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Two Theorems on Invariance
and Causality*

Nancy Cartwright†‡

In much recent work, invariance under intervention has become a hallmark of the cor-
rectness of a causal-law claim. Despite its importance this thesis generally is either
simply assumed or is supported by very general arguments with heavy reliance on ex-
amples, and crucial notions involved are characterized only loosely. Yet for both philo-
sophical analysis and practicing science, it is important to get clear about whether
invariance under intervention is or is not necessary or sufficient for which kinds of
causal claims. Furthermore, we need to know what counts as an intervention and what
invariance is. In this paper I offer explicit definitions of two different kinds for the
notions intervention, invariance, and causal correctness. Then, given some natural and
relatively uncontroversial assumptions, I prove two distinct sets of theorems showing
that invariance is indeed a mark of causality when the concepts are appropriately in-
terpreted.

1. Introduction.
1.1. The project. Much recent work on causal inference takes invariance

under intervention as a mark of correctness in a causal-law claim (Gly-
mour, Scheines, Spirtes, and Kelly 1987; Hausman and Woodward 1999;
Hoover 2001; Redhead 1987). Often this thesis is simply assumed; when
it is argued for, generally the arguments are of a broad philosophical
nature with heavy reliance on examples. Also, the notions involved are
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1. Or, if the right kind of variation does not actually occur, there must be a fact of the
matter about what would happen were it to do so.

often characterized only loosely, or very specific formulations are assumed
for the purposes of a particular investigation without attention to a more
general definition, or different senses are mixed together as if it did not
matter. But it does matter, because a number of different senses appear
in the literature for each of the concepts involved, and the thesis is false
if the concepts are lined up in the wrong way.

To get clear about whether invariance under intervention is or is not
necessary or sufficient for a causal-law claim to be correct, and under what
conditions, we need to know what counts as an intervention, what invar-
iance is, and what it is for a causal-law claim to be correct. Next we should
like some arguments that establish clear results one way or the other. In
this paper I offer explicit definitions for two different versions of each of
the three central notions: intervention, invariance, and causal claim. All of
these different senses are common in the literature. Then, given some nat-
ural and relatively uncontroversial assumptions, I prove two distinct sets
of theorems showing that invariance is a mark of causality when the con-
cepts are appropriately interpreted. These, though, are just a sample of
results that should be considered.

The two different sets of theorems use different senses of each of the
three concepts involved and hence make different claims. Both might
loosely be rendered as the thesis that a certain kind of true relation will
be invariant when interventions occur. In the second, however, what
counts as “invariance” becomes so stretched that the term no longer seems
a natural one, despite the fact that this is how it is sometimes discussed in
the literature—especially by James Woodward, whose extensive study of
invariance is chiefly responsible for isolating this particular characteristic
and focussing our attention on it.

Nor is “intervention” a particularly good label either. The literature on
causation and invariance is often connected with the move to place ma-
nipulation at the heart of our concept of causation (Price 1991; Hausman
1998; Woodward 1997; Hausman and Woodward 1999): roughly, part of
what it means to be a cause is that manipulating a cause is a good way to
produce changes in its effects. “Manipulation” here I take it suggests set-
ting the target feature where we wish it to be, or at will, or arbitrarily.
Often when authors talk about intervention, it sounds as if they assume
just this aspect of manipulation.

Neither set of theorems requires a notion so strong. All that is required
is that nature allow specific kinds of variation in the features under study.1

We might argue that manipulability of the right sort will go a good way
towards ensuring the requisite kind of variability. But mere variation of
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the right kind will be sufficient as well, so we need take care that formu-
lations employing the terms “manipulation” and “intervention” not mis-
lead us into demanding stronger tests for causality than are needed.

In this paper I am concerned only with claims about deterministic sys-
tems where the underlying causal laws are given by linear equations linking
the size of the effect with the sizes of the causes. Although this is extremely
restrictive, it is not an unusual restriction in the literature, and it will be
good to have some clean results for this well-known case. The next step
is to do the same with different invariance and intervention concepts
geared to more general kinds of causal systems and less restrictive kinds
of causal-law claims.

This project is important to practicing science. When we know neces-
sary or sufficient conditions for a causal-law claim to be correct, we can
put them to use to devise real tests for scientific hypotheses. And here we
cannot afford to be sloppy. Different kinds of intervention and invariance
lead to different kinds of tests, and different kinds of causal claims license
different things we can do. So getting the definitions and the results
straight matters to what we can do in the world and how reliable our
efforts will be.

1.2. The Nature of Deterministic Causal Systems. I need in what follows
to distinguish between causal laws and our representations of them; I shall
use the term “causal system” for the former, “causal structure” for the
latter. I take it that the notion of a “causal law” cannot be reduced to any
non-modal notions. So I start from the assumption that there is a differ-
ence between functional relations that are just true and ones that are true
in a special way; the latter are nature’s causal laws. I will also assume
transitivity of causal laws. This implies that the causal systems under study
include not only facts about what causal laws are true—e.g., “Q causes
P”—but also about the possible ways by which one factor can cause an-
other—e.g., “Q causes P via R and S but not via T.”

