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We study the response of a steady free-falling liquid curtain perturbed by focused
air jets blowing perpendicularly against it. Asymmetric and symmetric perturbations
are applied by using either a single pulsed jet or two identical steady jets facing
each other. The response strongly depends on the curtain flow rate, and the location
and strength of the perturbation. For pulsed asymmetric perturbations of increasing
amplitude, sinuous wave, drop ejection, bubble ejection and hole opening are
successively observed. For steady symmetric perturbations, a steady hole forms
downstream in the wake. For this latter case, we present a model for the curtain
thickness and the location of the hole in the wake in terms of the curtain flow rate and
the size, flow rate and location of the jets. The adjustable-parameter-free expression
we obtain compares favourably to the experiments provided that the perturbation is
sufficiently small (jet stagnation pressure smaller than curtain stagnation pressure)
and the liquid viscosity is negligible.

Key words: breakup/coalescence, interfacial flows (free surface), thin films

1. Introduction
Liquid curtains, i.e. vertical liquid sheets free-falling in a gaseous atmosphere,

are of practical interest for many applications, amongst which are surface coating
(Miyamoto & Katagiri 1997) and paper manufacturing (Soderberg & Alfredsson
1998). Their dynamics and stability, and more generally that of all liquid sheets,
is a longstanding problem that has been the concern of numerous experimental
and theoretical studies. In the late 1950s, Taylor (1959a) showed that an obstacle
across a liquid sheet creates two types of capillary waves: varicose (or symmetric)
waves, which induce thickness modulations and are dispersive; and sinuous (or
antisymmetric) waves, which induce a displacement of the sheet mid-plane and are
non-dispersive in the long-wavelength limit. He also determined the criterion for the
steady recession of a free edge, that is, for the existence of a steady hole in the sheet
(Taylor 1959b): the edge of a liquid sheet with thickness h, surface tension σ and
density ρ recedes with a velocity

√
2σ/ρh, at which the capillary stresses balance

the inertia of the liquid collected at the edge. When this receding velocity equals
that of the flow perpendicular to the edge, the edge location is steady. Brown (1961)
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Blowing a liquid curtain 785

used this criterion to determine the stability to rupture of a steady curtain, in which
the flow is accelerated by gravity and the sheet thins downstream. The most critical
direction is the recession against the flow, in the upward vertical direction, for which
the steadiness of the flow requires that the local Weber number of the sheet is equal
to one, that is,

We= ρhw2

2σ
= 1, (1.1)

where w is the local velocity in the curtain. For We 6 1 the flow is subcritical: any
hole forming in the curtain expands in all directions. This has a particular consequence
for a free-falling liquid curtain in which, by contrast with other sheet flows such as
axisymmetric liquid sheets (see e.g. Taylor 1959a; Clanet 2007; Villermaux, Pistre
& Lhuissier 2013), We increases in the downstream direction due to the acceleration
of the flow. A hole forming in an unperturbed curtain at a location where We 6 1
therefore expands upstream until the whole of the curtain is disrupted. We will see
below that this is not necessarily true for a perturbed curtain. Note also that the
criterion (1.1), which holds for a straight and steady weightless edge, is modulated
by the shape of the edge (Gordillo, Lhuissier & Villermaux 2014), its acceleration
(Lhuissier & Villermaux 2011) and gravity (Roche et al. 2006).

This criterion on the criticality of the flow only concerns the fate of the curtain
once a hole has formed, but not the actual stability of a curtain, which also depends
on the occurrence of puncturing events. This is indeed a common observation (see e.g.
Finnicum, Weinstein & Ruschak (1993) and Le Grand et al. (2006), or more evidently
the direct observation of a static soap film) that a liquid curtain can be maintained
at We < 1. In practical situations, these puncture events often result from boundary
effects or defects that are present in the flow (Dombrowski & Fraser 1954; Lhuissier
& Villermaux 2013). For large-velocity liquid sheets, the puncture is also triggered
by the flapping motion (Kelvin–Helmholtz like instability) due to the shear with the
quiet gaseous atmosphere around the sheet (Squire 1953; Dombrowski & Fraser 1954).
Several studies (Lin, Lian & Creighton 1990; De Luca & Costa 1997; Teng, Lin
& Chen 1997; Weinstein et al. 1997) considered this mechanism in the context of
free-falling liquid curtains. They recovered that, for a thin liquid sheet, the flapping
instability only develops for a local Weber number of the sheet larger than one, when
the velocity of the wave is smaller than that of the flow (Squire 1953). This means
that, for a free-falling liquid curtain, perturbations are expected to grow only over
the downstream part of the curtain where they are advected by the flow (convective
instability). An algebraic growth of perturbations due to the non-parallel structure of
the flow has also been predicted (De Luca & Costa 1997), the role of which in the
puncturing of a liquid curtain has not however been experimentally demonstrated.

To gain insight into the dynamics and puncturing mechanisms of the sheet, studying
the response of a liquid sheet to an imposed perturbation has proved to be a useful
method. Following Taylor (1959a), who used a single small air jet blowing against
a liquid sheet to study the sinuous and varicose capillary wakes, numerous works
considered the linear capillary response to different local perturbations: obstacle
across the curtain (Lin & Roberts 1981), non-contact electrostatic periodic forcing
(Clarke et al. 1997) or acoustic forcing in the presence of a gaseous atmosphere
(Soderberg & Alfredsson 1998). Within this limit of linear capillary waves, Alleborn
& Raszillier (2004) incorporated the influence of the viscous damping on local
varicose perturbations. By contrast, finite-amplitude perturbations have received much
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less attention. They have only been considered numerically on the one-dimensional
configuration of a liquid sheet perturbed by air blades by Mehring & Sirignano
(2003), who identified the ratio of the stagnation pressure of the air to that of the
liquid as the relevant parameter for rupture. Besides these localized perturbations, let
us note that global perturbations have been considered: static pressure applied on one
side of a curtain (Finnicum et al. 1993) or stabilization of the shear-induced flapping
instability by an air co-flow (Tammisola et al. 2011). However, as far as we know,
large-amplitude localized perturbations in a two-dimensional curtain, both varicose
and sinuous, which can have either dramatic local effects or effects manifesting far
downstream of the perturbation, have not been considered.

In the present study, we thus address the question of the response of a curtain
to a local perturbation with finite amplitude. Inspired by Taylor’s (1959a) small air
jet, we apply a controlled perturbation with either one pulsed air jet or two steady
air jets blowing perpendicularly against the curtain. This lets us vary both the shape
(symmetric or asymmetric), the strength and the time scale of the perturbation, and
reveals a rich dynamics. Asymmetric pulsed perturbations either deform, fragment,
puncture or inflate the curtain in bubbles, while steady symmetric perturbations allow
for the steady opening of the curtain at a controllable distance from the perturbation.

