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Formation mechanism of a secondary vortex
street in a cylinder wake
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This study identifies and explains the formation mechanisms (FMs) of the secondary
vortex street in the far wake of a circular cylinder. Direct numerical simulation and
transient growth analysis are performed for a Reynolds number (Re) in the range of
100–200. Unlike most of the earlier studies, which have attributed the formation of the
secondary vortices to either the hydrodynamic instability of the mean flow (FM1) or a
merging of the two-layered vortices (FM2), the present study demonstrates that both FM1
and FM2 are at play. Specifically, FM1 is observed for Re = 150–160, whereas FM2 is
observed for Re = 200. Interestingly, both FM1 and FM2 exist (in an alternate manner)
for Re = 170 and 180. The underlying physical mechanism controlling the manifestation of
either FM1 or FM2 is explored. In short, secondary vortices that emerge after and before
the annihilation of the two-layered vortices are formed from FM1 and FM2, respectively.
The variation in the streamwise locations for the emergence of the secondary vortices with
Re is quantified and physically explained. Fundamentally, the emergence of the secondary
vortices through either FM1 or FM2 is induced by the convective instability of the shear
layers in the intermediate wake, which is further induced by an obvious increase in the
shear rate of the shear layers as the wake gradually transitions from a primary vortex street
to a two-layered vortex street. The general conclusions drawn from a circular cylinder are
expected to be applicable to other bluff bodies.

Key words: vortex instability, vortex shedding, vortex streets

1. Introduction

A steady incoming flow past a cylindrical bluff body has been a classical topic of research
in fluid mechanics owing to its fundamental significance as well as extensive practical
applications. An important feature of this type of flow is the generation of vortex shedding
and the formation of the classical Kármán vortex street in the near wake of the cylinder.
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After the discovery of the Kármán vortex street more than a hundred years ago, another
experimental study by Taneda (1959) found that the Kármán (primary) vortex street in the
near wake of a circular cylinder evolved into a secondary vortex street in the far wake,
where the secondary vortices had larger spatial scales than the primary vortices. A more
complete picture of the far-wake transition process has been described more recently by
e.g. Vorobieff, Georgiev & Ingber (2002), Kumar & Mittal (2012) and Thompson et al.
(2014), who found that the primary vortices in the near wake of the cylinder would first
rearrange themselves into a two-layered pattern in the intermediate wake (see also Durgin
& Karlsson 1971; Karasudani & Funakoshi 1994; Dynnikova, Dynnikov & Guvernyuk
2016), followed by a transition from the two-layered vortex street to the secondary vortex
street in the relatively far wake.

The formation mechanism of the secondary vortices in the far wake has already been
reported in the literature, although there remains some disagreement. As summarised
by Cimbala, Nagib & Roshko (1988) and Williamson & Prasad (1993), two different
interpretations exist.

(i) Formation mechanism 1 (FM1): the secondary vortices are induced by the
hydrodynamic instability of the local mean (time-averaged) flow in the far wake,
independent of and not directly resulting from the amalgamation/merging of the
primary or two-layered vortices.

(ii) Formation mechanism 2 (FM2): the secondary vortices are formed from the merging
of the two-layered vortices.

Specifically, Cimbala, Nagib & Roshko (1988), Williamson & Prasad (1993) and Kumar
& Mittal (2012) investigated the far wake of a circular cylinder at a moderate Reynolds
number (Re) of approximately 150, where Re (= UD/ν) is defined based on the free-stream
velocity (U), the length scale of the cylinder perpendicular to the free-stream (D) and
the kinematic viscosity of the fluid (ν). These investigations reported/supported FM1. In
addition, Kumar & Mittal (2012) characterised the hydrodynamic instability in FM1 as
convective in nature. Cimbala, Nagib & Roshko (1988) also suggested that because the
secondary vortices were independent of the primary vortices in terms of the scale and
frequency, in particular, because the frequency of the secondary vortex street was not half
that of the primary vortex street, FM2 seemed questionable.

In contrast, based on experimental observations of the far wake of a circular cylinder
at similar Re values, Matsui & Okude (1983) reported FM2 instead. In addition, Matsui
& Okude (1983) found that not all of the vortices were paired up (a few were left out)
when forming the secondary vortex street, such that even under the condition of FM2, the
frequency of the secondary vortex street may not be half that of the primary vortex street.
Nevertheless, Cimbala, Nagib & Roshko (1988), who supported FM1 over FM2, suspected
that the smoke-wire visualisation technique used by Matsui & Okude (1983) may result in
misleading vortex merging patterns, because the smoke tracer was introduced upstream of
the cylinder and may deviate from the true flow patterns after a long distance of evolution.

