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Deformation of soap films pushed through
tubes at high velocity
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The behaviour of soap films pushed through tubes at large velocities, up to several
metres per second, is investigated in this paper. The film shape deviates from its
equilibrium configuration perpendicular to the walls and gets curved downstream. A
simple model relates the radius of curvature of the film to the friction in the lubrication
films touching the wall, and the scaling of Bretherton (J. Fluid Mech., vol. 10, 1961,
pp. 166–188) holds up to surprisingly high velocities, at which the capillary and Weber
numbers are no longer small parameters. The tube geometry is varied and accounted
for through the notion of hydraulic diameter. A limit of stability of the films, beyond
which they burst or evolve unsteadily, is predicted, and it quantitatively captures the
observations. The new questions raised by our results on the dissipation in soap films
are discussed, especially the role of Plateau borders and inertial effects.

1. Introduction
Aqueous foams are widely used in industry, in areas as diverse as ore flotation, oil

extraction, food and pharmaceutical production and blast noise reduction, to cite a
few. Many foam flows of practical interest are dominated by viscous friction because
of high velocity gradients, either in bulk or localized close to confining boundaries. For
instance, foams in porous media, used for enhanced oil recovery (Hirasaki & Lawson
1985) and soil remediation (Chowdiah et al. 1998), often flow through narrow gaps as
a train of soap films, in contact with the confining walls through Plateau borders (PBs)
where viscous dissipation takes place and dictates the foam-flow properties (Rossen &
Gauglitz 1990; Kornev, Neimark & Rozhkov 1999). The influence of confinement is
also paramount in microfluidics, where foams are used in lab-on-a-chip applications
(see Marmottant & Raven 2009 for a review).

Foam flows dominated by viscous friction are also of fundamental interest: foam
rheology has received a considerable attention in recent years (Höhler & Cohen-
Addad 2005), but mostly at velocities small enough for the foam to remain in
equilibrium configurations, i.e. for structural equilibrium rules to apply. However,
deviations from these equilibrium rules have been evidenced recently (Drenckhan
et al. 2005; Besson et al. 2008), due to bubble/bubble or bubble/wall viscous friction.
This calls for more studies of foam rheology at high velocity gradients, where the
structure is brought out of equilibrium because of a high viscous resistance.

In this paper, we study the most elementary experiment of high-velocity foam
rheology in confined media: the fast flow of an isolated soap film pushed through a
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Figure 1. Sketch of the experimental setup.

tube of constant section. We especially quantify its shape deviation from the simple
equilibrium configuration, perpendicular to the confining walls. We extract a precise
experimental criterion for its rupture in terms of critical velocity.

2. Materials and methods
A glass tube was connected through flexible plastic tubes to a pressurized nitrogen

bottle, which supplies nitrogen through an electronic flow-rate controller (Brooks)
(figure 1). We have used three circular glass tubes, of inner diameters 3.6, 5.9 and
8.8 mm, and a square one, of side 10.0 mm with rounded edges of radius of curvature
less than 1 mm. The tube is tilted upwards with an angle of about 20◦ with respect
to the horizontal, so that the plastic tube to which it is connected is at lower level
and can be used as soap reservoir. Soap solution is injected by a syringe, directly
through the open end of the glass tube. When turned on, the gas flows into this
reservoir, and creates soap films which are subsequently pushed through the glass
tube. Transient effects were also investigated using films prepared first at low velocity,
and then accelerated (§ 4.2). When starting an experiment, we waited for the solution
to wet entirely the glass walls, because of the first soap injections and films. The
wetting film remains intact during the whole experiment: the signature of dewetting
would be the nucleation and growth of dry patches and an irregular behaviour of the
films that was never observed.

The soap solution is a solution of sodium dodecyl sulphate (SDS) (Sigma–Aldrich)
dissolved in a mixture of ultra-pure water (Millipore) and of 10 % wt glycerol
(Sigma–Aldrich). The concentration of SDS is 10 g l−1, above the critical micellar
concentration (cmc) of 2.3 g l−1. Its bulk viscosity, measured in a Couette rheometer
(Anton Paar), is η =1.2 mPa s. Its surface static and dynamic properties were measured
with a tensiometer (Teclis) by the rising bubble and oscillating bubble method; the
surface tension is σ =36.8 ± 0.3 mN m−1 and the surface modulus ES , defined as in
Denkov et al. (2005), was below the noise level of 1 mNm−1 at frequency 0.2 Hz. All
solutions were used within a day from fabrication.