The paper is organized as follows. Section 2 introduces the experimental set-up.
Section 3 presents our observations of the various response regimes induced by pulsed
asymmetric perturbations and of the steady hole that forms downstream of a steady
symmetric perturbation. A model for this latter regime of symmetric perturbation is
presented in § 4. It is compared to the experiments in § 5, and a conclusion is given
in § 6.

2. Experimental set-up
The experimental set-up allows for the formation of a vertical steady liquid curtain

on which a controlled localized perturbation can be applied. It is sketched in figure 1.
The same Newtonian liquid was used for all the experiments: silicone oil (Dow
Corning DC200) with density ρ = 957 kg m−3, kinematic viscosity ν = 50 mm2 s−1

and surface tension σ = 20.4 mN m−1. The oil is pumped at constant flow rate
Q, measured with a variable-area flowmeter, to a feeding chamber consisting of a
hollow aluminium cylinder with horizontal axis. The curtain is formed by forcing
the liquid throughout a 2 mm wide and 155 mm long rectangular slit cut on the
upper part of the cylinder. At the slot exit, the liquid flows down, on both sides,
over the cylinder outer surface that it wets entirely. For sufficiently large flow rate,
the liquid forms a flat vertical curtain at the bottom of the cylinder – for low flow
rates, the liquid detaches in drops or forms columns (Pritchard 1986; Giorgiutti,
Limat & Weisfreid 1995; Brunet, Flesselles & Limat 2007). To prevent the lateral
shrinking of the curtain, the latter is guided on both sides by vertical wires to which
it remains attached. The curtain is ended at its bottom by the surface of a shallow
pool of the same liquid, into which it falls. From this pool, the liquid gently flows
into a collecting tank, from where it is pumped back through the circuit, which
gives a continuous operation of the system. This set-up provides a stable rectangular
curtain, with a width L = 155 mm and a height of 435 mm, with a purely vertical
perturbation-free flow. The dynamics of the applied perturbation was visualized with
a high-speed camera (IDT N3).

The vertical velocity w(0) at the top of the curtain (i.e. at the bottom of the
cylinder at z= 0) is only a few millimetres per second, that is to say, much smaller
than the typical velocity downstream in the curtain, which is of the order of 1 m s−1.
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FIGURE 1. (Colour online) A flat vertical liquid curtain is formed by letting silicone oil
fall uniformly from the bottom of a horizontal aluminium cylinder. At a distance z0 below
the bottom of the cylinder, a localized perturbation with controlled amplitude is applied
by blowing air perpendicularly against the curtain.

Moreover, neither surface tension nor viscosity significantly affects the base flow,
since both the capillary length

√
σ/ρg ' 1.5 mm, over which a capillary slowdown

is expected, and the visco-gravity length ν2/3g−1/3 ' 0.6 mm, over which a viscous
slowdown is expected (Brown 1961), are much shorter than the distances z > 2 cm
to the top of the curtain that are considered here (quantitatively, their combined
influence on the velocity is always smaller than 4 %). In the absence of perturbations,
the liquid in the curtain thus practically experiences a free-fall with velocity

w=√2gz. (2.1)

The curtain is steady, and its thickness h=Γ/w is everywhere proportional to the flow
rate per unit width Γ = Q/L, which we obtain from the measurement of the global
flow rate Q. The unperturbed thickness thus decreases in the downstream direction,
according to

h= Γ√
2gz

. (2.2)

In our experiments, Γ ranges from typically 0.5 to 5 cm2 s−1, and the typical
unperturbed thickness h of the curtain is of the order of 10–100 µm. The local
Weber number in the curtain thus increases with increasing distance z to the slit
according to

We= ρhw2

2σ
= ρΓ

√
gz/2
σ

. (2.3)

Once a steady liquid curtain has formed, a local perturbation is applied at a distance
z0 below the top of the curtain, which we vary between typically 1 and 10 cm. The
perturbation is achieved by blowing air from small pipes perpendicularly against the
curtain. Two types of perturbations were applied: pulsed asymmetric perturbations,
and steady symmetric perturbations. In the former case (see figure 2a), only one
pipe is used and the air flow is pulsated with a pulse duration T . In the latter case
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(a) (b)

FIGURE 2. (Colour online) Two types of localized perturbation are applied to the curtain.
(a) Asymmetric non-steady perturbation: a single pulsed air jet blows for a duration T
with a repetition rate (2T)−1. (b) Symmetric steady perturbation: two identical jets, facing
each other on both sides of the curtain, blow continuously.

(figure 2b), two coaxial pipes are located symmetrically with respect to the curtain
and each of them blows the same steady air flow. The size of the perturbation is
directly set by the pipes’ inner radius ra= 2.5 mm, since the pipes’ outlets are located
close (5 mm) to the liquid curtain. We checked that from 2 to 6 mm the pipe–curtain
distance does not affect the phenomena under study: the shape and strength of the
perturbation are invariant over the considered range. The pipes radius, hence the
size of the perturbation, was kept constant for all the experiments. By contrast, the
amplitude of the perturbation, which is set by the flow rate Qa feeding each air jet,
was systematically varied. The air flow is created by pressurizing air, with density
ρa = 1.18 kg m−3 and kinematic viscosity ηa = 1.85× 10−5 Pa s, and regulating the
flow in the jets with a pressure-reducing valve. The volume flow rate in each jet Qa is
measured with a variable-area flowmeter located upstream of the pipes. It was varied
between 30 and 140 cm3 s−1, which corresponds to typical air velocities va=Qa/πr2

a
ranging from 1.5 to 7 m s−1 and typical stagnation pressures ρav

2
a/2 ranging from

1.5 to 30 Pa. For pulsed jets, a solenoid on–off valve controlled by a low-frequency
generator with square signal was added to the circuit after the flowmeter. It allowed
for the blowing on demand with a desired pulse duration and a strength set by the
flow rate Qa, which was measured when the on–off valve is opened.

The advantage of this set-up is its ability to control the strength, the duration and
to some extent the shape of the perturbation.

(1) When a single pipe blows (figure 2a), the perturbation is asymmetric. The liquid
is mainly deflected transversely and the mid-plane of the curtain is displaced.

(2) When the two facing pipes blow with the same strength (figure 2b), the liquid is
deflected only in the plane of the curtain, and the curtain thins symmetrically.

For the sake of generality, rather than using Qa, which depends strongly on the
choice of the pipe radius, we will discuss all the experiments in terms of the mean
air velocity in the jet, that is to say, va =Qa/πr2

a.

