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Local temperature perturbations of the
boundary layer in the regime of free
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We analyse the disturbed flow in the subsonic laminar boundary layer, disturbances
being generated by local heating elements, which are placed on the surface. It
is exhibited that these flows are described in terms of free interaction theory for
specific sizes of thermal sources. We construct the numerical solution for the case
of a flat subsonic stream in the viscous asymptotic layer, in which the flow is
described by nonlinear equations for vorticity, temperature and an interaction condition
which provides the influence of perturbations to the pressure in the main order. The
obtained solutions are compared with those for corresponding linear problems with
small perturbations. It is demonstrated that strong temperature perturbations in some
situations allow us to obtain the flow close to the separated flow.
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1. Introduction
The present work continues the studies started in Lipatov (2006) and Koroteev &

Lipatov (2009), which were devoted to the construction of asymptotic solutions of
Navier–Stokes equations in the regions containing local heating elements which are
situated on the surface of the body. In our previous work (Koroteev & Lipatov 2009),
we demonstrated how this problem can be solved analytically for small temperature
perturbations. The idea lying behind this approach consists of the possibility to utilize
small temperature perturbations to control separation of the boundary layer and
influence the delay of laminar–turbulent transition. The former question is basically
related to the zero shear stress point in the stream, which can alter its location if
one affects the boundary layer by some, not necessarily thermal, perturbations. The
latter is related to the possibility to slow down the flow by means of the same
perturbations to decrease the local Reynolds number Re. Potentially this can bring us
to the separation which is induced by local thermal perturbations. The main internal
mechanism which enables us to affect the boundary layer is alteration of the pressure
induced by that of the displacement thickness in the flow due to perturbations. The
source of the perturbations can be various in nature, e.g. variation of the curvature of
the surface which can be in the form of small humps or irregularities. The problems
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of perturbations generated by small humps located on the surface in the bottom
of the boundary layer have been the subject of studies during past several decades
(Bogolepov & Neiland 1971; Smith 1974; Bogolepov & Neiland 1976).

Lipatov (2006) presented a general description of problems emerging when local
heating elements are located on the surface. In the same work an important similarity
between the problems in question and those of flows over the surface with small
humps was demonstrated. It was, in part, shown that the local heating forms an
effective hump and the outline of the flow becomes similar, to an extent, to that with
physical humps on the surface. Based on these observations a classification of different
regimes of flows depending on sizes (in three dimensions) of the thermal element was
presented. Thus, the main difference between flows with local physical humps and
those with local thermal perturbations consists in that a thermal hump is generated in
the process of interaction of the stream with the local thermal element. The form of
this thermal hump nonlinearly depends on the pressure and temperature perturbations.

Localization of the perturbations and their influence on the flow functions made
it possible to employ asymptotic analysis based on a triple-deck structure (Neiland
1969; Stewartson & Williams 1969; Messiter 1970) to derive equations for different
asymptotic regions in the vicinity of the thermal element (Lipatov 2006). Stationary
solutions which are described in terms of free interaction of the boundary layer with
the inviscid flow for the supersonic case corresponding to small perturbations of
temperature 1T � T ∼ O(1) were found in Koroteev & Lipatov (2009) and were also
obtained for the subsonic case in Koroteev & Lipatov (2011).

The purpose of the present paper is to extend the analysis to the more general
case of nonlinear perturbations. Linear problems, corresponding to small perturbations
1T � 1, although being novel, present in this sense only the first step in studying
flows in the boundary layer with thermal perturbations. In addition, linear analysis
omits important nonlinear effects that are essential for boundary layer theory. However,
we only study preseparated flows here.

2. Analysis of the problem for the viscous asymptotic sublayer
We consider a uniform subsonic flow over a flat semi-infinite plate for large

Reynolds numbers Re when, however, laminar–turbulent transition is still absent. We
use the notation Re = ε−2 and thus ε is a small parameter. The flow is assumed to
be flat and stationary. On the surface of the body a heating element of size a is
located which produces thermal perturbations in the stream. Temperature perturbations
on the wall are described by a finite function. The size of the element is an important
parameter of the problem and discussed below. We assume, unlike in Koroteev &
Lipatov (2009), that thermal perturbations are not small 1T ∼ T ∼ O(1).

