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Abstract

Influenza is a highly contagious disease that has burdened both humans and animals since
ancient times. In humans, the most dramatic consequences of influenza are associated with
periodically occurring pandemics. Pandemics require the emergence of an antigenically novel
virus to which the majority of the population lacks protective immunity. Historically, influenza
A viruses from animals have contributed to the generation of human pandemic viruses and
they may do so again in the future. It is, therefore, critical to understand the epidemiological
and molecular mechanisms that allow influenza A viruses to cross species barriers. This review
summarizes the current knowledge of influenza ecology, and the viral factors that are thought

to determine influenza A virus species specificity.
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Introduction

Influenza is a highly contagious disease that represents
one of the most serious health and economic threats to
humans and animals worldwide. In order to understand
the epidemiology of influenza, it is critical to recognize
that influenza A viruses infect a wide variety of species.
Moreover, the viruses exhibit only partial restriction of
their host range such that viruses from one species can
occasionally transmit to infect another species (Webster
et al., 1992; Webby and Webster, 2001). Historically, only
a limited number of subtypes of influenza viruses have
been associated with widespread infection of mammals
(Webster et al., 1992; Alexander and Brown, 2000).
However, viruses of all 16 hemagglutinin (HA) and nine
neuraminidase (NA) subtypes have been recovered from
wild waterfowl and seabirds (Webster et al., 1992; Webby
and Webster, 2001). As such, waterfowl provide a vast
global reservoir of influenza viruses in nature from
which novel viruses can emerge to infect mammalian
species (Webster et al., 1992; Webby and Webster, 2001).
Undoubtedly, the most prominent examples of direct
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transmission of avian viruses to mammalian species are
the recent infections of humans and cats with the highly
pathogenic avian H5N1 viruses (de Jong et al., 1997; Claas
et al., 1998b; Kuiken et al., 2004; Webster et al., 2005).
Yet, while these examples clearly demonstrate that cross-
species transmission of viruses can occur, it has long
been recognized that barriers exist that limit transmission
of influenza viruses among species (Webster et al., 1992;
Webby and Webster, 2001).

In general, the ability of any given virus to cross from
one species to another is dependent on epidemiological
factors as well as host and viral factors. For example,
some viruses are prevented from entering a new host
species simply by the absence of the appropriate receptor
(Morse, 1997). Other viruses are able to enter the host
cell, yet, they are unable to complete their replication
cycle (Morse, 1997). Many viruses that have demonstrated
the ability to transmit between species that contain RNA
genomes. As viral RNA polymerases lack proofreading
functions, RNA viruses generally demonstrate high muta-
tion rates (for influenza A viruses the mutation rate is
estimated at one point mutation/1.5x10° nucleotides)
(Buonagurio et al., 1986), with consequent potential for
rapid evolution. As this mutation rate is sufficiently high
to yield one or more point mutations in each progeny
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viral genome per round of replication, viral stocks often
represent a population of genomes, a ‘quasispecies’
(Eigen and Schuster, 1977), rather than a homogenous
population (Morse, 1997). This genetic diversity allows
plasticity within the viral population, for example, for
adaptation to a new environment such as a new host
species. Despite this, many viruses show remarkable
genetic stability in their natural hosts. In waterfowl,
influenza viruses are generally highly host-adapted, as
evidenced by low evolutionary rates (‘evolutionary stasis’)
(Gammelin et al., 1990; Gorman et al., 1992; Webster
et al., 1992; Webby and Webster, 2001).

As a general rule, upon introduction into a new
environment (i.e. a new host species), selection of
mutants that are most ‘fit’ (i.e. replicate most efficiently
in the new environment) will be selected from within
the population of virus genomes. The selective pressure
may affect regions in the virus genome that convey a
replication advantage, control species specificity, or
correspond to antigenic sites (Morse, 1997). The genetic
diversity within a virus population is determined by the
balance between the emergence of new mutants and
the extinction of circulating variants through competition
(Ferguson et al., 2003). For human influenza viruses,
selection by the host immune system is thought to be
the driving force in the production of influenza genetic
diversity. As protection conferred by influenza-specific
immunoglobulins decreases with increasing genetic
divergence of the HA, cross-protection tends to decrease
as the antigenic divergence between two strains increases
(Ferguson et al., 2003). Theoretically, this should result in
the selection of antigenically novel strains and subsequent
exponential growth of influenza virus diversity. Yet, at
any given time, human influenza virus strains demon-
strate a surprisingly limited genetic diversity (Ferguson
et al., 2003). Although recent results indicate that multiple
lineages of virus strains are represented in the influenza
virus population (Ghedin et al., 2005), human influenza
virus evolution seems to be characterized by the con-
tinuous replacement of circulating strains (Webster et al.,
1992; Webby and Webster, 2001). In fact, phylogenetic
analyses suggest that genetic evolution of human influ-
enza viruses follows a multi-strain population dynamic,
in which 95% of strains are maintained in the population
for less than one year. Only approximately 1% of
influenza virus strains will become established in the
human population on a global scale (Fitch et al., 1997;
Ferguson et al., 2003). More recent results by Wolf and
colleagues (Wolf et al., 2006) indicate that evolution of
human influenza viruses may not be linear, but rather
occurs in periods of rapid fitness change (and displace-
ment of old lineages with new dominant ones), followed
by intervals of relative evolutionary stasis of the influenza
virus genome. These periods of stasis are characterized by
generally neutral sequence substitutions without apparent
changes in the antigenic properties of the virus and, thus,
only slow extinction of coexisting virus lineages (Wolf
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Fig. 1. Schematic diagram of structural components of
influenza A virus. Three integral membrane proteins — HA,
NA, and the ion channel protein (M2) — are embedded in the
lipid envelope of the virion. The matrix protein (M1)
underlies the lipid envelope. Associated with the viral RNA
is the polymerase complex, consisting of PA, PB1, and PB2.
The viral nucleoprotein (NP) encapsidates the viral RNA
segments.

et al., 20006). Regardless of the selection mechanisms
involved, the subsequent step in virus emergence hinges
on the virus’s ability to maintain itself in the new popu-
lation. This step requires efficient transmission of the virus
among individuals of the new species and is dependent
on viral factors (such as replication potential), population
factors (such as host density), and host factors (such as
immune status and response to the pathogen) (Morse,
1997).

Given the plasticity of the virus genome, influenza
fulfills the prerequisites of a virus with emerging disease
potential (Webster ef al., 1993). It is highly likely that
sometime in the near future a ‘new’ influenza A virus, be
it one of the H5N1 viruses currently circulating in the
wild bird population in large parts of Asia or a different
virus, will be able to emerge from its animal reservoir
to cause widespread disease in mammalian species. The
impact of influenza in humans and animals, whether
measured by morbidity, mortality or economic losses, is
substantial. It is, therefore, essential to understand the
precise epidemiological and molecular mechanisms
that allow these viruses to jump species barriers and
establish themselves in new populations. This review
focuses on transmission of viruses between species,
discussing both direct transmission of viruses from
aquatic birds to mammals and virus transmission between
mammalian species. This also includes a discussion of
the molecular factors that are thought to affect influenza
virus species specificity.