3. Observations
3.1. Pulsed asymmetric perturbations: various regimes of instabilities

When the curtain was subjected to a pulsed air jet from a single side, we observed
different regimes of response depending on the flow parameters. The experiments
were conducted as follows. We set the height of the perturbation to z0, which
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(a) (b) (c) (d) (e) ( f )

Expanding
hole

FIGURE 3. Response to a pulsed asymmetric perturbation for a low liquid flow rate
(Γ = 0.38 cm2 s−1, z0 = 5.5 cm, T = 50 ms and va = 5.91 m s−1). The images in the
sequence are taken 4, 10, 16, 32 and 70 ms after the first one and their height represents
6.5 cm. A bulge is formed which inflates and eventually punctures. The resulting hole
propagates both downstream and upstream (c–e) which causes the disruption of the entire
curtain ( f ).

imposes the vertical velocity of the liquid on the jet axis w0 = √2gz0, and varied
both the flow rate per unit width Γ and the air velocity va (when the on–off valve
is opened). The air pulses had a duration T ranging from 25 to 50 ms. For the
sake of a clear identification of the different regimes, the pulses were repeated
periodically with a frequency (2T)−1. However, the time between successive pulses
was always much larger than the characteristic time of the flow advection over the jet
size 2ra/w0, which varied between 3 and 8 ms over the range of z0 we considered.
Except for the largest air velocities (regime (vi) below), each pressure pulse was thus
independent of the others and, without loss of generality, the response of the curtain
can be considered as that to an isolated pressure pulse with duration T . The induced
deformation generally consists of both a local displacement of the sheet perpendicular
to its plane and a local thinning of the sheet. For weak perturbations (va typically
smaller than 3.5 m s−1), the curtain response showed smooth wavy deformations. For
stronger air blows, however, spectacular and potentially destructive dynamics were
observed, which we present later.

For low flow rates, the upper part of the curtain, where the local Weber number
We=ρΓ√2gz/2σ is smaller than 1, is metastable. Providing the external perturbations
are weak enough, it is possible to maintain a stable curtain for some time. However,
when a localized perturbation with sufficient amplitude is applied in the upper part,
the curtain punctures and the hole extends over the whole curtain, which results in
the global disruption of the latter. Figure 3 shows the early stage of this disruption
when the Weber number on the jet axis (z= z0) is We0 = 0.93. The hole propagates
in all directions and eventually covers the whole curtain. This situation with a
metastable unperturbed state is drastically sensitive to external noise and to the
curtain downstream boundary conditions, since sinuous perturbations can propagate
upstream, and we thus focused on stable unperturbed states.

For larger flow rates (Γ > 2σ/ρ
√

2gz0), the response to the perturbation always
develops downstream of the jet. Figure 4 illustrates this point in the case when the
jet punctures the curtain. By contrast with the situation in figure 3, the resulting hole
is only intermittent: while the hole grows, it is advected downstream by the flow and
the curtain self-heals. For these large flow rates, not only holes but also very different
regimes of curtain response were observed, the limits of which depend not only on the
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(a) (b) (c) (d) (e) ( f )

FIGURE 4. Response to the same asymmetric perturbation as in figure 3 for a larger flow
rate (Γ = 1.27 cm2 s−1, z0= 5.5 cm, T = 50 ms and va= 5.91 m s−1). The images in the
sequence are taken 14, 20, 26, 32, 48 and 86 ms after the beginning of the air pulse, and
their height represents 6.5 cm. A bulge is formed which also punctures but, by contrast
with figure 3, the resulting hole is only intermittent. While it grows, the hole is advected
downstream by the steady flow, and the curtain self-heals.

jet velocity va but also on the flow rate Γ and position z0. All of these regimes can,
for instance, be observed for a fixed flow Γ = 2 cm2 s−1 in the middle of the range
of interest. By progressively increasing va from 0 to 8 m s−1, the following response
regimes were observed.

(i) A narrow wake downstream of the perturbation, similar to that observed
downstream of any wetting obstacle inserted across a curtain (Taylor 1959a;
Lin & Roberts 1981).

(ii) High-amplitude sinuous waves that first bulge on the opposite side of the jet and
eventually oscillate and dampen downstream, without puncturing or fragmenting
the curtain.

(iii) The ejection of liquid filaments from the crests of the wave, which eventually
fragment into droplets (see figure 5a).

(iv) The ejection of bubbles, which detach from the curtain when the inflated bulges
pinch off (see figures 5b,c).

(v) Intermittent holes, which are formed by the puncturing of the bulges before a
bubble detaches and are subsequently advected by the flow (see figure 4).

(vi) A single permanent hole, with a triangular edge pointing in the upstream
direction, resulting from the connection of the intermittent holes. Close to the
transition with the intermittent holes regimes, the edge position oscillates strongly,
a few centimetres downstream of the jet. Obviously, in this regime, the pulses
are not isolated from each other and their repetition rate becomes a relevant
quantity.

Note that in the regimes (i)–(iv), including when droplets and bubbles are ejected,
no hole forms in the curtain, even transiently. It must also be mentioned that both
the droplet and bubble sizes (typically 1 and 5 mm, respectively) were highly
reproducible.

Figure 6 presents the phase diagram of the curtain responses described above.
It shows the boundaries, in terms of the dimensionless flow rate in the curtain
ρΓ/ρara

√
2gz0 and the dimensionless mean velocity in the jet va/

√
2gz0, between

the different regimes (i)–(vi) for z0 = 5.5 cm and a pulse duration T = 25 ms.
Below Γ ' 0.5 cm2 s−1 (that is to say, ρΓ/ρara

√
2gz0 ' 15), which is close to the

critical value 2σ/ρ
√

2gz0 ' 0.44 cm2 s−1, the curtain response is not reproducible.
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(b)

(a) (c)

FIGURE 5. Periodic ejection of droplets and bubbles observed for a repeated pulsed
asymmetric perturbation with large amplitude (Γ = 2.01 cm2 s−1, z0 = 5.5 cm and T =
25 ms). (a) Air velocity va = 5.61 m s−1. The height of the images is 6.5 cm. The
air blows form liquid filaments at the crest of high-amplitude waves that break up into
droplets. (b) Air velocity va = 6.04 m s−1. The blows distort the curtain and inflate
bubbles that eventually detach. (c) Superposition of successive images separated by 50 ms
showing the bubbles’ ejection dynamics in the same conditions as in (b).

Above this flow rate, the response regimes (i)–(vi) are observed and, for a given
location z0, all the thresholds in the perturbation strength between them increase with
increasing curtain flow rate.

Providing a detailed modelling of these thresholds, which rely on several
destabilization mechanisms (pinch-off and hole nucleation), is clearly beyond the
scope of the present study. We however simply note that the transverse displacement
of the curtain induced by the air jet (over the time ra/w0 it interacts with each portion
of the curtain) is expected to be typically ρav

2
ar2

a/ρΓw0. This transverse displacement
forms a significant bulge, from which a bubble, a drop or a hole may result, when it
becomes of the order of ra, that is to say, when va/w0∼√ρΓ/ρaraw0. This heuristic
criterion of a ‘significant’ transverse displacement defines the threshold (dashed line)
shown in figure 6. Somewhat surprisingly, although it ignores all the details of the
mechanisms of the different regimes, this criterion reproduces the order of magnitude
as well as the general trend of the threshold between regimes (v) and (vi), for the
formation of a permanent hole.

