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Hydraulic control of continuously stratified flow
over an obstacle
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Motivated by the laboratory experiments of Browand & Winant (Geophys. Fluid Dyn.,
vol. 4, 1972, pp. 29–53), a series of two-dimensional numerical simulations of flow
past a cylinder of diameter d are run for different values of the approach Froude
number Fro = U/Nd between 0.02 and 0.2 at Re = O(100). The observed flow is
characterized by blocking and upstream influence in front of the cylinder and by
relatively thin, fast jets over the top and bottom of the cylinder. This continuously
stratified flow can be understood in terms of an inviscid non-diffusive integral
inertia–buoyancy balance reminiscent of reduced-gravity single-layer hydraulics, but
one where the reduced gravity is coupled to the thickness of the jets. The proposed
theoretical framework describes the flow upstream of the obstacle and at its crest.
The most important elements of the theory are the inclusion of upstream influence
in the form of blocked flow within an energetically constrained depth range and the
recognition that the flow well above and well below the active, accelerated layers is
dynamically uncoupled. These constraints determine, through continuity, the transport
in the accelerated layers. Combining these results with the observation that the flow
is asymmetric around the cylinder, i.e. hydraulically controlled, allows us to determine
the active layer thicknesses, the effective reduced gravity and thus all of the integral
flow properties of the fast layers in good agreement with the numerically computed
flows.

Key words: hydraulic control, stratified flows, topographic effects

1. Introduction
We consider the two-dimensional stratified flow around a cylinder towed

perpendicular to both its axis of symmetry and gravity in a uniformly stratified fluid
as in Browand & Winant (1972). Although the geometry is deceptively simple, and
flow around cylinders has been studied for more than a century, the addition of
strong stratification to this problem provides a simple setting in which the fundamental
processes of stratified flow over topography can be studied. In particular, the effects of
blocking, upstream influence, topographic control and intensified downslope flow are
all exhibited and can be related to the external parameters.

If we take the ambient fluid to be unbounded, the flow is characterized by three
external scales: the squared buoyancy frequency N2 = (g/ρ0)(dρ̄/dz), the speed of
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the cylinder U and its diameter d. These parameters can be combined to form the
bulk Froude number Fro = U/Nd which can be interpreted as the ratio of the vertical
displacement scale δ = U/N to the cylinder diameter d. Vertical displacements of O(δ)
require complete conversion from kinetic to potential energy of fluid parcels moving
with a speed U. When Fro � 1, the regime of interest here is Fro = O(10−2–10−1),
buoyancy acts to inhibit vertical motions larger than δ� d and so most of the fluid
upstream of the cylinder has insufficient kinetic energy to be lifted over or pushed
under the cylinder ‘crests’ and can therefore be expected to be blocked. Equivalently,
as in Browand & Winant (1972), these parameters can be combined to form a bulk
Richardson number Ri0 = 1/Fr2.

In addition to N2,U and d, the fluid properties ν and κ , the diffusivity of
momentum and the stratifying agent respectively, also influence the flow and these
effects are characterized by the Reynolds number Re = Ud/ν and the Prandtl number
Pr = ν/κ . In this work, we will consider flows with Re = O(100) and Pr = 7.
Unstratified flow around a cylinder at comparable Re exhibits unsteadiness due to
the shedding of the vortices in the von Karmen vortex street. In Browand & Winant
(1972) and in the present numerical study, strong stratification suppresses the vortex
shedding and the flow is symmetric about the horizontal midplane.

2. Numerical experiments
In the experiments of Browand & Winant (1972), cylinders with diameters ranging

from 6.5 to 44.5 mm were towed at a speed of a few millimetres per second through
a long shallow tank 8.5 m (28 ft) × 0.38 m (15 in) depth × 0.3 m (12 in) width
of approximately uniformly salt-stratified fluid by means of thin cables. After the
cylinders had been towed a distance of 20–30d, vertical profiles of horizontal velocity
(via displacement of dye lines) and density (profiling probe) were obtained repeatedly
at a fixed upstream station. Assuming the flow to be steady, such measurements
yielded velocity and density profiles as a function of distance from the advancing
cylinder.