Etiology

Influenza viruses are members of the family Orthomyx-
oviridae and are enveloped viruses with segmented,
single-stranded, negative-sense RNA genomes (schemati-
cally depicted in Fig. 1). The Orthomyxoviridae comprise
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five genera; influenza A, B, and C viruses, thogotovirus,
and isavirus (Wright and Webster, 2000). Influenza A
viruses are distinguished from types B and C based on
genetic and antigenic differences in their nucleoprotein
(NP) and matrix (M) proteins. In addition, influenza A
and B viruses contain eight separate segments of single-
stranded RNA, whereas influenza C viruses possess only
seven. In contrast to influenza A viruses that infect a
wide variety of animals, influenza B viruses are primarily
human pathogens. Influenza C viruses have most com-
monly been isolated from humans, but these viruses
can also infect pigs and dogs (Ohwada et al., 1987;
Manuguerra et al., 1993).

Influenza A virions possess a host-cell-derived lipid
envelope, are 80-120 nm in diameter, and, if propagated
in eggs or cell culture, have a fairly regular spherical
appearance. In contrast, on initial isolation from humans
or animals, influenza A viruses exhibit pleomorphism
(Lamb and Krug, 2006). Embedded in the lipid envelope
are the HA and NA, forming about 500 spikes radiating
outward, and the integral M2 protein, which functions
as an ion channel (Lamb and Krug, 2006). The HA serves
as the viral receptor-binding protein and mediates
fusion of the virus envelope with the host cell membrane
(Wharton et al., 1989; Skehel and Wiley, 2000). Each
monomer of the trimeric HA protein consists of a globular
head, made up exclusively of HA1, and a stalk, which
consists of all of HA2 and parts of HA1 (Lamb and
Krug, 2006). The globular head portion contains the
receptor-binding site, which is comprised of an antibody-
inaccessible pocket. Thus protected from immunological
pressure, the amino acid residues located in the receptor-
binding site are largely conserved among subtypes
(Wilson et al., 1981; Wharton et al., 1989; Skehel and
Wiley, 2000). The HA is the major target of the host
humoral immune response. There are five antigenic
regions that cover much of the surface of the globular
head portion of the molecule. Host immune pressure is
the driving force in selecting mutant viruses with amino
acid substitutions in these antigenic sites, a process also
referred to as ‘antigenic drift’ (Fig. 2) (Wharton et al.,
1989; Lamb and Krug, 20006).

The NA is a type II integral membrane protein and
is the second large glycoprotein embedded in the influ-
enza virus envelope (Varghese et al., 1983; Colman et al.,
1987). The NA is responsible for the cleavage of the
a-ketosidic linkage between a sialic acid (SA) mole-
cule and an adjacent sugar residue (Gottschalk, 1957).
Biologically, the protein assists in the release of budding
virus particles by removing SA residues from the viral
glycoproteins as well as the infected cell (Palese et al.,
1974; Bucher and Palese, 1975; Air and Laver, 1989). More
recent data also indicate that the NA plays an essential
role in virus invasion of the respiratory tract by catalyzing
the cleavage of the a-ketosidic linkage between the
terminal SA and the adjacent sugar residue in mucus
(Castrucci and Kawaoka, 1993; Matrosovich ef al., 2004b).
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Fig. 2. Schematic diagram illustrating antigenic drift. The
influenza A virus RNA polymerase lacks proofreading
function. The mutation rate of the influenza virus genome
is sufficiently high to yield one or more point mutations
(represented by the ‘X’) in each progeny viral genome per
round of replication. Host immune pressure is the driving
force in the selection of mutants with amino acid substi-
tutions in antigenic sites on the HA and NA envelope
glycoproteins.

Like the HA, the NA contains antigenic determinants and
undergoes substantial antigenic variation in response to
immune pressure (Wright and Webster, 2000).

The M2 protein, the third envelope glycoprotein
present in the influenza virion, serves as an ion channel
(Pinto et al., 1992; Wang et al., 1993; Holsinger et al.,
1994). The M2 ion channel is activated at low pH and
allows hydrogen ions to enter the virion during un-
coating. In addition, M2 modulates the pH of the Golgi
apparatus, thus preventing premature conformational
change of the HA protein prior to virus assembly (Hay,
1992; Cleverley et al., 1997; Liu and Ye, 2002; Wright and
Webster, 2006). The M1 protein is the most abundant
protein present in the influenza virion. M1 lies beneath
the lipid envelope, providing rigidity to the membrane
that surrounds the eight ribonucleoprotein (RNP)
complexes (Lamb and Krug, 2006). Each RNP complex
consists of a single RNA segment, encapsidated by NP
molecules, as well as the three polymerase proteins PA,
PB1, and PB2 (Lamb and Krug, 2006; Noda et al., 2006).
The segmented nature of the influenza virus genome is
a key feature of the influenza virus structure. In the
event that cells are infected with two (or more) different
viruses, exchange of RNA segments between the viruses
allows the generation of progeny viruses containing a
novel combination of genes (‘genetic reassortment’). In
theory, genetic reassortment could potentially lead to
the creation of 254 new gene combinations from two
parental viruses (Wright and Webster, 20006).

Influenza viruses encode two ‘non-structural’ (NS)
proteins NS1 and NS2. While the NS2 or nuclear export
protein (NEP) was originally thought to be non-structural,
it has since been found to be a part of the influenza
virion (Richardson and Akkina, 1991; Yasuda et al,
1993). In contrast, although NS1 is abundantly present
in infected cells during virus replication, the protein is not


https://doi.org/10.1017/S1466252307001272

Gabriele A. Landolt and Christopher W. Olsen

incorporated into progeny virions (Wright and Webster,
2006).

