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Abstract
Influenza is a highly contagious disease that has burdened both humans and animals since

ancient times. In humans, the most dramatic consequences of influenza are associated with

periodically occurring pandemics. Pandemics require the emergence of an antigenically novel

virus to which the majority of the population lacks protective immunity. Historically, influenza

A viruses from animals have contributed to the generation of human pandemic viruses and

they may do so again in the future. It is, therefore, critical to understand the epidemiological

and molecular mechanisms that allow influenza A viruses to cross species barriers. This review

summarizes the current knowledge of influenza ecology, and the viral factors that are thought

to determine influenza A virus species specificity.
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Introduction

Influenza is a highly contagious disease that represents

one of the most serious health and economic threats to

humans and animals worldwide. In order to understand

the epidemiology of influenza, it is critical to recognize

that influenza A viruses infect a wide variety of species.

Moreover, the viruses exhibit only partial restriction of

their host range such that viruses from one species can

occasionally transmit to infect another species (Webster

et al., 1992; Webby and Webster, 2001). Historically, only

a limited number of subtypes of influenza viruses have

been associated with widespread infection of mammals

(Webster et al., 1992; Alexander and Brown, 2000).

However, viruses of all 16 hemagglutinin (HA) and nine

neuraminidase (NA) subtypes have been recovered from

wild waterfowl and seabirds (Webster et al., 1992; Webby

and Webster, 2001). As such, waterfowl provide a vast

global reservoir of influenza viruses in nature from

which novel viruses can emerge to infect mammalian

species (Webster et al., 1992; Webby and Webster, 2001).

Undoubtedly, the most prominent examples of direct

transmission of avian viruses to mammalian species are

the recent infections of humans and cats with the highly

pathogenic avian H5N1 viruses (de Jong et al., 1997; Claas

et al., 1998b; Kuiken et al., 2004; Webster et al., 2005).

Yet, while these examples clearly demonstrate that cross-

species transmission of viruses can occur, it has long

been recognized that barriers exist that limit transmission

of influenza viruses among species (Webster et al., 1992;

Webby and Webster, 2001).

In general, the ability of any given virus to cross from

one species to another is dependent on epidemiological

factors as well as host and viral factors. For example,

some viruses are prevented from entering a new host

species simply by the absence of the appropriate receptor

(Morse, 1997). Other viruses are able to enter the host

cell, yet, they are unable to complete their replication

cycle (Morse, 1997). Many viruses that have demonstrated

the ability to transmit between species that contain RNA

genomes. As viral RNA polymerases lack proofreading

functions, RNA viruses generally demonstrate high muta-

tion rates (for influenza A viruses the mutation rate is

estimated at one point mutation/1.5�105 nucleotides)

(Buonagurio et al., 1986), with consequent potential for

rapid evolution. As this mutation rate is sufficiently high

to yield one or more point mutations in each progeny*Corresponding author. E-mail: landoltg@colostate.edu
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viral genome per round of replication, viral stocks often

represent a population of genomes, a ‘quasispecies’

(Eigen and Schuster, 1977), rather than a homogenous

population (Morse, 1997). This genetic diversity allows

plasticity within the viral population, for example, for

adaptation to a new environment such as a new host

species. Despite this, many viruses show remarkable

genetic stability in their natural hosts. In waterfowl,

influenza viruses are generally highly host-adapted, as

evidenced by low evolutionary rates (‘evolutionary stasis’)

(Gammelin et al., 1990; Gorman et al., 1992; Webster

et al., 1992; Webby and Webster, 2001).

As a general rule, upon introduction into a new

environment (i.e. a new host species), selection of

mutants that are most ‘fit’ (i.e. replicate most efficiently

in the new environment) will be selected from within

the population of virus genomes. The selective pressure

may affect regions in the virus genome that convey a

replication advantage, control species specificity, or

correspond to antigenic sites (Morse, 1997). The genetic

diversity within a virus population is determined by the

balance between the emergence of new mutants and

the extinction of circulating variants through competition

(Ferguson et al., 2003). For human influenza viruses,

selection by the host immune system is thought to be

the driving force in the production of influenza genetic

diversity. As protection conferred by influenza-specific

immunoglobulins decreases with increasing genetic

divergence of the HA, cross-protection tends to decrease

as the antigenic divergence between two strains increases

(Ferguson et al., 2003). Theoretically, this should result in

the selection of antigenically novel strains and subsequent

exponential growth of influenza virus diversity. Yet, at

any given time, human influenza virus strains demon-

strate a surprisingly limited genetic diversity (Ferguson

et al., 2003). Although recent results indicate that multiple

lineages of virus strains are represented in the influenza

virus population (Ghedin et al., 2005), human influenza

virus evolution seems to be characterized by the con-

tinuous replacement of circulating strains (Webster et al.,

1992; Webby and Webster, 2001). In fact, phylogenetic

analyses suggest that genetic evolution of human influ-

enza viruses follows a multi-strain population dynamic,

in which 95% of strains are maintained in the population

for less than one year. Only approximately 1% of

influenza virus strains will become established in the

human population on a global scale (Fitch et al., 1997;

Ferguson et al., 2003). More recent results by Wolf and

colleagues (Wolf et al., 2006) indicate that evolution of

human influenza viruses may not be linear, but rather

occurs in periods of rapid fitness change (and displace-

ment of old lineages with new dominant ones), followed

by intervals of relative evolutionary stasis of the influenza

virus genome. These periods of stasis are characterized by

generally neutral sequence substitutions without apparent

changes in the antigenic properties of the virus and, thus,

only slow extinction of coexisting virus lineages (Wolf

et al., 2006). Regardless of the selection mechanisms

involved, the subsequent step in virus emergence hinges

on the virus’s ability to maintain itself in the new popu-

lation. This step requires efficient transmission of the virus

among individuals of the new species and is dependent

on viral factors (such as replication potential), population

factors (such as host density), and host factors (such as

immune status and response to the pathogen) (Morse,

1997).

Given the plasticity of the virus genome, influenza

fulfills the prerequisites of a virus with emerging disease

potential (Webster et al., 1993). It is highly likely that

sometime in the near future a ‘new’ influenza A virus, be

it one of the H5N1 viruses currently circulating in the

wild bird population in large parts of Asia or a different

virus, will be able to emerge from its animal reservoir

to cause widespread disease in mammalian species. The

impact of influenza in humans and animals, whether

measured by morbidity, mortality or economic losses, is

substantial. It is, therefore, essential to understand the

precise epidemiological and molecular mechanisms

that allow these viruses to jump species barriers and

establish themselves in new populations. This review

focuses on transmission of viruses between species,

discussing both direct transmission of viruses from

aquatic birds to mammals and virus transmission between

mammalian species. This also includes a discussion of

the molecular factors that are thought to affect influenza

virus species specificity.

Etiology

Influenza viruses are members of the family Orthomyx-

oviridae and are enveloped viruses with segmented,

single-stranded, negative-sense RNA genomes (schemati-

cally depicted in Fig. 1). The Orthomyxoviridae comprise

HA:1–16

NA:1–9

M2: ion channel

NP

Polymerase complex
(PA, PB1, PB2)

Non-structural proteins
(NS1, NEP)

M1: matrix

Fig. 1. Schematic diagram of structural components of
influenza A virus. Three integral membrane proteins – HA,
NA, and the ion channel protein (M2) – are embedded in the
lipid envelope of the virion. The matrix protein (M1)
underlies the lipid envelope. Associated with the viral RNA
is the polymerase complex, consisting of PA, PB1, and PB2.
The viral nucleoprotein (NP) encapsidates the viral RNA
segments.
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five genera; influenza A, B, and C viruses, thogotovirus,

and isavirus (Wright and Webster, 2006). Influenza A

viruses are distinguished from types B and C based on

genetic and antigenic differences in their nucleoprotein

(NP) and matrix (M) proteins. In addition, influenza A

and B viruses contain eight separate segments of single-

stranded RNA, whereas influenza C viruses possess only

seven. In contrast to influenza A viruses that infect a

wide variety of animals, influenza B viruses are primarily

human pathogens. Influenza C viruses have most com-

monly been isolated from humans, but these viruses

can also infect pigs and dogs (Ohwada et al., 1987;

Manuguerra et al., 1993).