I discuss only linear systems, and I shall represent nature’s causal equa-
tions like this: qec�Raejqj, with the effect on the left and causes on the
right. As will be clear from axiom A1, this law implies that qe�Raejqj; but
not the reverse. Following the distinction between systems and structures,
I shall throughout use qi to stand for quantities in nature and xi for the
variables used to represent them. Also with respect to notation, I shall use
lower case letters for variables and quantities and upper case letters for
their values. I assume the following about nature’s causal systems:

A1: Functional dependence. Any causal equation presents a true
functional relation.

A2: Antisymmetry and irreflexivity. If q causes r, r does not cause q.
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2. More precisely, a causal law for an effect xj, L(xj), is a set of ordered pairs giving causes
of xj and their weights: L(xj) � {�a(1)j1,x1��a(2)j1,x1� . . .�a(k1)j1,x1��a(1)j2,x2�
. . .�a(kn)jn,xn�}, a(k)jm e R. We can then define xi causes xj with weight a just in case
∃L(xj) (�a,xi� e L(xj)). (Notice that my formulations allows—as I have argued we
should—for a cause to have multiple capacities with respect to the same effect. Once we
have admitted this piece of information we can of course go on to define some concept
of “the overall influence” of a given cause on a given effect).

Clearly the assumptions too need a more precise formulation. Transitivity, for example,
becomes

A�4: For any laws L(xj) and L(xi), and for any �b,xi� e L(xj), L�(xj) is also a law,
where

′ = − ∪

′ ′

L L( ) ( ) { }

{ ( ) , , , }

x x <b,x >

<b,a x > <b,a (k ) ,x >  

f

j j i

il i l in i1 …

oor all<a ,(k x > xm im m i
′ ) , ( )ε L

The other assumptions are formulated similarly.

We need some kind of complicated formulation like this to make clear, e.g., that ar-
bitrary regroupings on the right-hand side of the causal-law equation will not result in
a causal law. For example, assume that x2 c � ax1 and x3 c � bx1� cx2. It follows that
x3 � bx1�(c-d)x2�dx2 � bx1�(c-d)ax1�dx2 � (b�ca-da)x1�dx2, but we do not wish
to allow that x3 c � (b�ca-da) x1� dx2. For our purpose here, I think we can proceed
with the more intuitive formulations in the text.

A3: Uniqueness of coefficients. No effect has more than one expansion in
the same set of causes.

A4: Numerical transitivity. Causally correct equations remain causally
correct if we substitute for any right-hand-side factor any function in
its causes that is among nature’s causal laws.

A5: Consistency. Any two causally correct equations for the same effect
can be brought into the same form by substituting for right-hand-side
factors in them functions of the causes of those factors given in
nature’s causal laws.

A6: Generalized Reichenbach principle. No quantities are functionally
related unless the relation follows from nature’s causal laws.

More formally: a linear deterministic system (LDS) is an ordered pair
�Q, CL�, where the first member of the pair is an ordered set of quantities
�q1, . . . ,qm� and the second is a set of causal laws of the form qk

c�Rj�kakjqj (akj a real number) that satisfies A1 through A6.2

2. Causal Law Variation, Invariance, and One Kind of Causal Claim.
2.1. The First Definitions. The kind of intervention we shall be con-

cerned with in this section is the same as employed by Pearl (2000b) in his
work on causal counterfactuals and by Glymour, Scheines, Spirtes, and
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3. In my own work (Cartwright 1999) on laws it is natural that they should vary since
laws are epiphenomena, depending upon stable arrangements of capacities. I take the
prevalence of “intervention” tests for causal correctness of the kind described here,
based on the possibility of variations in causal laws, to indicate that a surprising number
of other philosophers are committed to something like my view.

4. Or, the possibility of the occurrence of these systems. (See footnote 1.)

5. There are of course other kinds of arguments for linking manipulation and causation
(e.g., Hausman 1998, Price 1991). My point here is that it is mistaken to argue that
manipulation is central to causation on the grounds that one important kind of test for
causal correctness—the “invariance” test—cannot do without it.

Kelly (1987) in their manipulation theorem (once we transform their no-
tion from graph representations to linear deterministic systems). It is also
one of the kinds that Daniel Hausman and James Woodward (1999) dis-
cuss in their joint work on the Markov condition.

As I indicated in Section 1.1, the results I aim to establish are not really
results about intervention in the natural sense of that term, but rather
results about variation. The first kind of intervention, which will be under
discussion here in Section 2, is one in which causal laws vary; in the second
kind, which I discuss in Section 3, it is the values of the causes picked out
in a fixed causal system that vary. We may perhaps be more used to think-
ing of quantities as taking on different values than of laws as varying.3

But all we need here is that there are different causal systems that relate
to each other in the specific way I shall describe. The point I am trying to
make is that it is the occurrence of these systems4 that matters for testing
the correctness of causal claims; it is not necessary that they come to occur
through anything naturally labeled an intervention or a manipulation.5 I
shall, therefore, talk not of intervention but rather, of variation.

In the first kind of “variation”/“intervention,” which I call causal-law
variation, a new causal system is considered, similar in many ways to the
first. Let us call the new system a test system for results of quantity q
relative to the original system. The test system differs from the original
that we wish to test by exactly one addition and two kinds of deletions.
For a target quantity q, add the law q � Q for some specific value, Q, of
q within its allowed range. Drop (1) all laws with q as effect and (2) all
laws linking causes of q with effects, e, of q where the causal influence
passes through q—that is, any equation for e that can be obtained by
transitivity from an equation giving q’s effects on e. The first is easy to
say formally: drop all laws of the form q c � f( . . . ). The second is more
cumbersome: drop any equation A: e c � f( . . . , g( . . . ), . . . ) for which
there are equations of the form B: e c � f( . . . , q, . . . ) and C: q c �
g( . . . ).