Impact of influenza A virus infections

The incidence of influenza A virus infection in the human
population varies significantly from year to year and is
dependent on the attack rate, virulence of the circulating
strain, and on the degree of immunity of individuals in
the population (Alexander and Brown, 2000). Never-
theless, the impact of yearly human influenza epidemics
is substantial, resulting in an average of 114,000 hospital-
izations, 36,000 deaths and up to $10 billion in medical
costs and lost income in the United States alone (Klimov
et al., 1999; Cox and Subbarao, 2000; Bridges et al., 2002a,
2003; Thompson et al., 2003). In temperate climates,
influenza epidemics typically occur in the winter months.
In contrast, in the tropics the disease can occur year
round (Cox and Subbarao, 2000). Due to antigenic drift,
the antigenicity of circulating influenza viruses is con-
stantly changing. This allows the drift variants to infect
individuals that were immune to previously circulating
influenza strains (Cox and Subbarao, 2000; Subbarao
et al., 2006). Therefore, the influenza viruses included in
human vaccines have to be reviewed and potentially
updated each year to keep pace with antigenic drift (Cox
and Subbarao, 2000; Subbarao et al., 2006). Influenza
surveillance is coordinated by the World Health Organi-
zation’s (WHO) global influenza surveillance program.
The most dramatic consequences of influenza are
associated with the periodic occurrence of influenza
pandemics. Influenza pandemics are defined as global
outbreaks of disease due to the emergence of viruses that
contain envelope glycoproteins to which the human
population is immunologically naive (Horimoto and
Kawaoka, 2001). In modern times, pandemics occurred
in 1918 (‘Spanish flu’, HIN1), 1957 (‘Asian flu’, H2N2),
1968 (‘Hong Kong flw’, H3N2), and on a much more
limited scale in 1977 (‘Russian flu’, HIN1) (Webster et al.,
1992; Cox and Subbarao, 2000; Horimoto and Kawaoka,
2001; Wright and Webster, 2006). The devastation that
influenza pandemics can cause was clearly demonstrated
by the 1918 ‘Spanish flu’ pandemic that killed an
estimated 40-50 million people worldwide (Crosby,
1989; Taubenberger et al., 2000; Potter, 2001; Tauben-
berger, 2003). Projections of the impact of the next
influenza pandemic in the United States alone include
89,000-207,000 deaths, 314,000-734,000 hospitalizations,
and up to $166 billion in direct costs (Meltzer et al., 1999;
Ferguson, 2006; Layne, 2006; Maldin and Criss, 2006).
While ‘fowl plague’, the disease caused by highly
pathogenic avian influenza (HPAD viruses in poultry, has
been recognized since the late 18th century, the close
relationship between the infectious agents causing ‘fowl
plague’ and mammalian influenza was not demonstrated
until 1955 (Webster et al., 1992; Alexander and Brown,
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2000). HPALI viruses are restricted to H5 and H7 subtypes
and clinical signs associated with infection in birds vary
according to the species, age, virus strain, and environ-
mental factors involved (Webster et al., 1992; Alexander
and Brown, 2000; Swayne and Suarez, 2000; Mutinelli
et al., 2003; Jones and Swayne, 2004; Ramirez et al.,
2005; Isoda et al., 2006). Typically, HPAI viruses are not
maintained in the wild waterfowl population, but are
thought to appear by introduction of H5 and H7 low-
pathogenicity avian influenza viruses (LPAD in land-
based poultry and subsequent mutation to HPAI in
these birds (Rohm et al., 1995; Subbarao et al., 2006).
Clinical signs associated with HPAI infection may include
cessation of egg laying, high fever, subcutaneous and
internal hemorrhages, necrosis of the comb and wattles,
edema of the head and neck, and cyanosis of the
unfeathered skin (Alexander and Brown, 2000; Swayne
and Suarez, 2000; Ramirez et al., 2005; Isoda et al., 2006).
In contrast to LPAI viruses, which cause only mild
respiratory disease and minimal to no mortality, HPAI
viruses spread systemically and infection often rapidly
results in death (Swayne and Suarez, 2000). Therefore,
outbreaks of HPAI often carry severe consequences
for animal health as well as the economy of the region
where they occur. For example, the outbreak of HPAI
in Pennsylvania in the early 1980s resulted in 17 million
culled birds, including chickens, turkeys, chukar par-
tridges, and guinea fowl, and cost more than 60 million
dollars to eradicate (Acland et al., 1984; Subbarao et al.,
2006). The outbreak of HPAI H5N1 virus in Hong Kong
in 1997 resulted in the culling of 1.4 million chickens
and other in-contact birds (Subbarao et al., 2006). Lastly,
hundreds of millions of domestic poultry have died or
have been culled to prevent the spread of the avian H5N1
virus and the economic impact the disease has had on
affected countries is estimated to exceed 10 billion dollars
(Kilpatrick et al., 2006). In the past, most outbreaks of
HPAI were caused by a single lineage of HPAI virus.
Moreover, as a result of extensive eradication programs,
the virus was eliminated from the domestic bird popu-
lation in less than a year (Subbarao et al., 2006). The Asian
H5N1 outbreaks appear to follow a different pattern and
have been characterized by the detection of multiple
reassortant viruses in domestic poultry (Guan et al., 2003).
Apart from the substantial socioeconomic implications
of HPAI infection in poultry, transmission of H5N1 and
H7N7 viruses to humans have clearly demonstrated the
significant zoonotic threat these viruses pose (de Jong
et al., 1997, Claas et al., 1998b; Fouchier et al., 2004;
Webster et al., 2005). By February 2007, the re-emergence
of H5N1 HPAI in Asia and subsequent spread of the
viruses to Europe and Africa, has resulted in 274 human
cases, including 167 deaths (www.who.int/csr/disease/
avian_influenza/en).

Although a recent study demonstrated the potential
of low-pathogenic avian influenza virus to cause clinical
disease in wild birds (van Gils et al., 2007), influenza
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infection in waterfowl typically is thought to result only
in subclinical infection in these animals (Webster et al.,
1978, 1992). The viruses preferentially replicate in the
duck intestinal tract and are shed in high concentrations
in the feces, thereby contaminating the lakes and ponds
the birds visit (Halvorson et al., 1983; Webster et al., 1992;
Laver et al., 2000). As viruses of all 16 HA and nine NA
subtypes are maintained in aquatic birds, particularly in
migrating waterfowl, these birds represent a vast global
reservoir of influenza (Halvorson et al., 1983; Webster
et al., 1992; Laver et al., 2000). Indeed, viruses of avian
origin have been the source of outbreaks of influenza
in mammals, such as seals, whales, mink, pigs, and
horses (Geraci et al., 1982; Hinshaw er al., 1984, 1986;
Klingeborn et al., 1985; Chambers et al., 1989; Guo et al.,
1992; Callan et al., 1995; Shortridge et al., 1995; Guan
et al., 1996; Brown et al., 1997; Karasin et al., 2000a).
Swine influenza, first clinically recognized in pigs
during the late summer and fall of 1918 (Koen, 1919),
has remained of substantial importance to the swine
industry throughout the world (Webster et al., 1992,
Alexander and Brown, 2000; Olsen, 2002). Infection of
pigs can pose serious economic consequences because
of the prolonged time needed for affected pigs to
reach slaughter weight (Janke, 1998). Clinical signs of
influenza in pigs are similar to those observed in humans,
and infections are manifested as outbreaks of acute
respiratory disease characterized by fever, inactivity,
decreased food intake, coughing, sneezing, and nasal
discharge (McQueen et al., 1968; Alexander and Brown,
2000; Kothalawala et al., 2006; Subbarao et al., 20006).
In addition to the epizootic form of disease, influenza
viruses are part of the porcine respiratory disease com-
plex, acting in concert with other swine respiratory
pathogens such as Mycoplasma hyopneumoniae, porcine
reproductive and respiratory syndrome virus (PRRSV),
and bacterial agents of pneumonia (Thacker et al., 2001).
Since first diagnosed during an epidemic of respiratory
disease in Eastern Europe in 1956 (Sovinova et al., 1958),
outbreaks of equine influenza have occurred regularly
throughout most of the world. The clinical signs observed
are similar to those seen in pigs and humans and disease
severity is dependent on immune status, infecting dose
and virus strain (Wilson, 1993; Hannant and Mumford,
1996). In vaccinated animals, the disease is rarely fatal,
but deaths have been reported during some epidemics,
particularly in donkeys (Wilson, 1993; Alexander and
Brown, 2000). Severe epidemics have occurred relatively
recently in India (Uppal et al, 1989), the People’s
Republic of China (Guo et al., 1992; Shortridge et al.,
1995), and South Africa (Guthrie ef al., 1999). In devel-
oped countries, equine influenza infections can largely
be managed by vaccination and by resting of affected
animals. In many other parts of the world, however,
horses, donkeys and mules remain as principal working
animals and influenza virus outbreaks can have severe
socioeconomic impacts (Shortridge et al., 1995).
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Additional animal species from which influenza A
viruses have been isolated include seals, mink, whales,
feral and domestic cats, and dogs. In 1979-1980, harbor
seals populating the northeastern coast of the United
States died of respiratory disease, characterized by severe
pulmonary consolidation. Influenza viruses, subtyped
as H7N7, were demonstrated in the lungs and brains
of the affected animals (Geraci et al., 1982). Additional
isolates from seals have included H3N3 and H4NG6
influenza viruses (Hinshaw et al., 1984; Callan et al.,
1995). Viruses of H13N2, H13N9, and HIN3 subtypes
have been detected in the lungs of whales (Lvov et al.,
1978; Hinshaw et al., 1986; Chambers et al., 1989) and
avian origin H10ON4 viruses, causing systemic infection
and disease, were isolated from farm-raised mink
(Klingeborn et al., 1985). Since 2004, infections of exotic
and domestic cats with H5N1 HPAI viruses were
documented on multiple occasions in Asia, the Middle
East, and Europe (Kuiken et al., 2004, 2006; Rimmelzwaan
et al., 2006; Songsermn et al., 2006a; Yingst et al., 2000;
Leschnik et al., 2007), of dogs in Thailand (Butler, 2000;
Songsermn et al., 2006b), and of a stone marten in
Germany (www.who.int/cst/con/2006_03_09a/en/index.
htmD). Lastly, in the spring of 2004, an influenza virus
was isolated from lung tissues of greyhound dogs that
had died from hemorrhagic pneumonia (Crawford et al.,
2005). Sequence analysis of the viral genome revealed
that the canine isolate was closely related to and had
evolved from a contemporary equine H3N8 virus (Peek
et al., 2004; Crawford et al., 2005). Since then, canine
influenza viruses have spread across large parts of the
country and appear to have established themselves in
the dog population of the United States (Crawford
et al., 2005).