The motion of a soap film is recorded with a high-speed camera (Photron APX-
RS) in the central zone of the glass tube, to avoid end effects. The main results,
presented in § 4.1, have been obtained with a 2 cm-long field of view (measured along
the tube axis). We checked that no significant variations of shape and velocity occur
along this trajectory: hence, the data in § 4.1 concern steady film motions. Additional
experiments, discussed in § 4.2, have been made on unsteady film motions, with a
15 cm-long field of view, to investigate the long-range stability of the films, especially
for the highest velocity values. Examples of imaged soap films are displayed in figures 2
(circular tube) and 3 (square tube). From each movie, we plot as a spatiotemporal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

09
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000935


Deformation of soap films pushed through tubes at high velocity 531

(c)(b)(a)

g

(d)

Figure 2. Snapshots of soap films pushed from left to right through a tube of outer diameter
9.0 mm, at velocities (a) 0.37, (b) 0.64, (c) 1.81 and (d ) 2.47m s−1. Films (a) and (b) were
observed to be stable, and films (c) and (d ) displayed an unsteady behaviour: film (c) broke
down as shown in the three consecutive displayed frames (interframe 0.33 ms), whereas film
(d ) tends to detach from its PB through a long cylindrical neck, which eventually leads to
film bursting or pinch-off of a bubble (see § 4.2). Note the top-bottom asymmetry of the PB,
due to drainage (the direction of gravity is indicated in (a)), and, in (a) and (b), the damped
oscillations of the wetting film ahead of the PB in contrast with the monotonous profile of the
wetting film at the rear of the PB.

(a)

y
x
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z

x

t ′
t ′
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dl
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(b)

Figure 3. Snapshots of soap films pushed from left to right through a square tube of side
10.0 mm, (a) in tilted view, to get an impression of the whole shape, and (b) facing one of the
four sides: the front part of the shape is the trace of the central part of the film, and the back
part is the PB in contact with the imaged side. This is the view used to measure the radius of
curvature of the film. The superimposed notations are used in § 3.

diagram (z, t), with z being the streamwise axis and t the time, the evolution of the
grey levels along the tube centreline (figure 4a). The soap film appears as a dark
band, for which slope α yields the film velocity v: v = dz/dt = cot α. The slope can
be extracted with an accuracy better than δα = 0.1◦, which gives the uncertainty on
v: δv = δα/ sin2 α.

Above a given velocity of order 40 cm s−1, the soap film shows a significant
curvature pointing downstream (figures 2b, 2c and 4b). To measure this curvature,
we have performed the following home-made contour detection procedure. First, we
have thresholded and binarized the images (figure 4c), then we have extracted the
coordinates (ξ, z) of the points located on the curved profile (ξ = 0 at the centre of
the tube). This set of coordinates was then fitted to the polynomial approximation of
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Figure 4. (a) Example of a spatiotemporal diagram. The film is represented by a straight
dark band. To measure the film curvature, (b) the raw image is (c) binarized, and (d ) the
coordinates of the film contour are extracted (dotted curve) and fitted by a circle (dashed
curve), also superimposed in (b) with various notations used in the text.

degree 4 of a circle of radius R: −z =(ξ − ξ0)
2/2R + (ξ − ξ0)

4/8R3 and we extracted
R as the best fit parameter (figure 4d ). The offset ξ0 is required because, in some
experiments, the soap film is not symmetric, as in figure 2(b) where the top part of the
film lags behind. All this procedure assumes a constant curvature; we confirmed that
this was a realistic assumption by checking the close agreement between the whole
experimental trace and the best fit, which also gives a small relative uncertainty on
the fitting parameter R (this uncertainty is represented by the vertical error bars in
figure 5). Note that the film curvature is not measurable at lower velocities, because
the curved profile is hidden by the thicker trace of the PB (figure 2a).

