local
minimizer ū ∈ W 1,p(Ω, RN ) of F is a weak solution of the Euler equation of F , i.e.∫

Ω

Df(Dū)Dϕ dx = 0 for all ϕ ∈ C∞
c (Ω, RN ).

Now we introduce the additional notation

F [u; O] := inf
{

lim inf
k→∞

∫
O

f(Duk) dx :

W 1,q
loc (O, RN ) � uk ⇀ u weakly in W 1,p(O, RN )

}

for open subsets O of Ω. We will need the next two lemmas, which can also be
found in [47].

Lemma 5.4 (W 1,p-quasiconvexity). Assume (H1) and (H2) with 1 < p � q <
np/(n − 1). Then, the following W 1,p-quasiconvexity condition holds for F : for
every ball Br(x0) in R

n, every ξ ∈ R
Nn and every ϕ ∈ W 1,p(Br(x0), RN ) with

compact support in Br(x0) we have

F [lξ + ϕ; Br(x0)] � F [lξ; Br(x0)], (5.2)

where we have set lξ(x) := ξx.

Lemma 5.5 (additivity property). Assume (H1) and (H2) with 1 < p � q <
np/(n − 1). We consider a ball Bs(x0) ⊂⊂ Ω and u ∈ W 1,p(Ω, RN ) such that
the boundary regularity condition

lim sup
ε↘0

1
ε

∫
Bs+ε(x0)\Bs−ε(x0)

|Du|p dx < ∞ (5.3)

holds. Then we have

F [u; Ω] = F [u; Bs(x0)] + F [u; Ω \ Bs(x0)].
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After these preparations we turn to the proof of theorem 2.2. As for theorem 2.1,
it suffices to establish the following proposition, whose statement is completely
analogous to proposition 4.1.

Proposition 5.6. Under the assumptions of theorem 2.2, for every L > 0 there
is a constant C > 0 with the following property: for each 0 < τ � 1

2 there exists a
number ε > 0 such that the conditions

|(Dū)x,r| � L, r < ε and E(x, r) < ε

for a ball Br(x) ⊂⊂ Ω imply that

E(x, τr) < Cτ2E(x, r).

Sketch of the proof. We argue by contradiction. Assuming the proposition to be
wrong, we proceed by blow-up as for proposition 4.1 and we will highlight only the
necessary modifications in the proof. First we note that, by lemma 5.3, the Euler
equation used in step 2 is available. Thus, the remaining modifications, which will
be outlined now, concern only the handling of the quasiconvexity hypothesis and
the minimizing property. We use the nomenclature of the proof of proposition 4.1
but with the following difference: we choose r̃j , s̃j as in remark 3.6, avoiding the
set

Nj :=
{

t ∈ ]αr, r[ : t �→
∫

Bt(x0)
|Duj |p dx is not differentiable at t

}
.

Thus, uj satisfies the condition (5.3) near ∂Bs̃j (x0). As explained in the proof
of [47, lemma 7.13] it is easy to see that the same condition holds for aj + ϕj and
uj − ϕj . We will use this fact later when applying lemma 5.5. Next we will rewrite
the quasiconvexity hypothesis (H4) in an adequate form for our purposes. To this
aim we introduce the auxiliary integrand

g(ξ) := f(ξ) − νL

C1
ep(ξ) for ξ ∈ R

Nn,

where ep is defined in (5.1) and C1, γ and νL denote the constants from lemma 5.1,
(H2) and (H4). Moreover, for W 1,p-functions w we set

G[w] :=
∫

Ω

g(Dw) dx,

G[w] := inf
{

lim inf
k→∞

G[wk] : W 1,q
loc (Ω, RN ) � wk ⇀ w weakly in W 1,p(Ω, RN )

}
,

Fj [w] := inf
{

lim inf
k→∞

Fj [wk] : W 1,q
loc (B, RN ) � wk ⇀ w weakly in W 1,p(B, RN )