Influenza A virions possess a host-cell-derived lipid

envelope, are 80–120 nm in diameter, and, if propagated

in eggs or cell culture, have a fairly regular spherical

appearance. In contrast, on initial isolation from humans

or animals, influenza A viruses exhibit pleomorphism

(Lamb and Krug, 2006). Embedded in the lipid envelope

are the HA and NA, forming about 500 spikes radiating

outward, and the integral M2 protein, which functions

as an ion channel (Lamb and Krug, 2006). The HA serves

as the viral receptor-binding protein and mediates

fusion of the virus envelope with the host cell membrane

(Wharton et al., 1989; Skehel and Wiley, 2000). Each

monomer of the trimeric HA protein consists of a globular

head, made up exclusively of HA1, and a stalk, which

consists of all of HA2 and parts of HA1 (Lamb and

Krug, 2006). The globular head portion contains the

receptor-binding site, which is comprised of an antibody-

inaccessible pocket. Thus protected from immunological

pressure, the amino acid residues located in the receptor-

binding site are largely conserved among subtypes

(Wilson et al., 1981; Wharton et al., 1989; Skehel and

Wiley, 2000). The HA is the major target of the host

humoral immune response. There are five antigenic

regions that cover much of the surface of the globular

head portion of the molecule. Host immune pressure is

the driving force in selecting mutant viruses with amino

acid substitutions in these antigenic sites, a process also

referred to as ‘antigenic drift’ (Fig. 2) (Wharton et al.,

1989; Lamb and Krug, 2006).

The NA is a type II integral membrane protein and

is the second large glycoprotein embedded in the influ-

enza virus envelope (Varghese et al., 1983; Colman et al.,

1987). The NA is responsible for the cleavage of the

a-ketosidic linkage between a sialic acid (SA) mole-

cule and an adjacent sugar residue (Gottschalk, 1957).

Biologically, the protein assists in the release of budding

virus particles by removing SA residues from the viral

glycoproteins as well as the infected cell (Palese et al.,

1974; Bucher and Palese, 1975; Air and Laver, 1989). More

recent data also indicate that the NA plays an essential

role in virus invasion of the respiratory tract by catalyzing

the cleavage of the a-ketosidic linkage between the

terminal SA and the adjacent sugar residue in mucus

(Castrucci and Kawaoka, 1993; Matrosovich et al., 2004b).

Like the HA, the NA contains antigenic determinants and

undergoes substantial antigenic variation in response to

immune pressure (Wright and Webster, 2006).

The M2 protein, the third envelope glycoprotein

present in the influenza virion, serves as an ion channel

(Pinto et al., 1992; Wang et al., 1993; Holsinger et al.,

1994). The M2 ion channel is activated at low pH and

allows hydrogen ions to enter the virion during un-

coating. In addition, M2 modulates the pH of the Golgi

apparatus, thus preventing premature conformational

change of the HA protein prior to virus assembly (Hay,

1992; Cleverley et al., 1997; Liu and Ye, 2002; Wright and

Webster, 2006). The M1 protein is the most abundant

protein present in the influenza virion. M1 lies beneath

the lipid envelope, providing rigidity to the membrane

that surrounds the eight ribonucleoprotein (RNP)

complexes (Lamb and Krug, 2006). Each RNP complex

consists of a single RNA segment, encapsidated by NP

molecules, as well as the three polymerase proteins PA,

PB1, and PB2 (Lamb and Krug, 2006; Noda et al., 2006).

The segmented nature of the influenza virus genome is

a key feature of the influenza virus structure. In the

event that cells are infected with two (or more) different

viruses, exchange of RNA segments between the viruses

allows the generation of progeny viruses containing a

novel combination of genes (‘genetic reassortment’). In

theory, genetic reassortment could potentially lead to

the creation of 254 new gene combinations from two

parental viruses (Wright and Webster, 2006).

Influenza viruses encode two ‘non-structural’ (NS)

proteins NS1 and NS2. While the NS2 or nuclear export

protein (NEP) was originally thought to be non-structural,

it has since been found to be a part of the influenza

virion (Richardson and Akkina, 1991; Yasuda et al.,

1993). In contrast, although NS1 is abundantly present

in infected cells during virus replication, the protein is not
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Fig. 2. Schematic diagram illustrating antigenic drift. The
influenza A virus RNA polymerase lacks proofreading
function. The mutation rate of the influenza virus genome
is sufficiently high to yield one or more point mutations
(represented by the ‘X’) in each progeny viral genome per
round of replication. Host immune pressure is the driving
force in the selection of mutants with amino acid substi-
tutions in antigenic sites on the HA and NA envelope
glycoproteins.
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incorporated into progeny virions (Wright and Webster,

2006).

Impact of influenza A virus infections

The incidence of influenza A virus infection in the human

population varies significantly from year to year and is

dependent on the attack rate, virulence of the circulating

strain, and on the degree of immunity of individuals in

the population (Alexander and Brown, 2000). Never-

theless, the impact of yearly human influenza epidemics

is substantial, resulting in an average of 114,000 hospital-

izations, 36,000 deaths and up to $10 billion in medical

costs and lost income in the United States alone (Klimov

et al., 1999; Cox and Subbarao, 2000; Bridges et al., 2002a,

2003; Thompson et al., 2003). In temperate climates,

influenza epidemics typically occur in the winter months.

In contrast, in the tropics the disease can occur year

round (Cox and Subbarao, 2000). Due to antigenic drift,

the antigenicity of circulating influenza viruses is con-

stantly changing. This allows the drift variants to infect

individuals that were immune to previously circulating

influenza strains (Cox and Subbarao, 2000; Subbarao

et al., 2006). Therefore, the influenza viruses included in

human vaccines have to be reviewed and potentially

updated each year to keep pace with antigenic drift (Cox

and Subbarao, 2000; Subbarao et al., 2006). Influenza

surveillance is coordinated by the World Health Organi-

zation’s (WHO) global influenza surveillance program.

The most dramatic consequences of influenza are

associated with the periodic occurrence of influenza

pandemics. Influenza pandemics are defined as global

outbreaks of disease due to the emergence of viruses that

contain envelope glycoproteins to which the human

population is immunologically naı̈ve (Horimoto and

Kawaoka, 2001). In modern times, pandemics occurred

in 1918 (‘Spanish flu’, H1N1), 1957 (‘Asian flu’, H2N2),

1968 (‘Hong Kong flu’, H3N2), and on a much more

limited scale in 1977 (‘Russian flu’, H1N1) (Webster et al.,

1992; Cox and Subbarao, 2000; Horimoto and Kawaoka,

2001; Wright and Webster, 2006). The devastation that

influenza pandemics can cause was clearly demonstrated

by the 1918 ‘Spanish flu’ pandemic that killed an

estimated 40–50 million people worldwide (Crosby,

1989; Taubenberger et al., 2000; Potter, 2001; Tauben-

berger, 2003). Projections of the impact of the next

influenza pandemic in the United States alone include

89,000–207,000 deaths, 314,000–734,000 hospitalizations,

and up to $166 billion in direct costs (Meltzer et al., 1999;

Ferguson, 2006; Layne, 2006; Maldin and Criss, 2006).

