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The changes in a turbulent channel flow subjected to sinusoidal oscillations of wall
flush-mounted rigid discs are studied by means of direct numerical simulations
(DNS). The Reynolds number is Re, = 180, based on the friction velocity of the
stationary-wall case and the half-channel height. The primary effect of the wall forcing
is the sustained reduction of wall-shear stress, which reaches a maximum of 20 %. A
parametric study on the disc diameter, maximum tip velocity, and oscillation period
is presented, with the aim of identifying the optimal parameters which guarantee
maximum drag reduction and maximum net energy saving, the latter computed by
taking into account the power spent to actuate the discs. This may be positive and
reaches 6 %. The Rosenblat viscous pump flow, namely the laminar flow induced by
sinusoidal in-plane oscillations of an infinite disc beneath a quiescent fluid, is used
to predict accurately the power spent for disc motion in the fully developed turbulent
channel flow case and to estimate localized and transient regions over the disc surface
subjected to the turbulent regenerative braking effect, for which the wall turbulence
exerts work on the discs. The Fukagata—Iwamoto—Kasagi identity is employed
effectively to show that the wall-friction reduction is due to two distinguished effects.
One effect is linked to the direct shearing action of the near-wall oscillating-disc
boundary layer on the wall turbulence, which causes the attenuation of the turbulent
Reynolds stresses. The other effect is due to the additional disc-flow Reynolds stresses
produced by the streamwise-elongated structures which form between discs and
modulate slowly in time. The contribution to drag reduction due to turbulent Reynolds
stress attenuation depends on the penetration thickness of the disc-flow boundary layer,
while the contribution due to the elongated structures scales linearly with a simple
function of the maximum tip velocity and oscillation period for the largest disc
diameter tested, a result suggested by the Rosenblat flow solution. A brief discussion
on the future applicability of the oscillating-disc technique is also presented.
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1. Introduction

Significant effort in the fluid mechanics research community is currently directed
towards turbulent drag reduction, motivated by the possibility of huge economic
savings in many industrial scenarios. The necessity for improved environmental
sustainability has spurred vast academic and industrial interest in the development
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of novel drag-reduction techniques and in understanding the underlying physical
mechanisms. Although to date there exist many control strategies for drag reduction,
notably MEMS-based closed-loop feedback control (Kasagi, Suzuki & Fukagata
2009) and open-loop large-scale wall-forcing control (Jung, Mangiavacchi & Akhavan
1992; Berger et al. 2000; Quadrio & Sibilla 2000), none have been implemented in
industrial systems. Amongst the open-loop active drag reduction methods, for which
energy is fed into the system in a pre-determined manner, particular attention has
been devoted to those which employ in-plane wall motion. A recent review is found
in Quadrio (2011) and a brief discussion is presented in the following.

1.1. The oscillating wall

The direct numerical simulations (DNS) by Jung er al. (1992) and the experimental
campaign by Laadhari, Skandaji & Morel (1994) on turbulent wall-bounded flows
subjected to sinusoidal spanwise wall oscillations produced a rich vein of work in
this area. Their findings first revealed the ability of the actuated wall to suppress
the frequency and intensity of near-wall turbulent bursts and to yield a maximum
sustained wall friction reduction of ~45%. The existence of an optimal oscillation
period for fixed maximum wall velocity, 7+ ~ 120 (where + indicates scaling in
viscous units with respect to the uncontrolled case), has been widely documented
(Quadrio & Ricco 2004). It was recognized by Choi, Xu & Sung (2002) that the
space-averaged turbulent spanwise flow agrees closely with the laminar solution to
the Stokes second problem for oscillation periods smaller than or comparable with
the optimum one, which led to the use of a scaling parameter for the drag reduction.
Quadrio & Ricco (2004) found a linear relation between this parameter — a measure
of the penetration depth and acceleration of the Stokes layer — and the drag reduction,
noted to be valid only for 77 < 150. Quadrio & Ricco (2004) were also the first to
explain the existence of the optimum period by comparing it with the characteristic
Lagrangian survival time of the near-wall turbulent structures. More recently, Ricco
et al. (2012) endowed the scaling parameter with a more direct physical meaning,
showing it to be proportional to the maximum streamwise vorticity created by the
Stokes layer at constant maximum velocity. Through an analysis of the turbulent
enstrophy balance, Ricco et al. (2012) were also able to identify the key production
term in the turbulent enstrophy equation, which is balanced by the change in turbulent
dissipation near the wall. More importantly, by studying the transient evolution from
the start-up of the wall motion, they showed that the turbulent kinetic energy and
the skin-friction coefficient decrease because of the short-time transient increase of
turbulent enstrophy. This is the latest effort aimed at elucidating the drag reduction
mechanism, after research works based on the disruption of the near-wall coherent
structures (Baron & Quadrio 1996), the cyclic inclination of the low-speed streaks
(Bandyopadhyay 2006), the weakening of the low-speed streaks (Di Cicca et al. 2002;
Iuso et al. 2003), and simplified models of the turbulence-producing cycle (Dhanak
& Si 1999; Duque-Daza et al. 2012; Moarref & Jovanovic 2012).

1.2. The wall waves

The unsteady oscillating-wall forcing was converted by Viotti, Quadrio & Luchini
(2009) to a steady streamwise-dependent spanwise motion of the wall in the form
W =W cos (2mx/A,). Via DNS they found an optimal forcing wavelength Ajp[ ~ 1250,
which is related to T,,, the optimum oscillating-wall period, through %, the near-wall
convection velocity, as Ay, = %,T,,. Skote (2013) employed Viotti et al.’s forcing to
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alter a free-stream turbulent boundary layer and found good agreement between the
analytic solution to the spatial Stokes layer flow and the time-averaged spanwise flow.
Skote (2013) also showed that the damping of the turbulent Reynolds stresses depends
on the penetration depth of the spatial Stokes layer.

The oscillating-wall and the steady-wave techniques were generalized by Quadrio,
Ricco & Viotti (2009) by considering wall turbulence forced by wall waves of
spanwise velocity of the form W = W cos [Zn(x//lx—t/T)]. A maximum drag
reduction of 47 % and a maximum net energy saving of 26 % were computed. For
wall waves travelling at a phase speed comparable with the near-wall turbulent
convection velocity, drag increase was also found.

Despite the widespread interest in turbulent drag reduction by active wall forcing,
the implementation of these techniques in industrial settings appears to be an
insurmountable challenge. Progress is nonetheless being made to improve this
scenario. Prominent amongst recent efforts is the experimental work by Gouder,
Potter & Morrison (2013) on in-plane forcing of wall turbulence through a flexible
wall made of electroactive polymers. The main reasons which render the technological
applications of active techniques an involved engineering task are (i) the extremely
small typical time scale of the wall forcing (the optimal period for the oscillating-wall
technique translates to a frequency of 15000 Hz in commercial aircraft flight
conditions), and (ii) the requirement of large portion of the surface to be in uniform
motion. Therefore, drag reduction methods which operate on a large time scale and
rely on finite-size wall actuation are preferable in view of future applications.