3. Theory
3.1. Film deformation

We consider the steady motion of a soap film pushed at imposed velocity v through
a cylindrical tube of arbitrary shape, with a perimeter P and a cross-section S.
The film displays a curvature H because of the pressure drop �P associated to its
motion, due to the viscous friction in the liquid. According to the Laplace law, the
two latter quantities are related through �P = 2σH , accounting for the fact that the
soap films are bounded by two gas/liquid interfaces. Hence, if the pressures on both
sides of the film are equilibrated, the film has a constant curvature. Here, we assume
that the surface tension is constant in the transverse soap film (it need not be in
the PB; see § 5.2). Following the assumption of Cantat, Kern & Delannay (2004), we
assume that the friction force of an elementary length d� of PB, of normal unit vector
pointing downstream n′ (figure 3), is proportional to its projected length across the
tube, d� n′ · ez, and to the friction force f (v) per unit PB length; therefore, the total
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Figure 5. Plot of log R/b as a function of log v (expressed in m s−1) for circular tubes
of inner diameters 3.6 (�), 5.9 (�) and 8.8 mm (�), and for the square tube of side
10.0 mm (×). The three points with the symbol � were obtained in unsteady situations;
see § 4.2. The plain line represents the best linear fit through all data; its equation
is log R/a = (−0.69 ± 0.03) log v − 0.131 ± 0.008. The dashed (dotted) line represents the
theoretical limit of stability for soap films in circular (square) tubes. Inset, plot of log R
(in mm) as a function of log v, and its best linear fit, for the tube of diameter 8.8 mm.

friction force experienced by the soap film is Pf (v). Hence, the steady motion of the
soap film obeys the equation 2σSH = Pf (v).

In our experiments, close to the centre of the tubes, the film shows a constant
radius of curvature R; therefore, H = 2/R. Further let b = 4S/P be the hydraulic
diameter of the tube; for a circular tube of radius a, b = 2a, and for a square tube of
side c, b = c. Thus, we have the simple prediction that R/b should be independent of
the tube geometry:

R

b
=

σ

f (v)
. (3.1)

3.2. Limit of steady film deformation

The above discussion assumed the existence of a steady shape of the soap film into
motion. This clearly fails at high velocity, because the curvature of the film becomes
too high for the film to meet the tube.

This idea is easy to quantify for a circular tube of radius a. A transverse film in
steady motion then meets the wall tube with a constant angle ϕ, obeying sinϕ = a/R

(figure 4b), and f (v) = 2σ sinϕ according to (3.1). Hence, the minimal radius of
curvature is simply

Rcircle
min = a =

b

2
, (3.2)

and f (v) cannot exceed 2σ .
For a square tube, the film shape should be of constant curvature and compatible

with the local viscous friction on the boundary. Let z = ζ (x, y) be the equation of
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the film in the square domain 0 � x, y � a. We consider an elementary portion of
a PB in contact with a wall, say at y = 0, of length d� and of projected length dx

(figure 3). This portion of PB meets the upstream and downstream wetting films,
which tensions cancel out, and the transverse film, on which two gas/liquid interfaces
exert a tension in its locally tangential direction along the length d�. Furthermore,
it experiences a viscous force −f (v) dx ez. Hence, the force balance along ez on the
portion of PB can be written as −f (v) dx +2σ d� t · ez = 0. Moreover, t = n ∧ t ′, where

n = (−ζxex − ζyey + ez)/
√

1 + ζ 2
x + ζ 2

y is the normal unit vector of the transverse film,

and t ′ = (ex + ζxez)/
√

1 + ζ 2
x is the tangential unit vector along the portion of PB.

Hence, t · ez = ζy/
√

(1 + ζ 2
x )(1 + ζ 2

x + ζ 2
y ). Given that dx/d� =1/

√
1 + ζ 2

x , the force

balance gives the condition

f (v)

2σ
=

ζy√
1 + ζ 2

x + ζ 2
y

= cos γ, (3.3)

which is analogous to a capillary surface meeting a wall at prescribed contact angle
γ = π/2 − ϕ, studied by Concus & Finn (1969). They predicted that in a wedge of
interior angle 2δ, there exists no bounded surface if γ + δ < π/2. In our case, the
square tube has four corners with an angle δ = π/4; hence, the condition of existence
of a shape of a transverse film in steady motion can simply be written as ϕ � π/4 or,
according to (3.3), f (v)/σ �

√
2. Hence, as per (3.1), the minimal radius of curvature

is

R
square
min =

c√
2

=
b√
2
. (3.4)

When the friction law f (v) is known, inserting Rmin in (3.1) yields a prediction of the
maximal velocity of a stable soap film.