We adopt a similar approach in the numerical experiments and compute the flow
around a moving cylinder within a two-dimensional tank of matching dimensions.
We take d = 44.5 mm and a tow speed of 2.04 mm s−1 which gives Re = 91
for ν = 10−6 m2 s−1. We then vary the buoyancy frequency N across experiments
yielding a range of bulk Froude numbers. We report here on simulations with
Fro = 0.02, 0.04, 0.1 and 0.2.

The flows were computed using a spectral numerical model which is an upgraded
version of that discussed in Winters, MacKinnon & Mills (2004) and Echeverri et al.
(2009). Dependent variables are expanded in even or odd Fourier series such that free-
slip, no-scalar flux conditions are satisfied at the bottom and sidewalls by each basis
function in the expansions. In addition, no-slip, no scalar flux boundary conditions are
imposed on the immersed boundary of a cylinder (circle in two dimensions) moving
horizontally at speed U. The cylinder is translated a distance of 35d at which point
the flow is nearly steady and the flow field is analysed. All simulations reported
were computed on a grid of 9601 × 601 points in the x (streamwise) and z (vertical)
directions which corresponds to grid spacings of 0.88 and 0.64 mm, respectively.

3. Overview of results
Figure 1 shows snapshots of the flow field after the cylinder has been translated a

distance of 35d. Although the solutions were computed for the full cylinder, we only
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FIGURE 1. Flow above the horizontal centreplane for four values of Fro = U/Nd at time
t = 35d/U. The horizontal speed of the fluid relative to the moving cylinder, normalized by U,
is shown in colour along with several isopycnals. Also shown in (b) are the four locations of
the vertical velocity profiles shown in figure 2. Jets that accelerate, thin and plunge over the
cylinder crest are apparent in all four figures.

show the upper half plane since the solutions were observed to be symmetric, as also
seen in the photographs of Browand & Winant (1972). In the figure, the normalized
relative velocity (u(x, z)−U)/U is shown in colour. Also shown are several isopycnals.
Several qualitative features of the flow are apparent in all four figures: there is a
depth limited, relatively fast flowing jet that extends from upstream above the cylinder
crest that thins, accelerates and plunges near the crest of the cylinder. Upstream and
below this jet, the fluid is arrested or nearly arrested in a frame moving with the
cylinder. Upstream and above this jet, the flow is nearly uniform and approaches the
cylinder at the translation speed U. Above the jet and slightly downstream (to the
right) of the cylinder crest, there is a slug of nearly stagnant fluid with nearly uniform
density. These jets detach from the cylinder in the lee and exhibit vertical oscillations
further downstream. The upstream–downstream asymmetry in the vertical position of
the accelerated jet relative to the cylinder crest is reminiscent and strongly suggestive
of some form of internal hydraulic control and motivates much of the theoretical
framework discussed in § 4.

Figure 2 shows vertical profiles of horizontal velocity u (relative to the cylinder
and normalized by U) at the four locations shown in the upper right of figure 1.
Approaching the cylinder (x/d = −1.50), the profile exhibits an accelerated jet
extending from just below the maximum cylinder height to about z/d = 1 with a peak
speed of slightly greater than 2U. Below this layer the fluid is blocked and stagnant,
while above the flow is nearly uniform with speed U. We refer to the flow aloft at
speed U as ‘dynamically uncoupled’. Just in front of the cylinder (x/d = −0.56), the
profile is similar except the block region is slightly thicker while the jet is slightly
thinner and significantly faster. Over the cylinder crest (x/d = 0), the jet is both
significantly thinner and faster still. Just above the jet, there is a slow moving layer
(labelled stagnant) with a minimum velocity of nearly zero. This slow moving fluid
is more pronounced in the profile slightly downstream of the cylinder. Qualitatively
similar descriptions apply to each of the other flows shown in figure 1. Moreover,
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FIGURE 2. Vertical profiles of horizontal velocity relative to the cylinder and normalized by
U for Fro = 0.04. The profile locations are indicated in figure 1(b).

these features are ubiquitous signatures of low-Froude-number flow over topography
(Baines 1995).