In the problem under consideration, Navier–Stokes equations for momentum are
supplied with the equation for temperature. It turns out that by the effect produced
by perturbations, the whole region in the vicinity of the heating element may be
divided into three smaller regions or decks (lower, middle and upper; see figure 1)
(Neiland 1969; Stewartson & Williams 1969; Messiter 1970). The sizes of these
regions are proportional to powers of the parameter Re = ε−2. For the problem
under consideration the detailed analysis of equations corresponding to each region
was fulfilled in Lipatov (2006) and Koroteev & Lipatov (2009) and therefore is
not described here. Note that the effect of perturbations is defined by scales of
terms in Navier–Stokes equations. In part, assuming similar scales for convective
u∂u/∂x, diffusive ∂2u/∂y2 and pressure gradient terms we can obtain estimates of the
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Upper deck

Main deck

Lower deck

FIGURE 1. Sketch of triple deck region in the vicinity of a heating element.

size of disturbed region where corresponding terms have the main order. Nonlinear
perturbations of the temperature 1T ∼ T give 1ρ ∼ ρ, 1u ∼ u. In the region near the
wall we have in the main order u ∼ O(y/ε), i.e. velocity grows linearly with respect
to y. Then convective and dissipative terms of Navier–Stokes equations yield

u
∂u

∂x
∼ ε2 ∂

2u

∂y2
. (2.1)

The estimate of thickness of the disturbed region, namely 1y ∼ O(ε1x1/3), follows
from (2.1). We have to stress that as we deal with thermal perturbations in the above
estimate, it is also assumed that Pr ∼ O(1). This corresponds to compressible gas
flow for quite a broad range of parameters. In addition, the condition Pr ∼ O(1)
implies that the thicknesses of diffusive and thermal layers are of the same order,
thus thermal perturbations are restricted by the outer boundary of the boundary layer.
Further localization of thermal perturbations requires an additional analysis.

Below we study only one possible case, namely when the pressure gradient term has
the same order as dissipative and convective terms. From the asymptotic relation
for these terms we find 1p ∼ a2/3,1u ∼ u ∼ a1/3. The main contribution to the
displacement of stream lines from perturbations is given by a thin near-wall layer,
while Prandtl boundary layer (main deck) is passive, thus 1δ ∼ 1y, where δ is the
displacement thickness. Thus, all three terms of Navier–Stokes equations are of the
same order only under the latter assumptions, from which we have 1p ∼ 1y/1x
and finally we obtain the desirable estimate for the length of the disturbed region
a ∼ O(ε3/4). Then we easily rewrite all asymptotic relations in terms of ε to obtain
1p∼ O(ε1/2), a∼ O(ε3/4), 1y∼ O(ε5/4). The flow under these conditions is said to be
in the regime of free interaction (Neiland 1969; Stewartson & Williams 1969).

Further assumptions are related to the temperature. We take the Chapman viscosity
law in the lower deck in the form ρ3µ = 1, where µ is the viscosity. Physically it is
implied that the temperature before the thermal region is sufficiently low.

The flow with the above-derived scales exists in a thin layer near the wall inside
the main deck (boundary layer) which is called the lower deck or a viscous sublayer.
The upper deck is described by inviscid Euler equations, the middle deck by Prandtl
boundary layer equations and the lower layer by some nonlinear set of equations of
parabolic type (Koroteev & Lipatov 2009, 2011). The asymptotic layout of the three
decks with corresponding scales is portrayed in figure 1. In addition, the equations on
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the lower deck are supplied with boundary and initial conditions, which are formulated
below, and also by an interaction condition which not only connects functions of
the lower deck to those of the upper deck, but also accomplishes the influence of
the right boundary on the behaviour of functions upstream. It implies that the set of
equations in the lower deck cannot be viewed as that of purely parabolic type, unlike
the equations of Prandtl boundary layer theory, and gains, in a sense, the property of
ellipticity.