As with “intervention,” there are a number of different kinds of invar-
iance suggested in the literature. The one relevant here seems genuinely a

https://doi.org/10.1086/367876 Published online by Cambridge University Press

https://doi.org/10.1086/367876


 208

notion of invariance, so that is what I shall call it. An equation in a (linear
deterministic) causal system �Q, CL� giving a true functional relation
(but not necessarily one that replicates one of nature’s causal laws) is
invariant in q iff it continues to give a true functional relation for any
value that q takes in any test situation for q relative to �Q, CL�.

We also need to be explicit about what an equation of the form xe c �
Raixi in a causal representation is supposed to be claiming. I propose the
obvious answer: an equation of this form claims to record one of nature’s
causal laws. When it does so, I shall say that it is causally correct.

2.2. The First Theorem.

Theorem 1. A functionally true equation is causally correct iff it is
invariant in all its independent variables, either singly or in any com-
bination.

Correctness r Invariance

The result in this direction is trivial now that the background is in place.
Consider an equation that is causally correct:

E: x c f x xe n= ( , , ).1 …

Consider a test system for the effects of qi for any qi represented by an xi

in the right-hand side of E. The intervention replaces the causal system of
which this equation is a part by a new one. This equation would be
dropped from the new system if it had qi as an effect—which it hasn’t.
Otherwise it would be dropped only if it had as effect an effect of qi—
which it has—and it results from substituting g( . . . ) for qi into some
equation for qe, where qi c � g( . . . ). But in this case qi would no longer
appear in the equation to be dropped. So xe c � f(x1, . . . , xi, . . . , xn)
will still obtain in the new system. Hence E is invariant under interven-
tions on qi.

Clearly the trick in establishing the necessity of invariance for correct-
ness is in the characterization of interventions. So we shall need to be wary
when we introduce a different concept of intervention, as in Section 3.

Invariance r Correctness

Consider an equation

F: x a xe i i=
=
∑
i

N

1

where either some xi appears that it is not the cause of xe, or, if all are
genuine causes, some xi appears with a causally incorrect coefficient. In
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6. I shall henceforth drop the use of “represented by” where it will not cause confusion
and simply talk of variables causing other variables.

order to be invariant, F must also be derivable in all test systems for all
qi and it must be derivable from the same equations as in the original.
That is because the move to a test system adds only one kind of new law
to use in a derivation: “qi � Qi” where Qi may be any value in the appro-
priate range. This clearly will not help since Qi will vary from test system
to test system, and F must be derivable in all of them. But if F is derivable
from the same set of laws in the test situation as in the original, then not
only will F be invariant in all xi, so too must each member of this set be.
So we wish to establish:

Lemma 1

No matter what the causal system, no linear combination of nature’s
causal equations will yield an equation of form F that is invariant in
all the qi represented on the right-hand side of F.

We should first notice that, trivially,

Claim 1. No matter what the causal system, no causal equations used
in the linear combination can have an xi on the left-hand side.

The result is then established by coupling Claim 1 with

Claim 2. No matter what the causal system, no linear combination of
causal equations in which xi’s appear only on the right-hand side will
yield F.

Proof of Claim 2. The proof of Claim 2 is by induction on the number
of variables in addition to xe and the xi’s that appear in the equations in
the linear combination that yields F.

Inductive Base. As a base for the induction, show that no linear combi-
nation of equations in any causal system that use no variables in addition
to xe and the xi’s and are invariant in all xi will yield F. Here’s how: All
equations used in such a linear combination will have xe on the left-hand
side and some combination of xi’s on the right-hand side. That is, they
will look like this:

B: x  c b xe i i= ∑
C: x  c c xe i i= ∑

�

where some of the bi and some of the ci will be zero. By consistency, some
combination of factors from B cause factors in C or the reverse or both.
But if factors in B cause a factor represented by6 xi in C, then B will not
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be invariant in xi. Similarly, if factors in C cause a factor, x , in B, then�i
C will not be invariant in x . So no two such equations can be used and�i
F cannot be so obtained.
InductiveArgument. We aim to establish by reductio that if Claim 2 is true
for a set of equations using n variables in addition to xe and the xi’s, it will
be true for a set using n�l additional variables. So suppose F can be
obtained using n�l additional variables; let z1, . . . , zk, k � N � n � 1,
denote the variables that appear in a linear combination that yields F.

Lemma 2. At least one of the “extra variables”—one of the zi that is
neither xe nor any of the xi’s—must appear as an effect in the equations
used at least once. Call it z.

Proof. This is true because

(i) Among extra variables that appear as causes, at least one will not
be a cause of any of the other extra variables involved. Otherwise
we would have a causal loop, which violates antisymmetry. Call it
z�.

(ii) Since z� does not appear in F, it must appear in at least two
equations (one to introduce it, one to eliminate it).