1.3. The rotating discs

The novel actuation strategy based on flush-mounted discs rotating upon detection of
the bursting process, first proposed by Keefe (1998), undoubtedly belongs to a group
of interesting control methods which employ finite-size actuators. However, Keefe
did not follow up on his innovative idea and neither experimental nor numerical
results appeared in the subsequent 15 years. Ricco & Hahn (2013) (denoted by RH13
hereafter) showed revived interest in this flow and investigated an open-loop variant
of Keefe’s technique whereby the discs rotate with a pre-determined constant angular
velocity. A numerical parametric investigation on D, the disc diameter, and W, the
disc tip velocity, yielded maximum values for drag reduction and net power saved of
23 % and 10 %, respectively. RH13 also showed that drag increase occurs for small
diameter and small rotational periods, that the disc-flow boundary layer must be
thicker than a threshold to obtain drag reduction, and that the power spent to activate
the discs can be calculated accurately through the von Kdrman laminar viscous pump
solution (Panton 1995) under specified conditions. The Fukagata—Iwamoto—Kasagi
(FIK) identity (Fukagata, Iwamoto & Kasagi 2002) was modified for the disc flow
to show that the near-wall streamwise-elongated jets appearing between discs provide
a favourable contribution to drag reduction. Promisingly, the optimal spatial and
temporal scales were .t = 0(1000) and 7+ = O(500). This is a significant result
when these scales are compared with those of other localized actuation strategies,
such as the feedback control based on wall transpiration (Yoshino, Suzuki & Kasagi
2008), which are thought to operate optimally at spatio-temporal scales .+ = O(30)
and 7 =0(100). It is our hope that the results of RH13 will therefore offer fertile
ground for new avenues of future research on active turbulent drag reduction.
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1.4. Objectives and structure of the paper

Prompted by RHI13’s recent results, the objective of the present work is to study a
variant of RH13’s disc technique by introducing sinusoidal oscillations, i.e. the disc
tip moves according to W = W cos (27wtt/T). The effect of the additional parameter
T, the oscillation period, on a turbulent channel flow is investigated through DNS,
with specific focus on the skin-friction drag reduction and the global power budget,
computed by taking into account the power spent to activate the discs. The laminar
solution for the flow over an oscillating disc proves useful to estimate the power
spent to activate the discs, to predict the occurrence of regenerative braking effect,
and to define scaling parameters for drag reduction. An analogy is also drawn with
the oscillating-wall technique to discuss the drag reduction mechanism at work in the
oscillating-disc flow.

The numerical procedures, flow field decompositions and performance quantities
are described in § 2. The solution of the laminar flow is presented in § 3, where it is
used to compute the power spent to move the discs and to predict the regenerative
braking effect. The turbulent flow results are presented in §4. The dependence of
drag reduction on the disc parameters is discussed in §4.1 and §4.2. In §4.3 the
FIK identity is modified to account for the disc flow effects, while §4.4 presents
visualizations and statistics of the disc flow. Section 4.5 includes a comparison
between the turbulent power spent and the corresponding laminar prediction. A
discussion on the drag reduction physics and scaling is found in §4.6. Finally, §5
presents an evaluation of the applicability of the technique to flows of technological
interest, provides guidance for future experimental studies, and offers a comparison
with other drag reduction techniques, with particular focus on the typical length and
time scales.

2. Flow definition and numerical procedures
2.1. Numerical solver, geometry and scaling

The simulated pressure-driven turbulent channel flow at constant mass flow rate is
confined between two infinite parallel flat walls separated by a distance L7 = 2h",
where the symbol * henceforth denotes a dimensional quantity. The streamwise
pressure gradient is indicated by I7*. The DNS code solves the incompressible
Navier-Stokes equations in the channel flow geometry using Fourier series expansions
along the streamwise (x¥*) and spanwise (z*) directions, and Chebyshev polynomials
along the wall-normal direction y*. The time-stepping scheme is based on a third-order
semi-implicit backward differentiation scheme (SBDF3), treating the nonlinear terms
explicitly and the linear terms implicitly. The discretized equations are solved using
the Kleiser—Schumann algorithm (Kleiser & Schumann 1980), outlined in Canuto
et al. (2007). Dealiasing is performed at each time step by setting to zero the upper
third of the Fourier coefficients along the streamwise and spanwise directions. The
simulations were carried out using an OpenMP parallel implementation of the code on
the N8 HPC Polaris cluster. The code was also used by RH13 and it is a developed
version of the original open-source code available on the Internet (Gibson 2006).
Lengths are scaled with i&* and velocities are scaled with U;, the centreline velocity
of the laminar Poiseuille flow at the same mass flow rate. The time is scaled by
h*/U; and the pressure by ,O*U;;Z, where p* is the density of the fluid. The Reynolds
number is Re, = U h*/v* =4200, where v* is the kinematic viscosity of the fluid. The

friction Reynolds number is Re, = u}h*/v* =180, where u} = ./7}/p* is the friction
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=

Mean flow

W =W cos(2nt/T)

FIGURE 1. Schematic of the flow domain showing the location and sense of rotation of
the discs when W=W.

velocity in the stationary-wall case, and 7, is the space- and time-averaged wall-shear
stress. Quantities non-dimensionalized using outer units are not marked by any symbol.
Unless otherwise stated, the superscript + indicates scaling by native viscous units, a
terminology first defined by Trujillo, Bogard & Ball (1997), based on u} of the case
under investigation.

The channel walls are covered by flush-mounted rigid discs, as shown schematically
in figure 1. The discs have diameter D and oscillate in time, where the disc tip
velocity is

~ <2m>
W=Wcos| — |]. 2.1
T

Neighbouring discs in the streamwise direction have opposing sense of rotation,
whilst neighbouring discs in the spanwise direction have the same sense of rotation.
A parametric study was undertaken on D, W and 7, with the parameter range selected
in order to focus on the portion of D, W parameter space studied by RH13 which
leads to high drag reduction. The region of drag increase found by RH13 was not
considered. For disc diameters D =1.78, 3.38, a computational box size of dimensions
L,=6.797m and L, =2.26m was utilized, where L, and L, are the box lengths along
the streamwise and spanwise directions, respectively. For D = 5.07, L, = 6.8 and
L,=3.4mx, and for D=6.76, L, =9.057 and L, =2.267. The grid sizes were Axt =10,
Azt =5 in all cases, and the time step was within the range 0.008 < Art < 0.08
(scaled in reference viscous units). The initial transient period during which the flow
adjusts to the new oscillating-disc regime was discarded following the procedure
outlined in Quadrio & Ricco (2004). Flow fields were saved over an integer number
of periods at intervals of 7/8. After the transient was discarded, the total integration
time was T = 6000 for 7+ = 100, ¥ = 7500 for 7+ = 250, 500, ¥ = 15000 for
T+ =1000 and ™ =30000 for D™ =640, Wt =12, Tt =500 (scaled in reference
viscous).

2.2. Model of disc annular gap

To simulate the disc flow as realistically as possible, a thin annular region of width ¢
was simulated around each disc, as shown in figure 2. As explained in RH13, there are
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FIGURE 2. Schematic of disc and annular gap flow.

two reasons for this choice. The clearance flow between each disc and the stationary
portion of the wall is simulated to mimic as closely as possible an experimental disc
flow set up where such a gap would inevitably be present. Secondly, the velocity
profile between the disc tip and stationary wall does not present discontinuities. This
serves to suppress strongly the Gibbs-type artificial oscillations that would occur if
the velocity were not continuous. Ideally, the gap flow would be more realistically
simulated by treating the turbulent channel flow and gap flow as coupled systems, but
this lies outside the scope of the present study.