The pressure gradient retained in the equations for each deck is not fixed but
becomes self-induced, i.e. varies on account of the displacement thickness δ of the
boundary layer to the outer inviscid flow, and the main contribution to the variation
of the pressure is furnished by the lower deck, while the main deck merely conveys
perturbations from the lower deck to the outer flow. On the other hand, the induced
pressure gradient affects streamlines on the lower deck. The indicated scheme enables
to construct solutions of equations in the lower deck with the interaction condition.

We can give the following representation of functions for the lower deck taking into
account the asymptotic scales derived above

x= 1+ ax3, y= εa1/3y3, u= a1/3u3 + · · · , (2.2)
v = εa−1/3v3 + · · · , ρ = ρ3 + · · · , p= p∞ + a2/3p3 + · · · , T = T3 + · · · . (2.3)

The subscript 3 refers to the variables on the lower deck. Substituting these relations
into the Navier–Stokes equations and taking ε→ 0 gives (in the main order after the
additional transform xb = x3, y3 =

∫ yb
0 ρ−1

b dη) the following system

∂ub

∂xb
+ ∂vb

∂yb
= 0, ub

∂ub

∂xb
+ vb

∂ub

∂yb
+ Tb

∂pb

∂xb
= ∂

2ub

∂y2
b

,

ub
∂Tb

∂xb
+ vb

∂Tb

∂yb
= ∂

2Tb

∂y2
b

.

 (2.4)

Here ub, vb are longitudinal and transverse components of velocity in the sublayer,
Tb is the disturbed temperature, pb(x) is the pressure which only depends on x and
consequently is constant across the decks.

The system is supplied with the following boundary conditions. On the surface the
no-slip conditions are stated

ub(xb, 0)= vb(xb, 0)= 0. (2.5)

We also prescribe a temperature profile on the surface:

Tb(xb, 0)= Tw(xb). (2.6)

The boundary condition at a significant distance from the surface is presented as
follows

ub→ yb +A (xb), A1(xb)=
∫ +∞

0
(1− Tb) dη +A (xb), (2.7)

Tb(x, yb)→ 1, yb→∞. (2.8)

The function A (xb) describes the displacement of stream lines in the sublayer (Jobe &
Burgraff 1974; Sychev et al. 1998). Local perturbations of the temperature generate an
effective local hump (Lipatov 2006) and produce an additional displacement of stream
lines. The resulting displacement is described by the function A1(xb). The temperature
perturbations vanish far from the location of the heated region and A (xb) tends to
A1(xb) as follows from the above equation.
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Local temperature perturbations of the boundary layer 599

The conditions which relate the displacement thickness with the longitudinal
velocity are supplied with the interaction condition, which, in turn, relates the
displacement thickness with the pressure and thus expresses the interaction of the
viscous sublayer with the outer inviscid flow.

The condition of interaction varies depending on the Mach number M in the stream.
We do not provide its derivation as this question has been discussed numerous times
in the literature (Stewartson 1981; Sychev et al. 1998). This condition can be obtained
by solving Euler equations on the outer deck. In part, for the subsonic flow (M < 1)
which we study, the condition of interaction has the form

p(xb)= 1
π
v.p.

∫ +∞
−∞

A ′
1 (s)

s− xb
ds. (2.9)

This Hilbert integral has a singularity point and hence is taken in the principal value
sense.

3. Numerical solution of boundary problem
The numerical solution of the problem (2.4)–(2.9) is constructed on the premise

of the method for computations of problems with interaction as suggested in Ruban
(1976) (see also Sychev et al. (1998), and especially Korolev, Gajjar & Ruban (2002)
for the recent progress). We modify the method by supplementing the momentum
equation and the continuity equation with that for the temperature which also requires
the above-mentioned changes in the boundary conditions. In addition, the interaction
condition has an additional term for temperature perturbations. Further we only
provide a brief description of the numerical procedure, paying attention to necessary
modifications and analysing the resulting difference scheme.