(iii) Both these equations must have xe as effect since no xi can
appear as an effect in an invariant equation. z� could appear with
the same coefficient in both equations:

x az a ze i i= ′ + Σ

x az b ze j j= ′ + Σ

By consistency, � aizi and � bjzj can be brought into the same form by a
set of laws, L, linking the zi and the zj. In this case these two equations
containing z� can be replaced in F by the laws in L, which do not contain
z�, with no loss. Alternatively, z� can appear with different coefficients in
the two equations:

x az a ze i i= ′ + Σ

x bz b ze j j= ′ + Σ

But this is possible only if z� is a cause of either one or more of the zi or
of the zj. Since these effects must be xi’s, the equation with the causes of
these xi’s will not be invariant in all xi.
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b 3

b 2

b 1

a 41

a 6
a

z 3z 5

z 7

z

z 4

z 6

z 1

z 2

a 2=df  a 4b 2

a 3=df  a 4b 3

a 5=df  a 1b 1

7

a

We can now eliminate z in the following way: consider nature’s causal
law for z as effect that cites as causes just those factors that are direct
causes of z among the zi. Designate it thus:

z  c a y y z zi i i i k= ∈Σ { , , }…

Replace any equation in the original linear combination in which z appears
as cause by the same equation with �aiyi substituted for z. Eliminate all
equations with z as effect. Add nature’s causal equations giving the rela-
tions among all the causes that appear in all the different equations that
had z as effect, as well as those connecting z�s parents with the effects of
z among the zi. For example, supposing the relations in Figure 1, we re-
place

z c a z a z a z1 1 2 2 3 3= + +

z c a z a z4 4 5 5= +

z  c a z a z7 6 6 7= +

with

z  c b z1 1 5=

z  c b z b z4 2 2 3 3= +

z  c a z a (a z a z7 6 6 7 1 1 4 4= + + )
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7. This is similar to a standard kind of condition on parameter values in econometrics
(cf. Engle, Hendry, and Richard 1983) and as a condition on parameter values plays a
central role in Kevin Hoover’s (2001) theory of causal inference. Woodward (1997) asks
for statistical independence of the exogenous quantities. The proof here requires the
additional assumption that there are no cross restraints on their values.

Clearly the new set of equations will be invariant in all xi if the original
are, and any equation in xe and the xi that can be obtained using the
original equations can be obtained using the new ones. Q.E.D.

3. Variation of Values, Prediction of First Differences, and Parameter Cor-
rectness.

3.1. Systems That Are Nice for Us. The basic idea in connecting inter-
vention/variation with invariance as a test of causality is Mill’s method of
concomitant variation: as a cause changes, the effect should change “in
train.” But there are caveats. The variation must occur in the right cir-
cumstances. The easiest circumstances are where the putative cause varies
all on its own and no other causes vary at all. That is essentially what we
achieve in the test systems of Section 2 by looking at variants of the origi-
nal causal laws that make the putative cause take a particular value in-
dependent of what values other factors have.

But sometimes, if a causal system is sufficiently nice, we can achieve
essentially the same results by looking within the system itself. The sim-
plest case is where each of the putative causes for a given effect has a cause
of its own that can vary without any cross restraints on other possible
causes of that effect. That will guarantee that all possible causes can take
on any combination of values. I call such a system epistemically convenient.

More formally, an epistemically convenient linear deterministic system
(ECLDS) is a linear deterministic system, �Q, CL�, such that

A7: Epistemological convenience. For each qj in Q � {q1, . . . ,qm} there
is some cause q such that:*

j

(i) qj c � Rk�jcjkqk � q *
j

(ii) There are no cross restraints on the values of the q ; that is, for*
j

all situations in which �Q, CL� obtains, it is possible (“allowed
by nature”) for each q to take any value in its allowed range con-*

j

sistent with all other q taking any values in their allowed ranges.7*
k

In case the LDS we are studying is an epistemically convenient one, we
can relabel the quantities so that the system takes the familiar form

q  c u1 1=

https://doi.org/10.1086/367876 Published online by Cambridge University Press

https://doi.org/10.1086/367876


      213

q  c a q u212 1 2= +
�

q  c a q a q un n1 nn n n= + + +− −1 1 1… ,

where n � m/2. For the remainder of this part, I consider only epistemi-
cally convenient linear deterministic systems, and I assume that the no-
tation has its natural interpretation for such systems.

Notice that (i) and (ii) imply

(iii) no qk in Q causes q *
j

but neither

(iv) for all j, k, q does not cause q* *
j k

nor

(v) for all j, k, q and q have no common cause (i.e., they are not* *
j k

part of any other LDS in which they have a common cause).

Many authors restrict their attention to systems satisfying (iv) and (v) as
well, usually with the intention of mounting an argument from (i), (iii),
(iv), and (v) to (ii). I shall not do so because the argument is not straight-
forward and at any rate we need only the assumption (ii) for deriving the
results of interest here.

Following standard usage, let us call the “special causes” represented
by u’s in an ECLDS, exogenous quantities, since they are not caused by
any quantities in the system. Notice that, for an ECLDS, an assignment
of values to each of the exogenous quantities will fix the values of all other
quantities in the system. In what follows it will help to have an expression
for a quantity in the system in terms of the exogenous quantities. Again
following conventional usage, I call this the reduced form.

RF: q c u a ak i kl lm
m i

l

l i

k

i

k

=
=

−

=

−

=
∑∑∑ …

11

1

where we adopt the convention f j k lij
( , , , ) ,… =

=∑ 1  if >α β
α

β
.

∴ =
=
∑q c uk i

k
i

i

k

Γ ,
1

where Γ i
k

kll i

k

lmm i

l
a a=

=

−

=

−∑ ∑1 1
….