While ‘fowl plague’, the disease caused by highly

pathogenic avian influenza (HPAI) viruses in poultry, has

been recognized since the late 18th century, the close

relationship between the infectious agents causing ‘fowl

plague’ and mammalian influenza was not demonstrated

until 1955 (Webster et al., 1992; Alexander and Brown,

2000). HPAI viruses are restricted to H5 and H7 subtypes

and clinical signs associated with infection in birds vary

according to the species, age, virus strain, and environ-

mental factors involved (Webster et al., 1992; Alexander

and Brown, 2000; Swayne and Suarez, 2000; Mutinelli

et al., 2003; Jones and Swayne, 2004; Ramirez et al.,

2005; Isoda et al., 2006). Typically, HPAI viruses are not

maintained in the wild waterfowl population, but are

thought to appear by introduction of H5 and H7 low-

pathogenicity avian influenza viruses (LPAI) in land-

based poultry and subsequent mutation to HPAI in

these birds (Rohm et al., 1995; Subbarao et al., 2006).

Clinical signs associated with HPAI infection may include

cessation of egg laying, high fever, subcutaneous and

internal hemorrhages, necrosis of the comb and wattles,

edema of the head and neck, and cyanosis of the

unfeathered skin (Alexander and Brown, 2000; Swayne

and Suarez, 2000; Ramirez et al., 2005; Isoda et al., 2006).

In contrast to LPAI viruses, which cause only mild

respiratory disease and minimal to no mortality, HPAI

viruses spread systemically and infection often rapidly

results in death (Swayne and Suarez, 2000). Therefore,

outbreaks of HPAI often carry severe consequences

for animal health as well as the economy of the region

where they occur. For example, the outbreak of HPAI

in Pennsylvania in the early 1980s resulted in 17 million

culled birds, including chickens, turkeys, chukar par-

tridges, and guinea fowl, and cost more than 60 million

dollars to eradicate (Acland et al., 1984; Subbarao et al.,

2006). The outbreak of HPAI H5N1 virus in Hong Kong

in 1997 resulted in the culling of 1.4 million chickens

and other in-contact birds (Subbarao et al., 2006). Lastly,

hundreds of millions of domestic poultry have died or

have been culled to prevent the spread of the avian H5N1

virus and the economic impact the disease has had on

affected countries is estimated to exceed 10 billion dollars

(Kilpatrick et al., 2006). In the past, most outbreaks of

HPAI were caused by a single lineage of HPAI virus.

Moreover, as a result of extensive eradication programs,

the virus was eliminated from the domestic bird popu-

lation in less than a year (Subbarao et al., 2006). The Asian

H5N1 outbreaks appear to follow a different pattern and

have been characterized by the detection of multiple

reassortant viruses in domestic poultry (Guan et al., 2003).

Apart from the substantial socioeconomic implications

of HPAI infection in poultry, transmission of H5N1 and

H7N7 viruses to humans have clearly demonstrated the

significant zoonotic threat these viruses pose (de Jong

et al., 1997; Claas et al., 1998b; Fouchier et al., 2004;

Webster et al., 2005). By February 2007, the re-emergence

of H5N1 HPAI in Asia and subsequent spread of the

viruses to Europe and Africa, has resulted in 274 human

cases, including 167 deaths (www.who.int/csr/disease/

avian_influenza/en).

Although a recent study demonstrated the potential

of low-pathogenic avian influenza virus to cause clinical

disease in wild birds (van Gils et al., 2007), influenza
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infection in waterfowl typically is thought to result only

in subclinical infection in these animals (Webster et al.,

1978, 1992). The viruses preferentially replicate in the

duck intestinal tract and are shed in high concentrations

in the feces, thereby contaminating the lakes and ponds

the birds visit (Halvorson et al., 1983; Webster et al., 1992;

Laver et al., 2000). As viruses of all 16 HA and nine NA

subtypes are maintained in aquatic birds, particularly in

migrating waterfowl, these birds represent a vast global

reservoir of influenza (Halvorson et al., 1983; Webster

et al., 1992; Laver et al., 2000). Indeed, viruses of avian

origin have been the source of outbreaks of influenza

in mammals, such as seals, whales, mink, pigs, and

horses (Geraci et al., 1982; Hinshaw et al., 1984, 1986;

Klingeborn et al., 1985; Chambers et al., 1989; Guo et al.,

1992; Callan et al., 1995; Shortridge et al., 1995; Guan

et al., 1996; Brown et al., 1997; Karasin et al., 2000a).

Swine influenza, first clinically recognized in pigs

during the late summer and fall of 1918 (Koen, 1919),

has remained of substantial importance to the swine

industry throughout the world (Webster et al., 1992;

Alexander and Brown, 2000; Olsen, 2002). Infection of

pigs can pose serious economic consequences because

of the prolonged time needed for affected pigs to

reach slaughter weight ( Janke, 1998). Clinical signs of

influenza in pigs are similar to those observed in humans,

and infections are manifested as outbreaks of acute

respiratory disease characterized by fever, inactivity,

decreased food intake, coughing, sneezing, and nasal

discharge (McQueen et al., 1968; Alexander and Brown,

2000; Kothalawala et al., 2006; Subbarao et al., 2006).

In addition to the epizootic form of disease, influenza

viruses are part of the porcine respiratory disease com-

plex, acting in concert with other swine respiratory

pathogens such as Mycoplasma hyopneumoniae, porcine

reproductive and respiratory syndrome virus (PRRSV),

and bacterial agents of pneumonia (Thacker et al., 2001).

Since first diagnosed during an epidemic of respiratory

disease in Eastern Europe in 1956 (Sovinova et al., 1958),

outbreaks of equine influenza have occurred regularly

throughout most of the world. The clinical signs observed

are similar to those seen in pigs and humans and disease

severity is dependent on immune status, infecting dose

and virus strain (Wilson, 1993; Hannant and Mumford,

1996). In vaccinated animals, the disease is rarely fatal,

but deaths have been reported during some epidemics,

particularly in donkeys (Wilson, 1993; Alexander and

Brown, 2000). Severe epidemics have occurred relatively

recently in India (Uppal et al., 1989), the People’s

Republic of China (Guo et al., 1992; Shortridge et al.,

1995), and South Africa (Guthrie et al., 1999). In devel-

oped countries, equine influenza infections can largely

be managed by vaccination and by resting of affected

animals. In many other parts of the world, however,

horses, donkeys and mules remain as principal working

animals and influenza virus outbreaks can have severe

socioeconomic impacts (Shortridge et al., 1995).