An explanation for the identification of both FM1 and FM2 in the literature was
proposed by Inoue & Yamazaki (1999), who suggested that the occurrence of FM1 or
FM2 is related to frequency forcing of the free-stream flow. Specifically, FM1 occurs
when the free-stream flow is unforced (e.g. the cases of Cimbala, Nagib & Roshko 1988;
Williamson & Prasad 1993), while FM2 takes place when the free-stream flow is subjected
to frequency forcing (e.g. the case of Matsui & Okude 1983). However, the explanation
of Inoue & Yamazaki (1999) does not always hold, as FM2 has also been identified for
some unforced flows, e.g. flow past a circular cylinder in the extended laminar regime
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of Re = 200–1000 (Jiang & Cheng 2019) and flow past an elliptical cylinder with a
cross-sectional aspect ratio (AR; the ratio between the streamwise length and transverse
length of the body) of 0.25 and Re = 150 (Thompson et al. 2014).

Vorobieff, Georgiev & Ingber (2002) investigated the extended laminar regime
up to Re = 1000 through both nearly two-dimensional soap-film experiments and
two-dimensional numerical simulations. Although Vorobieff, Georgiev & Ingber (2002)
did not comment on the validity of FM1 or FM2, they suggested that in the extended
laminar regime of Re > 200, the formation of the secondary vortices is governed by the
wake width of a far-wake similarity solution. However, this mechanism is not discussed
further in the present study as the extended laminar regime is beyond the scope of this
study.

In light of the earlier studies, the present study aims to address the long-standing
argument as to whether FM1 or FM2 is the genuine formation mechanism for the
secondary vortex street in the far wake of a circular cylinder under no free-stream forcing.
The present study focuses mainly on the Re in the range of 100–200, which is similar
to the ranges of Re investigated by Matsui & Okude (1983), Cimbala, Nagib & Roshko
(1988), Williamson & Prasad (1993) and Kumar & Mittal (2012). This range of Re
is marginally lower than that where the wake transition to three-dimensional states is
observed (Williamson 1996), which justifies the use of two-dimensional direct numerical
simulations (DNS) for the present study.

Unlike most of the earlier studies, which took sides of either FM1 or FM2, the present
study will show systematically that both FM1 and FM2 are at play for the wake transition
to the secondary vortex street (§ 3). The underlying physical mechanism controlling the
manifestation of either FM1 or FM2 will be explored in § 4. The Re-dependence of the
streamwise locations for the emergence of the secondary vortices will be explained in § 5
by exploring the fundamental cause for the emergence of the secondary vortices. Finally,
major conclusions will be drawn in § 6.

2. Numerical model

2.1. Numerical method
In the present study, the flow was solved numerically using the spectral/hp element method
through an open-source code Nektar++ (Cantwell et al. 2015). The governing equations
for the flow are the continuity and incompressible Navier–Stokes equations:

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p + ν∇2u, (2.2)

where u(x, t) = (ux, uy)(x, y, t) is the velocity field, p(x, t) is the kinematic pressure
defined as pressure divided by fluid density, t is the time and ν is the kinematic viscosity.
Equations (2.1) and (2.2) were solved by the unsteady Navier–Stokes solver embedded
in Nektar++, together with the use of a velocity correction scheme (Karniadakis, Israeli
& Orszag 1991), a second-order implicit–explicit (IMEX) time-integration scheme and a
continuous Galerkin projection. For the rest of the paper, the velocity components ux and
uy have been non-dimensionalised by the free-stream velocity U.
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Figure 1. Macro-element mesh near the cylinder.

2.2. Computational details
The computational domain and mesh were the same as those used in Jiang & Cheng
(2019) for the investigation of the far wake of a circular cylinder in the extended laminar
regime of Re = 200–1000. A rectangular computational domain of −60 ≤ x/D ≤ 420 in
the streamwise direction and −60 ≤ y/D ≤ 60 in the transverse direction was used. The
centre of the cylinder was placed at (x, y) = (0, 0). Figure 1 shows the macro-element
mesh near the cylinder. Specifically, the cylinder perimeter was discretised equally into
48 macro-elements, and the radial size of the first layer of macro-elements next to the
cylinder surface was 0.0055D. A relatively high mesh resolution was adopted in the
wake region, where the streamwise size of the macro-elements at the wake centreline
(y = 0) increased gradually from 0.1875D at x/D = 2 to 2.5 × 0.1875D at x/D = 400. A
total of 46 092 macro-elements were used in the domain. Each macro-element was further
subdivided using 5th-order Lagrange polynomials (denoted Np = 5) for the quadrilateral
expansions.