Call any set of values for each of the exogenous terms a situation. We
shall be interested in differences so let us define D qn � df qn( u1 � U1,�

j

. . . , uj�1 � Uj�1, uj � Uj�� , uj�1 � Uj�1, . . . , um/2 � Um/2)—qn( u1 �
U1, . . . , uj�1 � Uj�1, uj � Uj, uj�1 � Uj�1, . . . , um/2 � Um/2).
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8. Thanks to David Danks for highlighting this feature.

9. The proof is similar to the proof of the theorems in Section 2 above. See Cartwright
1989. (Note that the argument in Spirtes, Glymour, and Scheines 1993 against this
result uses as a putative counterexample one that does not meet the conditions set.)

Statisticians like epistemologically convenient systems because they
make estimation of probabilities from data easier. We, by contrast, are
concerned with how to infer causal claims given facts about association.
For this project, these kinds of systems have three advantages.

1) In Section 2 we discussed methods for finding out about a causal
system of interest by looking at what happens in other related sys-
tems. But the existence of the system of interest provides no guar-
antee that these other systems exist for us to observe. In this part we
shall be interested in situations in which specified factors take arbi-
trary values relative to each other. In an epistemologically conve-
nient system this is guaranteed to happen “naturally” within the
system itself—at least “in the long run.”8

2) Consider a functionally correct hypothesis,

H: x  c a xe ej j= Σ
where each qj (represented by xj) has an exogenous cause peculiar to it

satisfying ii). In this case nature provides a basic arrangement that
allows the possibility for each qj to have an open back path; whether
indeed each does have an open back path will depend entirely on
our knowledge, but at least the facts are right to allow us knowledge
of the right kind. Relative to qe, qj has an open back path just in
case (a) every causal law with qj as effect has a uj such that uj cannot
cause qe except by causing qj, and (b) we know what these u’s are
and we know that (a) is true of them.

The nice thing about hypotheses like H where every putative cause
has an open back path is that we can tell by inspection whether H
is true or not. For no xj can appear in a functionally correct equation
with a causally wrong coefficient unless some factor appears on the
right-hand side of that equation along with a factor from its back
path.9 But according to (a), no factor from the back path of qj can
appear as a cause of qe in the same law as qj. The equation for xe is
thus a true causal law, so long as nothing appears on the right-hand
side that is from the back path of any other factor that appears there.
Given (b), we can tell this just by looking. According to Cartwright
(l989), J. L. Mackie’s famous example of the London workers and
the Manchester hooters works in just this way.

3) Randomized treatment/control experiments are the gold standard for
establishingcausal laws inareaswherewedonothavesufficientknowl-
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edge to control confounding factors directly. These experiments re-
quire that there be some method for varying the causal factors under
test without in any other way producing variation in the effect in
question. In an epistemologically convenient system, the exogenous
quantities peculiar to each factor provide just such a method.

3.2. The Second Definitions. Now for “intervening.” The idea is to
“vary” the value of the targeted quantity by adjusting its exogenous cause
in just the right way, keeping fixed the values of all the other exogenous
causes. But as I indicated, neither the idea of our manipulating nor of our
varying anything matters. All we need is to consider what would happen
were two different values of the exogenous cause of the targeted quantity
to occur in two otherwise identical situations. So I propose the following
definition: A variation/intervention of values is a calculation of D qk for�

j

some j, k, �. Direct inspection of the reduced form for qk shows the fol-
lowing to hold:

Lemma (on reduced forms and causality): If qj does not cause qk then
D qk � 0.�

j

Along with the notion of “intervention,” we have to introduce new notions
of invariance and causal correctness as well, otherwise the kinds of theo-
rems we are interested in will not follow. The result in one direction still
follows: any causally correct equation will be invariant under varia-
tion/intervention. But that is because any true equation will be, including
all those equations that suggest joint effects of a common cause as causes
of each other. Hence the result we really want in order to test for causal
correctness will not follow, i.e., it is not true that any equation that is
invariant under value variation/intervention will be causally correct (even
if we restrict attention, as below, to equations in which no right-hand-side
quantity causes any other).

What notion shall we substitute for that of invariance? The answer must
clearly be tied to what kind of causal claim is made since we are not, after
all, interested in invariance itself but pursue it as a test for causality. So
far the kind of causal claim we have considered is terrifically restricted
given our usual epistemic position. For we consider only hypotheses that
claim to offer a complete (i.e., determining) set of causes and with exactly
the weights nature assigns them. One way to be less demanding would be
to ask for causes but not insist on weights.

Another alternative is to insist that the weights be correct, but not insist
on a complete set of causes. This is the one I consider here. If we are
offering claims with some causes omitted, what form should the hypoth-
eses take? One standard answer is that they take the form of regression
equations:
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R:  x  c a x  for x  for all j,k kj j k k j= + ⊥Σ Ψ Ψ,

where x � y means that �xy� � �x��y� � 0. This of course only
makes sense if there is a probability measure from which the expectations
are derived. So the use of hypotheses of this form involves an additional
restriction on the kinds of systems under study, as follows. An Episte-
mically Convenient Linear Deterministic System with Probability Measure
(ECLDSwPM) is an epistemically convenient linear deterministic sys-
tem that satisfies A8.