Additional animal species from which influenza A

viruses have been isolated include seals, mink, whales,

feral and domestic cats, and dogs. In 1979–1980, harbor

seals populating the northeastern coast of the United

States died of respiratory disease, characterized by severe

pulmonary consolidation. Influenza viruses, subtyped

as H7N7, were demonstrated in the lungs and brains

of the affected animals (Geraci et al., 1982). Additional

isolates from seals have included H3N3 and H4N6

influenza viruses (Hinshaw et al., 1984; Callan et al.,

1995). Viruses of H13N2, H13N9, and H1N3 subtypes

have been detected in the lungs of whales (Lvov et al.,

1978; Hinshaw et al., 1986; Chambers et al., 1989) and

avian origin H10N4 viruses, causing systemic infection

and disease, were isolated from farm-raised mink

(Klingeborn et al., 1985). Since 2004, infections of exotic

and domestic cats with H5N1 HPAI viruses were

documented on multiple occasions in Asia, the Middle

East, and Europe (Kuiken et al., 2004, 2006; Rimmelzwaan

et al., 2006; Songsermn et al., 2006a; Yingst et al., 2006;

Leschnik et al., 2007), of dogs in Thailand (Butler, 2006;

Songsermn et al., 2006b), and of a stone marten in

Germany (www.who.int/csr/con/2006_03_09a/en/index.

html). Lastly, in the spring of 2004, an influenza virus

was isolated from lung tissues of greyhound dogs that

had died from hemorrhagic pneumonia (Crawford et al.,

2005). Sequence analysis of the viral genome revealed

that the canine isolate was closely related to and had

evolved from a contemporary equine H3N8 virus (Peek

et al., 2004; Crawford et al., 2005). Since then, canine

influenza viruses have spread across large parts of the

country and appear to have established themselves in

the dog population of the United States (Crawford

et al., 2005).

Influenza virus ecology

The avian reservoir

Influenza pandemics are precipitated by an ‘antigenic

shift’, which describes the replacement of the predomi-

nantly circulating influenza virus subtype with a novel HA

subtype, to which the human population has not recently

been exposed (Fig. 3) (Webster et al., 1992; Wright and

Webster, 2006). This novel virus can then evade immune

surveillance and replicate largely unimpeded in the

immunologically naı̈ve population. Historically, only a

limited number of subtypes of influenza viruses have

been associated with infection of mammals. For example,

in humans only viruses of H1, H2, H3, N1, and N2 sub-

types have circulated widely in the population (Webster

et al., 1992; Alexander and Brown, 2000), in horses

influenza infections have been largely restricted to viruses

of H7N7 and H3N8 subtypes (Webster, 1993; Wilson,

1993; Alexander and Brown, 2000), and only H1, H3,

N1, and N2 subtypes have been consistently isolated
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from pigs (Webster et al., 1992; Olsen, 2002). The most

widely accepted theory of how pandemic viruses emerge

is that a virus with a novel subtype is introduced into

the human population through transfer from the avian

reservoir (Fig. 4), with or without genetic reassortment

(Webster et al., 1992, 1993; Horimoto and Kawaoka, 2001;

Webby and Webster, 2001). This theory is supported

by phylogenetic studies demonstrating that the ‘Spanish

flu’ pandemic was caused by a virus that derived all its

genes from an avian virus (Tumpey et al., 2005), as well

as the finding that the pandemic strains of 1957 and

1968 arose from genetic reassortment of contemporary

human and avian influenza viruses (Gething et al., 1980;

Fang et al., 1981; Kawaoka et al., 1989). Several other

findings highlight the importance of the avian reservoir.

For example, there exists ample genetic evidence that

viruses from aquatic birds were the ancestral precursors

of all contemporary influenza virus lineages present

in other species (Gammelin et al., 1990; Gorman et al.,

1991; Webster et al., 1992; Webster, 1998). In addition,

direct transmission of an avian virus to horses resulted

in the severe equine influenza epidemic that occurred in

the Jilin and Heilongjiang Provinces in the northeast

of the People’s Republic of China in 1989 (Guo et al.,

1992). Lastly, there have been several well-documented

occasions on which direct avian-to-swine transmissions

of viruses have occurred (see below).

Yet, despite these examples, evidence also supports

the existence of barriers that limit the transmission of

influenza viruses from birds to mammals. For instance,

prior to 1997 there were only three reports of human

infections with avian influenza viruses (Campbell et al.,

1970; Taylor and Turner, 1977; Webster et al., 1981).

Although direct avian-to-human transmission of H5N1,

H9N2, and H7N7 viruses have been described since then

(de Jong et al., 1997; Claas et al., 1998a; Lin et al., 2000;

Bridges et al., 2002b; Hatta and Kawaoka, 2002; Uyeki

et al., 2002; Katz, 2003; Fouchier et al., 2004; Webster

et al., 2005), these avian viruses still appear not to have

developed the ability to transmit efficiently from person

to person [examples of suspected, limited human-to-

human spread of H5N1 virus notwithstanding (Gilsdorf

et al., 2006; Kandun et al., 2006)]. Yet, the ability to

transmit efficiently among humans is considered to be

one of the chief prerequisites for pandemic emergence

of an influenza virus (de Jong et al., 1997; Cox and

Subbarao, 2000; Taubenberger and Morens, 2006).

In general, avian influenza viruses do not replicate

well in humans and non-human primates, and vice versa,

human viruses typically do not replicate well in birds

(Hinshaw et al., 1978, 1983; Webster et al., 1978; Murphy

et al., 1982; Snyder et al., 1987; Beare and Webster, 1991).

Given this limited capacity for direct avian-to-human

transmission, it is debatable whether the creation of

pandemic viruses rests solely in either species. Rather, it

is hypothesized that the emergence of an avian virus

with pandemic potential requires prior adaptation in an

intermediate host. Viral adaptation at the molecular level

would then result in an avian-lineage virus with the

ability to spread efficiently among humans (Scholtissek

et al., 1983; Scholtissek and Naylor, 1988; Scholtissek,

1990; Webster et al., 1992; Brown, 2000b; Ito, 2000).

The role of intermediate hosts in the creation
of pandemic viruses

Pigs have been suggested to support two processes that

can lead to the development of influenza viruses with

pandemic potential: adaptation and genetic reassortment.

As avian viruses of virtually all HA subtypes (H1–H13)

were able to infect and replicate in pigs under experi-

mental conditions, these animals have been postulated

as the logical intermediate host in which adaptation of

avian viruses may occur (Kida et al., 1994). In support of

these experimental results are several well-documented

examples of direct avian-to-pig transmission of influenza

viruses that have occurred under natural conditions. For

example, in 1979 a wholly avian H1N1 influenza virus

crossed the species barrier to infect pigs in Europe

(Pensaert et al., 1981). These avian-lineage viruses

subsequently became established in the pig population

throughout much of Europe (Pensaert et al., 1981;

Scholtissek et al., 1983; Donatelli et al., 1991; Schultz

et al., 1991; Brown et al., 1997; Webby and Webster,

2001). Other examples of in toto transmission of avian

viruses to pigs include the transmission of H1N1, H3N2,

H5N1, and H9N2 viruses to pigs in China and Hong Kong

(Kida et al., 1988; Guan et al., 1996; Peiris et al., 2001;

Xu et al., 2004; Choi et al., 2005), as well as infections
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Fig. 3. Schematic diagram illustrating genetic reassortment.
In the event that cells are infected with two (or more) dis-
tinct influenza viruses, the exchange of RNA gene segments
between viruses allows the generation of progeny viruses
containing novel combinations of genes. If such a reassort-
ment event results in the introduction of a novel HA subtype,
the new virus can escape neutralizing antibodies (‘antigenic
shift’).
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of pigs with H4N6, H1N1, and H3N3 viruses in Canada

(Karasin et al., 2000a, 2004).

Binding of influenza virus to its cellular receptor is

determined by two properties: the SA species [e.g.

N-acetylneuraminic (NeuAc) or N-glycolylneuraminic

(NeuGc) acid] involved, as well as the NeuAc or NeuGc

linkage to galactose residues (e.g. a2,6Gal or a2,3Gal)

on the cell membrane. While avian viruses prefer bind-

ing to SA with a2,3Gal linkages in NeuGc or NeuAc

forms, human lineage viruses preferentially bind to

NeuAca2,6Gal-linked receptors (Suzuki, 1994; Ito, 2000;

Ito and Kawaoka, 2000; Suzuki et al., 2000; Varki, 2001).