The boundary conditions were specified as a uniform velocity (ux, uy) = (U, 0) at the
inlet and transverse sides, a zero normal velocity gradient at the outlet, and a no-slip
condition at the cylinder surface. The pressure was specified as a reference value of zero
at the outlet, and a high-order Neumann condition (Karniadakis, Israeli & Orszag 1991) at
all other boundaries. The internal flow followed an impulsive start. The time-step size was
chosen based on a Courant–Friedrichs–Lewy (CFL) limit of 0.5.

Because the flow in the far wake of the cylinder is irregular over time (e.g. Kumar
& Mittal 2012), in the present study, each case was simulated for at least 3000
non-dimensional time units (defined as t* = tU/D). The first 1800 time units ensured that
the entire wake had become fully developed. This was followed by at least another 1200
time units (at least 200 primary vortex shedding periods) for the purpose of statistics and
analysis of the fully developed flow.

The present DNS were conducted on a Cray XC40 system supercomputer. For each case
with a total of 46 092 macro-elements coupled with Np = 5, 144 processors were used
for parallel computation. The wall-clock time for each numerical simulation up to 3000
non-dimensional time units was approximately 165 h.

2.3. Mesh convergence and validation
A mesh dependence study was conducted at Re = 200, the largest Re simulated in
the present study. Three variations to the reference mesh introduced in § 2.2 were
examined, and some key results obtained with the four cases are listed in table 1.
The Strouhal number (St) and the drag and lift coefficients (CD and CL, respectively)
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Formation of a secondary vortex street

Case description �t St CD C′
L xtr1/D xtr2/D

1. Np = 5 (reference case) 0.0024 0.1956 1.3271 0.4763 28.7 77–110
2. Np = 4 0.0038 0.1956 1.3271 0.4765 28.7 77–110
3. Np = 3 0.0066 0.1956 1.3273 0.4762 28.7 86–120
4. Increase in the domain size 0.0024 0.1954 1.3232 0.4754 28.9 79–110
Posdziech & Grundmann (2001) 0.1954 1.3251 0.4757

Table 1. Mesh dependence check of key results for Re = 200.

are defined as

St = fLD
U

, (2.3)

CD = FD
1
2ρU2D

, (2.4)

CL = FL
1
2ρU2D

, (2.5)

where fL is the frequency of the fluctuating lift force, while FD and FL are the drag and
lift forces per unit span length, respectively. The time-averaged drag coefficient (CD) and
root-mean-square lift coefficient (C′

L) are reported in table 1. Table 1 also summarises
the streamwise location for the wake evolution from the primary to the two-layered
vortex street (xtr1) and the range of streamwise locations for the occurrence of vortex
merging (xtr2). Specifically, xtr1 was quantified as the streamwise location where the
time-averaged uy field displayed a local maximum and a local minimum at the two sides of
the wake centreline (Jiang & Cheng 2019), while the range of xtr2 was determined through
visualisation of more than 60 instantaneous vorticity fields over a range of more than 2000
non-dimensional time units.

As shown in table 1, cases 1 to 3 focussed on the adequacy of the mesh resolution
by varying the Np value. With the increase in Np, the time-step size (�t) was reduced
accordingly (see table 1) to satisfy the CFL limit of 0.5. Cases 1 to 3 showed that the
numerical results generally converged at Np ≥ 4, which suggested that the use of Np = 5
in the present study was adequate. Case 4 examined the adequacy of the computational
domain size through increasing the lengths from the cylinder centre to the upstream and
transverse boundaries from 60D, used in case 1, to 90D. The close agreement in the
numerical results between cases 4 and 1 suggested that the computational domain size
used in case 1 was adequate. Table 1 also shows that the St, CD and C′

L values calculated
for case 1 agreed well with those reported by Posdziech & Grundmann (2001), with the
relative differences being less than 0.2 %.

In addition, a commonly reported validation of the far-wake pattern of a circular cylinder
is the time-averaged streamwise velocity profile sampled along the wake centreline at
Re = 150 (Cimbala, Nagib & Roshko 1988; Williamson & Prasad 1993; Kumar & Mittal
2012; Thompson et al. 2014), which is shown in figure 2. Figure 2 also shows the present
DNS results with Np = 3 and 5, which were nearly identical. In addition, the present
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Figure 2. Time-averaged streamwise velocity profile sampled along the wake centreline for Re = 150.
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Figure 3. Streamwise variation of the amplitude of uy at fK for Re = 150. In the curve fitting, R2 is the
coefficient of determination.

DNS results agreed well with the recent numerical results of Kumar & Mittal (2012) and
Thompson et al. (2014).