Influenza virus ecology
The avian reservoir

Influenza pandemics are precipitated by an ‘antigenic
shift’, which describes the replacement of the predomi-
nantly circulating influenza virus subtype with a novel HA
subtype, to which the human population has not recently
been exposed (Fig. 3) (Webster et al., 1992; Wright and
Webster, 2006). This novel virus can then evade immune
surveillance and replicate largely unimpeded in the
immunologically naive population. Historically, only a
limited number of subtypes of influenza viruses have
been associated with infection of mammals. For example,
in humans only viruses of H1, H2, H3, N1, and N2 sub-
types have circulated widely in the population (Webster
et al., 1992; Alexander and Brown, 2000), in horses
influenza infections have been largely restricted to viruses
of H7N7 and H3N8 subtypes (Webster, 1993; Wilson,
1993; Alexander and Brown, 2000), and only H1, H3,
N1, and N2 subtypes have been consistently isolated
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Fig. 3. Schematic diagram illustrating genetic reassortment.
In the event that cells are infected with two (or more) dis-
tinct influenza viruses, the exchange of RNA gene segments
between viruses allows the generation of progeny viruses
containing novel combinations of genes. If such a reassort-
ment event results in the introduction of a novel HA subtype,
the new virus can escape neutralizing antibodies (‘antigenic
shift’).

from pigs (Webster et al., 1992; Olsen, 2002). The most
widely accepted theory of how pandemic viruses emerge
is that a virus with a novel subtype is introduced into
the human population through transfer from the avian
reservoir (Fig. 4), with or without genetic reassortment
(Webster et al., 1992, 1993; Horimoto and Kawaoka, 2001;
Webby and Webster, 2001). This theory is supported
by phylogenetic studies demonstrating that the ‘Spanish
flu’ pandemic was caused by a virus that derived all its
genes from an avian virus (Tumpey et al., 2005), as well
as the finding that the pandemic strains of 1957 and
1968 arose from genetic reassortment of contemporary
human and avian influenza viruses (Gething et al., 1980;
Fang et al., 1981; Kawaoka et al., 1989). Several other
findings highlight the importance of the avian reservoir.
For example, there exists ample genetic evidence that
viruses from aquatic birds were the ancestral precursors
of all contemporary influenza virus lineages present
in other species (Gammelin et al., 1990; Gorman et al.,
1991; Webster et al., 1992; Webster, 1998). In addition,
direct transmission of an avian virus to horses resulted
in the severe equine influenza epidemic that occurred in
the Jilin and Heilongjiang Provinces in the northeast
of the People’s Republic of China in 1989 (Guo et al.,
1992). Lastly, there have been several well-documented
occasions on which direct avian-to-swine transmissions
of viruses have occurred (see below).

Yet, despite these examples, evidence also supports
the existence of barriers that limit the transmission of
influenza viruses from birds to mammals. For instance,
prior to 1997 there were only three reports of human
infections with avian influenza viruses (Campbell et al.,
1970; Taylor and Turner, 1977; Webster et al., 1981).
Although direct avian-to-human transmission of H5N1,
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HIN2, and H7N7 viruses have been described since then
(de Jong et al., 1997; Claas et al., 1998a; Lin et al., 2000;
Bridges et al., 2002b; Hatta and Kawaoka, 2002; Uyeki
et al., 2002; Katz, 2003; Fouchier et al., 2004; Webster
et al., 2005), these avian viruses still appear not to have
developed the ability to transmit efficiently from person
to person [examples of suspected, limited human-to-
human spread of H5N1 virus notwithstanding (Gilsdorf
et al., 2006; Kandun et al., 2006)]. Yet, the ability to
transmit efficiently among humans is considered to be
one of the chief prerequisites for pandemic emergence
of an influenza virus (de Jong et al., 1997; Cox and
Subbarao, 2000; Taubenberger and Morens, 20006).

In general, avian influenza viruses do not replicate
well in humans and non-human primates, and vice versa,
human viruses typically do not replicate well in birds
(Hinshaw et al., 1978, 1983; Webster et al., 1978; Murphy
et al., 1982; Snyder et al., 1987; Beare and Webster, 1991).
Given this limited capacity for direct avian-to-human
transmission, it is debatable whether the creation of
pandemic viruses rests solely in either species. Rather, it
is hypothesized that the emergence of an avian virus
with pandemic potential requires prior adaptation in an
intermediate host. Viral adaptation at the molecular level
would then result in an avian-lineage virus with the
ability to spread efficiently among humans (Scholtissek
et al., 1983; Scholtissek and Naylor, 1988; Scholtissek,
1990; Webster et al., 1992; Brown, 2000b; Ito, 2000).

The role of intermediate hosts in the creation
of pandemic viruses

Pigs have been suggested to support two processes that
can lead to the development of influenza viruses with
pandemic potential: adaptation and genetic reassortment.
As avian viruses of virtually all HA subtypes (H1-H13)
were able to infect and replicate in pigs under experi-
mental conditions, these animals have been postulated
as the logical intermediate host in which adaptation of
avian viruses may occur (Kida et al., 1994). In support of
these experimental results are several well-documented
examples of direct avian-to-pig transmission of influenza
viruses that have occurred under natural conditions. For
example, in 1979 a wholly avian HIN1 influenza virus
crossed the species barrier to infect pigs in Europe
(Pensaert et al., 1981). These avian-lineage viruses
subsequently became established in the pig population
throughout much of Europe (Pensaert et al., 1981;
Scholtissek et al., 1983; Donatelli et al., 1991; Schultz
et al., 1991, Brown et al., 1997, Webby and Webster,
2001). Other examples of in toto transmission of avian
viruses to pigs include the transmission of HIN1, H3N2,
H5N1, and HIN2 viruses to pigs in China and Hong Kong
(Kida et al., 1988; Guan et al., 1996; Peiris et al., 2001;
Xu et al., 2004; Choi et al., 2005), as well as infections
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Fig. 4. Schematic representation of influenza A virus cross-species transmission. Research indicates that wild aquatic birds are
the ancestral source of all influenza A viruses present in birds and mammals.

of pigs with H4N6, HIN1, and H3N3 viruses in Canada
(Karasin et al., 2000a, 2004).