3.2. Steady symmetric perturbations
We now turn to the curtain response to a symmetric perturbation: a local thinning
imposed by two steady air jets facing each other on both sides of the curtain
(figure 2b). The jets locally squeeze the curtain and generate a smooth varicose
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Permanent hole (vi)

Intermittent holes (v)

Droplets ejection (iii)

Bulging (ii)

Wake (i)

Global
rupture

Bubbles ejection (iv)

(v)
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FIGURE 6. Phase diagram of the different regimes of response to a pulsed asymmetric
perturbation (z0 = 5.5 cm, T = 25 ms) in terms of the dimensionless flow rate in the
curtain ρΓ/ρara

√
2gz0 and the dimensionless mean velocity in the air jet va/

√
2gz0. The

lines show the delimitations between the different regimes. The dashed line shows the limit
y = √x, above which the transverse displacement of the curtain is expected to become
larger than the size of the perturbation (see text).

perturbation with a controlled amplitude set by the air velocity (the jets actually also
generate a tenuous sinuous wake, which can be observed under a raking lighting
(see figure 12), but the latter does not affect the puncture of the curtain).

Figure 7 shows the typical curtain response. For a sufficiently strong air flow, the
perturbation forms a steady hole at some distance downstream of the jets. The hole
is bounded by a steady liquid edge receding against the flow. This free edge has
the shape of an inverted V with a round top, and the hole extends downstream to
the bottom of the curtain (see figure 7). This shape is similar to those obtained by
inserting a non-wetting obstacle across a liquid curtain (Brown 1961; Lin & Roberts
1981; Roche et al. 2006), except that the upstream portion of the edge is round instead
of being angular. This difference is of crucial importance. It results from the fact that,
in the present case, the location of the edge is not prescribed by that of the obstacle,
but is actually selected by the flow of the curtain and the strength of the perturbation:
the steadiness and the symmetry of the flow, together with the absence of an obstacle
that can impart momentum, impose the condition that, exactly downstream of the jets,
the edge be locally horizontal.

The distance ze − z0 from the hole upstream edge to the jets globally decreases
with decreasing flow rates and increasing jet velocity. For large flow rates, this
distance remains almost constant, fluctuating by a few per cent only due to the small
irregularities of the flow. By contrast, within a narrow range of flow rate, when Γ
is just above the threshold for global rupture, the location of the free edge fluctuates
greatly, sometimes erratically, sometimes with a periodic motion (with a typical
frequency of a few hertz). During this motion, the free edge conserves a constant
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(a) (b) (c)

(d) (e) ( f )

FIGURE 7. Steady hole created in the liquid curtain downstream of a symmetric
perturbation for increasing flow rates Γ = 2.01, 2.25, 2.48, 2.71, 2.94 and 3.17 cm2 s−1

from (a) to ( f ). Here z0 = 1.15 cm and va = 3.97 m s−1. The height of the images is
11.8 cm. The hole moves downstream (the distance ze–z0 from the jets to the upstream
edge of the hole increases) with increasing flow rates Γ . The white disk in (a) shows the
location and the size of the perturbation.

shape, with only slight variations in its aperture angle. Although the origin of these
fluctuations is still open to question, they are reminiscent of those reported by Roche
et al. (2006), who observed the oscillations of a free edge generated by a non-wetting
obstacle inserted across a curtain at We' 0.7. Note also that the aperture angle of the
free edge decreases with increasing flow rate, as expected for a free edge receding
steadily in a unperturbed free-falling liquid curtain (Brown 1961).

We also checked that no hysteresis was present in the process by alternately
decreasing and increasing both the air flow rate and the curtain flow rate. Once a hole
has formed, both methods were reversible, and yielded the same measurements. This
total reversibility of the phenomenon is actually in agreement with direct observations
showing that the location and the shape of the hole directly result from the thickness
modulations generated by the jets. These modulations are clearly visible in figure 7,
through the optical distortion of the background pattern positioned behind the curtain.
These distortions are confined to a rather narrow wake downstream of the jets, the
width of which slowly decreases with increasing flow rate. Figure 8 shows a close-up
view of the distortions, from which the main features of the modulated thickness field
can be deduced. As expected, the wake is symmetric with respect to the z axis. In
each horizontal cross-section downstream of the jets (A–A in figure 8), the thickness
is reduced and essentially uniform over a large part of the wake around the axis.
This central thinner part is bounded on both sides by ridges of greater thickness
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hAA

B B

A–A

B–B

(a) (b)

FIGURE 8. (Colour online) Details of the symmetrical wake and the steady hole from
figure 7(c). (a) The optical distortion of the black and white stripes in the background
highlights the thickness modulations in the wake. (b) Typical thickness profile upstream
(A–A) and downstream (B–B) of the hole inferred from the optical distortion. In A–A,
the wake consists of a thinner sheet portion with almost uniform thickness, bordered by
two ridges.

which connect to the unperturbed thickness field outside the wake. This thickness
profile is confirmed by the shape of the film edge, which is almost horizontal over
most of the wake width, highly curved at the ridges where the thickness changes
significantly, and straight with a constant inclination outside the varicose wake.

Figure 9 shows the variation of the hole location ze with the mean air jet velocity va

and the curtain flow rate Γ for different vertical locations of the jets: z0=2.05 cm (a),
z0 = 4.6 cm (b) and z0 = 9.1 cm (c). To the best of our knowledge, this is the first
time that it has been shown that a local perturbation on a curtain induces the
formation of a steady free edge further downstream in a reproducible fashion and at
a controllable distance from the perturbation. This is however clearly reminiscent of
air jet-induced dewetting used for cleaning and drying substrates (Berendsen, Zeegers
& Darhuber 2013).

4. Model for a steady symmetric perturbation
We now present a model for the steady thinning and opening of the liquid curtain

in the wake of the perturbation in the case of facing jets. In the experiments, the
thinning results from both the motion imparted by the air jets and the acceleration
imparted by gravity. However, these contributions are independent of each other
and other situations might occur where gravity is irrelevant. For the sake of clarity,
we will thus focus in this section on the sole contribution of the air blows, while the
contribution of gravity will be readily incorporated in § 5.
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(a)

(b)

(c)
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FIGURE 9. (Colour online) Location ze of the upstream edge of the hole versus the curtain
flow rate Γ , for different jet velocities va (indicated in the legend) and different locations
of the perturbation indicated by the dashed lines: (a) z0 = 2.05 cm, (b) z0 = 4.6 cm and
(c) z0 = 9.1 cm.