3.3. Friction law

Several investigations have studied the viscous friction associated to the motion of a
soap film. In a seminal paper, Bretherton (1961) has proposed a theoretical expression
for the friction associated to the motion of an infinitely long bubble in a tube, in
the limit where inertia is negligible with respect to viscous and capillary effects, and
where the capillary number Ca = ηv/σ , comparing viscous and capillary effects, is
small. In that case, viscous friction comes from the transition zone matching the flat
wetting film between the bubble and the wall, and the bubble tip. The length of the
transition zone and the thickness of the wetting film h∞ are slaved to the radius of
the bubble tip, i.e. the tube radius, but this cancels out in the expression of f (v):

f (v) = 4.70βσCa2/3. (3.5)

The factor β depends on the boundary condition at the gas/liquid interface:
for a free shear boundary condition (mobile interfaces), β = 1, whereas for a no-
slip boundary condition (rigid interfaces), β = 21/3 � 1.26 (Appendix A). Hirasaki &
Lawson (1985) later extended this result to the case of soap films, showing that the
relevant length becomes the PB radius, although this does not alter the expression of
f (v). This idea was also used by Denkov et al. (2005) to predict the viscous dissipation
associated to the flow of foams against a wall. Finally, combining (3.1) and (3.5), we

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

09
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000935


Deformation of soap films pushed through tubes at high velocity 535

get the prediction for the radius of curvature of the film:

R =
b

4.70βCa2/3
. (3.6)

We will compare our data to this formula in § 4, before discussing its underlying
limitations in § 5, notably the possible role of the PB size and of inertial effects.

4. Experiments
4.1. Film deformation

We first plot, for each circular tube, R as a function of v, and we fit the data by a
power law (inset of figure 5). We obtain exponents of −0.64 ± 0.08, −0.71 ± 0.04 and
−0.71 ± 0.04 for tubes of radius 3.6, 5.9 and 8.8 mm respectively, all compatible with
−2/3. Next, fitting each series by a law A/v2/3, and plotting the best fit parameter A

as a function of a for the three tubes, we have checked that the data follow a linear
law A ∝ a within 6 % (data not shown). Hence, we can plot R/2a as a function of v

for all tubes (figure 5). The data collapse on a single curve, which, best fit by a power
law, yields an exponent −0.65 ± 0.04. Therefore, the scaling R ∝ a/v2/3 predicted
by (3.6) is experimentally verified, up to a velocity of 2.0 m s−1, corresponding to a
capillary number of 0.07.

Although somewhat more dispersed, the data for the square tube also follow a
power law with an exponent −0.67 ± 0.10 compatible with −2/3. According to (3.1),
we rescale R by the square side c, and we plot R/c as a function of v in the same
plot as the data for circular tubes (figure 5). All data collapse on the same master
curve, showing that the hydraulic diameter is indeed the relevant geometrical length
to compare tubes of different cross-sectional shapes. This master curve is a power law
of exponent −0.69 ± 0.03, again compatible with an exponent −2/3.

Concerning the prefactor, the best fit of the data with a power law of exponent −2/3
gives Rv2/3/b =0.74 ± 0.02 m2/3, whereas inserting the measured solution properties
in the prediction (3.6) gives Rv2/3/b = 2.08 m2/3 for β = 1 (mobile interfaces), and
1.66 m2/3 for β = 21/3 (rigid interfaces).

4.2. Unsteady behaviour and rupture of the soap films

We now test the predictions of the minimal radius of curvature given by (3.2) and
(3.4). The agreement with the most curved films that we were able to detect is excellent,
within 2 % for the square and 6 % for the circular tubes (figure 5). No steady films
have been recorded at higher velocity: they broke before entering the camera’s field
of view.

To go beyond the limit of stability, we produced films at low velocity and accelerated
them afterwards, typically 10 cm before they enter the field of view. With this
procedure, when the gas flux is suddenly increased, the film is accelerated faster than
the PBs, and thus becomes much drier. Many films burst during this transient stage
(figure 2c), but not all. With this procedure, few points have been obtained above the
theoretical velocity limit in figure 5. They are still compatible with the friction law
curve and their radius of curvature are then smaller than the theoretical predictions.
As depicted in figure 2d , a long cylindrical neck is then present at the rear of the
film. In order to evaluate the stability of these surprising shapes, we recorded images
with a larger field of view (15 cm). These shapes appeared to be unsteady. Several
scenarios have been observed: breakage after few centimetres; evolution towards the
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half sphere when the velocity is very close to the critical velocity; pinch-off of the
neck into a separate bubble in some cases, which does not touch the wall anymore.