Binding of influenza virus to its cellular receptor is
determined by two properties: the SA species [e.g.
N-acetylneuraminic (NeuAc) or N-glycolylneuraminic
(NeuGo) acid] involved, as well as the NeuAc or NeuGc
linkage to galactose residues (e.g. 02,6Gal or o2,3Gal)
on the cell membrane. While avian viruses prefer bind-
ing to SA with o2,3Gal linkages in NeuGc or NeuAc
forms, human lineage viruses preferentially bind to
NeuAco2,6Gal-linked receptors (Suzuki, 1994; Ito, 2000;
Ito and Kawaoka, 2000; Suzuki et al., 2000; Varki, 2001).
This is consistent with the fact that avian intestinal cells
primarily express a2,3-linked receptors, whereas human
tracheal epithelial cells predominantly express 02,6-
linked receptors (Rogers and Paulson, 1983; Suzuki,
1994; Gambaryan et al., 1997; Matrosovich et al., 1997,
Vines et al., 1998; Ito, 2000). Yet, a study by Gambaryan
and colleagues (Gambaryan et al., 2002) demonstrated
that SAs expressed in chickens are not exclusively of
02,3 linkage, supporting the notion that these birds could
act as a potential intermediate host for the transmission
of influenza viruses from aquatic birds to humans. More-
over, Wan and Perez (2006) found that SAs expressed
in the trachea of Japanese quail are of both 02,3 and
02,6 forms. Vice versa, the SAs expressed in the human
airway are also not exclusively of 02,6 linkage. While the
02,6-linked sialyloligosaccharides are the predominant
receptor type expressed on the respiratory epithelial cells
of the human nasal passages and trachea, a recent study
by Matrosovich and colleagues (Matrosovich et al., 2004a)
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indicated that a subset of human tracheal respiratory
epithelial cells also express the «2,3Gal-linked SAs.
Moreover, Shinya and coworkers (Shinya et al., 2006)
found that non-ciliated cuboidal bronchiolar cells, as
well as a substantial proportion of cells lining the
alveolar walls (most likely alveolar type II cells) of the
human lungs, also expressed SAa2,3Gal. The presence
of SAn2,3Gal-bearing cells deep in the human respiratory
tract supports the findings that viruses that have retained
the avian-type receptor specificity can infect humans and
cause lethal disease (Matrosovich et al., 1999).
Nevertheless, efficient transmission of avian viruses
among human beings requires the HA protein to adapt
to preferentially bind to the human-type SA02,6Gal re-
ceptors (Neumann and Kawaoka, 2006). As the respira-
tory epithelial cells of the porcine tracheal epithelium
possess both SA02,3Gal (NeuAc and NeuGce) as well as
SA02,6Gal receptors, pigs may serve as adaptation hosts
in which the switch from avian-type to human-type
receptor preference could occur (Couceiro et al., 1993;
Suzuki et al., 1997; Tto et al., 1998; Ito, 2000). For instance,
an avian virus may initially infect pigs by employing
SA02,3Gal receptors. With continued replication in pigs,
the virus may then adapt its receptor specificity to
NeuAco2,6Gal, thus providing a potential link from birds
to humans (Ito et al., 1998; Ito, 2000). This scenario is
particularly attractive in light of the fact that adaptation
of the HA receptor-binding preference was observed after
introduction of the avian HIN1 influenza virus into pigs
in Europe in 1979 (Rogers and D’Souza, 1989; Ito, 2000).
Also, the subsequent recovery of these viruses from
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human patients in The Netherlands (Rimmelzwaan et al.,
2001) confirmed that these viruses had also become
infectious for human beings.

Secondly, since pigs are also susceptible to infection
with human lineage viruses (Kundin, 1970; Shortridge
et al., 1977, Hinshaw et al., 1978; Nakajima et al., 1982;
Ottis et al., 1982; Mancini et al., 1985; Bean et al.,
1992; Shu et al., 1994, Bikour et al., 1995; Brown et al.,
1995; Nerome et al., 1995; Karasin et al., 2000c; Song
et al., 2003), these animals may serve as ‘mixing vessel’
hosts for genetic reassortment between human and avian
viruses. According to this hypothesis, if two or more
distinct influenza viruses co-infect a pig, the viruses can
exchange RNA segments during replication, which can
lead to the creation of new virus variants (Scholtissek,
1990). While there is no direct evidence that the
reassortment events leading to the 1957 or 1968 pandemic
viruses occurred in pigs, genetic reassortment between
human-like H3N2 and avian-like HIN1 viruses has
happened more recently among pigs in Europe (Castrucci
et al., 1993). The resulting reassortant viruses contained
mammalian HA and NA surface glycoproteins, while
maintaining the avian internal genes (Castrucci et al.,
1993; Brown et al., 1998). And importantly, reassortant
H3N2 and HIN2 viruses were subsequently also isolated
from humans in Europe and Hong Kong (Claas et al.,
1994; Gregory et al., 2001, 2002). Additional support for
the ‘mixing vessel’ theory comes from the demonstration
of 2-way (human/swine) and 3-way (avian/human/
swine) reassortant viruses of H3N2, HIN2, HIN1, and
H3N1 subtypes that have emerged in pigs since 1998
(Zhou et al., 1999a; Karasin et al., 2000b, ¢, 2002, 2006;
Webby et al., 2000, 2004; Choi et al., 2002; Song et al.,
2003; Lekcharoensuk et al., 2006; Ma et al., 2006; Olsen
et al., 2006). In the United States, these reassortant viruses
have subsequently spread widely within the country’s
swine population. However, equally important to note is
the fact that persistent circulation of human influenza
viruses in swine populations, though likely to facilitate the
development of a pandemic virus in pigs through genetic
reassortment, has occurred relatively rarely (Hinshaw
et al., 1978; Easterday, 1980; Ito, 2000). Consequently, it
has been suggested that, as with maintenance of avian
influenza viruses in the swine population, efficient infec-
tion of pigs with human influenza viruses may require
mutational adaptation of the virus to the new swine host
(Brown, 2000b; Lipatov et al., 2004). In support of this
notion are recent data demonstrating limited infectivity
of a human virus following experimental infection of
pigs (Landolt et al., 2003, 2006).

For many vyears pigs have been considered the
leading candidate for the intermediate host for avian-to-
mammalian influenza virus adaptation; however, recent
data suggest that terrestrial poultry, such as quail,
chickens, and turkeys, may also play a central role in
the emergence of viruses with pandemic potential.
Surveillance in live bird markets in China, as well as
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experimental infection studies, demonstrated that land-
based birds support replication of a variety of subtypes of
avian influenza viruses (Liu et al., 2003a, b; Perez et al.,
2003). More importantly, H5N1 and HON2 viruses isolated
from land-based poultry were found to have lower
affinity for SA02,3Gal than their respective counterparts
isolated from aquatic birds (Matrosovich et al., 1999, 2001;
Saito et al., 2001), suggesting that land-based poultry may
serve as adaptation hosts for the conversion of SAa2,3Gal
to SA02,6Gal receptor preference (Matrosovich et al.,
2001; Perez et al., 2003; Li et al., 2004). This is con-
sistent with the fact that both SAa2,3Gal and SAa2,6Gal
receptors are expressed in trachea of these birds
(Gambaryan et al., 2002; Wan and Perez, 2006). The
potential significance of terrestrial poultry as intermediate
hosts is further highlighted by the finding that H7N3
viruses circulating since 2002 in the turkey population
of Northern Italy were closely related to H7N3 strains
isolated from wild ducks in 2001 (Capua et al., 2002; Abe
et al., 2004; Campitelli et al., 2004). Serological studies
conducted in human beings with close contact with
infected turkeys indicated that zoonotic transmission
of the H7N3 viruses had also occurred (Puzelli et al.,
2005). Yet, despite these examples, recent data demon-
strated that human and swine lineage influenza viruses
were unable to replicate efficiently in terrestrial birds
(Makarova et al., 2003). Therefore, it appears that pigs
remain the most likely domestic animal species in which
genetic reassortment between avian and human viruses
may occur.