4.1. Stresses between the jets
We therefore consider for now a flat liquid sheet with uniform thickness h0 and
vertical velocity w0ez that is perturbed by two air jets, symmetric with respect to
the sheet mid-plane and blowing perpendicularly against the sheet. These jets create
an initial perturbation of typical size r0, which evolves downstream in the form
of a stationary wake, while it is advected by the main flow (see figures 7 and 8).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

24
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.241


796 H. Lhuissier, P. Brunet and S. Dorbolo

p

p

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

(b)(a)

FIGURE 10. (Colour online) (a) Radial pressure profile (solid line) and radial shear profile
(dashed line), (4.1) and (4.2) respectively, due to the air blow at the curtain surface.
(b) Schematics of the influence of the pressure and shear on the curtain in the present
case when the jets diameter is much larger than the sheet thickness.

The perturbation of the liquid sheet actually results from two concomitant forces at
the air/liquid interface, at the point where the air jets impact the sheet perpendicularly,
that is to say (see figure 10):

(1) the stagnation pressure due to the deflection of the air parallel to the plane of
the sheet, which builds up on the jets axis;

(2) the shear stress, due to the tangential air flow resulting from the jets’ deflection,
which is largest immediately around the jets axis.

As we will discuss below, both forces are important in experiments, and need to be
considered. We model the air pressure by the following radial profile centred on the
jet axis:

p= p0 exp
(
−x2 + (z–z0)

2

r2
0

)
. (4.1)

Here p0 and r0 respectively represent the stagnation pressure on the jet axis and
the typical size of the pressure profile, which can be readily related to the velocity
profile of the air jets, that is to say, to va and ra (see appendix A). This choice
for the profile is dictated by two considerations. First, it is physically relevant
both on the axis, where the pressure profile is known to be locally parabolic
(Schlichting 1979), and over larger radii, where the pressure vanishes. As we will
see, this permits one to quantitatively consider the dynamics of thinning in the
high- and low-Reynolds-numbers limits, respectively. Second, this simple profile can
be quantitatively connected to the air jet velocity profiles (see appendix A) and
permits analytical calculations that reveal the mechanism and the limits of the model.
Following the classical analysis for the boundary layer development around the axis
of a fluid jet impacting perpendicularly on a solid surface (Schlichting 1979), the
shear stress τer at the air/liquid interface (the liquid velocity being negligible with
respect to the air velocity) can be expressed as

τ

−r0∂rp
' 1.312

(
η2

a

2ρap0r2
0

)1/4

≡ τ0

p0
. (4.2)

Here ρa and ηa respectively stand for the density and the dynamic viscosity of air,
and r is the radial coordinate centred on the jets axis. Note that (4.2) is strictly valid
close to the jets axis only, over a typical size r0. For simplicity, we assume in the
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following that it is also valid further from the axis, although the precise shape of the
shear profile there is of little importance, since the evolution of the perturbation and
the formation of the hole are dictated by the conditions close to the axis.

The size 2r0 ∼ 5 mm of the perturbation is much larger than the thickness h0 ∼
50–500 µm, and the pressure is thus essentially uniform across the sheet. Moreover,
the time scale h2

0/4ν∼ 1 ms for the diffusion of momentum across the liquid is much
smaller than the typical time scale T ∼ 10 ms of the sheet dynamics. The shear stress
at the air/liquid interface therefore also readily transmits to the whole thickness. This
has two important consequences. First, the liquid velocity is essentially uniform across
the thickness, which means that the dynamics is accurately described by a slender
slope model that only considers the local thickness h and the average velocity {u,w}
across the sheet. Second, anticipating (4.5), the resultant of the air pressure and that
of the air shear on a sheet portion respectively can be expressed as −h∂rper and 2τer .
Since, from (4.2), τ ∝−∂rp, this means that, as long as the thickness is uniform, the
contribution of the shear stress is everywhere proportional to that of the pressure. We
thus define the effective pressure

P0 = p0 + 2r0τ0

h0
, (4.3)

which accounts for both contributions. The ratio h0p0/2r0τ0 ∼ (ρap0/η
2
ar2

0)
1/4h0 of the

two terms shows that, not surprisingly, the contribution of the shear is larger for thin
sheets than for thicker ones.

Last, we make use of the observation that the lateral velocity uex induced by the
perturbation is much smaller than the vertical velocity of the unperturbed flow w0ez
that advects the perturbation. That is, the wake is elongated and varies only slowly
along ez. We thus introduce the small parameter ε ∼ u/w0, which we will define
precisely further down, and describe the wake as a one-dimensional perturbation
evolving along ex only, while it is advected along ez. In the frame of reference of
a sheet portion moving at w0ez, the (effective) air pressure now has the form of a
pressure pulse,

P= P0 exp
(
−x2 + (w0t)2

r2
0

)
, (4.4)

where t= ∫ z
z0

dz/w0 stands for the time since a portion of the sheet has passed at the
height of the jets. The velocity u and thickness h then satisfy

∂tu+ u∂xu= 4ν∂x(h∂xu)
h

− ∂xp
ρ
+ 2τer · ex

ρh
, (4.5)

∂th+ ∂x(uh)= 0, (4.6)

which can be derived from the general two-dimensional equation given in appendix B
by keeping the dominant terms for u/w ∼ ε � 1 and x ∼ r0 ∼ εz and subsequently
substituting dz= w0 dt. Note that, in deriving (4.5), we set the pressure in the sheet
equal to the pressure p in the air, that is, we neglected the Laplace pressure arising
from the curvature of the air/liquid interface, as we will justify below.

4.2. Impulsive acceleration between the jets
A crucial consequence of u� w is that, for a portion of liquid flowing across the
pressure field imposed by the air jets, the time r0/w0 during which the pressure is
applied is much shorter than the typical time r0/u over which the perturbation evolves.
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We therefore consider, from now, the relevant limit case in which the perturbation is
given by an impulsive pressure pulse. This implies that, immediately after the pulse,
the sheet is still undeformed (h= h0), but it has acquired a velocity

u(x, 0)=
∫ ∞
−∞

−∂xp+ (2τ/h0)er · ex

ρ
dt, (4.7)

as follows from neglecting both the advective term u∂xu∼ ε∂tu and the viscous term
4ν∂x(h∂xu)/h∼ ε(ν/ur0)∂tu in (4.5) and neglecting ∂x(uh)∼ ε∂th in (4.6).

Moreover, since in this impulsive limit the air shear and the air pressure apply on
a curtain with uniform thickness, the velocity can be directly expressed in terms of
the effective pressure P0 defined in (4.3), that is

u(x, 0)= 2
√

π
P0

ρw0

x
r0

exp
(
−x2

r2
0

)
. (4.8)

This point is crucial, as it implies that the same model can be used to describe the
wake for all cases: when the pressure is dominant, when the shear is dominant, or
when both terms are of comparable magnitude. Only the expression and the magnitude
for u are changed, but not the shape of the wake.