In contrast, we also checked that the shape recorded at velocity below the critical
velocity does not change during the 15 cm-long trajectory.

5. Discussion
5.1. The weak influence of the Plateau border size

We have hitherto disregarded the role of the PB size, which does not appear in (3.6)
with which our measurements have been interpreted. However, we have observed in
many cases (e.g. figure 2b) that the soap films are not symmetric. The top part of the
PB, which is also the driest because of drainage, often lags significantly behind the
bottom part, and hence experiences more friction.

To quantify this possible influence of the PB size, we have extracted for the
experiments with the circular tube of diameter 5.9 mm the two angles, ϕtop and ϕbottom ,
with which the soap film meets the top and bottom parts of the tube. This gives a
ratio of the friction force per unit PB length: f (v)top/f (v)bottom = sinϕtop/ sinϕbottom .
For all experiments but one, we have checked that log |f (v)top/f (v)bottom | remains
below 0.1, which is the order of magnitude of the scatter of the data points with
respect to the master curve in figure 5.

Therefore, the PB size is a correction to the main variation of the radius of curvature,
with the velocity, which can be neglected in a first approach. In the absence of a
theoretical prediction, it may be possible to include its role using empirical laws such
as the one proposed by Raufaste, Foulon & Dollet (2009).

5.2. Boundary condition: rigid or mobile interfaces?

Sodium dodecyl sulphate is known to be very mobile at an air/water interface and to
exchange quickly with the solution bulk in case of area variation. Nevertheless, the
expansion rate in our experiment scales like v/� ∼ v/rCa1/3, with � being the length
of the transition domain, and reaches 105 s−1 for the highest velocities. At such a
high rate, concentration gradients can appear, whose effect is to impede surface area
variations, through Marangoni stress. The boundary condition to be used is thus not
obvious. A local conservation of the interface area, as used by Denkov et al. (2005)
for finite-size bubbles, imposes that the whole wetting film interface moves at the
film velocity v and is thus unacceptable: in our geometry, the total interface area
decreases downstream and increases upstream. In Appendix A, we allow the wetting
film interface to move with the wall as a rigid interface. The area variation is assumed
to occur on larger length scale and smaller time scale in the moving film or in the
PB interfaces and to be without influence on f (v). The viscous force for a rigid
interface is 1.26 times larger than for a mobile interface, but it is still lower than our
experimental result.

5.3. Contribution of the Plateau border to the viscous force

In Bretherton’s classical result, the friction force is localized in the transition zone
between the wetting film and an external infinite reservoir. Here, on the contrary, the
PB has a finite size r . Recirculations, with velocities greater than the film velocity,
have been observed in the PB, when tiny bubbles were trapped there; they have
also been predicted in numerical simulations (Saugey, Drenckhan & Weaire 2006).
This induces extra velocity gradients, estimated in Appendix B, showing that the
contribution of the PB to the viscous force should be of the same order as the
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contribution of the transition domains. We show that this additional contribution
scales as the Bretherton term, which could explain why the scaling f (v) ∼ σCa2/3 still
holds in our experiments.

5.4. Absence of inertial correction

Inertial effects can be estimated using the Weber number W = ρv2r/σ , with r ∼ 10−4 m
being the PB characteristic size and ρ = 103 kg m−3 the solution density. For our
velocity range, W varies between 0.04 and 25: inertial effects should then be visible and
even dominant in that velocity range. The viscous force scaling in Ca2/3, signature of
the visco-capillary regime, is therefore somewhat unexpected in this regime. Actually,
the friction force scales as f (v) ∼ η�v/h∞. Quéré & de Ryck (1998) have considered the
deviations of h∞ and � from the visco-capillary scaling as inertia becomes significant
(see (3.20) in their article). However, the scaling �/h∞ ∼ Ca−1/3 remains irrespective
of the value of W (see p. 45 of their article). Hence, since inertia modifies � and
h∞ similarly, the scaling f (v) ∼ σCa2/3 is unaffected by the inertial corrections, as
observed experimentally here.

6. Concluding remarks
Our results show that the limit of stability of soap films pushed through tubes

obeys simple theoretical predictions, which match the experimental values with an
excellent precision. Once the friction law is known, a quantitative criterion can be
given on the maximal velocity of a foam flow in a confined geometry.