As a first approximation, the gap velocity profile is assumed to be symmetric about
the disc axis and to change linearly from a maximum velocity at the disc tip to zero
at the outer edge of the gap. The tangential velocity u, in this region is a function
only of r, the radial displacement from the centre of the disc, and time, 7. The disc
velocity profile is

wo(r 1) = {2Wr cos(2nt/T)/D, r<r, 22)
W(c—r+D/2)cosnut/T)/c, r <r<r,

where r; =D/2 and r, =D/2 4+ c. As a more advanced approximation, the clearance
flow is modelled as a thin layer of fluid confined between concentric cylinders.
Similarly to the laminar flow between moving flat plates, the flow contained within
this annular gap is described by the Womersley number, N, = c*/2n/(v*T*)
(Pozrikidis 2009). When N, <« 1, the linear velocity profile accurately describes the
flow. However, for N,, = O(1) the oscillating flow surrounding each disc is confined
to a boundary layer which is attached to the oscillating disc and is much thinner than
c. The bulk of the annular gap is quasi-stationary. In our simulations the minimum
N,, = 0.51 occurs for the case with the thinnest gap and the largest oscillation period,
ie. for D =1.78, T = 130. The maximum N, = 6.42 occurs for D =7.1, T = 13.
Therefore, it is a sensible choice to simulate the gap via the oscillating layer as N,
attains finite values. Following the analysis of Carmi & Tustaniwskyj (1981), the
uy(r, t) velocity profile in the gap is described by the azimuthal momentum equation,

8”9 1 (32149 1 8149 M@)

A i 2.3
ot Re, \ 9r* r or r? @3
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FIGURE 3. Velocity profiles within the annular gap over a half-period of the oscillation,
computed through (2.5). (¢) D=7.1, W=0.51, T=130, N,,=2.03. (b) D=7.1, W=0.51,
T=13, N, =6.42.

Assuming a solution to (2.3) of the form uy = Re [L‘ig(r)exp(i2n?/T)}, where Re
denotes the real part and 7 is the rescaled time, 7 = /Re,, the following ordinary
differential equation of Bessel type is obtained

o Uy 2 1Y
20 [y =0, 2.4
iy + = <T+r2>u0 2.4)
where the prime denotes differentiation with respect to r. Equation (2.4) is subject to
tig(r1) =W, 1ig(r;) = 0. The velocity in the annular gap is

H(Ery) I (Er) — I (Er) H (Er) Qi2mH/T
I Er)H (Er) — I (Er) A ()

where # () and . (-) are first-order modified hyperbolic Bessel functions (Abramowitz
& Stegun 1964) and & = /i2n/T. Velocity profiles are shown in figure 3. The Bessel
layer was included in the code by reading in a map of the wall complex velocity
at t = 0. To advance in time the components within this map were multiplied by
exp(27i?/T) and the real components were extracted. As the boundary conditions are
implemented in spectral space, it was necessary to Fourier transform the time-updated
map of the velocity components at each time step, before passing the Fourier
components as boundary conditions.

The difference between the values of drag reduction and power spent against the
viscous forces computed by use of the two annular-gap models for ¢ = 0, 0.02D,
and 0.05D were within the uncertainty range estimated via numerical resolution
checks based on variation of the mesh sizes, time step advancement, and size of
the computational box (refer to RH13 for further details on the numerical resolution
tests). For this reason and because of the higher computational cost caused by the
Bessel profile due to the additional spectral transformations, the linear velocity profile
model was used. In order to choose the appropriate gap size for the simulations, the
dimensional gap values were examined for typical experimental scenarios, presented
in table 6 of RH13 for the steady-disc-flow case. The largest tested gap size of
¢=0.05D was implemented as it corresponds to a value that would be achievable in
the laboratory conditions detailed in that table.

ug(r,) =WR [ , (2.5)
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2.3. Flow decomposition

The averaging operators used to decompose the flow are defined in the following. The
space- and time-ensemble average is defined as

Ny—1 N;—1 N—1

Z sz(i_l_znxl)’ v.2+nD,nT+7), (2.6)

ny=0 n;=0 n;=0

fy, z,1)=

N,N,N

where 2N, and N, are the number of discs within the computational domain along x
and z, respectively, 7 is the window time of the oscillation, and N is the number of
oscillation periods. The time average and the spatial average along the homogeneous
directions are defined respectively as

1 Tﬁ R 1 Ly L,
(f)(x,y,z):T/ f@y 2 mydr, fO)=,7 / / () (x,y, 2)dzdx.  (2.7)
0 xtz JO 0
A global variable is defined as
1
1o = / Fo)dy. (2.8)
0

The size of all statistical samples is doubled by averaging over the two halves of
the channel, taking into account the existing symmetries. The channel flow field is
expressed by the sum

u(xv Y, Z, t) == um(y) + ud(x’ MRS T) + ut(x7 Y, Z, t): (29)

where u,,(y) = {u,,, 0, 0} = is the mean flow, u,(x, y, z, T) = {uy, vg, wg} =% — u,, is
the disc flow, and u, is the fluctuating turbulent component.

2.4. Performance quantities

This section introduces the main quantities used to describe the oscillating-disc flow,
i.e. the turbulent drag reduction, the power spent to activate the discs against the
viscous resistance of the fluid, and the net power saved, which is their algebraic sum.

2.4.1. Turbulent drag reduction

The skin-friction coefficient C; is first defined as C; = 21}/(p*U;*), where
U; = [u*],/h* is the bulk velocity. The latter is constant because the simulations
are performed under conditions of constant mass flow rate. The drag reduction % is
defined as the percentage change of the skin-friction coefficient with respect to the
stationary-wall value (Quadrio & Ricco 2004):

C,—C
R (%) =100~ (2.10)
Cr.

where the subscript s refers to the stationary-wall case. Using 7 = u*u,(0), where
the prime denotes differentiation with respect to y, equation (2.10) becomes Z (%) =
100(1 — u,,(0)/u,, (0)).
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2.4.2. Power spent

As the oscillating-disc flow is an active drag-reduction technique, power is supplied
to the system to move the discs against the viscous resistance of the fluid. To calculate
the power spent, term III of the instantaneous energy equation (1-108) in Hinze (1975)
is first considered. Its volume average is the work done by the viscous stresses per
unit time,

* L L} Lk

K2 S - / i / ) / N
sp,t T

L Jo Jo Jo

where i, j are the indexes indicating the spatial coordinates X, y, z and the corresponding
velocity components (Einstein summation of repeated indexes is used). By substituting
(2.9) into (2.11) and by use of (2.6) and (2.7), one finds

u *dy*dx”*, .
oy |\ " oxr )]

—

v [ oud aws
.= ; g 2.12
sp.t h Ug ay* Y + d ay* . ( )

The power spent, (2.12), is expressed as the percentage of the power employed to

drive the fluid in the streamwise direction, . By volume-, ensemble- and time-

averaging the first term on the right-hand side of (1-108) in Hinze (1975), one obtains
D= UlT” (2.13)

p*

By dividing (2.12) by (2.13), the percentage power employed to oscillate the discs

with respect to the power spent to drive the fluid along the streamwise direction is

obtained,

100Re, [~ ou, “ow,
Pypi(%) = — z — — 2.14
p,z( 0) Re%U;, Uq dy ) + wy 3y i ( )
- .

2.4.3. Net power saved

The net power saved, ., the difference between the power saved due to the
disc forcing (which coincides with & for constant mass flow rate conditions) and the
power spent &, ,, is defined as

Pre(To) = K (o) — Pp.1(%). (2.15)

3. Laminar flow

For other active turbulent drag reduction techniques the analytical solutions for the
corresponding laminar flows induced by wall motion have proven useful for accurately
estimating important averaged turbulent quantities, such as the wall spanwise shear
(Choi et al. 2002), the power spent for the wall forcing (Ricco & Quadrio 2008),
and the thickness of the generalized Stokes layer generated by the wall waves (Skote
2011). The laminar solution has also been employed to determine a scaling parameter
which relates uniquely to drag reduction under specified wall forcing conditions
(Quadrio & Ricco 2004; Cimarelli et al. 2013). Through the laminar solution of the
flow induced by a steadily rotating infinite disc, RH13 obtained an estimate of the
time-averaged power spent to move the discs, which showed very good agreement
with the power spent computed via DNS.
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Inspired by previous works, the laminar flow above an infinite oscillating disc is
therefore computed to calculate the power spent to activate the disc and to identify
areas over the disc surface where the fluid performs work on the discs, thus aiding
the rotation. This is a form of the regenerative braking effect, studied by RH13 for
steady disc rotation. These estimates are then compared with the turbulent quantities
in §4.5.