This is consistent with the fact that avian intestinal cells

primarily express a2,3-linked receptors, whereas human

tracheal epithelial cells predominantly express a2,6-

linked receptors (Rogers and Paulson, 1983; Suzuki,

1994; Gambaryan et al., 1997; Matrosovich et al., 1997;

Vines et al., 1998; Ito, 2000). Yet, a study by Gambaryan

and colleagues (Gambaryan et al., 2002) demonstrated

that SAs expressed in chickens are not exclusively of

a2,3 linkage, supporting the notion that these birds could

act as a potential intermediate host for the transmission

of influenza viruses from aquatic birds to humans. More-

over, Wan and Perez (2006) found that SAs expressed

in the trachea of Japanese quail are of both a2,3 and

a2,6 forms. Vice versa, the SAs expressed in the human

airway are also not exclusively of a2,6 linkage. While the

a2,6-linked sialyloligosaccharides are the predominant

receptor type expressed on the respiratory epithelial cells

of the human nasal passages and trachea, a recent study

by Matrosovich and colleagues (Matrosovich et al., 2004a)

indicated that a subset of human tracheal respiratory

epithelial cells also express the a2,3Gal-linked SAs.

Moreover, Shinya and coworkers (Shinya et al., 2006)

found that non-ciliated cuboidal bronchiolar cells, as

well as a substantial proportion of cells lining the

alveolar walls (most likely alveolar type II cells) of the

human lungs, also expressed SAa2,3Gal. The presence

of SAa2,3Gal-bearing cells deep in the human respiratory

tract supports the findings that viruses that have retained

the avian-type receptor specificity can infect humans and

cause lethal disease (Matrosovich et al., 1999).

Nevertheless, efficient transmission of avian viruses

among human beings requires the HA protein to adapt

to preferentially bind to the human-type SAa2,6Gal re-

ceptors (Neumann and Kawaoka, 2006). As the respira-

tory epithelial cells of the porcine tracheal epithelium

possess both SAa2,3Gal (NeuAc and NeuGc) as well as

SAa2,6Gal receptors, pigs may serve as adaptation hosts

in which the switch from avian-type to human-type

receptor preference could occur (Couceiro et al., 1993;

Suzuki et al., 1997; Ito et al., 1998; Ito, 2000). For instance,

an avian virus may initially infect pigs by employing

SAa2,3Gal receptors. With continued replication in pigs,

the virus may then adapt its receptor specificity to

NeuAca2,6Gal, thus providing a potential link from birds

to humans (Ito et al., 1998; Ito, 2000). This scenario is

particularly attractive in light of the fact that adaptation

of the HA receptor-binding preference was observed after

introduction of the avian H1N1 influenza virus into pigs

in Europe in 1979 (Rogers and D’Souza, 1989; Ito, 2000).

Also, the subsequent recovery of these viruses from

Fig. 4. Schematic representation of influenza A virus cross-species transmission. Research indicates that wild aquatic birds are
the ancestral source of all influenza A viruses present in birds and mammals.
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human patients in The Netherlands (Rimmelzwaan et al.,

2001) confirmed that these viruses had also become

infectious for human beings.

Secondly, since pigs are also susceptible to infection

with human lineage viruses (Kundin, 1970; Shortridge

et al., 1977; Hinshaw et al., 1978; Nakajima et al., 1982;

Ottis et al., 1982; Mancini et al., 1985; Bean et al.,

1992; Shu et al., 1994; Bikour et al., 1995; Brown et al.,

1995; Nerome et al., 1995; Karasin et al., 2000c; Song

et al., 2003), these animals may serve as ‘mixing vessel’

hosts for genetic reassortment between human and avian

viruses. According to this hypothesis, if two or more

distinct influenza viruses co-infect a pig, the viruses can

exchange RNA segments during replication, which can

lead to the creation of new virus variants (Scholtissek,

1990). While there is no direct evidence that the

reassortment events leading to the 1957 or 1968 pandemic

viruses occurred in pigs, genetic reassortment between

human-like H3N2 and avian-like H1N1 viruses has

happened more recently among pigs in Europe (Castrucci

et al., 1993). The resulting reassortant viruses contained

mammalian HA and NA surface glycoproteins, while

maintaining the avian internal genes (Castrucci et al.,

1993; Brown et al., 1998). And importantly, reassortant

H3N2 and H1N2 viruses were subsequently also isolated

from humans in Europe and Hong Kong (Claas et al.,

1994; Gregory et al., 2001, 2002). Additional support for

the ‘mixing vessel’ theory comes from the demonstration

of 2-way (human/swine) and 3-way (avian/human/

swine) reassortant viruses of H3N2, H1N2, H1N1, and

H3N1 subtypes that have emerged in pigs since 1998

(Zhou et al., 1999a; Karasin et al., 2000b, c, 2002, 2006;

Webby et al., 2000, 2004; Choi et al., 2002; Song et al.,

2003; Lekcharoensuk et al., 2006; Ma et al., 2006; Olsen

et al., 2006). In the United States, these reassortant viruses

have subsequently spread widely within the country’s

swine population. However, equally important to note is

the fact that persistent circulation of human influenza

viruses in swine populations, though likely to facilitate the

development of a pandemic virus in pigs through genetic

reassortment, has occurred relatively rarely (Hinshaw

et al., 1978; Easterday, 1980; Ito, 2000). Consequently, it

has been suggested that, as with maintenance of avian

influenza viruses in the swine population, efficient infec-

tion of pigs with human influenza viruses may require

mutational adaptation of the virus to the new swine host

(Brown, 2000b; Lipatov et al., 2004). In support of this

notion are recent data demonstrating limited infectivity

of a human virus following experimental infection of

pigs (Landolt et al., 2003, 2006).

For many years pigs have been considered the

leading candidate for the intermediate host for avian-to-

mammalian influenza virus adaptation; however, recent

data suggest that terrestrial poultry, such as quail,

chickens, and turkeys, may also play a central role in

the emergence of viruses with pandemic potential.

Surveillance in live bird markets in China, as well as

experimental infection studies, demonstrated that land-

based birds support replication of a variety of subtypes of

avian influenza viruses (Liu et al., 2003a, b; Perez et al.,

2003). More importantly, H5N1 and H9N2 viruses isolated

from land-based poultry were found to have lower

affinity for SAa2,3Gal than their respective counterparts

isolated from aquatic birds (Matrosovich et al., 1999, 2001;

Saito et al., 2001), suggesting that land-based poultry may

serve as adaptation hosts for the conversion of SAa2,3Gal

to SAa2,6Gal receptor preference (Matrosovich et al.,

2001; Perez et al., 2003; Li et al., 2004). This is con-

sistent with the fact that both SAa2,3Gal and SAa2,6Gal

receptors are expressed in trachea of these birds

(Gambaryan et al., 2002; Wan and Perez, 2006). The

potential significance of terrestrial poultry as intermediate

hosts is further highlighted by the finding that H7N3

viruses circulating since 2002 in the turkey population

of Northern Italy were closely related to H7N3 strains

isolated from wild ducks in 2001 (Capua et al., 2002; Abe

et al., 2004; Campitelli et al., 2004). Serological studies

conducted in human beings with close contact with

infected turkeys indicated that zoonotic transmission

of the H7N3 viruses had also occurred (Puzelli et al.,

2005). Yet, despite these examples, recent data demon-

strated that human and swine lineage influenza viruses

were unable to replicate efficiently in terrestrial birds

(Makarova et al., 2003). Therefore, it appears that pigs

remain the most likely domestic animal species in which

genetic reassortment between avian and human viruses

may occur.