Direct transmission between mammalian species

While the previous examples clearly illustrate the
importance of the avian reservoir as a source of novel
virus strains, influenza viruses of different genotypes and
subtypes occasionally also can transmit between two
mammalian species. The appearance of the ‘Spanish flu’
virus in 1918 might have involved this mechanism.
Sequence data of the 1918 strain (Belshe, 2005; Tumpey
et al., 2005), as well as seroepidemiological studies of
survivors of the 1918 pandemic, demonstrate that the
pandemic 1918 HIN1 virus and the earliest swine HIN1
viruses were very closely related (Taubenberger et al.,
2000; Taubenberger and Morens, 20006). More recently,
direct swine-to-human zoonotic transmission of influenza
viruses has been documented on several occasions
(Alexander and Brown, 2000; Myers et al., 20006),
including in North America (Hinshaw et al., 1978; Dacso
et al., 1984; Patriarca et al., 1984; Rota et al., 1989;
Wentworth et al., 1994, 1997; Kimura et al., 1998; Gaydos
et al., 2006; Olsen et al., 2006), Europe (Claas et al., 1994;
Rimmelzwaan et al., 2001; Gregory et al., 2003), and Asia
(Gregory et al., 2001). Furthermore, serologic evidence
collected from pig farm workers indicates that zoonotic
infection may occur more often than the number of virus
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isolation reports suggests (Schnurrenberger et al., 1970;
Campitelli et al., 1997; Olsen et al., 2002; Ayora-Talavera
et al., 2005).

Apart from swine-to-human transmission of viruses,
there exist only a handful of reports documenting
zoonotic transmission of viruses involving other mam-
malian species. For instance, experimental infection
of human volunteers with H3 equine-lineage viruses
produced influenza-like illnesses associated with virus
shedding and subsequent seroconversion (Couch et al.,
1969; Kasel and Couch, 1969). Conversely, occasional
human-to-equine transmission of HIN1, H2N2, and H3N2
viruses has been reported (Tumova, 1980; Heilman and
La Montagne, 1990) and experimental infection of
horses with human H3N2 viruses demonstrated their
susceptibility to infection with human viruses (Kasel
and Couch, 1969). However, there is no evidence that
horse-to-human or human-to-horse transmission rou-
tinely occurs under natural conditions. Lastly, data from
serosurveillance and experimental challenge studies
indicate that human-lineage viruses occasionally cross
the species barrier to infect dogs (Ado and Titova, 1959;
Nikitin et al., 1972; Paniker and Nair, 1972; Bibrack, 1975;
Bibrack et al., 1975; Chang et al., 1976; Houser and
Heuschele, 1980). However, while these results indicate
that dogs are susceptible to infection with human
influenza viruses, infection did not result in clinical
disease (Todd and Cohen, 1968; Bibrack, 1975; Bibrack
et al., 1975; Chang et al., 1976; Houser and Heuschele,
1980) and these viruses did not spread efficiently among
dogs (Nikitin et al., 1972). In contrast, recent infections of
dogs with an equine H3N8 virus have been associated
with clinical signs of respiratory illness (including fatal
hemorrhagic pneumonias), and recovery of virus from
dogs from across the country, as well as serological
evidence, indicate the spread and apparent maintenance
of the virus within the canine population of the United
States (Crawford et al., 2005).

Molecular determinants of species specificity

As the preceding paragraphs demonstrate, cross-species
transmissions of influenza A viruses occur relatively
frequently. Yet, in many instances, these transmission
events tend to be self-limiting and the newly introduced
viruses are only rarely maintained in the new host species
(Webster et al., 1992). It has long been recognized that
influenza A viruses exhibit partial restriction of their
host range. Moreover, a number of subtypes of influenza
viruses are rarely detected in animals other than their
typical host (Webster et al., 1992; Webby and Webster,
2001), suggesting that specific subtypes differ in their
ability to cross the species barrier (Brown, 2000a). While
the viral and host factors that determine influenza virus
host range are only incompletely understood, evidence
has accumulated over the vyears indicating potential
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contributions by all eight gene segments (Scholtissek
et al., 1985; Tian et al., 1985; Snyder et al., 1987, 1990;
Murphy et al., 1989; Webster et al., 1992; Castrucci and
Kawaoka, 1993; Subbarao et al., 1993; Horimoto and
Kawaoka, 2001; Hatta et al., 2002; Li et al., 2005; Dalton
et al., 2006; Neumann and Kawaoka, 2006). Examination
of the contributions of individual viral proteins to host
range restriction is complicated by a number of factors.
For one, mutations often appear not in just one, but
in multiple gene segments during the process of virus
adaptation to a new host species. For example, sequence
analysis of six human H5N1 isolates revealed that the
viruses had acquired a variety of amino acid substitutions,
affecting not only their HA, but also the internal proteins
(PB2, PB1, PA, NP, M, and NS) (Suarez et al., 1998,
Bender et al., 1999; Hiromoto et al., 2000). As some of
the substitutions in NP, PB2, and M2 occurred in sites
previously defined as potential species-specific signatures
of human versus avian H5N1 isolates, these mutations
may indeed reflect adaptation of the virus to the new
host species (Zhou et al., 1999b; Hiromoto et al., 2000).
However, some of the other substitutions could also
have been introduced in response to host immunological
pressure or they may simply represent spurious mutations
(Zhou et al., 1999b; Hiromoto et al., 2000). To complicate
matters further, specific constellations of gene segments
may be involved in controlling influenza virus species
specificity. This notion is supported by the finding that
during the reassortment events that led to the creation
of the 1957 and the 1968 pandemic strains, both viruses
acquired the avian HA and PB1 genes (as well as the
avian NA in 1957) (Kawaoka et al., 1989). Yet, despite
such complexities, several genes appear to play domi-
nant roles in controlling influenza host range, and the
following paragraphs will review the current knowledge
of the molecular determinants of influenza host range.