Furthermore, figure 3 shows the streamwise variation of the amplitude of uy at the
primary vortex shedding frequency ( fK) for Re = 150, which was determined through the
fast Fourier transform (FFT) of the time history of uy at various streamwise locations along
the wake centreline. A curve fitting of the measured results over 20 ≤ x/D ≤ 160 indicated
an exponential decay of the primary vortices at a rate of 0.0241 decades/D, which agreed
well with the rates of 0.0246 and 0.0235 decades/D reported by Cimbala, Nagib & Roshko
(1988) and Kumar & Mittal (2012), respectively.

2.4. Transient growth analysis
In addition to the DNS, transient growth analysis was adopted in § 5 to quantify
the optimal growth of the perturbation energy in the base flow. The transient growth
analysis generally followed the procedures introduced by Blackburn, Barkley & Sherwin
(2008) and Thompson (2012). Specifically, the transient growth analysis investigates a
time-invariant base flow (ū(x, y), p̄(x, y)) seeded with an infinitesimal perturbation field
(u′(x, y, t), p′(x, y, t)), i.e.

u = ū + u′, p = p̄ + p′. (2.6a,b)
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Both the full flow (u, p) and the base flow satisfy the Navier–Stokes equations, which
gives rise to the linearised Navier–Stokes equations for the perturbation field:

∇ · u′ = 0, (2.7)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū = −∇p′ + ν∇2u′. (2.8)

According to Barkley, Blackburn & Sherwin (2008), Blackburn, Barkley & Sherwin
(2008) and Thompson (2012), the boundary conditions for the perturbation field are u′ = 0
for all boundaries.

The aim of the transient growth analysis was to determine an optimal initial perturbation
field that would give rise to the optimal/maximum energy growth after time evolution of
the perturbation over a fixed non-dimensional time interval τ , i.e. from introducing the
initial perturbation at t* = 0 to evaluating the energy growth at t* = τ . For an arbitrary
initial perturbation, the energy growth over τ is calculated as E(t* = τ )/E(t* = 0), where

E = 1
2

∫
Ω

(u′2
x + u′2

y ) dΩ, (2.9)

and u′ = (u′
x, u′

y) is the perturbation velocity and Ω is the area of the computational
domain. Among all possible initial perturbations, there exists an optimal initial
perturbation that would lead to the optimal/maximum energy growth G(τ ) over τ , where
G(τ ) can be expressed as

G(τ ) = max
E(t∗ = τ)

E(t∗ = 0)
. (2.10)

In practice, G(τ ) can be determined by calculating the leading eigenvalue of the operator
A*(τ )A(τ ), where A(τ ) and A*(τ ) are the evolution operator and adjoint evolution operator,
respectively, and are obtained by integrating the linear system forward from t* = 0 to
t* = τ and then integrating the adjoint linear system backward from t* = τ to t* = 0
(Blackburn, Barkley & Sherwin 2008). The eigenvalue problem was solved numerically
through the transient growth framework embedded in Nektar++, where the eigenvalues
were calculated through the modified Arnoldi algorithm (Tuckerman & Barkley 2000;
Barkley, Blackburn & Sherwin 2008; Blackburn, Barkley & Sherwin 2008). In addition,
the same velocity correction scheme, time-integration scheme and Galerkin projection as
those used for the nonlinear DNS were adopted here for the linear system.

The transient growth analysis used a macro-element mesh that was coarser than that
used for the DNS (and the base flow), so as to reduce the computational cost, with the
requisite that the accuracy was unaffected. Specifically, the size of each macro-element
was increased by four times in both the x- and y-directions, while the general topology
remained unchanged. A mesh convergence check was performed at Re = 150, where G(τ )
was calculated for two cases τ = 1 and 100. Because the G(τ ) values calculated with the
default and coarser meshes showed relative differences of less than 1 %, the coarser mesh
was used for the transient growth analysis in § 5. The base flow, which was calculated with
the default mesh, was mapped to the coarser mesh for the transient growth analysis.

By using the time-averaged base flow of the entire computational domain, the present
transient growth analysis found that the most unstable eigenmode developed in the
immediate neighbourhood of the cylinder, which was similar to the results observed by
Kumar & Mittal (2012). To investigate the transient growth in the intermediate wake, the
computational domain for the transient growth analysis was truncated to x/D ≥ 10 (and
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the boundary condition for the truncated boundary was u′ = 0). Kumar & Mittal (2012)
showed that for Re = 150, the transient growth in the intermediate wake is not affected
by the truncation of the domain up to x/D ≥ 30 (while influence appears for truncations of
x/D ≥ 40 and more). The limit of x/D = 30 appears close to the transition to the two-layered
vortex street at x/D ∼ 28, which suggests that the two-layered wake was most responsible
for the transient growth.