3.1. Laminar flow over an infinite oscillating disc

The laminar oscillating-disc flow was studied for the first time by Rosenblat (1959)
(refer to figure 2 for the flow geometry). The velocity components are

Lo 2PWE . . AW [oT .
whuy=—7—={F (.1 .GmD)}. w=-F=\/—F0i, G

where the prime denotes differentiation with respect to n =y*/m/(v*T*), the scaled
wall-normal coordinate, f = 27t*/T* is the scaled time, and w', u, and u} are the
radial, azimuthal, and axial velocity components, respectively. The following boundary
conditions are satisfied:

£ __ () - *
y'=0: u;

k
ur

0, wuy=Qr'wW*/D")cost, u;=0, p*=0; (3.2)
=0, u;=0. (3.3)

V=00

Expressions (3.1) are substituted into the cylindrical Navier—Stokes equations to obtain
the equations of motion for /' and G under the boundary layer approximation,

F/ — lF/// + )/(G2 +2FF" — F/Z),
.2 (3.4)
G= %G” +2y(FG' — F'G),
with boundary conditions
n=0: F=F =0, G=cosf,
/ (3.5)
n—oo: FF=G=0,

where the dot denotes differentiation with respect to 7 and y = T*W*/(nD*). The
latter parameter represents the ratio between the oscillation period 7% and the period
of rotation mwD*/W* which would occur if the disc rotated steadily with tip velocity
W*. The value y = 1 is relevant because it denotes the special case of maximum disc
tip displacement equal to the circumference of the disc, i.e. each point at the disc tip
covers a distance equal to mD* during a half-period of oscillation.

The system (3.4) and (3.5) was discretized using a first-order finite difference
scheme for 7 and a second-order central finite difference scheme for 1. The equations
were first solved in time by starting from null initial profiles. The boundary condition
for G was altered as G(0, 7) =1 —exp(—7) until G was sufficiently close to unity. The
system was then integrated with the boundary condition G (0, f) = cos 7. Figure 4(a)
shows the wall-normal profiles of F' and G at different oscillation phases.

3.2. Laminar power spent

The laminar power spent &y ; is calculated using (2.11), where only u, is retained in
the laminar case as there is no mean streamwise flow above the disc and the turbulent
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FIGURE 4. (a) Wall-normal profiles of F' and G at different oscillation phases for y =1
(thick lines) and y =0 (thin lines, for G). The latter is given by (3.11) and coincides
with the classical Stokes layer solution. (b) Numerically computed values of ¢ (y) (solid
lines) and asymptotic solutions, (3.10) for y <« 1 (dashed line in main plot), and (3.14)
for y > 1 (dashed line in inset).

fluctuations are null (u,, = u, = 0). Substituting u, = uy cos 0 and w,; = uy sin 6 into
(2.11), using (3.1) and averaging over 6, r, and time leads to

_Gy)W? e

‘@;J_f o (3.6)
where )
G(y)= — / G (0.7) G (0.7) df 3.7
2T[ 0

is shown in figure 4(b). To express &y, as a percentage of the power spent to drive
the fluid along the streamwise direction, (3.6) is divided by (2.13) to obtain

504 (y)W2Re* [

3.2.1. Asymptotic limit for y < 1: the Stokes-layer regime
To obtain an analytical approximation to ¢ for y <« 1, the expanded form of G in
powers of y can be used,

Gya1(n, 1, ¥) = Go(n, ) + ¥*Ga(n, 1) + O(y), (3.9)

where Gy and G, are given in (17) and (45) of Rosenblat (1959). Upon differentiation
of (3.9) with respect to 5, the asymptotic form of ¥(y) is

1 [ . y c1
G,1(y) = o / Go(0,7) [Gy(0, 1) + y*G,(0, 1)] di
0

_ . r (15v2-26) + 00/ (3.10)
2" 160 ’ '
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which is shown in figure 4(b). The asymptotic solution predicts the numerical solution
well for y <2.
In the limit y < 1, Rosenblat (1959) obtained a first-order solution

. 2rWF [ T T *] 27t* T, 3.11)
u, = exp |—v/ T/ (v*T* cos | — — s .

0 p y T+ V*T*y

which is in the same form as the classical Stokes solution (Batchelor 1967).
Substituting (3.11) into (2.11), the first-order approximation is found, Z7*

sp,l =
0.25W*/mv*/T*, which is expressed as a percentage of (2.13) to obtain

—25W2Re[3,/2 T
Poply<l = TRe% T (3.12)

This is also found directly from (3.8) by setting ¢(0) = —0.5.

3.2.2. Asymptotic limit for y > 1: the quasi-steady regime

As suggested by Benney (1964), in the limit y >>1 it is more appropriate to rescale
the wall-normal coordinate by the Ekman layer thickness & = /v*D*/(2W*). The
rescaled (2.19) and (2.20) of Benney (1964) were then solved using the numerical
method described in §3.1. The von Kidrman equations describing the flow over a
steadily rotating disc are recovered in the limit y — co. The asymptotic limit of ¢
for y > 1 is found by first rescaling G'(0, 7) in (3.7) through 8 and by noting that
the time modulation of the disc motion enters the problem only parametrically,

G,.1(0,1) = /2y G, cos i, (3.13)

where G, = —0.61592 (Rogers & Lance 1960). By substituting (3.13) into (3.7) and
by use of (3.5), one finds

v
g}/>>1 (y) - GS 5. (3.14)
As shown in figure 4(b, inset), the asymptotic expression (3.14) matches the numerical
values well. By substituting (3.14) into (3.8), the asymptotic form of the power spent

is obtained,
50G,W? 2R[3,/ 2

T = b
bty

By coincidence, the power spent when y =0, i.e. (3.12), is half that of the oscillating-
wall case at the same W* and T* (Ricco & Quadrio 2008), and the power spent when
y > 1, i.e. (3.15), is half that of the steady-rotation disc case at the same W* and
D* (RH13). The oscillating-disc power spent is expected to be smaller than in these
two cases, but for different reasons. The oscillating-wall case requires more power
because the motion involves the entire wall surface, while the steady-rotation disc case
consumes more power because the motion is uniform in time.

(3.15)

3.3. Laminar regenerative braking effect

The laminar phase- and time-averaged power spent, %}, to oscillate the discs beneath
a uniform streamwise flow is computed by following RH13. As the purpose of this
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analysis is to obtain a simple estimate of the turbulent case, the streamwise shear flow
is superimposed on the Rosenblat flow without considering their nonlinear interaction.
A rigorous study of this flow would be the extension of the work by Wang (1989)
with oscillatory wall boundary conditions. Starting from (2.11), using (2.9), and setting
u;, =0, one finds

o 1 . ou o oW
Hi(x,0,2. ) = — |ua(x, 0, 2,9 [ u (0) + =2 Fwalx, 0,2, —< |, (3.16)
Rep 8y y=0 8y y=0
Using (3.1), (3.16) becomes
. 2rWG(0, 1, y) 2Wr [mRe y
Wir, )= ——= | u (0 0+ — G0, 1, . 3.17
1(r, 1) DRe, <Mm( ) cos 6 + D T ( V)) (3.17)

By rearranging to obtain an inequality in r, the region where the streamwise flow
exerts work on the disc (regenerative braking effect) is found,

' ()Dcosf | T
< — im0 cos . (3.18)
2WG'(0,t,y) \| mRe,

In §4.5, the region of regenerative braking effect is computed for the turbulent case
and compared with the laminar prediction (3.18).