First, the boundary problem is reduced to that for vorticity τ = ∂u/∂yb. This is
carried out by differentiating the momentum equation with respect to yb and taking
into account the equation of continuity. Then the system becomes

ub
∂τ

∂xb
+ vb

∂τ

∂yb
+ ∂Tb

∂yb

∂pb

∂xb
= ∂

2τ

∂y2
b

,

ub
∂Tb

∂xb
+ vb

∂Tb

∂yb
= ∂

2Tb

∂y2
b

.

 (3.1)

The boundary conditions have the following form

τ → 1, yb→+∞, xb→−∞. (3.2)

No-slip conditions (2.5) as well as those for the temperature (2.6) are retained on the
wall.

Next, it is easily seen that the momentum equation yields

Tw(xb)
∂p

∂xb
= ∂τ

∂yb
, yb = 0. (3.3)

From this equation we obtain using the interaction condition (2.9)

−Tw(xb)
∂

∂xb

∫ +∞
−∞

A ′
1 (s)

s− xb
ds= ∂τ

∂yb
, yb = 0. (3.4)
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Localization of the effective hump implies the decay of perturbations downstream,
i.e.

p(xb)→ 0, xb→+∞. (3.5)

The numerical method provides some freedom in the consecutive evaluation of the
functions as the number of relations between them exceeds the number of functions.
We describe one possible realization of the procedure which enables us to carry out
the computations.

The grid is given by (xj, yk), j = 1, 2 . . .N, k = 1, 2 . . .M, with steps 1x,1y,
respectively. The first equation of the system (3.1) is approximated using central
differences for convective derivatives with respect to y. Note that convective derivatives
with respect to x are approximated as follows

(
∂τ

∂x

)∗
jk

=


3τjk − 4τj−1k + τj−2k

21x
, ujk > 0

−τj+2k + 4τj+1k − 3τjk

21x
, ujk < 0,

(3.6)

thus different templates are employed depending on the sign of the longitudinal
velocity. This method secures static stability of the difference scheme (Roache 1972)
and turns out to allow to compute stronger nonlinearities. Two-point template for
approximation of these derivatives can be used for moderate 1T .

The equation for the temperature is approximated as follows

ujk
Tj+1k − Tjk

1x
+ vjk

Tjk+1 − Tjk−1

21y
= Tjk−1 − 2Tjk + Tjk+1

1y2
. (3.7)

Once the vorticity and temperature are computed we can evaluate A1(xj) in
accordance with (2.7) as follows

A1(xj)=
∫ yM

y0

(τ (xj, y)− 1) dy+
∫ yM

y0

(1− T(xj, y)) dy. (3.8)

The interaction condition (3.4) requires special manipulations due to the singularity
of the integral. There are a number of methods for computing this integral (see, e.g.,
Demidovich & Maron (1970), this method is also used in Bos & Ruban (2005)).
First, the integral is taken on the finite interval (x1, xN) so that the singularity is
localized on the interval [xi − 1x, xi + 1x]. Other integrals are regular and can be
evaluated by a polynomial interpolation of A ′(s). Assuming that 1x is small we take
A ′

1 (s)≈A ′
1 (xj+1) for s ∈ [xj, xj+1], j< i− 2 and A ′

1 (s)≈A ′
1 (xj), j > i+ 1. Then

Iij =
∫ xj+1

xj

A ′
1 (s)

s− xi
ds=


A ′

1 (xj+1) log
xi − xj+1

xi − xj
, j< i− 2

A ′
1 (xj) log

xj+1 − xi

xj − xi
, j > i+ 1.