3. Two formation mechanisms for the secondary vortex street

3.1. Formation mechanism 2 (FM2) for Re = 200
The time evolution of the vortices at Re = 200 is illustrated by a typical sequence of
instantaneous vorticity fields captured in the range of t∗ = (2500 + 12T∗

1 )–(2500 + 18T∗
1 )

in figure 4, where T∗
1 (= T1U/D) is the non-dimensional primary vortex shedding period.

The vorticity ω is defined in a non-dimensional form:

ω =
(

∂uy

∂x
− ∂ux

∂y

)
D
U

. (3.1)

According to flow visualisation, the vorticity fields are largely periodic for x/D <∼ 60.
For example, the first negative vortex observed in figure 4(b–h) at x/D ∼ 60–62 was highly
repeatable over the vortex shedding periods shown in figure 4(b–h). Therefore, the highly
repeatable vorticity field for x/D ≤ 60 is illustrated in figure 4(a) at a single time instant
only. The main feature shown in figure 4(a) was the breakdown of the primary vortex street
into the two-layered pattern at x/D ∼ 28.7 (table 1).

The two-layered vortices became irregular at x/D >∼ 60 (figure 4b–h). To facilitate
tracing the time evolution of the vortices in figure 4(b–h), the same vortices that appeared
in different snapshots are labelled with the same numbers. The labels above the layer of
negative vortices correspond to the negative vortices, while the labels below the layer
of positive vortices correspond to the positive vortices. Figure 4(b–h) focuses on the time
evolution of a short sequence of vortices, namely the positive and negative vortices labelled
from 12 to 18. At the first time instant t∗ = 2500 + 12T∗

1 (figure 4b), the positive/negative
vortices 10 and 11 had already merged into a positive/negative vortex called 10 + 11, while
vortices labelled 12 and above remained intact.

Figure 4(b–h) shows clear evidence of the vortex merging over a range of six vortex
shedding periods. Some interesting observations are summarised as follows.

(i) Negative vortices 14 and 15 gradually show the tendency of merging in figure 4(b–e)
and finally merge into a negative vortex 14 + 15 in figure 4( f ). The newly-merged
negative vortex 14 + 15 further absorbs negative vortex 13 in figure 4( f –h), which
results in a further merged negative vortex 13 + 14 + 15 in figure 4(h). The merging
of a total of three vortices is a new phenomenon that has not been observed in
previous studies. For example, at Re = 300 and 600, the merging of two same-sign
vortices would result in the immediate development of the secondary vortex street
(Jiang & Cheng 2019). The merging of three vortices at Re = 200 suggests that at
relatively small Re values, some merged vortices may still be relatively weak and
remain in the two parallel shear layers, and a second merging event is required for
this vortex to become a secondary vortex.

(ii) Figure 4(h) shows that there are three merged positive vortices 13 + 14, 15 + 16 and
17 + 18. An interesting finding is that vortex merging may not always follow the
sequence of vortices in the two-layered vortex street. Here positive vortices 15 and
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Figure 4. For caption see on next page.
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Figure 4 (cntd). A short sequence of instantaneous vorticity fields at Re = 200. The vorticity contours are
shown from −0.4 to 0.4. The vorticity ranges of −0.3 to −0.2 as well as 0.2 to 0.3 are shown with a small
interval of 0.005 to highlight the vortex merging process. The same vortices that appear in different snapshots
are labelled with the same numbers.

16 merge first (figure 4e,f ), followed by positive vortices 17 and 18 (figure 4f,g) and
13 and 14 (figure 4g,h). This phenomenon arises from the interaction between the
two parallel rows of vortices. The tendency of the merging of positive vortex 15 into
16 in figure 4(c–e) is induced by the tendency of the merging of negative vortices 14
and 15 just above it. Subsequent merging of positive vortices 17 and 18 and negative
vortices 17 and 18 in figure 4( f,g), as well as the merging of positive vortices 13
and 14 and negative vortices 13 and 14 + 15 in figure 4(g,h), also arise from the
interaction between the two parallel rows of vortices at similar streamwise locations.

(iii) Not all vortices are involved in the merging process. For example, negative vortices
12 and 16 and positive vortex 12 are left out as single vortices in the secondary vortex
street. This finding is consistent with that reported by Matsui & Okude (1983).