4. Turbulent flow

The turbulent flow results are presented in this section. Sections 4.1, 4.2, 4.3, 4.6
focus on the drag reduction, §4.4 presents disc flow visualizations and statistics, and
§ 4.5 describes the power spent to move the discs and the comparison with the laminar
prediction, studied in §3.2.

4.1. Time evolution

The temporal evolution of the space-averaged wall-shear stress is displayed in
figure 5(a). The transient time occurring between the start-up of the disc forcing
and the fully established disc-altered regime increases with . This agrees with
the oscillating wall and RH13, but the duration of the transient for the discs is
shorter than for the oscillating-wall case. The time modulation of the wall-shear
stress is notable for the high % cases, with the amplitude of the signal increasing
with 7. The significant time modulation and the shorter transient compared with the
oscillating-wall technique could be due to the discs forcing the wall turbulence in the
streamwise direction. The streamwise wall-shear stress is therefore affected directly
whereas in the oscillating-wall case the streamwise shear flow is modified indirectly
as the motion is along the spanwise direction only.

The space- and phase-averaged wall-shear stress modulation, shown by the dashed
line in figure 5(b), has a period equal to half of the wall velocity. This is expected
because of symmetry of the unsteady forcing with respect to the streamwise direction.
The wall-shear stress reaches its minimum value approximately 7/8 after the
disc velocity is maximum, i.e. at ¢ = 5Su/8, 13w/8. The wall-shear stress peaks
approximately 7'/8 after the disc velocity is null, i.e. at ¢ = /8, 97/8.


https://doi.org/10.1017/jfm.2014.122

https://doi.org/10.1017/jfm.2014.122 Published online by Cambridge University Press

Turbulent drag reduction through oscillating discs 549

(a) ®) 0.0012
f‘:a 0.00125
N§ 0.0011
E i W W W
2 000100 0.0010
2 X
g Fixed wall 0
—— Wt =62, TT =95 #=4.1%
—— W =98, TT =209, Z=15.8% 0.0009
0.00075 | : wt =99, T+ =833, #=16.0% w
1000 2000 3000 4000 0 200 400 600 800
+ +

t T

FIGURE 5. (a) Space-averaged streamwise wall-shear stress vs. time for D = 3.38. The
disc forcing is initiated at t* =770. Only a fraction of the total integration time is shown.
The space-averaging operator here does not include time averaging. (b) Ensemble- and
space-averaged streamwise wall-shear stress vs. t+ for DT =554, Wt =99, Tt = 833
(dashed line). The disc velocity is shown by the solid line. The phase ¢ is given in the
figure.

4.2. Dependence of drag reduction on D, W, T

Figure 6 depicts maps of Z(T, W)(%) for disc sizes D =1.78, 3.38, 5.07, and 6.76.
The y values are shown as hyperbolae in these planes. For cases with y > m, the
maximum displacement is larger than the disc circumference. Figure 7 shows the same
drag-reduction data, scaled in viscous units. The boxed values represent the net power
saved Z,.,(%) defined in (2.15). Only positive &,,, values are shown and the bold
boxes highlight the maximum &2, values.

For D=1.78 and 3.38 and fixed W, drag reduction increases up to an optimum 7T
beyond which it decays. This optimum 7 depends on D, and increases with the disc
diameter. For D =1.78, 3.38 the optimal periods are in the ranges 7" =200-400 and
T+ =400-800, respectively. For D=5.07 and 6.76 the optimal period is not computed
and therefore % increases monotonically with T for fixed W and D. Cases with larger
T are not investigated due to the increased simulation time required for the averaging
procedure.

For D=1.78 and fixed 7, drag reduction increases up to an optimum wall velocity,
W~0.26 (W ~6), above which drag reduction decreases. This behaviour also occurs
in the steady-disc case studied by RH13. The optimal W are not found for larger D
as the drag reduction increases monotonically with W for fixed D and T.

For T > 1, the wall forcing is quasi-steady and it is therefore worth comparing
the # values with the ones obtained by steady disc rotation, computed by RHI3.
RH13’s values are however not expected to be recovered in this limit. A primary
reason for this is that the power spent in the oscillating-disc case is smaller than in
the steady-rotation case, as verified in §4.5 (in §3.2.2, it is predicted to be half of
the steady case by use of the laminar solution when the oscillation period is large).
RH13’s values are displayed in figure 7 by the dark grey circles on the right-hand side
of each map. In most of the cases where the optimal T* is detected, i.e. for W+ > 3,
D =1.78, and for W* >9, D=23.38 and 5.07, our # may reach larger values than
RH13’s for the same W*. For D =6.76, all our computed % are lower than RH13’s.

Figure 7 also shows that a positive &, occurs only for W' < 9. This confirms
the finding by RH13 for steady rotation and is expected because the power spent
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FIGURE 6. Plots of Z(T, W)(%) for different D. The circle size is proportional to the
drag-reduction value. The hyperbolae are constant-y lines. (a) D = 1.78, (b) D = 3.38,
(c) D=5.07, (d) D=6.76.

grows rapidly as W grows, as also suggested by the laminar result in (3.8). The
largest positive &2, in the parameter range is 6 = 1%, and is obtained for D* = 855,
Wt =6.4, Tt =880, and D* =568, Wt =6.4, T =874.

4.3. The Fukagata—Iwamoto—Kasagi identity

The Fukagata—Iwamoto—Kasagi (FIK) identity relates the skin-friction coefficient of
a wall-bounded flow to the Reynolds stresses (Fukagata et al. 2002). It is extended
here to take into account the oscillating-disc flow effects (the reader should refer to
appendix A of RH13 for a slightly more detailed derivation for the steady disc flow
case). By non-dimensionalizing the streamwise momentum equation into outer units,
decomposing the velocity field as discussed in §2.3 and averaging in time, along the
homogeneous x and z directions, and over both halves of the channel, the following
is obtained:

MRe, = (i, — itzug — uv;) 4.1)

where the prime indicates differentiation with respect to y. By following the procedure
outlined in Fukagata et al. (2002) and noting that the Reynolds stresses term u,v,
in equation (1) in Fukagata et al. (2002) is replaced with the sum v, + itzvy, the


https://doi.org/10.1017/jfm.2014.122

https://doi.org/10.1017/jfm.2014.122 Published online by Cambridge University Press

Turbulent drag reduction through oscillating discs 551
(a) (b)
15 17 16
12p 0 3 2 3 o nl @ @
16 16 16 @
of 5 7 o e °1 of 7
W+
I 8 8 11 11 12 °
6 7 7 9 6L 4
3t 4 4 E - 35 © 3020 4 4 4 (8]
0 200 400 600 800 1000 0 200 400 600 800 1000
(© (d)
20
no1s P @ 3 13 U 19
12t 12t
10 15 17 18 ° 9101112 14 15 16 a
9} 9t
W+
6 6 10 11 11 @ 615778 9 9 10 @
[l
3 4 4 1 2 3 3 3
3 © 3 222 o
0 200 400 600 800 1000 0 200 400 600 800 1000
T+ T+