HA

Due to its role as the viral receptor-binding protein, many
investigators have focused their attention on the HA as
the primary determinant of host range, and over the years
a large body of evidence has accumulated indicating
that the HA is, in fact, a key player in influenza virus
species specificity (Chambers et al., 1989; Aytay and
Schulze, 1991; Inkster et al., 1993; Vines et al., 1998,
Bender et al., 1999; Ito et al., 1999; Suzuki et al., 2000;
Hatta et al., 2002; Romanova et al., 2003; Medeiros et al.,
2004). As previously discussed, avian influenza viruses
bind preferentially to SA02,3Gal, while human lineage
influenza viruses prefer 02,6-linked SA receptors. Analysis
of the three-dimensional structure of the H3 HA from
human influenza viruses has revealed that the binding
site that accommodates the SA receptor is a shallow
pocket, formed by amino acid residues that are fairly
highly conserved among virtually all subtypes and strains
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of influenza A viruses (Wright and Webster, 2000).
Research has demonstrated that subtle differences in the
amino acid residues that form the binding site can result
in alterations of the receptor-binding properties of the
HA molecule. For example, analysis of the HA gene of
the 1968 pandemic strain by Bean and coworkers (Bean
et al., 1992) revealed that fewer than six amino acid
residues in the HA of the 1968 Hong Kong pandemic
virus were altered in the process of avian-to-human
transmission. All of the mutations occurred in the globular
head portion of the HA and included amino acid
substitutions at positions 62, 144, 193, and 226 (Bean
et al., 1992). The mutation affecting residue 226 was
found to be of particular interest in regard to receptor-
binding specificity. Leucine (Lew)-226 was found to
confer SA02,6Gal specificity in human H2 and H3, but
not H1, viruses (Matrosovich et al., 2000; Skehel and
Wiley, 2000), whereas glutamine (Gln) at position 226
correlates with SA02,3Gal preference in avian and equine
H3 viruses (Naeve et al., 1984; Vines et al., 1998). With the
exception of a few early isolates, human viruses with
Leu at position 226 typically contain serine (Ser) at residue
228, while glycine (Gly)-228 is associated with GIn-226
in avian viruses (Naeve er al., 1984; Vines et al., 1998).
While there exists less evidence for its role in receptor
specificity compared to residue 226, in most human H3
viruses, Ser at residue 193 is associated with SA02,6Gal
specificity, while asparagine (Asn) or lysine (Lys)-193 is
associated with SA02,3Gal specificity in avian and equine
H3 viruses (Medeiros et al., 2004). Aspartic acid (Asp)-190
was found to determine SAo2,6Gal specificity in human
and swine H1 isolates, whereas glutamic acid (Glu)-190
correlates with the avian-type receptor-binding prefer-
ence (Gammelin et al., 1990; Kobasa et al., 2004; Stevens
et al., 2004). Finally, both single and combined mutations
of the amino acid residues at position 182 (Asn to Lys)
or position 192 (Gln to arginine) converted the receptor-
binding specificity of avian H5N1 viruses to the human-
type SA02,6Gal receptor specificity (Yamada et al., 2006).

In addition to the amino acid sequence of the HA
molecule, receptor-binding specificity is also influenced
by the number and position of N-linked oligosaccharides
at or around the receptor-binding site (Deom et al., 1986;
Aytay and Schulze, 1991; Gunther et al., 1993; Inkster
et al., 1993; Matrosovich et al., 1997; Gambaryan et al.,
1998; Baigent and McCauley, 2001; Banks and Plowright,
2003; Abe et al., 2004). Variation of glycosylation
around the receptor-binding site can often be observed
following adaptation of a virus to growth in a new host
species or cell line. For example, adaptation of influenza
viruses to growth in eggs (Robertson et al., 1993; Banks
and Plowright, 2003; Romanova et al., 2003), in mice
(Gitelman et al., 1986), or in mammalian cell lines
(Crecelius et al., 1984; Gunther et al., 1993; Robertson
et al., 1995; Romanova et al., 2003), resulted in alterations
in glycosylation patterns. Furthermore, glycosylation
patterns of the HA may be directly associated with
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species specificity. This is illustrated by the fact that a
glycosylation site at position 63, commonly found in H3
viruses of human origin, is absent in avian-lineage
H3 viruses (Kida et al., 1988). Moreover, research
demonstrated that adaptation of the HIN1 human strain
A/USSR/90/77 to mice resulted in the loss of glycosylation
sites at either position 131 (Asn to Asp) alone or in
combination with position 94 (Thr to Ala). Growth of the
virus in a mammalian cell line [Madin Darby canine
kidney (MDCK) cells] led to the selection of variants
with a single mutation at position 131 (Asn to Asp),
indicating that the carbohydrate group attached to Asn-

131 may affect host range (Gitelman et al., 1986,
Gambaryan et al., 1998).
Competitive inhibitors, such as soluble receptor

analogs that are present in the serum of many species,
may also play a role in influenza virus host range
restriction (Ryan-Poirier and Kawaoka, 1991). For exam-
ple, o,-macroglobulins present in horse and guinea pig
serum were shown to strongly inhibit hemagglutination
as well as infection of MDCK cells by human H3 viruses
with SA02,6Gal receptor specificity, but did not affect
equine and avian H3 virus infection (Rogers et al., 1983).
Similarly, recent studies indicate that SA residues on
porcine surfactant protein D (pSP-D) may also influence
host range, possibly by acting as natural inhibitors of
influenza virus binding to cell-surface SA receptors
(Hartshorn et al., 2000; van Eijk et al., 2002; Hawgood
et al., 2004). While it remains unclear if and to what extent
pSP-D contributes to host range, it has been speculated
that pSP-D interference may play a particularly important
role in human-to-swine transmission of influenza viruses
(van Eijk et al., 2002).

NA

Like HA, the NA also contributes to influenza virus species
specificity. Since efficient growth of influenza virus is
dependent on balanced action between HA receptor-
binding affinity and NA receptor-destroying activity
(Baum and Paulson, 1991; Rudneva et al., 1993; Gubareva
et al., 1996, 2002; McKimm-Breschkin ef al., 1996; Kaverin
et al., 1998, 2000; Baigent et al., 1999; Kaverin and Klenk,
1999; Hughes et al., 2000, 2001; Mitnaul et al., 2000;
Wagner et al., 2000; Hatta et al., 2001; Abed et al., 2002),
alterations in HA receptor-binding preference is often
associated with changes in the NA’s SA substrate
specificity (i.e. cleavage activity of SAc2,3Gal versus
SA02,6Gal) and cleavage activity (Baum and Paulson,
1991; Kaverin et al., 1998, 2000; Mitnaul et al., 2000;
Wagner et al., 2000). This conclusion is supported by
the finding that after introduction of the 1957 pandemic
strain into the human population, the SA02,6Gal cleavage
activity of the avian NA increased (Baum and Paulson,
1991; Kobasa et al., 1999), which suggests that the NA
had adapted to the SAo2,6Gal preference of the virus’s
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HA (Neumann and Kawaoka, 2000). Interestingly, at this
point the virus also appeared to lose its ability to
efficiently grow in ducks (Kobasa et al., 2001).

The NA molecule is comprised of the enzymatically
active head domain and a stalk region that is inserted into
the viral envelope (Lamb and Krug, 2006). The length and
amino acid sequence of the stalk region vary considerably
among different viruses (Blok and Air, 1982) and stalk
length has been shown to affect growth characteristics
of viruses in embryonated chicken eggs (Castrucci and
Kawaoka, 1993), cell culture (Luo et al., 1993), and mice
(Castrucci and Kawaoka, 1993). Viruses with long stalks
grew to higher titers in embryonated chicken eggs than
those with shorter NA stalks (Castrucci and Kawaoka,
1993). Mechanistically, this may be explained by the
finding that viruses with a shortened NA stalk typically are
released less efficiently from the cell since the enzymatic
site in the head domain cannot effectively reach its
substrate (Castrucci and Kawaoka, 1993; Luo et al., 1993;
Baigent et al., 1999; Giannecchini et al., 2006). Further-
more, a deletion in the NA stalk is commonly associated
with adaptation of duck viruses to land-based poultry
such as turkeys and chickens (Castrucci and Kawaoka,
1993; Matrosovich et al., 1999; Wagner et al., 2000;
Gambaryan et al., 2002) and is thought to occur in order
to counterbalance changes in the receptor-binding
properties of the HA (Baigent and McCauley, 2001).
Nevertheless, viruses with short stalks can maintain their
virulence in humans and poultry. For example, the HPAI
H5N1 viruses isolated from land-based poultry in Asia
contained a shortened stalk (Li et al., 2004). Similarly,
HS5N1 viruses isolated from human patients in Hong Kong
in 1997 possessed short NA stalks (Matrosovich et al.,
1999).