(3.9)

The approximation of the boundary condition (3.3) has the form

τi1 − τi0

1y
=− 1
π

Tw(xi)

[
A ′′′

1 (xi)1x+ D

(
i−2∑
j=2

Iij +
N−2∑

j=i+1

Iij

)]
, (3.10)

where we use the notation Df = (fi+1 − fi−1)/(21x) and A ′′′
1 (xi) is taken from the

evaluation of the principal value of the singular integral.
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Local temperature perturbations of the boundary layer 601

The numerical solution is constructed by iterations with respect to A1(xb) using
under relaxation (Sychev et al. 1998). If we know the approximation of A n

1 (xb),
then at each line x = xj the equation for vorticity is solved by the tridiagonal matrix
method consecutively from the bottom to the top of the grid with the boundary
conditions (3.10) and (3.2) and then the equation for temperature (3.7) is solved with
the boundary conditions (2.6) and (2.8). Then the computations are transferred to the
next line x. It allows us to fulfil computations of vorticity and temperature in the
whole two-dimensional region.

With the right boundary attained, the functions ujk, vjk as well as ˆA1(xb) are
recomputed on the current iteration in the whole field and the new approximation
for A1(xb) is evaluated from the relaxation

A n+1
1 = (1− r)A n

1 + r ˆA1(xb), (3.11)

where r is a relaxation parameter. The convergence of iterations in this problem is
strongly sensitive to the values of this parameter, which, in turn, depends on 1T , i.e.
r = r(1T). In our computations we usually took r = 0.02 for temperature perturbations
1T 6 0.5, while for larger perturbations r should be diminished.

4. Results of computations
The key functions to evaluate are distributions of pressure and shear stress on the

surface. The self-induced pressure is constant across the layers and thus its values,
computed in the sublayer, remain the same in the inviscid flow for the fixed xb. The
shear stress, in turn, is important for localization of putative points of zero shear stress,
indicating possible separation of the boundary layer.

In figure 2 we show the pressure in the viscous sublayer for heat humps which are
given by

Tw(xb)=
{

1+ h, |xb|6 a/2
1, |xb|> a/2.

(4.1)

Here h = 1T is the amplitude of perturbations of the temperature and a is the
size of the heated region. In real vehicles, we can take typically Re = 107. Let
the characteristic size of a wing be ∼10 m. Then, the size of the interaction region is
L∼ 10 m×Re−3/8 ∼ 2.5 cm. This size is even comparable with microelectromechanical
systems (MEMSs), which were employed for the control of separation. The size can
be increased by means of additional energy release. Such a thermal element physically
corresponds to a region of length a to which a constant temperature is conducted.
This form of temperature distribution is simpler for analytic study and in the same
time enables to represent adequately qualitative behaviour of functions in the stream,
although it presents, to a certain extent, an idealization on the edges of the thermal
region. Therefore, we also carried out computations for smoother types of thermal
‘humps’. For (4.1) computations were carried out for a broad range of amplitudes h as
is indicated in figure 2.

From figure 2 it is also seen that when 1T→ 0, the solution becomes close to that
of the linear problem (Koroteev & Lipatov 2011), the latter corresponding to small
temperature perturbations. The linear approximation obviously will be inapplicable for
1T ∼ 1. Nonlinear perturbations 1T ∼ O(1) produce noticeable deviations from the
pressure for the linear case both inside the interaction region and on the edge which
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–20 20

FIGURE 2. Scaled pressure in the viscous sublayer obtained from the numerical solution for
temperature perturbations (4.1) with various amplitudes 1T . A curve is also presented for
the linear subsonic problem corresponding to small perturbations (Koroteev & Lipatov 2011)
demonstrating closeness of the nonlinear solutions with small perturbations to the solution of
the linear problem. For these computations we take 1x= 0.1, 1y= 0.1 and a= 7.

is also confirmed by figure 3 where a jump for the convective part of the thickness
displacement on the right boundary of the thermal element is observed.

Two mechanisms providing displacement of streamlines in the vicinity of the
heating element are alteration of the pressure and of the temperature, which produces
the decrease in density. The contribution from these effects is shown in figure 3.
Despite some dominance of the temperature term, both terms are seen to be of the
same order. However, it is also seen that both functions in general have different
signs in the region of interaction thus compensating for each other. This results in the
reduced effect of perturbations to the boundary layer.