FIGURE 7. Plots of Z(T*, W")(%). Scaling is performed using u* from the native case.
The dark grey circles indicate RH13’s data and the boxed values denote positive P,
values. (a) D=1.78, (b) D=3.38, (¢) D=5.07, (d) D=6.76.

relationship between C; and the Reynolds stresses for the disc flow case can be written

as
6 6

= TRep — 7,3[(1 — ) @V, + ugvy)],

G 4.2)

which is in the same form as the steady case by RH13. The drag reduction computed
through the Reynolds stresses via (4.2) is # =16.9% for D =3.38, W* =13.2 and
Tt =411, which agrees with % = 17.1 %, calculated via the wall-shear stress. Using
(4.2), it is also possible to separate the total drag reduction into the change of the

turbulent Reynolds stresses u,v; — (i, ,v,,) and the contribution of the time-averaged
disc Reynolds stresses iugvy, i.e. Z(%) = X, (%) + %,(%) where

Re, [(1 —y) (@, — (ur,vr,))]

R,(%) =100 —— 43
( ) Ub - Rep [(1 —}7) (ut,svt,s>]g ( )

Re, [(1 - ) o,
Ha) = 1007 (=) i (4.4)

Uy = Rey [(1 =) {itrsv3)],
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FIGURE 8. Disc-flow visualizations of ¢*(x, y, z) = \/uf{z —+-w:,r2 = 2.1 at phases (a)
¢=0, (b)t/4, (c)1/2, (d)3w/4. The disc tip velocity at each phase is shown in figure 5(b).
In this figure and in figures 9, 10, 11, and 13, D* =552, Wt =13.2, Tt =411.

The subscript s again refers to the stationary-wall case. This decomposition is used in
§4.6 to study the drag-reduction physics.

4.4. Disc flow visualizations and statistics

The disc flow for D* =552, Wt =13.2 and Tt =411 (Z = 17 %) is visualized
at different phases in figure 8. Isosurfaces of g™ = \/uj> +w}*> =2.1 are displayed.
Similarly to the steady case by RH13, streamwise-elongated tubular structures appear
between discs, which extend vertically up to almost one quarter of the channel height.
They occur where there is high tangential shear, i.e. where the disc tips are next to
each other and rotate in opposite directions, but also over sections of stationary wall.
They persist almost undisturbed across the entire period of oscillation, their intensity
and shape being only weakly modulated in time. The thin circular patterns on top of
the discs instead show a strong modulation in time. This is expected as the patterns
are directly related to the disc wall motion. Although at ¢ =0 the disc velocity is null,
the circular patterns are still observed as the rotational motion has diffused upward
from the wall by viscous effects. Instantaneous isosurfaces of low-speed streaks in
the proximity of the wall (not shown) reveal that the intensity of these structures is
weakened significantly, similarly to the steady disc-flow case.

Contour plots of u; in x—z planes are shown in figure 9. The first column on the
left shows the contour at the wall. At y* =4 and y* =8, the disc outlines can still be
observed, the clarity decreasing with the increased distance from the wall. At these
heights the contour lines are no longer straight, but show a wavy modulation. The
circular patters created by the disc motion are displaced in the streamwise direction
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FIGURE 9. Contour plot of u}(x,y, z) as a function of phase in the x—z plane at y* =0,
yt =4, y* =8 and y* =27 (from left to right). (@) ¢ =0, (b) ¢ = 7w/4, (¢) ¢ = /2,
(d) ¢ =3m/4.

by the mean flow. The magnitude of the shift increases with distance from the wall
and at y* =8 it is ~100v*/u*. At y* =27 the disc outlines are no longer visible and
the structures occurring between discs in figure 8 here appear as streamwise-parallel
bands of u; which do not modulate in time and are slower than the mean flow. They
also appear at higher wall-normal locations up to the channel half-plane, with their
width increasing with height.

The contour plots in figure 10 show the ensemble- and time-averaged wall-shear
stress. At phases ¢ =0 and 7, when the angular velocity of the discs is zero, the wall-
shear stress is almost uniform over the disc surface. During the other phases of the
cycle, the lines of constant stress are inclined with respect to the streamwise direction
and the maximum values are found near the disc tip. The lines show a maximum
inclination of ~45° at phases ¢ = 3n/4, 7Tm/4, when the deceleration of the discs is
maximum.

Figure 11(a) shows contours of the time-averaged (u,v;) observed on y—z planes at
different streamwise locations. These contours overlap with the elongated structures
in figures 8 and 9, which are therefore recognized as primarily responsible for these
additional Reynolds stresses. It is clear that the structures are only slowly varying
along the streamwise direction. The flow over the disc surface does not contribute
to (u4v,) because, although u, is significant, v, is negligible. Only the contribution
to (uyvy) from both u, and v, negative is included in figure 11(a) as u, and v, with
other combinations of signs only negligibly add to the total stress. The structures are
therefore jets oriented toward the wall and backward with respect to the mean flow.

Figure 11(b) shows the time modulation of the root-mean-square (r.m.s.) of the disc

streamwise velocity component, defined as uy (v, T) = Juﬁ, and of the Reynolds

—

stresses u} v, (where here the spatial average = does not include the time average as in
(2.7)). Four profiles are shown for each quantity, for phases from the first half-period
of the oscillation. Data from the second half are not shown as the profiles coincide at
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FIGURE 10. Contour plot of phase-averaged streamwise wall friction, 2(du*/dy*|o)/U;>.
The skin-friction coefficient is Cr = 6.79 x 1073 (@) ¢ =0, (b) p=1/4, (¢) ¢ =7/2,
d) ¢ =3m/4.
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FIGURE 11. (a) Isosurfaces of (ujv}) observed from the y—z plane at x* =0, x* =160,
x* =320 (from top to bottom). The plots show only (ujv)) for uy, v; <0 as within
the contour range the contributions from other combinations of u, and v, are negligible.
(b) Wall-normal profiles of u}jms (solid lines) and uj v} (dashed lines). Profiles are shown
for phases from the first half of the disc oscillation.

opposite oscillation phases. The disc flow penetrates into the channel up to y* ~ 15.
When the disc tip velocity is close to its maximum, the profiles of uy ., and Wy s
(the latter not shown) decay from their wall value and follow each other closely up
to y* ~10. At higher locations, the magnitude of u . is larger than that of the wall-
normal and spanwise velocity profiles. In the bulk of the channel, for y* > 50, the
profiles modulate only slightly in time. This therefore further confirms that the intense
temporal modulation of the disc flow is confined in the viscous sublayer and buffer
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FIGURE 12. (a) Z, (%), computed through DNS via (2.14), versus ,, (%), computed
through (3.8), the power spent by an infinite disc oscillating beneath a still fluid. Data are
grouped according to &,,.,. (b) As (a) but with symbols grouped according to 7.

region; u . decays to & 0.7 as the channel centreline is approached. As expected, the

—

Reynolds stresses v, show a slow time modulation and are always positive, proving
that the streamwise-elongated structures favourably contribute to the drag reduction

—

through %, in (4.4). Neither u;,, nor ujv; modulate in time for y* > 120.

4.5. Power spent

4.5.1. Comparison with laminar power spent

Figure 12(a) shows a comparison between the power spent &, to impose the disc
motion, computed via (2.14) with DNS data, and the laminar power spent, calculated
via (3.8). The values match satisfactorily for low &,,, and the disagreement grows
for larger &,,. This is due to the larger values of W, which intensify the nonlinear
interactions between the disc flow and the streamwise turbulent mean flow, and
promote the interference between neighbouring discs. As the laminar calculations
are performed by not accounting for the disc interference through the assumption
of infinite disc size and by neglecting the streamwise mean flow, the agreement is
expected to worsen for large W. Figure 12(a) also shows that the power spent for
cases with positive &2, is predicted more accurately by the laminar solution than
for cases with negative &2,,, a result also found by RH13.