4. Theoretical framework
We now construct a theory to try to explain or predict (a) the density range and

upstream thickness of the accelerated jets and (b) the thickness and speed of the jets
as they pass over the crest of the obstacle. In constructing the theory, we exploit
the observed symmetry about the horizontal midplane. We adopt a reference frame in
which the cylinder is fixed and the flow is from left to right, focusing on the flow
upstream of the cylinder crest and we ignore from the outset viscous and diffusive
effects.

To begin, we appeal to energetics and argue that the flow is blocked from the
midplane to a height d/2 − δ where δ = U/N. Note that δ is the vertical displacement
with a potential energy change matching the kinetic energy of the tow speed U in
stratification N. By symmetry, the flow beneath the cylinder is identical and from now
on we focus our discussion on the upper portion of the flow.

Above the blocked region, we assume there is an ‘active’ layer of accelerated
fluid with as yet unknown vertical thickness y(x), unknown horizontal speed u(x) > U
and unknown average density ρ. The transport q in the active layer is an unknown
constant.

Further above is a ‘dynamically uncoupled’ layer with speed U. Separating these
flowing layers is a stagnant layer whose thickness increases as the lower layer thins
approaching the obstacle crest. This layer, defined by a bifurcating isopycnal and
streamline, also appears in the theory of severe downslope winds (Smith 1985; Durran
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& Klemp 1987), although we generalize these earlier theories here by incorporating
the effect of blocking upstream of the obstacle. We assume the stagnant layer has
infinitesimal thickness well upstream of the cylinder. (We denote ‘well upstream’ here
as xus even though in the truly far field we implicitly assume uniform flow approaching
the cylinder.) The as yet unknown mean densities in the active and stagnant layers can
be combined to yield a reduced gravity g′ = (1ρ/ρ0)g.

The theory will link the layer thickness y, the density difference 1ρ and the active
layer speed u with the external parameters. We remark that the distance between the
cylinder crest and the upper rigid lid does not enter into the analysis. The elements
of this theoretical framework are qualitatively consistent with the flows shown in
figures 1 and 2.

We adopt an integral approach for the characteristic values of the velocity and
density. In taking this approach, we sacrifice details such as the distribution of velocity
and density within the active layer in favour of retaining the fundamental nonlinearity
of the flow. Algebraically, what follows is reminiscent of reduced gravity single layer
hydraulics. What is new here is that g′ is coupled to the upstream layer thickness y
and that the layer transport q is determined by the extent of the blocked layer.

The key elements in the theory will be an inertia–buoyancy balance in the absence
of friction, and recognition that the flow over the cylinder crest is asymmetric and thus
hydraulically controlled. This is entirely different from the small-Reynolds-number
viscous–buoyancy balance of Graebel (1969) to which Browand & Winant (1972)
compared their measurements. In our experiments and in those of Browand and
Winant, the Re is O(100) and inertial effects dominate viscous effects in the regions of
interest. Assuming hydrostatic pressure, the dimensional momentum equation for the
active layer can be written as

uux + g′yx =−g′hx (4.1)

or

[u2/2+ g′(y+ h)] = B (4.2)

where u is the characteristic speed of the layer and B is the layer Bernoulli constant.
Both forms of the equation will be needed in what follows.

The continuity equation can also be written in two forms

(uy)x = uyx + yux = 0⇒ ux =−uyx/y (4.3)

or
uy= q. (4.4)

These are simply the equations for reduced gravity single-layer hydraulics but, in
addition to B and q, g′ is now to be determined. We note that solutions for the
integrated quantities, i.e. u and g′, are not particularly sensitive to the functional form
within layers, e.g. Armi (1989). A similar integral approach for continuously stratified
flow through a contracting channel was taken by Wood (1968) who was able to
construct exact, self-similar solutions.

Substituting the expression for ux from (4.3) into (4.1) and solving for yx gives

yx =− hx

1− F2
(4.5)

where F2(x)= u2/g′y is the square of the layer Froude number. Equation (4.5) implies
that yx is finite everywhere provided that F 6= 1. If F = 1 somewhere, yx can remain
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finite only if hx = 0. This regularity condition says that critical flow can only occur
at the crest of the cylinder. A finite value |yx| > 0 at the cylinder crest xc therefore
implies asymmetric flow across the crest that is hydraulically controlled. Note that the
active layers in figure 1 are thinning as they crest the cylinder with thickness, height
and speed of the layers being asymmetric across the crest.