A8: Existence of a probability measure. The quantities in Q can be
represented by random variables x1, . . . ,xm which have a probability
measure defined over them. (Following conventional notation, we
can relabel the x’s just as we have the q’s so that {x1, . . . ,xm} � {x1,
. . . , xm/2,u1, . . . , um/2}).

What does an equation of form R assert? This kind of equation is often
on offer but generally without any explanation about what claims it is
supposed to make. I take it that it is supposed to include only genuine
causes of xk and moreover to tell us the correct weights of these. I propose,
therefore, to define correctness thus: an equation of the form R: xk c �
�akjxj � Wk (1 � j � m/2), for Wk � xj, is correct iff there exist {bj} (possibly
bj � 0), {q } such that qk c � �akjqj � �bjq � uk(1 � j � m/2), where� �j j

qj does not cause q . This last restriction ensures that all omitted factors�j
are causally antecedent to or “simultaneous” with those mentioned in the
regression formula.

It may be useful to consider an example:

q  c u1 1=

q  c a q u2 21 1 2= +

q  c u3 3=

q  c a q a q a q u2 434 41 1 42 3 4= + + +

In this causal system the equation

x  c a a a q R214 41 42 1= + +( )

is correct. It may seem worrying that q2 is omitted from the right-hand
side of the regression equation and it is caused by q1, which is included.
But this is all right. The claims of the regression equation are correct under
the proposed definition because there is a true causal law in which the
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coefficient of q1 is that given in the regression equation, and no factors in
the true law that do not appear in the regression equation are caused by
ones that are mentioned.

Now return to the unresolved issue of what can be introduced in place
of invariance to dovetail with this characterization of correctness for re-
gression equations. As I indicated in the Introduction, the notion that I
use is not a notion of invariance at all. It is rather a notion of correct
prediction: correct prediction of variation in values as situations vary in
specific ways. This is not in any way a new notion, but it is one that
Woodward has recently directed our attention to and that he has devel-
oped at length. I believe that what I define here is the right way to char-
acterize his ideas when applied to epistemically convenient linear deter-
ministic systems, and I take it that the theorem I prove is one precise
formulation of what he argues for (once a number of caveats are added
to his claims).

What do equations of form R predict about the difference in the size
of effect between these two situations? If R’s claims are correct, the dif-
ference in the effect given a variation of the special exogenous variable
that causes one of the right-hand-side variables, say xJ, should be thus:
D qk � RakjD qj � RbjD q for some {bj} and {q }, where no qj causes� � � � �J J J j j

any q . By inspection of the reduced form equations in an ECLDSwPM,�j
we see that the second term on the right-hand side is zero, since qJ does
not cause any of the quantities that appear there. So R’s predictions are
correct just in case D qk � RakjD qj. So let us define: an equation of form� �

J J

R correctly predicts first differences for all right-hand-side variables if and
only if, D qk � RakjD qj for all � and for all J, where J ranges over the� �

J J

right-hand-side variables.

3.3. The Second Theorems. Now I can state the relevant theorem:

Theorem 2a. A regression equation for qk, xk c � Rj�1
k�1akjxj � Wk,

is causally correct iff for all � and for all J, 1 � J � k�1, D qk ��
J

RakjD qj; i.e., iff the equation predicts rightly the first differences in�
J

qk generated from any value variation/intervention in any right-hand-
side variable.

First a note on notation. In general there will be more q’s in the un-
derlying causal system than are represented by x’s from the causal struc-
ture. For convenience I suppose that the q’s are ordered following the x’s:
i.e., qj is the quantity represented by xj. This means that we cannot pre-
suppose that qi is causally prior to qi�1.
Proof of Theorem 2a. The proof from correctness to the prediction of first
differences in qk under variations of right-hand-side variables is trival. To
go the other direction, first reorder the q’s so that they are numbered in
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their true causal order (so, qj can only cause qj�l for l � 1), which we can
do without commitment since the ordering is arbitrary to begin with. Then
renumber the x’s accordingly. For all 1 � J � k�1 and all � we suppose
that

∆ ∆J k ki J i
i=1

k

a qα αq =
−

∑
1

Note first that we can always write

q A q B q uk ki i
i

k

kj j k
j=k

m/

= + +
=

−

+
∑ ∑

1

1

1

2

where qj, k�1 � j � m/2, is not caused by qi, 1� i � k�1, with Aki

possibly 0. For consider any causal equation of this form where some of
the qj are caused by some of the qi. To find a true causal law of the required
form simply substitute for each of the unwanted qj an expansion in a set
of causes of qj, all of which occur prior to all qi. From this it follows from
our lemma that for all J such that i � J � k�1,

∆ ∆J k ki J i
i=1

k-1

q A qα α= ∑ .

We need to show that Aki � aki. Consider first D qk, where 1 � L � k�1�
L

and qL is causally posterior to all other qi for 1 � i � k�1:

∆ ∆ ∆L k L L L kL L Lq a q A qα α α= = ,

where the first equality comes from the assumption that the equation for
qk predicts first differences correctly and the second from the true law for
qk. It follows that akL � AkL.

Next consider D qk, where i � L� � k�1 and qL� is causally posterior�
L�

to all other qi for l � i � k�1 except for L.

∆ ∆ ∆ ∆ ∆′ ′ ′ ′ ′ ′ ′ ′ ′= + = +L k kL L L kL L L kL L L kL L Lq a q a q A q A qα α α α α

for the same reasons as before. Since akL � AkL, it follows that akL� �
AkL�. And so on for each coefficient in turn. Q.E.D.