}
,

and we will also use the obvious modifications of this notation for open subsets O
of Ω and B, respectively. Following an argument from the proof of [47, lemma 7.13]
it is not difficult to see from the definitions of F and G that we have

G[w; O] � F [w; O] − νL

C1

∫
O

ep(Dw) dx
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for all open subsets O of Ω and all w ∈ W 1,p(O, RN ). In addition, from (H1) and
(H2) we see that g satisfies the growth conditions

(
γ − 2p/2νL

C1

)
|ξ|p − 2p/2νL

C1
� g(ξ) � Γ (1 + |ξ|q)

for all ξ ∈ R
Nn. Imposing the condition 2p/2νL < C1γ, which is clearly not restric-

tive, we infer that g satisfies (H1) and (H2) up to an additive constant. Obviously,
this is sufficient to allow the application of lemma 5.4 to G. Furthermore, we deduce
from (H4) and lemma 5.1 that g is quasiconvex at all ξ with |ξ| � L + 1. In par-
ticular, recalling (2.3) this gives G[lξ; Brj (xj)] = |Brj (xj)|Qg(ξ) = |Brj (xj)|g(ξ) for
these ξ, where we have used the notation lξ from lemma 5.4. Consequently, applying
lemma 5.4 to G we get

0 � G[lξ + ϕ; Brj (xj)] − G[lξ; Brj (xj)]

� F [lξ + ϕ; Brj
(xj)] − |Brj

(xj)|f(ξ) − νL

C1

∫
Brj

(xj)
[ep(ξ + Dϕ) − ep(ξ)] dx

for |ξ| � L + 1 and all ϕ ∈ W 1,p(Brj (xj), RN ) with compact support in Brj (xj).
By lemma 5.1 we conclude that

∫
Brj

(xj)
|V (Dϕ)|2 dx � c(F [lξ + ϕ; Brj (xj)] − |Brj (xj)|f(ξ))

for all ξ ∈ R
Nn with |ξ| � L + 1 and all ϕ ∈ W 1,p(Brj

(xj), RN ) with compact
support in Brj (xj). Rescaling gives us1

∫
B

∣∣∣∣V (λjDϕ)
λj

∣∣∣∣
2

dx � c(Fj [lξ + ϕ; B] − |B|fj(ξ)),

for all ξ ∈ R
Nn with |λjξ| � 1 and for all ϕ ∈ W 1,p(B, RN ) with compact support

in B. Next, we recall ϕj ∈ W 1,p
0 (Bs̃j (x0), RN ) and Fj [aj ; O] = |O|fj(Daj) for all

open subsets O of Ω; see step 3 in the proof of proposition 4.1 and (2.3). Using
these facts, lemma 5.5 and the choice of s̃j , we deduce from the previous inequality
that

∫
Bs̃j

(x0)

∣∣∣∣V (λjDϕj)
λj

∣∣∣∣
2

dx � c(Fj [aj + ϕj ; Bs̃j
(x0)] − |Bs̃j

(x0)|fj(Daj)) (5.4)

for j � j2(r). In the following we will use the quasiconvexity hypothesis in the
form (5.4). Next we turn to a reformulation of the minimizing property: we have
assumed that ū is a W 1,q̄ local minimizer of F on Ω. By the measure representation
theorem [22, theorem 3.1] this is easily seen to imply

F [ū; Brj
(xj)] � F [ū − ϕ; Brj

(xj)]
1Actually, this can be verified by a straightforward computation using the definitions of Fj ,

Fj , fj F , F and the fact that the integral of the linear term in the definition of fj is weakly
continuous.
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for all functions ϕ ∈ W 1,q̄(Brj (xj), RN ) with compact support in Brj (xj) and
‖Dϕ‖Lq̄(Brj

(xj),RNn) � δ. Rescaling as before, we get

Fj [uj ; B] � Fj [uj − ϕ; B]

for all ϕ ∈ W 1,q̄(B, RN ) with compact support in B and

‖Dϕ‖Lq̄(B,RNn) � δ

λjr
n/q̄
j

.