Denoting conditions at the cylinder crest with the subscript c, the requirement that
Fc = 1 can be combined with (4.2) to give an expression for the layer thickness at the
crest yc:

yc = 2
3(B/g

′ − hc). (4.6)

Combining continuity equation (4.4) with (4.2) and evaluating the result at the crest
yields

1
2

q2

y2
c

+ g′yc = B− g′hc. (4.7)

The quantity B− g′h(x) is often referred to as the specific energy E of the layer.
At this point it is convenient to non-dimensionalize (4.6) and (4.7) using the (still

unknown) quantities q and g′ as in Pratt & Whitehead (2008). Taking h = q2/3g′−1/3h̃
and B = q2/3g′2/3B̃, where the tildes indicate dimensionless variables, equations (4.6)
and (4.7) give two expressions for the dimensionless specific energy Ẽc at the crest:

Ẽc = (B̃− h̃c)= 3
2

ỹc and Ẽc = (B̃− h̃c)= 1
2ỹc
+ ỹc. (4.8)

Eliminating Ẽc and taking the positive root of the resulting quadratic for ỹc gives
ỹc = 1 and, upon substitution, Ẽc = 3/2 as requirements for the dimensionless layer
thickness and specific energy at the crest for hydraulically controlled, asymmetric flow
in an active layer. We now use these constraints to derive the values for the unknowns
g′, q and B from which we can obtain our originally desired quantities, the layer
thickness and flow speed at the crest.

The calculation proceeds as follows. Begin by guessing a value for the upstream
layer thickness yus (see figure 3). Taking N constant, the unperturbed density is linear
in z. Assuming that the density of the stagnant layer is equal to the density at the
top of the active layer, i.e. that the stagnant layer has infinitesimal thickness upstream,
the difference between the mean density in the active layer and the stagnant layer is
1ρ = (ρ0/2g)N2 yus. The value of g′ for such a layer is then g1ρ/ρ0.

We now assume that the bottom of this layer sits at height d/2 − δ, i.e. above the
zone of blocked flow. Since we postulate dynamically uncoupled flow with speed U
above and depth-independent flow at speed U in the far field upstream, the transport
q = yusuus in the active layer must, from continuity, be equal to U(hus + yus) where
hus = hc − δ = d/2 − U/N. This yields expressions for the upstream velocity and the
upstream Froude number:

uus = hus + yus

yus
U > U and Fus = uus

g′yus
. (4.9)

With these values, we can now compute the Bernoulli constant for our hypothetical
active layer: B= (1/2)u2

us + g′(hus + yus).
Given B, g′ and q, we can now non-dimensionalize as before and compute the

normalized specific energy at the crest Ẽc(yus)= (B̃− h̃c). Had we prescribed the value
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FIGURE 3. Schematic of stratified flow around a towed cylinder moving from right to left.
Shown are two active layers, one above and one below and a central region of blocked flow.
Each of the active layers is bounded by stagnant flow. Well above and below the cylinder,
the flow is dynamically uncoupled and has speed U relative to the towed cylinder. The active
layer is treated as a single-layer hydraulically controlled flow with q and g′ functions of U and
N. Here h(x) is the distance from the horizontal midplane to the ‘virtual topography’ which
extends from the cylinder itself upstream along the boundary of the blocked flow.
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FIGURE 4. Normalized specific energy Ẽc at the cylinder ‘crest’ as a function of yus and the
corresponding value of the upstream Froude number Fus for the specific case Fro = 0.04.

of yus correctly at the start of the calculation, we would find that Ẽc(yus) = 3/2, our
requirement for controlled, asymmetric flow. We can repeat the procedure, varying our
guess for yus, until we find the value that satisfies the requirement for controlled flow.
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FIGURE 5. Solid curves: theoretical predictions of active layer velocity (a) and thickness (b)
at the cylinder crest. Symbols show estimates of these quantities extracted from the numerical
simulations shown in figure 1.