In all of the figures it is assumed that the flow moves from the left to the right.
When approaching the heated region the positive pressure gradient produces additional
deceleration of the stream. The curves for the pressure are portrayed with scaling
p(xb)/1T on y axis (figure 2). This scaling allows us to demonstrate that the observed
nonlinear effects are not reproduced by the linear regime. The first effect is presented
by a sharper drop of the pressure over the thermal element, decreasing the amplitude
of the pressure on the upstream edge of the thermal region. The second peculiarity
emerges near the downstream edge of the thermal element exhibiting an additional
local maximum of the pressure.

Addressing the shear stress we note that there are two points in the flow where the
shear stress drops noticeably, namely boundaries of the heated region upstream and
downstream (figure 4). The declination at the leading edge of the thermal element
is, however, sufficiently weak to produce crucial deviation of the shear stress while
the back edge demonstrates quite small values for the shear stress potentially close
to the preseparated regime. In the transient region between these points and over the
heating element the flow is accelerated by means of the negative pressure gradient,
which simultaneously increases the shear stress. Finally, perturbations of the pressure
decay behind the heated region and the flow again slows down. The amplitude of
perturbations is influenced by 1T (figures 4 and 2), which, thus, has to be considered
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FIGURE 3. Displacement thickness A(xb) in the vicinity of the thermal region incorporates
two terms: one emerging from the alteration of the pressure or convective term and the term
related to the increase of temperature. The curves are presented for 1T = 1.6.

–10 0 10

0.5

1.0

1.5

xb

–20 20
0

2.0

FIGURE 4. Shear stress in the lower part of the boundary layer.

as a crucial governing parameter of the problem. Our computations accomplished
for smoother types of thermal regions show (supplementary figures are available at
journals.cambridge.org/flm) that, in general, the same effects are observed for different
thermal elements but discontinuity of temperature in the form (4.1) and that of its
first derivative has more influence on the drop of the shear stress at the back edge
of the thermal irregularity. For example we fulfilled computations assuming that the
temperature varies according to some parabolic profile and Gaussian-like profile. The
results for the former are presented as supplementary materials for the paper. In this
case, the declination of shear stress in the vicinity of the back part of the thermal
element is essential while in the latter case it vanishes because of the continuity of the
profile and due to the above-mentioned compensation between two terms of (2.7).
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We also carried out the analysis of the numerical solution with respect to the grid.
It was shown for a range of grid sizes that the solution remains stable (supplementary
figures).

5. Discussion
The problem studied above, which includes thermal effects in the boundary layer,

demonstrated noticeable deviations from previously studied linear flows. The solution
was obtained for strongly nonlinear amplitudes of perturbations 1T > 1 when the
linear approximation becomes incorrect.

In the region of free interaction which corresponds to equal orders of convective,
dissipative and pressure gradient terms of Navier–Stokes equations there are two
effects which may produce the deviation of streamlines in the boundary layer. We saw,
in part, that nonlinear thermal perturbations for some types of temperature distribution
on the wall produce flows close to separated ones. The flow in the separated region
constitutes a different problem which will be described elsewhere.

The problem allows different regimes of the flows to be described in terms of the
triple-deck theory. As we mentioned in the introduction, in Lipatov (2006) an analogy
of flows with local thermal elements and flows with small humps on the surface of
the body was established. It should be expected that similar effects are produced by
local perturbations of the boundary layer such as suction and blow-in. In particular,
non-stationary perturbations of this kind may bring to intensified impulse transmission,
which, in turn, influences the possibility for the boundary layer to resist the separation.
This was demonstrated for the case of non-stationary blowing in Seifert et al. (1993).
We expect a similar effect when employing different methods of control, in part,
variation of the temperature near the possible region of separation.

The results can be generalized to three-dimensional flows, which are of course
of more interest for applications. On the other hand, another direction is the
generalization of these results to non-stationary flows where it is essential to study
nonlinear perturbations and their propagation. The stationary solutions obtained here
constitute the basis for further studies of non-stationary boundary layers with thermal
effects.

Supplementary data
Supplementary data are available at journals.cambridge.org/flm.
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