Direct transmission between mammalian species

While the previous examples clearly illustrate the

importance of the avian reservoir as a source of novel

virus strains, influenza viruses of different genotypes and

subtypes occasionally also can transmit between two

mammalian species. The appearance of the ‘Spanish flu’

virus in 1918 might have involved this mechanism.

Sequence data of the 1918 strain (Belshe, 2005; Tumpey

et al., 2005), as well as seroepidemiological studies of

survivors of the 1918 pandemic, demonstrate that the

pandemic 1918 H1N1 virus and the earliest swine H1N1

viruses were very closely related (Taubenberger et al.,

2000; Taubenberger and Morens, 2006). More recently,

direct swine-to-human zoonotic transmission of influenza

viruses has been documented on several occasions

(Alexander and Brown, 2000; Myers et al., 2006),

including in North America (Hinshaw et al., 1978; Dacso

et al., 1984; Patriarca et al., 1984; Rota et al., 1989;

Wentworth et al., 1994, 1997; Kimura et al., 1998; Gaydos

et al., 2006; Olsen et al., 2006), Europe (Claas et al., 1994;

Rimmelzwaan et al., 2001; Gregory et al., 2003), and Asia

(Gregory et al., 2001). Furthermore, serologic evidence

collected from pig farm workers indicates that zoonotic

infection may occur more often than the number of virus
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isolation reports suggests (Schnurrenberger et al., 1970;

Campitelli et al., 1997; Olsen et al., 2002; Ayora-Talavera

et al., 2005).

Apart from swine-to-human transmission of viruses,

there exist only a handful of reports documenting

zoonotic transmission of viruses involving other mam-

malian species. For instance, experimental infection

of human volunteers with H3 equine-lineage viruses

produced influenza-like illnesses associated with virus

shedding and subsequent seroconversion (Couch et al.,

1969; Kasel and Couch, 1969). Conversely, occasional

human-to-equine transmission of H1N1, H2N2, and H3N2

viruses has been reported (Tumova, 1980; Heilman and

La Montagne, 1990) and experimental infection of

horses with human H3N2 viruses demonstrated their

susceptibility to infection with human viruses (Kasel

and Couch, 1969). However, there is no evidence that

horse-to-human or human-to-horse transmission rou-

tinely occurs under natural conditions. Lastly, data from

serosurveillance and experimental challenge studies

indicate that human-lineage viruses occasionally cross

the species barrier to infect dogs (Ado and Titova, 1959;

Nikitin et al., 1972; Paniker and Nair, 1972; Bibrack, 1975;

Bibrack et al., 1975; Chang et al., 1976; Houser and

Heuschele, 1980). However, while these results indicate

that dogs are susceptible to infection with human

influenza viruses, infection did not result in clinical

disease (Todd and Cohen, 1968; Bibrack, 1975; Bibrack

et al., 1975; Chang et al., 1976; Houser and Heuschele,

1980) and these viruses did not spread efficiently among

dogs (Nikitin et al., 1972). In contrast, recent infections of

dogs with an equine H3N8 virus have been associated

with clinical signs of respiratory illness (including fatal

hemorrhagic pneumonias), and recovery of virus from

dogs from across the country, as well as serological

evidence, indicate the spread and apparent maintenance

of the virus within the canine population of the United

States (Crawford et al., 2005).

Molecular determinants of species specificity

As the preceding paragraphs demonstrate, cross-species

transmissions of influenza A viruses occur relatively

frequently. Yet, in many instances, these transmission

events tend to be self-limiting and the newly introduced

viruses are only rarely maintained in the new host species

(Webster et al., 1992). It has long been recognized that

influenza A viruses exhibit partial restriction of their

host range. Moreover, a number of subtypes of influenza

viruses are rarely detected in animals other than their

typical host (Webster et al., 1992; Webby and Webster,

2001), suggesting that specific subtypes differ in their

ability to cross the species barrier (Brown, 2000a). While

the viral and host factors that determine influenza virus

host range are only incompletely understood, evidence

has accumulated over the years indicating potential

contributions by all eight gene segments (Scholtissek

et al., 1985; Tian et al., 1985; Snyder et al., 1987, 1990;

Murphy et al., 1989; Webster et al., 1992; Castrucci and

Kawaoka, 1993; Subbarao et al., 1993; Horimoto and

Kawaoka, 2001; Hatta et al., 2002; Li et al., 2005; Dalton

et al., 2006; Neumann and Kawaoka, 2006). Examination

of the contributions of individual viral proteins to host

range restriction is complicated by a number of factors.

For one, mutations often appear not in just one, but

in multiple gene segments during the process of virus

adaptation to a new host species. For example, sequence

analysis of six human H5N1 isolates revealed that the

viruses had acquired a variety of amino acid substitutions,

affecting not only their HA, but also the internal proteins

(PB2, PB1, PA, NP, M, and NS) (Suarez et al., 1998;

Bender et al., 1999; Hiromoto et al., 2000). As some of

the substitutions in NP, PB2, and M2 occurred in sites

previously defined as potential species-specific signatures

of human versus avian H5N1 isolates, these mutations

may indeed reflect adaptation of the virus to the new

host species (Zhou et al., 1999b; Hiromoto et al., 2000).

However, some of the other substitutions could also

have been introduced in response to host immunological

pressure or they may simply represent spurious mutations

(Zhou et al., 1999b; Hiromoto et al., 2000). To complicate

matters further, specific constellations of gene segments

may be involved in controlling influenza virus species

specificity. This notion is supported by the finding that

during the reassortment events that led to the creation

of the 1957 and the 1968 pandemic strains, both viruses

acquired the avian HA and PB1 genes (as well as the

avian NA in 1957) (Kawaoka et al., 1989). Yet, despite

such complexities, several genes appear to play domi-

nant roles in controlling influenza host range, and the

following paragraphs will review the current knowledge

of the molecular determinants of influenza host range.

HA

Due to its role as the viral receptor-binding protein, many

investigators have focused their attention on the HA as

the primary determinant of host range, and over the years

a large body of evidence has accumulated indicating

that the HA is, in fact, a key player in influenza virus

species specificity (Chambers et al., 1989; Aytay and

Schulze, 1991; Inkster et al., 1993; Vines et al., 1998;

Bender et al., 1999; Ito et al., 1999; Suzuki et al., 2000;

Hatta et al., 2002; Romanova et al., 2003; Medeiros et al.,

2004). As previously discussed, avian influenza viruses

bind preferentially to SAa2,3Gal, while human lineage

influenza viruses prefer a2,6-linked SA receptors. Analysis

of the three-dimensional structure of the H3 HA from

human influenza viruses has revealed that the binding

site that accommodates the SA receptor is a shallow

pocket, formed by amino acid residues that are fairly

highly conserved among virtually all subtypes and strains
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of influenza A viruses (Wright and Webster, 2006).