Notice, however, that this theorem is not very helpful because it will
be hard to tell whether an equation has indeed predicted first differences
rightly. That is because we will not know what D qj should be unless we�

J

know how variations in uJ affect qj and to know that we will have to know
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the causal relations between qJ and qj. So in order to judge whether each
of the qj affects qk in the way hypothesized, we will have to know already
how they affect each other. If we happen to know that none of them affect
the others at all, we will be in a better situation, since the following can
be trivially derived from Theorem 2a:

Theorem 2b. A regression equation xk c � Rj�1
k�1akjxj � Wk in which

no right-hand side variable causes any other is causally correct iff for
all � and J, D qk � akJD uJ.� �

J J

We can also do somewhat better if we have a complete set of hypotheses
about the right-hand-side variables. To explain this, let me define a com-
plete causal structure that represents an ECLDSwPM , �Q � {q1, . . . ,
qm/2,u1, . . . ,um/2}, CL� as a pair �X � {x1, . . . ,xn: 1 � n � m/2}, l,
CLH�, where l is a probability measure over the x’s and where the causal
law hypotheses, CLH, have the following form:

x  c1 1= Ψ

x  c a x212 1 2= + Ψ
�

x  c a xn j=1
n-1

nj j n= +Σ Ψ ,

where Wj � xk, for all k � j. In general n � m/2. Since the ordering of the
q’s has no significance, we will again suppose that they are ordered so that
qj is represented by xj. Now I can formulate

Theorem 2c. If for all xk in a complete causal structure, D qk � D xk
� �
J J

as predicted by the causal structure for all � and J, 1 � J � n, then all
the hypotheses of the structure are correct.

For the proof we need some notation and a convention. What does the
causal structure predict about differences in qk for D uk? I take it to predict�

k

that D qk � D uk � �. To denote a predicted difference I use D�, with D� �
k k

reserved for real differences (i.e., those that follow from the causal system
being modeled in the causal structure). So the antecedent of Theorem 2c
thus requires that for all J, 1 � J � n, D qk � D� xk.� �

J J �

Proof of Theorem 2c. Consider the kth equation in the structure

x  c a xk ki i k
i

k

= +
=

−

∑ Ψ
1

1

We need to show that
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q  c a q b q uk ki i
i

k

kj j k
j=k

m/

= + +
=

−

+
∑ ∑

1

1

1

2

where qi does not cause qj for 1 � i � k�1 and k�1 � j � m/2. We know
that for some {Aki}, {Bki}

q  c A q B q uk ki i
i

k

kj j k
j=k

m/

= + +
=

−

+
∑ ∑

1

1

1

2

where qi does not cause qj for 1 � i � k�1 and for j such that k�1 � j
� m/2 and Bkj � 0. So we need to establish that there is a set of Aki such
that Aki � aki for all i such that 1 � i � k�1. We do so by backwards
induction: show first that the coefficient of xk�1 is correct and work back-
wards from there. Note for the proof that since qi, 1 � i � k�1, does not
cause qj, for any j such that k�1 � j � m/2 and Bkj � 0, ∆ i kj jj=k

m/
B qα =

+∑ 0
1

2

for l � i � k�1.
Inductive Base. To show,

∆ ∆ ∆

∆

k k ki k i
i

k

ki k i kk-1
i

k

k

q A q A q A− −
=

−

−
=

−

−

= = ′ =

= ′

∑ ∑1 1
1

1

1
1

1

1

α α α

α

α

qq a q Ak ki k i ki
i

k

= ′ =−
=

−

∑ ∆ 1
1

1
α α

So Akk�1�akk�1.
Inductive Argument. Given Ak,p�s � ak,p�s for 1 � s � k�1�p, to show
Akp � akp, consider what happens given D . Using the reduced form for�

p

qi plus the assumption that all first difference predictions are right, and
the fact that D� qi � 0 for i�p, we have�

p

∆ ∆ ∆ ∆p k ki p i
i

k

ki p i
i

k

ki p i
i=p

k

k

q A q A q A q

A

α α α α= = ′ = ′

=

=

−

=

− −

∑ ∑ ∑
1

1

1

1 1

ii p p il lm
m p

l

p

i

i=p

k

kp ki
i p

k

il

u a a

A A a

′

= +

=

−

=

−−

= +

−

∑∑∑

∑

∆ α

α α

…
1

1

11

1

1

aa

q a q a a a a

lm
m p

l

p

i

p k ki p i kp ki il lm
m p

l

…

…

=

−

=

−

=

−

∑∑

= ′ = ′ = +

1

1

1

∆ ∆α α α α
11

1

111

∑∑∑∑
=

−−−

p

i

i=p+1

k

i=p

k
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10. Recall that for x2 � c21x1 � W2 to be a regression equation, �x1, W2� � 0. I assume
here that the u’s have mean 0, variance 1 and �ui, uj� � 0, i � j.

By hypotheses of the induction Aki � aki, for p�1 � i � k�1. Hence
Akp � akp.