Figure 12(b) presents the same data as figure 12(a), with different symbols
according to 7. The agreement is best for the largest oscillation periods, 7 = 130,
and it worsens as T decreases. The trend for T = 130 closely resembles that for the
steadily rotating discs by RH13, which is consistent with the wall forcing becoming
quasi-steady at large periods. For T = 130, the highest value of &, ,=37 %, occurring
for D=1.78, W=0.51, differs from &,; by 17 %, while a disagreement of 15 % is
found by RHI13 for the same ,,, value.

4.5.2. Turbulent regenerative braking effect
For the majority of oscillation cycle, power is spent by the discs to overcome the
frictional resistance of the fluid. However, for part of the oscillation and over a portion


https://doi.org/10.1017/jfm.2014.122

https://doi.org/10.1017/jfm.2014.122 Published online by Cambridge University Press

556 D. J Wise and P. Ricco

(b)

-120 -100 -80 -60 -40 -20 0 20

FIGURE 13. Spatial variation of %}, computed via (4.5), for (a) ¢ =7/4 and (b) ¢ =371 /4.
The white areas over the disc surfaces for which %#; > 0 denote locations where the fluid
is performing work on the disc. The areas of regenerative braking predicted by the laminar
solution, i.e. where %} >0 and (3.18) applies, are enclosed by the dashed lines.

of the disc surface, work is performed by the fluid on the disc. This is a form of
regenerative braking effect and it also occurs in time for the case of uniform spanwise
wall oscillations and in space for the steady rotating disc case (RH13). Contour plots
of the localized power spent #;, defined as
) ) (4.5)
y=0

are shown in figure 13 for ¢ = m/4, 3n/4. The white regions over the disc surface
correspond to the regenerative braking effect, where #; > 0, i.e. the fluid performs
work on the discs. The dashed lines represent the regions of #(r, ) > 0, predicted
through the laminar solution by (3.18). Although the regenerative braking areas
computed via DNS are slightly shifted upstream when compared with those predicted
through the laminar solution, the overall agreement is very good and better than in
RH13’s case.

8Wd

Wyg—
y=0 dy

100Re ou
Wi(x,z, 1) (%) = Re%U: (udd

4.6. A discussion on drag-reduction physics and scaling

The results in the preceding sections prove that the oscillating discs effectively modify
the flow in two distinct ways, which are discussed in the following and illustrated in
figure 14.

(1) Role of disc boundary layer
The circular pattern which forms over a disc as a direct consequence of the
disc rotation (shown in figure 8) is a thin region of high-shear flow. The
laminar analysis suggests that this oscillatory boundary layer resembles the
oscillating-wall Stokes layer (of thickness 87 = +/v*T*) at high frequency (refer
to §3.2.1 when y « 1), and the Ekman layer of the von Kdrmdn viscous pump
(of thickness §¥ = +/v*D*/(2W*)) at high periods (refer to §3.2.2 when y > 1). It
is therefore reasonable to expect that the wall turbulence over the disc surface is
modified similarly to the oscillating-wall case at high frequency and to the steady-
rotation case studied by RH13 at high periods. The parameter y, written as y =

2/m) (8;‘ /5:)2, can be interpreted as the threshold that distinguishes these two
limiting regimes. The thinner boundary layer between these two limits dictates
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FIGURE 14. Schematic of the two mechanisms responsible for drag reduction induced by
oscillating discs. One mechanism is linked to the attenuation of the turbulent Reynolds
stresses and is quantified by %, in (4.3). The degrading effect of the oscillation angle
(Zhou & Ball 2008) is represented by the shading. The second mechanism is due to the
structures between discs and is quantified by %, in (4.4). The radial streaming induced
by the Rosenblat pump is denoted by the open arrows.

the way the turbulence is altered. When y = O(1), an intermediate oscillating-disc
forcing regime is identified, for which viscous effects diffuse from the wall due
to both unsteady oscillatory effects and to large-scale rotational motion.

When y « 1, the drag-reduction mechanism is analogous to the one advanced
by Ricco et al. (2012) for the oscillating-wall flow, namely that the near-wall
periodic shear acts to increase the turbulent enstrophy and to attenuate the
Reynolds stresses. Important differences from the oscillating-wall case are (i) the
wallward motion of high-speed fluid, entrained by the disc oscillation from
the interior of the channel, (ii) the radial-flow effects due to centrifugal forces,
which are proportional to the nonlinear term F? (refer to (3.4) for the laminar
case) and produce additional spanwise forcing in planes perpendicular to the
streamwise direction, (iii) the radial dependence of the forcing amplitude, and
(iv) the degrading effect on drag reduction due to wall oscillations which are
not spanwise oriented. The latter effect was first documented by Zhou & Ball
(2008), who proved that spanwise wall oscillations produce the largest drag
reduction, while streamwise wall oscillations lead to approximately a third of
the spanwise-oscillation value. The shading on the disc surface in figure 14
illustrates the effectiveness of the wall oscillations at different orientation angles.

(2) Role of quasi-steady inter-disc structures

The second contribution is from the tubular inter-disc structures, which are
streamwise-elongated and quasi-steady as they persist throughout the disc
oscillation. They are primarily synthetic jets, an indirect byproduct of the
disc rotation (as in RH13) or disc oscillation. As discussed in §4.4, these
jets are directed wallward and backward with respect to the mean flow u,,.
The time-averaged flow between discs is therefore retarded with respect to
the mean flow. Further insight into the generation of these structures could
lead to other actuation methods leading to a similar drag-reduction benefit.
Although the structures appear directly above the regions of high shear created
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by neighbouring discs in the spanwise direction, they are largely unaffected by
the time modulation of the shear. These structures could be a product of the
interaction between the radial streaming flows of neighbouring discs, which have
a non-zero mean (refer to figure 4a).

The FIK identity is useful because the role of the disc boundary layer on drag
reduction is distilled into &%,, which sums up the decrease of turbulent Reynolds
stresses, while the role of the structures is given by %, which is solely due to the
additional disc-flow Reynolds stresses. %, and %, quantify mathematically the two
drag-reduction effects.

It has been shown that drag reduction scales linearly with the penetration depth
of the laminar layer for different spanwise wall forcing conditions, such as spatially
uniform spanwise oscillation, travelling and steady wall waves (Ricco et al. 2012;
Cimarelli et al. 2013). An analogous scaling is obtained in the following. The
definition of the oscillating-wall penetration depth advanced by Choi et al. (2002) is
modified to account for the viscous diffusion effects induced by the disc oscillation.
Choi et al. (2002)’s definition is employed because it takes into account the influence
of the wall forcing amplitude, which was not necessary in Quadrio & Ricco (2011)
because the wave amplitude was constant. Following the discussion on the role of the
disc boundary layer on drag reduction, the crucial point is that only %, i.e. the portion
of drag reduction related to the attenuation of the turbulent Reynolds stresses, is scaled
with the penetration thickness. The scaling is carried out for the case with the largest
diameter, D = 6.76, for which the infinite-disc laminar flow solution best represents
the disc boundary layer flow because of the limited interference between discs.