In addition to the short sequence of 6T∗
1 illustrated in figure 4, the time evolution of the

vortices was examined for an extended period of 70T∗
1 , i.e. t∗ = (2500 + 1T∗

1 )–(2500 +
71T∗

1 ). The numbers of vortices observed in the primary and secondary vortex streets are
summarised in table 2. As shown in table 2, for each type of vortex in the secondary
vortex street (i.e. single vortex, merging of two vortices and merging of three vortices),
the numbers of positive and negative vortices were not the same. This fact, together with
the observations (i) and (ii) summarised previously, suggested that at small Re values
(of Re <∼ 200), the relatively weak two-layered vortices result in more freedom for the
vortex merging process. Therefore, the vortex merging process is increasingly irregular
with decreasing Re. Nevertheless, the total number of times of vortex merging, calculated
as 19 + 7 × 2 for the positive vortices and 17 + 8 × 2 for the negative vortices, was both
33 over the period of 70T∗

1 . The number of times of merging for the positive and negative
vortices was the same because vortex merging is a result of the interaction between the
two parallel rows of vortices at similar streamwise locations. It was also confirmed through
visualisation of the time evolution of the vortices that each merging of the positive vortices
was indeed accompanied by a merging of the negative vortices nearby, which was similar
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Formation of a secondary vortex street

Number of vortices in the secondary vortex street

Number of vortices
in the primary
vortex street

Single
vortex

Merging
of two

vortices

Merging
of three
vortices

Total
vortices

Positive vortices 70 11 19 7 37
Negative vortices 70 12 17 8 37

Table 2. Numbers of vortices observed in the primary and secondary vortex streets for Re = 200 over 70
primary vortex shedding periods.

to the 3 × 2 times of vortex merging illustrated in figure 4 and discussed in observation
(ii) above.

The same number of merging times of 33 results in the same number of positive and
negative vortices 70 − 33 = 37 in the secondary vortex street. The 37 positive and 37
negative vortices in the secondary vortex street, as summarised in table 2, are further
visualised in figure 5. The label on each of the secondary vortex indicates its origin in
the primary and two-layered vortex streets (i.e. before the merging). The labels above
and below the vortices correspond to the negative and positive vortices, respectively. The
same vortices that appeared in different snapshots are labelled with the same numbers.
The labels used in figures 5 and 4 are consistent. For example, the negative secondary
vortex 13 + 14 + 15 shown in figures 5(a,b) and 4(h) was the same vortex, and was merged
from negative vortices 13, 14 and 15 in figure 4(b–d). Figure 5 shows clearly the type of
each secondary vortex (i.e. single vortex, merging of two vortices and merging of three
vortices), as previously summarised in table 2.

As the secondary vortices propagated downstream, an interesting phenomenon,
observed in figure 5(b,c), was that further merging of some of the same-sign secondary
vortices and cancellation of some of the opposite-sign secondary vortices appeared at
x/D >∼ 200. For example, in figure 5(b), positive secondary vortices 1 and 2 had just merged
into a positive vortex 1*2 (where * denotes merging of the secondary vortices), while at
the same streamwise location, negative secondary vortices 1 and 2 + 3 + 4 were about to
merge. Similar merging behaviours were also observed in figure 5(b) at x/D ∼ 230 and 260
and in figure 5(c) at x/D ∼ 265, where merging was observed for both positive and negative
secondary vortices. Vortex cancellation was observed in figure 5(c) at x/D ∼ 210, where
positive secondary vortex 52 and its negative counterpart 52 + 53 had almost cancelled
each other at this time instant. The merging and cancellation of the secondary vortices
resulted in a gradual reduction of the number of secondary vortices with an increase of the
distance downstream.

As shown in figure 5, the spatial arrangement of the secondary vortex street was highly
irregular after its emergence (immediately after the irregular vortex merging process),
and was complicated further by the propagation of the secondary vortices with the flow
and, in particular, the further merging and cancellation of some of the secondary vortices
at x/D >∼ 200. Nevertheless, there was no sign of a further transition at any specific
streamwise locations after the transition to the secondary vortex street at x/D ∼ 77–110,
which was different from the speculation of Taneda (1959), who proposed that there
was an alternate formation and breakdown of the secondary vortex street with distance
downstream. Based on the visualisation of an instantaneous flow field (instead of the
time evolution of the vortices), one may suspect that there is an alternate formation and
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Figure 5. Time evolution of the secondary vortices at Re = 200. The same vortices that appear in different
snapshots are labelled with the same numbers. The labels above and below the vortices correspond to the
negative and positive vortices, respectively. The symbols + and * denote merging of the two-layered and
secondary vortices, respectively.

breakdown of the secondary vortex street with distance downstream, e.g. in figure 5(c),
the range of x/D ∼ 230–270 looks like the breakdown of a regular secondary vortex street,
while the range of x/D ∼ 280–320 looks like the reappearance of a regular secondary
vortex street. However, these far-wake patterns did not constitute transitions because
(i) the relatively regular pattern at x/D ∼ 280–320 was shaped at the transition to the
secondary vortex street and was then simply advected downstream; and (ii) the further
vortex merging behaviours that induced the breakdown of a regular secondary vortex
street at e.g. x/D ∼ 230–270 occurred randomly for only a few vortices and developed very
slowly (over a streamwise distance of more than 100D), instead of constantly occurring
at particular streamwise locations (such as the transitions to the two-layered and the
secondary vortex streets).