Polymerase complex

The largest body of evidence regarding the effects of the
proteins in the polymerase complex on species specificity
has implicated the PB2 gene. For example, Clements and
coworkers (Clements et al., 1992) reported that a human—
avian reassortant virus that contained only the avian PB2
gene replicated efficiently in avian cells, but inefficiently
in mammalian cells and in the respiratory tract of squirrel
monkeys and human volunteers. Subsequently, research
revealed that the switch in host range hinged on a single
amino acid residue at position 627 (Glu in avian isolates;
Lys in human isolates) (Subbarao et al., 1993). Penn and
coworkers identified additional amino acid residues in
PB2 as potential contributors to host range (Penn, 1989).
The influenza polymerase complex constitutes a multi-
functional enzyme and the outcome of its interaction
with the viral RNA is modulated by whether the 3" and
5" termini of the viral template are in a base-paired or
single-stranded conformation (Lee et al., 2003). Thus, it
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has long been hypothesized that temperature at the site
of replication could impact the function of the poly-
merase complex and thereby determine the host tropism
of influenza virus (McCauley and Penn, 1990; Baigent and
McCauley, 2003). This scenario is particularly appealing
in light of the finding that viral polymerase complexes
derived from avian viruses, but not human viruses,
exhibited cold sensitivity in mammalian cells, a character-
istic that was mostly controlled by residue 627 of PB2
(Massin et al., 2001). The importance of residue 627 in the
control of influenza host range is further highlighted
by the findings that an H7N7 HPAI isolated from a patient
in The Netherlands contained a Lys substitution at
position 627 (Fouchier et al., 2004) and several of the
HS5N1 strains isolated from humans in Asia were also
characterized by Lys at residue 627 (Puthavathana et al.,
2005). In addition, a recent study by Mase and colleagues
revealed that viruses isolated from mice infected with
H5N1 (without prior adaptation to mice) all acquired the
Glu-to-Lys substitutions at position 627 of the PB2 (Mase
et al., 20006). Finally, H5N1 isolates recovered from six
tigers in 2004 also contained Lys at residue 627 (Amonsin
et al., 2006). Taken together, these observations suggest
that the mutation at residue 627 may be a key determinant
of influenza host range. Interestingly, studies by Hatta
and coworkers indicated that the same Gly-to-Lys
substitution at position 627 in the PB2 protein also influ-
enced pathogenicity as well as cell tropism of a highly
pathogenic H5N1 virus isolated in Hong Kong in 1997
(Hatta et al., 2001).

Effects on host range have also been identified for
the remaining two members of the polymerase complex:
PA and PBI1. For instance, the introduction of an avian
PB1 into a human virus resulted in a decrease in
replication efficiency in MDCK cells, as well as in squirrel
monkeys, but did not affect virus replication in chicken
kidney cells (Snyder et al., 1987).

Apart from temperature sensitivity, amino acid substi-
tutions in the polymerase proteins may influence host
range by altering interactions of the polymerase complex
with host cell factors. Host factors that were found to
modulate viral RNA synthesis in vitro include RNA
polymerase activating factors (RAF1 and 2), polymerase
release factor (PRF), and RNA polymerase inhibiting
factor 1 (RIF1) (Honda and Ishihama, 1997).

NP, M, and NS proteins

During virus replication, the influenza NP is modified
by host-cell-derived phosphokinases (Lamb and Krug,
2006). As the phosphorylation pattern of the NP protein
appears to determine the extent to which a particular
cell line supports virus growth (Kistner et al., 1985), it has
been hypothesized that NP is a significant determinant
of species specificity (Scholtissek et al., 1985; Tian et al.,
1985; Snyder et al., 1987; Abe et al., 2004). Experiments
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using temperature-sensitive mutants of a HPAI H7N1
virus (A/FPV/Rostock/1/34) demonstrated that, with the
exception of NP and HA, all remaining gene segments
of the fowl plague virus could be replaced by corres-
ponding genes of any strain, irrespective of the lineage
of the rescuing virus (Scholtissek et al., 1978, 1985).
Furthermore, sequence analyses suggest that the NP gene
has evolved into five distinct, host-specific lineages:
two equine lineages, one pig and human lineage, one
aquatic bird lineage, and one lineage in other avian
species (Webster, 1997).

The influenza M1 protein plays an essential role in
viral assembly and has a variety of functions, including
association with influenza virus RNP complexes. The M2
is an integral membrane protein and functions as an ion
channel (Pinto et al., 1992; Holsinger et al., 1994; Lamb
and Krug, 2000). Employing human-avian reassortant
viruses containing the avian M and NP genes, both gene
segments were found to be associated with reduced
replication of the reassortants in the respiratory tract of
squirrel monkeys (Tian et al., 1985). Further evidence for
the M gene’s contribution to influenza host range stems
from co-infection experiments selecting for reassortant
viruses with the human virus M gene and the HA gene
derived from the avian virus. While the M segment of an
earlier human virus was found to support efficient growth
of the reassortants, M genes derived from more recent
human strains did not cooperate with the avian HA
(Scholtissek et al., 2002).

Like the polymerase complex, the internal proteins
may exert their effects on host range through interactions
with cytoplasmic and nuclear host cell components
(Brown, 2000a). For example, during infection, the
influenza NP binds to actin, as well as karyopherins 1
and 2. Similarly, NS1 interacts with a number of cellular
factors involved in mRNA processing [i.e. Cpsf, poly(A)-
binding protein 1I and PKR] (Lamb and Krug, 20006),
as well as other host factors with undefined function
(NS1-BP and NS1-1) (Wolff et al., 1996, 1998). Thus, it is
conceivable that the quality of these protein-to-protein
interactions may have an impact on influenza species
specificity. However, to what extent such protein—protein
interactions determine host range has yet to be deter-
mined.

Concluding remarks

In the past decade, a number of viruses have emerged
from animal populations. These include HIV (Levy et al.,
1984; Wain-Hobson et al., 1991), hendravirus (Murray
et al., 1995), and the coronavirus causing severe acute
pulmonary syndrome (SARS) (Kuiken et al., 2003). In
addition to these newly recognized viruses, re-emerging
viruses are burdening the human population at a seem-
ingly increasing frequency (Morse, 1997). One of our
most familiar viruses, influenza A virus, also falls into
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this category. The recent resurgence of H5N1 influenza A
viruses in poultry, wild waterfowl, cats and people
throughout large parts of Asia, the Middle East, Europe,
and Africa further highlights the possibility that viruses
originating in an animal species could spark a new
influenza pandemic (de Jong et al., 1997; Cox and
Subbarao, 2000; Laver et al., 2000; Horimoto and
Kawaoka, 2001; Hatta and Kawaoka, 2002; Katz, 2003;
Belshe, 2005; Webster et al., 2005; Ferguson, 2006; Kenny,
2006; Maldin and Criss, 2006). An important reason
why these viruses have not yet caused a full-blown
pandemic is their apparent inability to spread efficiently
from person to person (Hatta and Kawaoka, 2002;
Katz, 2003; Capua and Alexander, 2004; Webster et al.,
2005; Kandun ef al., 2006; Shinya et al., 2006). While there
has been an explosion of data on the molecular
determinants of influenza virus adaptation to a new host
species within the last decade, much remains to be
learned. In light of the importance of animal reservoirs in
the ecology of influenza as well as the potential roles
of pigs and terrestrial poultry as adaptation or ‘mixing
vessel’ hosts, virus surveillance at the human-animal
interface and genetic analysis of animal influenza viruses
must remain a priority. The data collected will continue
to provide important insights regarding the genetic basis
of host adaptation and advance our understanding of
the extent and impact of animal reservoirs of influenza A
viruses.
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