From (4.8), one readily sees that the typical ratio u/w, which we assumed to be
small, is actually set by the parameter

ε≡ P0

ρw2
0
. (4.9)

This parameter has two influences that cannot be decoupled in the present configura-
tion, i.e. that of a sheet flowing between stationary air jets. As already mentioned,
it sets both the relative time span of the pressure pulse, and the typical angle of
the wake ∼u/w0. Therefore, a small value of ε justifies both the assumption of our
one-dimensional model and that of the limit case of an impulsive pressure pulse. Last,
it is also important to realize that the vertical velocity is essentially not influenced
by the air pressure. Indeed, in the case of an impulsive pressure pulse, one has
w(x, 0) = −∫∞−∞ Pz dt/ρ = 0, while the corrections for a finite ε are of the order of
ε2 only (at the first order, the vertical deceleration upstream of z0 is exactly balanced
by the acceleration downstream). For a free-falling liquid curtain, the vertical velocity
w thus only varies because of the acceleration imparted by gravity, but remains
x-independent, which will be used for modelling the wake downstream.

4.3. Modulated thickness wake
After (i.e. downstream of) this impulsive acceleration, the forcing of the jets vanishes
and the dynamics of the sheet depends at the first order on inertia and viscous
dissipation, as one can see by setting p= 0 and τ = 0 in (4.5). By making use of the
characteristic velocity P0/ρw0 and the size scale r0 of (4.8), together with the inertial
time scale r0/u, which is formed by the ratio of the former to the latter, namely

U = P0

ρw0
, X = r0, T = ρr0w0

P0
, (4.10a−c)
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FIGURE 11. (Colour online) Thickness evolution in the wake for a curtain with parallel
flow (w=w0). (a) Thickness profiles at t/T = 0.1, 0.2, 0.4 and 0.6 for the purely inertial
limit (Re� 1). (b) Thickness profiles at t/T = 0.05, 0.2, 0.8 and 3.2 for the viscous limit
(Re� 1) plotted for a Reynolds number of Re = 0.5. (c) Evolution of the thickness on
the centreline for the inertial solution (4.16) (red) and for the viscous solution (4.23) with
Re= 0.1, 0.3, and 0.9 (black).

equations (4.5) and (4.6) can be written in dimensionless form as

∂tu+ u∂xu= 1
h
∂x

(
h∂xu
Re

)
, (4.11)

∂th+ ∂x(uh)= 0, (4.12)

where we have introduced the Reynolds number

Re= r0P0

4νρw0
. (4.13)

This Reynolds number, which ranges from 0.35 to 2.3 in the experiments, depends
on the thickness only through the air shear at the interface. It is otherwise set by the
size r0 of the perturbation. Therefore, in the case of a pressure-dominated motion, the
whole dynamics is independent of the initial thickness h0. This dynamics deforms the
air/liquid interface and one may also expect a dependence on h0 due to surface tension,
as in the case studied by Taylor (1959a). However, in our experiments the Laplace
pressure is of the order of σh0/r2

0, that is, less than one-tenth of the air effective
pressure P0. Surface tension is thus negligible at the impact of the air jets.

In the scales of (4.10a-c), the velocity after the pulse is simply

u(x, 0)= 2
√

πx e−x2
. (4.14)

4.3.1. Inertial thinning
It is instructive first to consider the case of a high Reynolds number. In this case

the sheet portions simply propagate (along ex) with a constant velocity, which is given
by their initial position x. Defining respectively X(x, t)= x+ u(x, 0)t and H(x, t) as the
Lagrangian coordinate and thickness of the film portions, mass conservation yields

H = h0

∂xX
= h0

1+ ∂xu(x, 0)t
. (4.15)

This corresponds to the thickness profiles shown in figure 11(a). As time increases, a
central thinner portion, bordered by thicker ridges propagating outwards at a constant
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velocity, develops. Its thickness, which at x= 0 where u= 0 is equal to the Eulerian
thickness, evolves as

h(0, t)= h0

1+ 2
√

πt
. (4.16)

Therefore, in the absence of viscosity, the impulsive acceleration generates a wake in
which the sheet thins down to zero over an infinite distance.

It is also worthwhile to look further from the vertical of the jets (z axis). As
it propagates outwards, the initial velocity wave deforms until it develops a shock
(assuming an infinite Reynolds number). This shock forms when the inflection point
of the curve, which also propagates at a constant velocity, straightens down to adopt
an infinite negative slope (see figure 11a). This occurs at the time and distance from
the axis given by

tc = e3/2

4
√

π
' 0.63, (4.17)

xc =
(

3
2

)3/2

' 1.84, (4.18)

above which (4.16) is a priori no longer valid, since viscosity has necessarily come
into play at some point before the singularity occurs.

However, before invoking viscosity, it is crucial to realize the following point: the
viscous term in (4.11) identically vanishes on the axis (at x = 0). This means that
the thinning dynamics on the axis, which ultimately determines whether or not the
curtain will puncture, will be the last portion of the wake where viscous effects will
modify the thickness profile (4.15) (the first one being the location of the singularity
at the edges of the wake). It is therefore likely that the result of (4.16) will be almost
unchanged until the Reynolds number becomes fairly close to one.

4.3.2. Viscous thinning
It is also possible to describe the dynamics for the opposite limit of a small

Reynolds number (i.e. ε � Re � 1). In that case, (4.8) remains valid while (4.11)
simplifies to the diffusion equation

∂tu= 1
h
∂x

(
h∂xu
Re

)
' ∂xxu

Re
, (4.19)

since h ' 1. This equation has an exact well-known solution (see e.g. Fourier 1822,
p. 470) that matches the initial condition u(x, 0) from (4.14), that is,

u(x, t)= 2
√

π
x

(1+ 4t/Re)3/2
exp
(
− x2

1+ 4t/Re

)
, (4.20)

which yields the velocity gradient on the axis,

∂xu(0, t)= 2
√

π
1

(1+ 4t/Re)3/2
. (4.21)

Within the same approximation as in (4.19), mass conservation becomes (the
approximation being actually exact on the axis)

∂th=−∂x(hu)'−h∂xu, (4.22)
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(a) (b)

FIGURE 12. (Colour online) Illustration of the evolution of the local Weber number in
the jets wake. (a) A thin rod (white arrow) is inserted across the liquid curtain close
to the varicose wake (not visible here) generated by the main perturbation (the air jets
are pointed out by the white disk, and the height of the image represents 16.1 cm). The
deflection in the steady sinuous wake of the rod reveals the thickness modulations in the
main wake. (b) The local orientation θ of the rod wake is a measurement of the local
Weber number We= 1/ sin2 θ . The horizontal portion of the wavefront (red dashed arrow),
on the wake axis, thus reveals that the flow is critical there (We= 1), that is, at a short
distance upstream of the steady edge of the hole.