3.2. Formation mechanism 1 (FM1) for Re = 160
The time evolution of the vortices at Re = 160 was completely different from that at
Re = 200. Detailed time evolution of the vortices at Re = 160 was examined for a time
period of t* = 2500–3370, and is illustrated in figure 6 with the instantaneous vorticity

915 A127-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.195


Formation of a secondary vortex street
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Figure 6. Instantaneous vorticity field for Re = 160 at a typical time instant of t* = 3000. The vorticity
field is shown for (a) x/D = 120–140 with |ω| = 0.11–0.14, (b) x/D = 175–205 with |ω| = 0.07–0.10 and
(c) x/D = 350–390 with |ω| = 0.03–0.045.

field at a typical time instant t* = 3000. For Re = 160, the two-layered vortices were
annihilated into two parallel shear layers with no vortices at x/D ∼ 130 (figure 6a),
which was different from the case at Re = 200 where the two-layered vortices merged
and resulted in the secondary vortex street. It was also found that individual vortices
would always reoccupy the entire parallel shear layers at locations further downstream
of x/D >∼ 320 (e.g. figure 6c). The disappearance and reappearance of the vortices in
the parallel shear layers indicated that the reappeared vortices certainly did not arise
from the merging of the two-layered vortices. Instead, the hydrodynamic instability of
the parallel shear layers induced flapping/waviness of the bare shear layers (i.e. shear
layers with no vortices), which eventually triggered the reappearance of the vortices
in the shear layers. The reappeared vortices did not emerge at a particular streamwise
location. Instead, the reappearance spanned a long range of x/D ∼ 140–320. For example,
in figure 6(b), the parallel shear layers were only partly occupied by the reappeared vortices
at x/D ∼ 190–205, while the bare shear layers at x/D ∼ 175–190 remained in this pattern
for approximately another 50D before vortices reappeared.

Compared with the secondary vortices of Re = 200 shown in figure 5, the reappeared
vortices at Re = 160 (e.g. figure 6c) were much weaker in strength, such that they largely
remained in the two shear layers. Figure 7(a) shows the spatial distribution of the vortex
centres for Re = 160 at t* = 3000. After the transition to the two-layered vortex street at
x/D ∼ 30, the positive and negative vortices followed two clear linear pathways (i.e. the two
shear layers) up to the downstream extent of the computational domain, which indicated
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Figure 7. Vortex patterns for Re = 160 at the time instant t* = 3000: (a) spatial distribution of the vortex
centres and (b) evolution of the spatial scale of the vortices with distance downstream.

that the reappeared vortices stayed in the two shear layers. This was in contrast to the
irregular spatial distribution of the vortices at Re = 200 (figure 5).

Nevertheless, the spatial scale of the reappeared vortices was larger than that of the
primary and two-layered vortices. The spatial scale of the vortices was quantified in
figure 7(b) by the streamwise distance between the centres of the two adjacent same-sign
vortices (denoted λ). As shown in figure 7(b), the λ/D values for the reappeared vortices
were roughly twice those of the primary and two-layered vortices. Figure 7(b) also shows
the λ/D values for the primary and secondary vortices observed experimentally by Taneda
(1959) at a similar Re of 149, whose results, although not detailing the fluctuations in
λ/D for the secondary vortices, were largely consistent with the present results. To be
consistent with Taneda (1959), who found that the main feature of the secondary vortices
is a spatial scale larger than the primary vortices, in the present study, the reappeared
vortices observed at Re = 160 were considered as secondary vortices, although they were
relatively weak and remained in the two shear layers.

3.3. Both FM1 and FM2 for intermediate Re of 170–180
Detailed time evolution of the vortices at Re = 170 was examined for a time period of
t* = 2400–2800. In general, the two-layered vortices were annihilated into two bare shear
layers at x/D ∼ 120, which was similar to that shown in § 3.2 for Re = 160. An exception
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Figure 8. Time evolution of the secondary vortices at Re = 170. The same vortices that appear in different
snapshots are labelled with the same numbers. The labels above and below the vortices correspond to the
negative and positive vortices, respectively.