Concerning the viscous friction between the soap film and the wall, the scaling
proposed by Bretherton (1961) was shown to hold beyond its expected range of
validity, at rather high capillary and Weber numbers. In the frame of the long-
standing debate on the boundary condition and the role of surfactants (Ratulowski &
Chang 1990; Shen et al. 2002; Denkov et al. 2005), this calls for further investigations
on the viscous dissipation associated with the motion of bubbles, films and foams close
to walls. In this context, we are currently studying the role of surface viscoelasticity
on soap film and foam flows in confined geometries.

I. C. acknowledges a grant from the Institut Universitaire de France.

Appendix A. Friction law: mobile versus rigid interfaces
Here we compute the contribution to f of the two transition domains between

the PB and the wetting film, upstream (top sign in the equations when the symbols
± or ∓ appear) and downstream (bottom sign in the equations). We use the frame
of the steady film in which the wall moves at velocity v. Both contributions f ±

are determined independently and in both cases we orient the x axis towards the
thin wetting film. The velocity v is thus positive for the upstream interface and
negative for the downstream interface. The lubrication equation allows to determine
the velocity field as a function of the interface profile h(x): u(x, y) = (σ/η)(λhy −
(1/2)y2)∂3h/∂x3 + v, with λ= 1 if the tangential stress vanishes at the interface and
λ= 1/2 if the interface moves at the wall velocity v. The governing equation for the
interface profile is, with Ca = η|v|/σ and μ =2/(3λ−1), ±3μCa(h∞ −h) = h3∂3h/∂x3.
Using the rescaling h = Hh∞ and x = Xh∞/(3βCa)1/3, with h∞ being the wetting film
thickness, we get H ′′′H 3 = ± (1 − H ), with boundary conditions H (∞) = 1, H ′(∞) = 0
and H ′′(∞) = 0, where the prime denotes derivation with respect to X. Finally, the
contribution to the viscous force is given by f ± = η

∫ ∞
−∞ ∂u/∂y(y = 0)dx that can be
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+

Pg
−

Figure 6. Sketch of a PB.

expressed as a function of the unknown solution H ±(X) and of the various parameters
involved in the rescaling. We obtain

f ± = λσ (3μCa)2/3

∫ ∞

−∞
H ±′′′

H ±dX. (A 1)

Finally, the contribution f ± of the two transition domains verifies f ±(λ)/f ±(1) = λμ2/3

which gives f ±(rigid)/f ±(mobile) = f ±(1/2)/f ±(1) = 21/3 � 1.26.
It is worth noting that the wetting film thickness is determined from the matching

condition 1/r = ∂2h/∂x2(−∞), which gives h∞ =RH ′′(−∞)(3μCa)2/3. Hence, h∞ and
f scale differently on λ. This explains that the ratio f ±(rigid)/f ±(mobile) is twice
smaller than the thickening factor h∞(rigid)/h∞(mobile) = 42/3 shown by Ratulowski
& Chang (1990) and Shen et al. (2002).

Appendix B. Contribution of the Plateau border to the friction
In addition to the contribution f ± of the transition domains, the PB itself has a

non-negligible contribution f PB to the total viscous force per unit length. For a film
flowing at velocity v in a tube of radius a, with a PB of typical size r , this contribution
scales like f PB ∼ ηrvPB/r ∼ ηvPB .

vPB can either be governed by the wall motion, which implies vPB ∼ v, or by a
pressure gradient due to the fore-aft asymmetry of the PB (figure 6), which implies
vPB ∼ (P + − P −)r/η. We compare both terms hereafter. The pressures are determined
from the geometrical constraints governing the PB shape (see figure 6). Using the
Laplace laws P ±

g − P ± = σ/r±, P +
g − P −

g = 4σ sinφ/a and the geometrical relation

r±(1∓ sinφ) = r , we get P + − P − ∼ (P +
g − P −

g )(1 + a/2r) ∼ a(P +
g − P −

g )/2r . With

f = a(P +
g − P −

g )/2, we finally get f PB/f ∼ 1. The dissipation in the PB is thus not
negligible in comparison with that in the transition region, and has the same scaling.
From f PB ∼ ηvPB , we deduce CaPB ∼ Ca2/3, or vPB/v ∼ Ca−1/3 > 1. The velocity in
the PB is thus mainly governed by pressure effects and not only by the boundary
velocity.
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