There is one important point about exogenous variables that we need
to be clear about to understand the significance of the theorems. By def-
inition, D q is the difference in q given a difference in uJ with all other�

J

exogenous quantities in the system, not just those in the structure, held
fixed. It is easy to see why. Consider a six-quantity system

q  c u3 3=

q  c a q u1 13 3 1= +

q  c a q u2 23 3 2= +

and a two-variable causal structure to represent it

x  c1 1= Ψ

x  c c  x12 21 2= + Ψ .

These will be true viewed just as regression equations given

c a a / a  and a /a a a a

q u

23 13 2 23 2321 13
2

13 13 13
2

1 2

1 1= + = − +( )
+ −

[ ] /[ ]Ψ

(( ) .a /a u23 13 1
10

If u1 varies while u2 and u3 do not, then we will see rightly that the equation
for x2 is not correct. But if as u1 varies, u3 varies as well in such a way that
a23Du3 � c21Du1, then the equation for x2 will produce the right first dif-
ference predictions for x2. That is why, to get a proper test for the equation,
we must consider variation in exogenous variables in the structure while
all other exogenous quantities in the system and (also in the structure)
remain constant.

This makes the results more difficult to put to use than we might have
hoped. In the first place, for the theorems to apply at all, we need to know
that we are dealing with an epistemically convenient system—one for
which the exogenous factors have no cross restraints. But it is hard enough
to know about the cross restraints on the exogenous causes for a set of
putative causes we are considering in our structure, let alone for a lot of
possible causes in the system that we have no idea of.
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11. As we know, randomized treatment/control experiments are designed to allow us
to get around our lack of knowledge of the exogenous factors for missing factors. But
the knowledge that we have succeeded in the aims of randomizing even when we have
used our best methods is again hard to come by.

12. As, of course, is widely recognized in the experimental literature in the social sci-
ences.

Suppose, though, that we do have good reason to think that the system
we are studying is epistemically convenient (or we are prepared to bet on
it). How would we use the theorems to which that entitles us? The most
straightforward application of the theorems to test a hypothesis about the
causes of q would consider variations in the exogenous factors for q’s
putative causes holding fixed all other exogenous factors, where these have
to include all other exogenous factors in the system. So we would have to
know what these factors are. Again, it is hard enough to know what the
exogenous causes are for factors we can identify without having to know
what they are for factors we do not know about.11

I take it that this is the chief motivation for stressing manipulation. It
seems that if we vary the putative causes at will or arbitrarily the variation
will not match any natural variation in other exogenous factors. But we
know that is not true. Coincidences happen, even when the variation is
chosen completely arbitrarily—which we know at any rate is hard to
achieve due to placebo effects, experimenter bias, and the like. For these
theorems, exactly what is required is the right kind of variation, no more
and no less. So the emphasis on manipulation for invariance tests of cau-
sality is misplaced, except as a not-100%-reliable methodological tool.12

4. Final Remark. We are interested in whether invariance (or some sub-
stitute) under intervention is a sure sign of correctness in a causal claim.
I have formalized two distinct senses commonly in use for each of the
three concepts involved. That means there are eight versions of the ques-
tion using just the concepts defined here. I have answered the question for
only three: (1) for invariance under causal-law variation and correctness
simpliciter, the answer (with caveats) is yes; (2) for invariance under in-
tervention/variation of values and correctness simpliciter, the answer is no;
and (3) for prediction of first differences under intervention/variation of
values, the answer for prediction of first differences is yes.

Clearly we can carry on pursuing the other combinations, or devise
modifications of the concepts that might serve better in hunting good tests.
With respect to the concepts deployed here, one in particular is fairly
central: that is the version of the question involving parameter correctness
under first difference prediction. That’s because of our usual epistemic
situation. First, when a hypothesis does not involve a full set of determin-
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ing factors, we are forced to look at the predictions about first differences
since it makes no sense to ask whether the hypothesis is invariant or not;
and correlatively, we can demand only correctness in the parameters on
offer, not full correctness. Second, when the system under study is not
epistemologically convenient, we are forced to use causal-law intervention
to get the variation we need. I take it the answer for this particular com-
bination is yes—with caveats. But, as with any answer, we need a clear
statement of the caveats and a convincing proof.

There is a division among philosophers of science between those who
believe that formalization is essential to understanding and those who do
not. Here I have been arguing on the side of the formalizers. For me the
point of studying the relations between causality and invariance is to make
better causal judgments; and if different ways of making our theses precise
matter to how we make our judgements, then we had better be precise.
We have seen that they do matter. Invariance under intervention is a fine
test for causality if the intervention involves looking at what happens in
different causal systems, but not if it involves looking at different situa-
tions governed by the same system of laws. Or, when we do look at dif-
ferent situations, what counts as a test of a causal hypothesis when none
of the putative causes cause any of the others will not serve when some
do cause others.

Formalization is, however, nowhere near the end of the road. We still
face the traditional problem of what all these precisely defined concepts
mean in full empirical reality. In particular what is the difference between
a variation in the value of a putative cause that arises from a variation in
the causal system governing it versus one that arises from a variation in
an exogenous cause that operates within the original system? Imagine I
am about to do a randomized treatment-control experiment. How do I
judge whether my proposed method of inducing the treatment fits one
description or the other? I do not know how to answer the question. Per-
haps indeed the distinction, which makes such clear sense conceptually,
does not fit onto the empirical world it is intended to help us with. For-
malization is, to my mind, the easy (though necessary) part of the job.
Our next task is to provide an account of the connection between our
formal concepts and what we can do in practice.
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