Research has demonstrated that subtle differences in the

amino acid residues that form the binding site can result

in alterations of the receptor-binding properties of the

HA molecule. For example, analysis of the HA gene of

the 1968 pandemic strain by Bean and coworkers (Bean

et al., 1992) revealed that fewer than six amino acid

residues in the HA of the 1968 Hong Kong pandemic

virus were altered in the process of avian-to-human

transmission. All of the mutations occurred in the globular

head portion of the HA and included amino acid

substitutions at positions 62, 144, 193, and 226 (Bean

et al., 1992). The mutation affecting residue 226 was

found to be of particular interest in regard to receptor-

binding specificity. Leucine (Leu)-226 was found to

confer SAa2,6Gal specificity in human H2 and H3, but

not H1, viruses (Matrosovich et al., 2000; Skehel and

Wiley, 2000), whereas glutamine (Gln) at position 226

correlates with SAa2,3Gal preference in avian and equine

H3 viruses (Naeve et al., 1984; Vines et al., 1998). With the

exception of a few early isolates, human viruses with

Leu at position 226 typically contain serine (Ser) at residue

228, while glycine (Gly)-228 is associated with Gln-226

in avian viruses (Naeve et al., 1984; Vines et al., 1998).

While there exists less evidence for its role in receptor

specificity compared to residue 226, in most human H3

viruses, Ser at residue 193 is associated with SAa2,6Gal

specificity, while asparagine (Asn) or lysine (Lys)-193 is

associated with SAa2,3Gal specificity in avian and equine

H3 viruses (Medeiros et al., 2004). Aspartic acid (Asp)-190

was found to determine SAa2,6Gal specificity in human

and swine H1 isolates, whereas glutamic acid (Glu)-190

correlates with the avian-type receptor-binding prefer-

ence (Gammelin et al., 1990; Kobasa et al., 2004; Stevens

et al., 2004). Finally, both single and combined mutations

of the amino acid residues at position 182 (Asn to Lys)

or position 192 (Gln to arginine) converted the receptor-

binding specificity of avian H5N1 viruses to the human-

type SAa2,6Gal receptor specificity (Yamada et al., 2006).

In addition to the amino acid sequence of the HA

molecule, receptor-binding specificity is also influenced

by the number and position of N-linked oligosaccharides

at or around the receptor-binding site (Deom et al., 1986;

Aytay and Schulze, 1991; Gunther et al., 1993; Inkster

et al., 1993; Matrosovich et al., 1997; Gambaryan et al.,

1998; Baigent and McCauley, 2001; Banks and Plowright,

2003; Abe et al., 2004). Variation of glycosylation

around the receptor-binding site can often be observed

following adaptation of a virus to growth in a new host

species or cell line. For example, adaptation of influenza

viruses to growth in eggs (Robertson et al., 1993; Banks

and Plowright, 2003; Romanova et al., 2003), in mice

(Gitelman et al., 1986), or in mammalian cell lines

(Crecelius et al., 1984; Gunther et al., 1993; Robertson

et al., 1995; Romanova et al., 2003), resulted in alterations

in glycosylation patterns. Furthermore, glycosylation

patterns of the HA may be directly associated with

species specificity. This is illustrated by the fact that a

glycosylation site at position 63, commonly found in H3

viruses of human origin, is absent in avian-lineage

H3 viruses (Kida et al., 1988). Moreover, research

demonstrated that adaptation of the H1N1 human strain

A/USSR/90/77 to mice resulted in the loss of glycosylation

sites at either position 131 (Asn to Asp) alone or in

combination with position 94 (Thr to Ala). Growth of the

virus in a mammalian cell line [Madin Darby canine

kidney (MDCK) cells] led to the selection of variants

with a single mutation at position 131 (Asn to Asp),

indicating that the carbohydrate group attached to Asn-

131 may affect host range (Gitelman et al., 1986;

Gambaryan et al., 1998).

Competitive inhibitors, such as soluble receptor

analogs that are present in the serum of many species,

may also play a role in influenza virus host range

restriction (Ryan-Poirier and Kawaoka, 1991). For exam-

ple, a2-macroglobulins present in horse and guinea pig

serum were shown to strongly inhibit hemagglutination

as well as infection of MDCK cells by human H3 viruses

with SAa2,6Gal receptor specificity, but did not affect

equine and avian H3 virus infection (Rogers et al., 1983).

Similarly, recent studies indicate that SA residues on

porcine surfactant protein D (pSP-D) may also influence

host range, possibly by acting as natural inhibitors of

influenza virus binding to cell-surface SA receptors

(Hartshorn et al., 2000; van Eijk et al., 2002; Hawgood

et al., 2004). While it remains unclear if and to what extent

pSP-D contributes to host range, it has been speculated

that pSP-D interference may play a particularly important

role in human-to-swine transmission of influenza viruses

(van Eijk et al., 2002).

NA

Like HA, the NA also contributes to influenza virus species

specificity. Since efficient growth of influenza virus is

dependent on balanced action between HA receptor-

binding affinity and NA receptor-destroying activity

(Baum and Paulson, 1991; Rudneva et al., 1993; Gubareva

et al., 1996, 2002; McKimm-Breschkin et al., 1996; Kaverin

et al., 1998, 2000; Baigent et al., 1999; Kaverin and Klenk,

1999; Hughes et al., 2000, 2001; Mitnaul et al., 2000;

Wagner et al., 2000; Hatta et al., 2001; Abed et al., 2002),

alterations in HA receptor-binding preference is often

associated with changes in the NA’s SA substrate

specificity (i.e. cleavage activity of SAa2,3Gal versus

SAa2,6Gal) and cleavage activity (Baum and Paulson,

1991; Kaverin et al., 1998, 2000; Mitnaul et al., 2000;

Wagner et al., 2000). This conclusion is supported by

the finding that after introduction of the 1957 pandemic

strain into the human population, the SAa2,6Gal cleavage

activity of the avian NA increased (Baum and Paulson,

1991; Kobasa et al., 1999), which suggests that the NA

had adapted to the SAa2,6Gal preference of the virus’s
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HA (Neumann and Kawaoka, 2006). Interestingly, at this

point the virus also appeared to lose its ability to

efficiently grow in ducks (Kobasa et al., 2001).

The NA molecule is comprised of the enzymatically

active head domain and a stalk region that is inserted into

the viral envelope (Lamb and Krug, 2006). The length and

amino acid sequence of the stalk region vary considerably

among different viruses (Blok and Air, 1982) and stalk

length has been shown to affect growth characteristics

of viruses in embryonated chicken eggs (Castrucci and

Kawaoka, 1993), cell culture (Luo et al., 1993), and mice

(Castrucci and Kawaoka, 1993). Viruses with long stalks

grew to higher titers in embryonated chicken eggs than

those with shorter NA stalks (Castrucci and Kawaoka,

1993). Mechanistically, this may be explained by the

finding that viruses with a shortened NA stalk typically are

released less efficiently from the cell since the enzymatic

site in the head domain cannot effectively reach its

substrate (Castrucci and Kawaoka, 1993; Luo et al., 1993;

Baigent et al., 1999; Giannecchini et al., 2006). Further-

more, a deletion in the NA stalk is commonly associated

with adaptation of duck viruses to land-based poultry

such as turkeys and chickens (Castrucci and Kawaoka,

1993; Matrosovich et al., 1999; Wagner et al., 2000;

Gambaryan et al., 2002) and is thought to occur in order

to counterbalance changes in the receptor-binding

properties of the HA (Baigent and McCauley, 2001).

Nevertheless, viruses with short stalks can maintain their

virulence in humans and poultry. For example, the HPAI

H5N1 viruses isolated from land-based poultry in Asia

contained a shortened stalk (Li et al., 2004). Similarly,

H5N1 viruses isolated from human patients in Hong Kong

in 1997 possessed short NA stalks (Matrosovich et al.,

1999).