Figure 4 shows Ẽc as a function of yus along with the square of the corresponding
upstream Froude number Fus for the parameters N, d and U matching those in the flow
with bulk Froude number Fro = 0.04.

Here Ẽc is equal to the critical value 3/2 for two distinct values of yus. Both of
these values are consistent with controlled flow at the cylinder crest. The smaller value
has an upstream Froude number greater than 1 and therefore corresponds to a thin,
fast supercritical layer that transitions to subcritical flow at the crest. Our interest here
however is the asymmetric solution that transitions from subcritical flow upstream to
supercritical downstream. This solution has yus ≈ 0.28d for Fro = 0.04. We have now
found the value of yus (and the corresponding values g′ and B for the specific case
Fro = 0.04) consistent with a controlled layer that carries the excess transport required
due to upstream blocking. We can therefore evaluate first the layer thickness at the
crest using (4.6) and then solve for the average layer speed uc from the condition that
Fc = 1.

The theoretical crest conditions were computed as a function of Fro = U/Nd and
the results are shown in figure 5. The four specific numerical cases shown in figure 1
are also plotted. In these estimates, the layer thickness was defined to be the thickness
of the layer with relative velocity greater than 1/e of the peak velocity in the layer.
The layer speed was then taken to be the average speed in this layer. The theoretical
predictions and the numerical estimates are in good agreement over the range of Fro

tested.
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FIGURE 6. Horizontal speed relative to cylinder normalized by U at z/d = 1/4 for
Fro = 0.04. The dashed line shows the position of the cylinder centre as a function of time.

5. Establishment of the quasi-steady flow
In these experiments, we chose a very long yet finite tank to match that of Browand

& Winant (1972) and in our theoretical framework we ignore endwall effects and treat
the flow upstream of the obstacle crest as steady. This simplifying approximation is,
for the purposes of understanding dynamics of the active layer and its dependence on
the external parameters U, N and d, well justified a posteriori.

Nevertheless, it is important to realize that the flow is never truly steady in towing
tank experiments. Once the blocking zone extends upstream to an endwall, the vertical
thickness of the blocked fluid must increase slowly with time, as noted by Browand &
Winant (1972). If L is the distance from the cylinder to the upstream endwall and h is
the thickness of the blocked flow measured from the centreline, the thickness increases
at a rate dh/dt = (h/L)U. For these experiments we take h ≈ d and L ≈ 100d and
so h increases ∼1 % of d over the characteristic time scale d/U. We note that these
upstream boundary conditions are fundamentally different than imposing fixed profiles
of velocity and density.

The finite distance to both endwalls can also generate unsteadiness if disturbances
radiating from the cylinder reflect back into the interior of the domain. This effect can
be seen in figure 6 which shows the normalized relative velocity at a height z/d = 1/4
for Fro = 0.04. It is clear that internal wave motions propagate both upstream and
downstream at speeds much faster than the tow speed U. These signals reflect from
the walls and then interfere with each other. Estimating phase speeds as Cp = Nλ/2π
where λ is the vertical wavelength, the signals that reach the upstream wall between
about t/(d/U) = 7.5 and 17.5 have vertical wavelengths of between ∼4d and 2d.
Waves with wavelengths smaller than ∼d/8 have phase speeds less than U and so
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FIGURE 7. Horizontal speed relative to cylinder within active layer above cylinder crest for
Fro = 0.04. The layer speed increases as the flow develops until about t = 20d/U when
a quasi-steady state is achieved. The best fits for uniform acceleration for t 6 15d/U and
for steady flow for t > 20d/U are also shown. Browand & Winant (1972) observed steady
flow between ∼20 and 30d/U and began making measurements at 30d/U. The numerical
simulation results are analysed at 35d/U.

cannot escape upstream. Nevertheless, the fastest waves that have multiple reflections
in the finite sized domain have relatively little energy, < 5 % of that associated with
the tow speed, and thus do not greatly affect the much more energetic flow near the
cylinder.