Recalling that

‖Dϕj‖Lq̄(B,RNn) � δ

λjr
n/q̄
j

for j � j1(α)

(see step 3 in the proof of proposition 4.1), from lemma 5.5 and the choice of s̃j we
get

Fj [uj ; Bs̃j
(x0)] � Fj [uj − ϕj ; Bs̃j

(x0)]. (5.5)

Finally, recalling (4.15) and combining (5.4) and (5.5) we find

∫
Bαr(x0)

∣∣∣∣V (λjDϕj)
λj

∣∣∣∣
2

dx � c(Fj [uj − ψj ; Bs̃j
(x0)] − Fj [uj ; Bs̃j

(x0)]

+ Fj [aj + ψj ; Bs̃j
(x0)] − |Bs̃j

(x0)|fj(Daj)).

Since q � p/(p + 1 − q) < np/(n − 1) we see that

ψj ∈ W 1,p/(p+1−q)(Bs̃j (x0), RN ) ⊂ W 1,q(Bs̃j
(x0), RN )

from the estimates of lemma 3.4. Thus, we can apply lemma 5.2 and (2.3) to simplify
the right-hand side of the preceding formula, deriving

∫
Bαr(x0)

∣∣∣∣V (λjDϕj)
λj

∣∣∣∣
2

dx � c

( ∫
Bs̃j

(x0)
(fj(Duj − Dψj) − fj(Duj)) dx

+
∫

Bs̃j
(x0)

(fj(Daj + Dψj) − fj(Daj)) dx

)

for j � j0(α, r). Since the last inequality coincides with the estimate in (4.19) we
can now argue exactly as in the proof of proposition 4.1.
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11 G. Bouchitté, I. Fonseca and J. Malý. The effective bulk energy of the relaxed energy of
multiple integrals below the growth exponent. Proc. R. Soc. Edinb. A128 (1998), 463–479.

12 M. Carozza and A. Passarelli di Napoli. Partial regularity of local minimizers of quasiconvex
integrals with sub-quadratic growth. Proc. R. Soc. Edinb. A133 (2003), 1249–1262.

13 M. Carozza, N. Fusco and G. Mingione. Partial regularity of minimizers of quasiconvex
integrals with subquadratic growth. Annali Mat. Pura Appl. 175 (1998), 141–164.

14 G. Cupini, M. Guidorzi and E. Mascolo. Regularity of minimizers of vectorial integrals with
p–q growth. Nonlin. Analysis TMA 54 (2003), 591–616.

15 E. De Giorgi. Un essempio di estremali discontinue per un problema variazionale di tipo
ellitico. Boll. UMI (4) 1 (1968), 135–137.

16 F. Duzaar and M. Kronz. Regularity of ω-minimizers of quasi-convex variational integrals
with polynomial growth. Diff. Geom. Applic. 17 (2002), 139–152.

17 F. Duzaar, J. F. Grotowski and M. Kronz. Regularity of almost minimizers of quasi-convex
variational integrals with subquadratic growth. Annali Mat. Pura Appl. 184 (2005), 421–
448.

18 L. Esposito, F. Leonetti and G. Mingione. Higher integrability for minimizers of integral
functionals with (p, q) growth. J. Diff. Eqns 157 (1999), 414–438.

19 L. Esposito, F. Leonetti and G. Mingione. Regularity results for minimizers of irregular
integrals with (p, q) growth. Forum Math. 14 (2002), 245–272.

20 L. Esposito, F. Leonetti and G. Mingione. Sharp regularity for functionals with (p, q)
growth. J. Diff. Eqns 204 (2004), 5–55.

21 L. C. Evans. Quasiconvexity and partial regularity in the calculus of variations. Arch.
Ration. Mech. Analysis 95 (1986), 227–252.
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48 V. Šverák. Quasiconvex functions with subquadratic growth. Proc. R. Soc. Lond. A433
(1991), 723–725.
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