From the envelope of the Stokes layer velocity profile engendered by an oscillating
wall, we have

W =W'exp (— n/T+y+) ) (4.6)
Choi et al. (2002) defined the penetration depth as
vy =+/TH/nln (W;/W}), 4.7

where W is the maximum wall velocity and W, is a threshold value below which
the induced spanwise oscillations have little effect on the channel flow. For the
oscillating-disc case, the envelope function for the laminar azimuthal disc velocity,
Wr=W+*G.(n, y), where

G.(n,y) = max G, t,y), (4.8)

plays a role analogous to the exponential envelope for the classical Stokes layer.
Defining the inverse of G,, L= G, the penetration depth of the oscillating-disc layer
is obtained as

8t =/T+/nL (WH/W;). (4.9)

Note that in the limit of y — 0 one finds

lim £ (WH/W;)=In (WH/W,). (4.10)

The Stokes layer penetration depth is therefore obtained as a special case. In

figure 15(a), the drag-reduction contributor %, shows a satisfactory linear scaling

with the penetration depth, computed via (4.9) with W, =2.25.
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FIGURE 15. (a) %,, the contribution to drag reduction due to turbulent Reynolds stress
attenuation, versus 8%, the penetration depth, defined in (4.9). (b) %,, the contribution
to drag reduction due to the disc-flow Reynolds stresses, versus W2T%3. The diameter is
D =6.76. White circles: Wt =3, light grey: W+ =6, black: W+ =09.

In order to find a scaling for %, the portion of drag reduction only due to the inter-
disc structures, the FIK identity and the laminar solution discussed in § 3 is employed.
From (4.4), it is evident that %, is proportional to u,v,;. Through the definitions of
the laminar velocity components (3.1), u; ~ W and v; ~ WA/T. 1t then follows that
a reasonable estimate could be uyv; ~ W2/T at the edge of the discs where the
structures appear. It is then logical to look for a scaling of %, in the form W"T",
An excellent linear fit for the drag reduction data is found for (m, n) = (2, 0.3), as
shown in figure 15(b). Outer-unit scaling for W and T applies, which means that the
structures are not influenced by the change in u}. The exponent of W is as predicted
by the laminar solution. The deviation of the coefficient n from that predicted by
the laminar analysis (i.e. n=0.5) can be accounted for by the factors which are not
taken into account in the laminar analysis, such as the disc-flow interaction with the
streamwise turbulent flow and between neighbouring discs.

5. Outlook for the future

In line with the analysis by RHI13 for the steady-disc-flow technique, it is
instructive to render the scaled disc forcing parameters dimensional to guide laboratory
experiments and to estimate the characteristic length and time scales of the wall
forcing for flows of technological relevance. Table 1 displays estimated data for three
flows of industrial interest and two flows of experimental interest with D = 6.76,
W =0.39, and T =130, which lead to Z=16% and £,.,,=5.5%. This table may be
compared with the analogous table 6 in RH13 for the steady-rotation case, although
it should be noted that f* indicates the oscillation frequency in the present case
(f*=2m/T*) and the rotational frequency in RH13’s case (f* = w*/2m, where w* is
the angular velocity).

Experimental realization of the disc-flow technique is possible with D* =4-8 cm,
W*=0.2 m s! in a water channel and 4.6 m s~ in a wind tunnel. The frequencies
are f* = 0.37 Hz and 16 Hz, respectively. The dimensional parameters in flight
are D* = 5.8 mm, W* = 70.7 m s, and f* = 1752 Hz. Commercially available
electromagnetic motors (D* =2 mm, f* = 0(10°) Hz), adapted for oscillatory motion,
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Parameter Flight (BL) Ship (BL) Train (BL) WT (BL) WC (CF)
U* (m s7h) 225 10 83 11.6 0.4
V¥ x 10% (m? s71) 353 1.5 15.7 15.7 1.1
x* (m) 1.5 1.5 1.8 1.0 —
h* (mm) 22 22 27 25 10
w (m s7h) 7.9 0.4 2.9 0.5 0.02
Re. 4970 4970 4970 800 180
Cr x 10° 2.4 2.4 2.4 3.8 8.1
D* (mm) 5.7 5.6 6.9 39.6 70.9
W* (m s™) 70.7 3.1 26.1 4.6 0.2
T* (ms) 0.6 12.5 1.9 61 2700
f* (Hz) 1752 80 536 16 04

TABLE 1. Dimensional quantities for the optimum &7, case for three flows of industrial
and two of experimental interest (D = 6.76, W = 0.39 and T = 130). In the headings
(BL) indicates a turbulent boundary layer with no pressure gradient, and (CF) indicates
a pressure-driven channel flow. WT and WC stand for wind tunnel and water channel
respectively. For headings marked BL, U* represents the free-stream mean velocity, x*
is the downstream location and h* the boundary layer thickness; whilst for the CF
case U* represents the bulk velocity and A* the channel half-height. The relations used:
h* = 0.37x" (" U*/v*)*2 and C; = 0.37 [log,(x*U*/v*)] ™™ for BL; C; = 0.0336Re; 2"
for CF are from Pope (2000).

would guarantee these time and length scales of forcing (Kuang-Chen Liu, Friend &
Yeo 2010). The optimal frequency in flight is approximately half of the optimal one
for steady rotation: f*=1752 Hz for the oscillating discs compared with f*=3718 Hz
for the steady-rotating discs.

Figure 16 shows characteristic time and length scales of the oscillating-disc
technique and of other drag-reduction methods. The typical length scale of the
oscillating-disc technique is larger than that of the steadily rotating discs and the
standing wave forcing, whilst being two orders of magnitude greater than both riblets
and the feedback control systems studied by Yoshino et al. (2008). The typical time
scale of the oscillating-disc flow is one order of magnitude larger than that of the
oscillating-wall forcing. It is also worth pointing out that these are optimal values
for the tested parameter range and that our results in §4.2 hint at the possibility of
obtaining comparable drag-reduction values for even larger oscillation periods and
diameters, which are denoted by the dashed lines in figure 16.

The notable limitation of our analysis is the low Reynolds number of the
simulations. It is therefore paramount to investigate the disc-flow properties at higher
Reynolds number to assess whether and how the maximum drag-reduction values and
the optimal forcing conditions vary.

We close our discussion by mentioning another advantage of the oscillating-disc
flow when compared with the steady-disc flow by RH13. As shown in figure 6(d),
it is possible to achieve Z =13 % with y =n/8, T =12, W =0.51, i.e. the disc tip
undertakes a maximum displacement of only 1/8 of the disc circumference. Therefore,
for this case the disc-flow technique could be realized in a laboratory by use of a
thin elastic seal between the disc and the stationary wall. This design would eliminate
any clearance around the discs, which would not be possible for the case of steady
rotation.
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FIGURE 16. Characteristic optimal time and length scales, I, Z*, for a range of
drag-reduction methods are shown for comparison with the oscillating-disc technique.
From left to right the time scales are given as follows: time between successive flow
field measurements (Kang & Choi 2000), period of transverse travelling wave forcing
(Du, Symeonidis & Karniadakis 2002), period of spanwise wall oscillations (Quadrio
& Ricco 2004), period of rotation of steady disc forcing (Ricco & Hahn 2013), and
period of disc oscillation. From left to right the length scales are given as follows:
maximum displacement of wall-normal wall motions (Kang & Choi 2000), spacing of
sensors for feedback control of wall deformation (Yoshino et al. 2008), riblet spacing
(Walsh 1990), maximum displacement of temporally oscillating wall (Quadrio & Ricco
2004), wavelength of streamwise-sinusoidal wall transpiration (Quadrio, Floryan & Luchini
2007), wavelength of standing wave forcing (Viotti et al. 2009), wavelength of transverse
travelling wave forcing (Du et al. 2002), diameter of steady discs (Ricco & Hahn 2013),
and diameter of oscillating discs.
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