Even in the absence of endwall reflections, there is intrinsic unsteadiness due to
the establishment of the downslope flow in the lee of the obstacle. As observed by
Browand & Winant (1972), the flow initially separates close to the obstacle crest
before the separation points move down the back of the cylinder. In their laboratory
experiments, a steady state was observed between 20 and 30d/U. figure 7 shows a
similar result from the simulations. Shown is the average streamwise velocity in the
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active layer above the crest as a function of dimensionless time. The flow develops
until about t = 20d/U at which time the average speed reaches an approximately
steady value at 5 times the tow speed, with root mean square fluctuations of 3.3 %.
Browand and Winant’s recorded data after t = 30d/U while in figures 1, 2 and 5
the flow was analysed at t = 35d/U. By this time the fully asymmetric flow has
become established along with a favourable pressure gradient which prevents flow
separation at the crest. This approach to an approximately steady state is not seen in
towed experiments involving separated wakes, for example when towing sharp-crested
obstacles (Castro & Snyder 1988) or in the numerical simulations of a moving vertical
plate (Hanazaki 1989).

6. Discussion and conclusions

Continuously stratified flow past an obstacle can be understood and reasonably well
described quantitatively in terms of a single-layer, reduced gravity model in which
the layer transport q and reduced gravity g′ are functions of the approach velocity U
and the stratification N. Our theoretical framework describes the flow upstream of the
obstacle and at its crest. The most important elements of the theory are the inclusion
of upstream influence in the form of blocked flow beneath an energetically constrained
level δ = U/N below the obstacle crest and the recognition that the flow above the
active layer becomes dynamically uncoupled. These constraints determine, through
continuity, the active layer transport. Combining these results with the requirement
that the flow be asymmetric across the crest, i.e. hydraulically controlled, allows us to
determine the upstream active layer thickness, the effective reduced gravity and thus
all of the integral flow properties of the active layer. Although the experiments and
simulations use a cylinder, the theory applies formally to any obstacle for which the
hydrostatic approximation is appropriate. As for many hydraulics problems, we expect
our conceptual framework to apply even for topography over which the flow is not
strictly hydrostatic.

Downstream, the theory is not likely to be directly applicable as the flow is
weakly unsteady (even at the relatively low Re considered here) and non-hydrostatic.
Nonetheless, as the approach Froude numbers Fro decrease, the downstream Froude
numbers in the lee increase because the thickness of the active layer and the effective
g′ decrease. This suggests that the dissipation and mixing in the jump will be more
intense for decreasing Fro.

The theory constructed is an integral theory in which simplification is achieved
by working with characteristic values representative of flows with continuously
varying properties. Retaining nonlinearity is essential to the development. In the
literature, perhaps the most closely related solution for continuously stratified flow
over topography is due to Smith (1985). His solution also incorporates an isolating
layer separating the downslope flow from that above. In contrast, however, the Smith
solution neglects the blocked region and imposes the upstream flow to be the nearly
uniform profile of Long (1955). It should be noted, however, that the velocity profiles
shown in figure 2 are jet-like, reminiscent of Wood’s (1968) self-similar solution for
continuously stratified flow through a contraction. The actual velocity distribution of
the upstream jet could be incorporated into the integral approach as a minor refinement
of the development discussed here. Since the flow (see the differences in the velocity
distributions upstream and at the crest in figure 2) is not self-similar as it is for the
contraction, Wood’s approach is not directly applicable here.
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While the approach could be extended to include the effects of viscosity, it is
remarkable how well the theory appears to work neglecting such effects, even for
Re = O(100). We can consider however, what the role of finite viscosity would
be in these theoretically inviscid layered flows. Upstream, the theory postulates a
thin stagnant layer that defines the bifurcating isopycnal and hence g′. This layer
is bounded below by the fast moving jet with speed greater than U and above
by the dynamically uncoupled flow with speed U. With finite viscosity, viscous
stresses accelerate the stagnant layer, causing it to disappear. In the regime of the
present simulations the stagnant layer is most pronounced near the crest and slightly
downstream while it vanishes moving away from the obstacle upstream. At higher
Re, we therefore expect the flow in the vicinity of the cylinder to be largely the
same. However, immediately downstream of the cylinder, in the region of the internal
hydraulic jumps, the Re effects will be more significant. In particular, at higher Re we
expect shear instabilities and associated turbulent mixing to become apparent.
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