which together with (4.21) gives the dimensionless thickness on the z axis,

h(0, t)
h0
= exp

[
−√πRe

(
1− 1√

1+ 4t/Re

)]
. (4.23)

Note that not only the thickness on the axis, but also the whole thickness field,

h(x, t)
h0
= exp

[
−√πRe

(
e−x2 − e−x2/(1+4t/Re)

√
1+ 4t/Re

)]
, (4.24)

is known, which is shown in figure 11(b). Interestingly, (4.23) shows that, in the
absence of a restoring force and in contrast with the inertial case, the relative thickness
downstream of the jets converges to a finite value

h
h0
→ e−

√
πRe (4.25)

after a typical time

t∼ Re
4
, (4.26)

as illustrated in figure 11(c).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

24
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.241


802 H. Lhuissier, P. Brunet and S. Dorbolo

5. Connection with experiments
The previous model considered an unperturbed flow with uniform velocity (i.e.

w = cte). It is readily connected to the case of a gravity-driven liquid curtain, for
which the velocity w and the unperturbed thickness h0 now depend on the height
according to (2.1) and (2.2).

Indeed, as we have already mentioned, the vertical velocity w is not affected at first
order by the air blows, the contribution of which is simply to delay any sheet portion
passing between them: the air jets first slow the flow down (while it is still upstream)
and then accelerate it back (downstream of the pipe). Second, the stretching imposed
by gravity along ez and that induced by the blows along ex are perpendicular to each
other. This means that, at first order, both effects will contribute to the thinning of
the sheet multiplicatively: hence one can use (4.16) and (4.23) for h/h0 directly with
the free-fall velocity and thickness from (2.1) and (2.2), that is,

h= Γ
w
× h

h0

∣∣∣∣
w=w0

. (5.1)

To determine the puncture of the curtain in the wake of the air jets, we now need
to express the criterion for the existence of a steady hole. Since we discuss the cases
when a hole is observed, we can disregard the nucleation of the hole itself (that is, the
possibility of a metastable but steady subsonic flow) to consider only the condition for
a steady free edge in the sheet. The opening of the hole is most favourable (the hole
opens faster) on the axis of the wake, where the sheet is thinner. As we have already
mentioned, the limiting direction is that of the edge portion propagating vertically,
against the flow. Following Taylor (1959b) and Culick (1960), and considering the
weight ρgπd2/4 of the rim at the edge, where d' 1 mm stands for the rim diameter,
the momentum conservation at the edge (where it is perpendicular to both the main
velocity wez and gravity) imposes the condition that

ρhw2 + ρgπd2/4= 2σ , (5.2)

that is to say, a condition on the sole local Weber number of the flow,

We= ρhw2

2σ
=Wec ≡ 1− πρgd2

8σ
' 0.8. (5.3)

This value is consistent with the typical values of 0.7 observed in previous
experiments by Roche et al. (2006). Making use of (2.1) and (2.2), this criterion
can also be expressed as

ρΓ

σ

√
gz
2

h
h0

∣∣∣∣
w=w0

=Wec. (5.4)

If we now consider the inertial thinning (4.16), we obtain in physical units

ρΓ

σ

√
gz
2

1
1+ 2
√

πt/T
=Wec, (5.5)

where the time t since the film portion has passed between the jets, expressed in terms
of the distance z, is

t=
∫ z

z0

1
w

dz=
√

2z
g
−
√

2z0

g
. (5.6)
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Hence the criterion in terms of the location ze of the edge is

We0

√
ze

z0
=Wec

[
1+ 2
√

π
P0

ρgr0

(√
ze

z0
− 1
)]

, (5.7)

where We0 = ρΓ√2gz0/2σ is the non-perturbed Weber number at the location of the
jets, from which ze can be readily expressed as

ze

z0
=
(

α − 1
α −We0/Wec

)2

, with α = 2
√

π
P0

ρgr0
. (5.8)

Let us note that, since α> 0, a stable hole can exist downstream of the perturbation if
and only if α > (1+We0/Wec)/2> 1. Otherwise, the whole of the wake is supersonic,
hence unconditionally stable. Interestingly, in this limit, the local Weber number on
the axis tends towards a finite value. This is because at long times the thinning (due
to both gravity and the air blows) exactly compensates the gravitational acceleration
of the flow, which results in a constant momentum ρhw2. Furthermore, note that, in
the case of inertial thinning, one always has ∂zWe 6 0 along the axis of the wake.
This means that if a hole forms (We<We0), the edge will reach a stable location, in
contrast with the usual case of an unperturbed free-falling liquid curtain (for which
∂zWe > 0), where a hole is either advected by the flow or disrupts the whole curtain.

This scenario is supported by direct observations reported in figure 12, which
qualitatively but unambiguously illustrate the spatial evolution of the local Weber
number We in the wake of the jets. It relies on the observation of the sinuous wake
generated by a thin and wetted rod inserted across the curtain that plays the role of a
probe. The local angle of the rod sinuous wake with respect to the vertical θ relates
to the local Weber number according to We= 1/sin2 θ (Brown 1961). By adequately
positioning the rod, one can visualize the variation of We in the wake of the jets.
The horizontal portion of the rod wake (shown by a red dashed arrow in figure 12b)
thus reveals the location where We = 1. By moving the rod and probing different
locations in the jets wake, we could check that, by contrast with the usual trend in
the absence of perturbation given by (2.3), the Weber number indeed decreases with
increasing distances to the jets (z− z0). This confirms why the edge location is stable
(∂zWe < 0). We could also check that no steady wave could propagate close to the
hole upstream edge: when the rod is slightly displaced downstream from its position
in figure 12, the path of its sinuous wake abruptly jumps downstream to the hole
edge. This shows that We is everywhere smaller than 1 down to the hole edge (see
figure 12b), in agreement with our assumption of We' 0.8 at the edge.

For the sake of completeness, let us remark that the criterion We=Wec in (5.4) can
also be used together with (4.23) to obtain a closed relation for the edge location in
the case of a viscosity-limited thinning (Re� 1), i.e.

We0

√
ze

z0
=Wec exp

√πRe

1− 1√
1+ 4α

Re

(√
ze

z0
− 1
)

 , (5.9)

which, by contrast with the inertial case, cannot be reduced to an explicit expression
for ze.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

24
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.241


804 H. Lhuissier, P. Brunet and S. Dorbolo
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101100

FIGURE 13. (Colour online) Comparison between the theoretical model for an inviscid
curtain (Re =∞) and the experiments. The prediction for the location of the stationary
free edge ze/z0 is plotted against the actual value (the black line is the prediction). The
blue circles show the experiments for which the assumptions of the model apply (large
Reynolds number Re > 0.5 and narrow wakes ε = P0/ρw2

0 > 0.1), while the red squares
show all the other experiments.