Polymerase complex

The largest body of evidence regarding the effects of the

proteins in the polymerase complex on species specificity

has implicated the PB2 gene. For example, Clements and

coworkers (Clements et al., 1992) reported that a human–

avian reassortant virus that contained only the avian PB2

gene replicated efficiently in avian cells, but inefficiently

in mammalian cells and in the respiratory tract of squirrel

monkeys and human volunteers. Subsequently, research

revealed that the switch in host range hinged on a single

amino acid residue at position 627 (Glu in avian isolates;

Lys in human isolates) (Subbarao et al., 1993). Penn and

coworkers identified additional amino acid residues in

PB2 as potential contributors to host range (Penn, 1989).

The influenza polymerase complex constitutes a multi-

functional enzyme and the outcome of its interaction

with the viral RNA is modulated by whether the 3
0

and

5
0

termini of the viral template are in a base-paired or

single-stranded conformation (Lee et al., 2003). Thus, it

has long been hypothesized that temperature at the site

of replication could impact the function of the poly-

merase complex and thereby determine the host tropism

of influenza virus (McCauley and Penn, 1990; Baigent and

McCauley, 2003). This scenario is particularly appealing

in light of the finding that viral polymerase complexes

derived from avian viruses, but not human viruses,

exhibited cold sensitivity in mammalian cells, a character-

istic that was mostly controlled by residue 627 of PB2

(Massin et al., 2001). The importance of residue 627 in the

control of influenza host range is further highlighted

by the findings that an H7N7 HPAI isolated from a patient

in The Netherlands contained a Lys substitution at

position 627 (Fouchier et al., 2004) and several of the

H5N1 strains isolated from humans in Asia were also

characterized by Lys at residue 627 (Puthavathana et al.,

2005). In addition, a recent study by Mase and colleagues

revealed that viruses isolated from mice infected with

H5N1 (without prior adaptation to mice) all acquired the

Glu-to-Lys substitutions at position 627 of the PB2 (Mase

et al., 2006). Finally, H5N1 isolates recovered from six

tigers in 2004 also contained Lys at residue 627 (Amonsin

et al., 2006). Taken together, these observations suggest

that the mutation at residue 627 may be a key determinant

of influenza host range. Interestingly, studies by Hatta

and coworkers indicated that the same Gly-to-Lys

substitution at position 627 in the PB2 protein also influ-

enced pathogenicity as well as cell tropism of a highly

pathogenic H5N1 virus isolated in Hong Kong in 1997

(Hatta et al., 2001).

Effects on host range have also been identified for

the remaining two members of the polymerase complex:

PA and PB1. For instance, the introduction of an avian

PB1 into a human virus resulted in a decrease in

replication efficiency in MDCK cells, as well as in squirrel

monkeys, but did not affect virus replication in chicken

kidney cells (Snyder et al., 1987).

Apart from temperature sensitivity, amino acid substi-

tutions in the polymerase proteins may influence host

range by altering interactions of the polymerase complex

with host cell factors. Host factors that were found to

modulate viral RNA synthesis in vitro include RNA

polymerase activating factors (RAF1 and 2), polymerase

release factor (PRF), and RNA polymerase inhibiting

factor 1 (RIF1) (Honda and Ishihama, 1997).

NP, M, and NS proteins

During virus replication, the influenza NP is modified

by host-cell-derived phosphokinases (Lamb and Krug,

2006). As the phosphorylation pattern of the NP protein

appears to determine the extent to which a particular

cell line supports virus growth (Kistner et al., 1985), it has

been hypothesized that NP is a significant determinant

of species specificity (Scholtissek et al., 1985; Tian et al.,

1985; Snyder et al., 1987; Abe et al., 2004). Experiments
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using temperature-sensitive mutants of a HPAI H7N1

virus (A/FPV/Rostock/1/34) demonstrated that, with the

exception of NP and HA, all remaining gene segments

of the fowl plague virus could be replaced by corres-

ponding genes of any strain, irrespective of the lineage

of the rescuing virus (Scholtissek et al., 1978, 1985).

Furthermore, sequence analyses suggest that the NP gene

has evolved into five distinct, host-specific lineages:

two equine lineages, one pig and human lineage, one

aquatic bird lineage, and one lineage in other avian

species (Webster, 1997).

The influenza M1 protein plays an essential role in

viral assembly and has a variety of functions, including

association with influenza virus RNP complexes. The M2

is an integral membrane protein and functions as an ion

channel (Pinto et al., 1992; Holsinger et al., 1994; Lamb

and Krug, 2006). Employing human–avian reassortant

viruses containing the avian M and NP genes, both gene

segments were found to be associated with reduced

replication of the reassortants in the respiratory tract of

squirrel monkeys (Tian et al., 1985). Further evidence for

the M gene’s contribution to influenza host range stems

from co-infection experiments selecting for reassortant

viruses with the human virus M gene and the HA gene

derived from the avian virus. While the M segment of an

earlier human virus was found to support efficient growth

of the reassortants, M genes derived from more recent

human strains did not cooperate with the avian HA

(Scholtissek et al., 2002).

Like the polymerase complex, the internal proteins

may exert their effects on host range through interactions

with cytoplasmic and nuclear host cell components

(Brown, 2000a). For example, during infection, the

influenza NP binds to actin, as well as karyopherins 1

and 2. Similarly, NS1 interacts with a number of cellular

factors involved in mRNA processing [i.e. Cpsf, poly(A)-

binding protein II and PKR] (Lamb and Krug, 2006),

as well as other host factors with undefined function

(NS1-BP and NS1-1) (Wolff et al., 1996, 1998). Thus, it is

conceivable that the quality of these protein-to-protein

interactions may have an impact on influenza species

specificity. However, to what extent such protein–protein

interactions determine host range has yet to be deter-

mined.

Concluding remarks

In the past decade, a number of viruses have emerged

from animal populations. These include HIV (Levy et al.,

1984; Wain-Hobson et al., 1991), hendravirus (Murray

et al., 1995), and the coronavirus causing severe acute

pulmonary syndrome (SARS) (Kuiken et al., 2003). In

addition to these newly recognized viruses, re-emerging

viruses are burdening the human population at a seem-

ingly increasing frequency (Morse, 1997). One of our

most familiar viruses, influenza A virus, also falls into

this category. The recent resurgence of H5N1 influenza A

viruses in poultry, wild waterfowl, cats and people

throughout large parts of Asia, the Middle East, Europe,

and Africa further highlights the possibility that viruses

originating in an animal species could spark a new

influenza pandemic (de Jong et al., 1997; Cox and

Subbarao, 2000; Laver et al., 2000; Horimoto and

Kawaoka, 2001; Hatta and Kawaoka, 2002; Katz, 2003;

Belshe, 2005; Webster et al., 2005; Ferguson, 2006; Kenny,

2006; Maldin and Criss, 2006). An important reason

why these viruses have not yet caused a full-blown

pandemic is their apparent inability to spread efficiently

from person to person (Hatta and Kawaoka, 2002;

Katz, 2003; Capua and Alexander, 2004; Webster et al.,

2005; Kandun et al., 2006; Shinya et al., 2006). While there

has been an explosion of data on the molecular

determinants of influenza virus adaptation to a new host

species within the last decade, much remains to be

learned. In light of the importance of animal reservoirs in

the ecology of influenza as well as the potential roles

of pigs and terrestrial poultry as adaptation or ‘mixing

vessel’ hosts, virus surveillance at the human–animal

interface and genetic analysis of animal influenza viruses

must remain a priority. The data collected will continue

to provide important insights regarding the genetic basis

of host adaptation and advance our understanding of

the extent and impact of animal reservoirs of influenza A

viruses.
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