Returning to (5.8), i.e. in the situation when viscosity is negligible, the model
yields a quantitative prediction for the location of the hole. Figure 13 compares
the theoretical prediction for an infinite Reynolds number (black line) to all
the experiments (disks), for which 2.05 cm < z0 < 9.1 cm, 0.67 cm2 s−1 < Γ <
4.48 cm2 s−1 and 1.84 m s−1 < va < 6.14 m s−1. All the experimental trends are
captured at least qualitatively by the model: the threshold value for the jets velocity,
the decrease of ze/z0 with increasing jets velocity and decreasing flow rates, and the
stability of the hole location. However, not surprisingly, the quantitative agreement is
good only for those data in blue (circles), for which both the Reynolds numbers are
sufficiently large (Re> 0.5) and the wakes are sufficiently narrow (ε=P0/ρw2

0 > 0.1),
that is to say, those data which are consistent with the assumptions of the model.
This agreement is free of any adjustable parameter.

6. Conclusion
A free-falling liquid curtain subjected to a localized perturbation, generated by small

air jets blowing perpendicularly against the curtain, reveals a rich dynamics as well
as a reproducible way to generate a free edge at a fixed location.

Consistently with the well-known metastability of subsonic liquid sheets (local
Weber number We < 1), significant perturbations without disruption of the whole
curtain can only be applied on the downstream part of the curtain (z0 > 2σ 2/ρ2Γ 2g).

When a single pulsed air jet is used, the perturbation, hence the response, is
asymmetric with respect to the curtain mid-plane. In this case, the response consists
of both a local thinning and a local transverse displacement of the curtain. For
increasing velocity of the air jet, different regimes of response are observed: from a
simple bulging to the puncture of the curtain, with intermediate regimes for which
some liquid is ejected in the form of droplets or a bubble due to the inflation and
pinch-off of a bulge. These regimes resulting in reversible (holes) or irreversible
(droplets and bubbles) topological changes in the curtain occur only for the largest
air velocities (va & 5 m s−1).
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When two mirror air jets blow steadily against both sides of the curtain, the
perturbation and the response are symmetric: the film thickness is affected but not
its mid-plane displacement. For moderate air velocities (small stagnation pressure
of the air compared to that of the liquid in the curtain), a steady elongated wake
terminated by a steady hole forms downstream of the perturbation. The wake results
from both the pressure field and the viscous shear applied by the air jets at the
interfaces (the shear having more influence for the thinnest curtains). It essentially
consists in a modulation of the curtain thickness with a thinned part on the wake
axis surrounded by thicker ridges on its edges, at the junction with the unperturbed
part of the curtain. This thinning contributes to reducing the vertical momentum of
the curtain ρhw2, hence the local Weber number, on the wake axis, by contrast with
the gravitational acceleration of the liquid (which tends to increase the momentum).
In the limit of an inviscid curtain, and provided the perturbation is strong enough
(α > (1 + We0/Wec)/2 > 1), the influence of the thinning is the strongest, and the
wake is expected to contain a subsonic region (We< 1) at some distance downstream
of the perturbation. This is confirmed by direct observations of the flow regime in
the wake, based on the angle of steady sinuous waves generated by an obstacle. A
steady hole forms in this region because it is not only subsonic (We < 1) but, by
contrast with an unperturbed curtain, also has a local Weber number decreasing in
the direction of the flow (∂zWe < 0), as required by the stability condition for the
location of a free edge in a liquid sheet. For a given curtain flow rate, the location
of the hole depends on the location as well as on the amplitude (air velocity) of the
perturbation. This could certainly offer an efficient anhysteretic method for achieving
a controlled opening of a liquid curtain.

The slender-slope model we presented can describe large-amplitude thickness
modulations. It was however amenable to an analytical treatment only for an inviscid
and elongated wake that is not affected by surface tension (relevant for large-scale
deformations). This allows us to account for our experiments with narrow wakes
having sufficiently large Reynolds numbers. Extending the present results to wide
wakes and wakes for which viscosity and surface tension are also important is
certainly useful for practical situations. This will probably require a numerical
resolution of the equations, which is beyond the scope of the present study.

As a concluding remark, let us mention that other kinds of non-contact perturbations
can be expected to result in non-trivial wakes and hole dynamics. This would be
the case, for instance, for perturbations involving surface tension gradients (Emile
& Emile 2013), since a locally smaller surface tension, on the one hand, tends to
decrease the receding velocity of a hole but, on the other hand, drives a local thinning
of the curtain which tends to increase the receding velocity.
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Appendix A. Air pressure profile
In the experiments, the air jets were formed by injecting air through two cylindrical

nozzles with inner radius ra = 2.5 mm. The nozzles were located typically at one
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radius from the sheet. The flow rates in the two nozzles were adjusted to obtain a
symmetric wake and the total flow rate 2Qa in the two nozzles was measured with
a calibrated flowmeter. The Reynolds number ρaQa/raηa was between 900 and 3000,
that is, laminar or weakly turbulent. We therefore assume here that the air flow profile
in the nozzle is a Poiseuille profile for the calculation of the stagnation pressure p0
and of the size r0 of the pressure pulse on the sheet. The maximal velocity on the
nozzle axis is 2Qa/πr2

a and the stagnation pressure is then

p0 = 2ρaQ2
a

πr4
a

. (A 1)

The size r0 of the Gaussian profile p(r) is then set by the requirement that the
resultant 2π

∫∞
0 p(r) dr= 2ρaQ2

ar2
0/πr4

a of the pressure over the profile equals the total
axial momentum 4ρaQ2

a/3πr2
a in each jet (which vanishes on impact). This gives

r0 =
√

2
3 ra. (A 2)

Appendix B. Two-dimensional equations of the sheet flow
In the general case where the stationary wake is not narrow, i.e. u ∼ w, and the

Laplace pressure is not negligible, (4.5) and (4.6) become (in the reference frame of
the slot)

uux +wuz = νh {[h(4ux + 2wz)]x + [h(uz +wx)]z} − px − σκx

ρ
+ 2τ · ex

ρh
, (B 1)

uwx +wwz = νh {[h(uz +wx)]x + [h(2ux + 4wz)]z} − pz − σκz

ρ
+ 2τ · ez

ρh
+ g, (B 2)

(uh)x + (wh)z = 0, (B 3)

where it has been accounted for the fact that the pressure is uniform across the liquid
sheet, i.e. along ey (see Trouton 1906), and κ stands for the curvature of the interface.
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