was that for a short time period of t* = (2400 + 54T*)–(2400 + 62T*), vortex merging
similar to that of Re = 200 (§ 3.1) was observed over a range of x/D ∼ 100–120 (see
figure 8a). The vortices shown in figure 8(a) included four positive and four negative
merging cycles as well as a negative single vortex (i.e. negative vortex 5). The merged
vortices were not annihilated because their spatial scales were enlarged. In addition, the
spatial scale of the single vortex 5 was also enlarged by the waviness of the shear layers
induced by the vortex merging at the two sides of this vortex. These enlarged vortices
were clearly identified as the secondary vortices as they propagated further downstream
(figure 8b–d). The waviness of the two shear layers at the two sides of the group of
the secondary vortices excited additional vortices, for example, positive vortex 9 and
negative vortex 10 shown in figure 8(c). However, the relatively weak vortices in the range
of x/D ∼ 250–350 in figure 8(c) that remained in the two shear layers were similar to
those observed at Re = 160 (see e.g. figure 6c) and were excited by the instability and
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flapping of the bare shear layers. In figure 8(d), as the group of the secondary vortices
propagated further downstream, more vortices were excited at its two sides, which arose
from the combined effects of (i) the increased waviness of the two shear layers induced by
the further enlarged secondary vortices as they propagated downstream; and (ii) intrinsic
instability of the shear layers.

The detailed time evolution of the vortices at Re = 180 was examined for time
periods of t* = 2000–2360 and 2900–3100. In general, the two-layered vortices merged
into secondary vortices over a range of x/D ∼ 90–110, which was similar to that
shown in § 3.1 for Re = 200. An exception was that for a short time period of
t* = (2900 + 13T*)–(2900 + 21T*), the two-layered vortices were annihilated into two
bare shear layers at x/D ∼ 113, which was similar to that shown in § 3.2 for Re = 160.
New vortices were excited from these fractions of bare shear layers downstream at
x/D ∼ 115–140.

4. Physical mechanism controlling the manifestation of FM1 and FM2

Section 3 provides clear evidence that both FM1 and FM2 are at play for the wake
transition to the secondary vortex street. At Re = 200 (§ 3.1), the secondary vortices
were formed from the merging of the same-sign vortices in the two-layered vortex street
(i.e. FM2). In contrast, at Re = 160 (§ 3.2) and similarly at Re = 150, the secondary
vortices were the reappeared vortices arising from the flapping of the bare shear layers
at streamwise locations where the two-layered vortices had already been annihilated,
owing to the hydrodynamic instability of the shear layers (i.e. FM1). At Re = 160, the
flapping of the bare shear layers induced secondary vortices at x/D ∼ 140–320, while at
Re = 150, secondary vortices were observed at more downstream locations of x/D >∼ 280.
At Re ≤ 140, secondary vortices were not observed within the effective computational
domain length up to x/D = 400.

In addition, to the best of our knowledge, it was observed for the first time that for an
individual case (e.g. at Re = 170 or 180), the secondary vortices can be formed from both
FM1 and FM2. As Re was increased from 170 to 180, the main formation mechanism
changed from FM1 to FM2. Therefore, as Re increases from 160 to 200, the probability
of the occurrence of FM1 gradually reduces from 100% to 0 %, whereas that of FM2
increases from 0% to 100 %. The gradual transition of the formation mechanism with Re
(rather than an abrupt switchover at a particular Re) suggested that the two formation
mechanisms were interchangeable, with their probabilities of occurrence dictated by an
intrinsic factor.

This intrinsic factor, which controls the manifestation of either FM1 or FM2, was
investigated as follows. Figure 9 summarises the ranges of x/D for the emergence of the
secondary vortices (the shaded area). The secondary vortices formed from FM1 and FM2
are distinguished by blue and red vertical bars, respectively. At intermediate Re values of
170 and 180, the secondary vortices were formed from both mechanisms in an alternate
manner, and both red and blue vertical bars existed. It was found that the red and blue
vertical bars were separated at the x/D value corresponding to the annihilation of the
two-layered vortices (determined at the time periods when the secondary vortices were
formed from FM1). Therefore, whether the secondary vortices were formed from FM1
or FM2 was dictated by the streamwise location for the annihilation of the two-layered
vortices (the black curve in figure 9) relative to the streamwise locations for the emergence
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Extension of the curve of vortex annihilation based on the modified case

Figure 9. Ranges of x/D where the secondary vortices are formed from either FM1 or FM2. The entire range
of x/D for the emergence of the secondary vortices is shaded. The numerical results of Re = 250 and 300 in the
extended laminar regime are reproduced from Jiang & Cheng (2019).

of the secondary vortices (the shaded area in figure 9). Secondary vortices emerging prior
to the possible annihilation of the two-layered vortices were formed from FM2, where
the transition made direct use of the two-layered vortices at hand. In contrast, secondary
vortices emerging downstream of the annihilation of the two-layered vortices were formed
from FM1, where the transition created new vortices through flapping of the bare shear
layers.

For Re ≥ 200, the streamwise location for the annihilation of the two-layered vortices
was unable to be revealed by the natural flow, because the secondary vortices were
formed from FM2 only (prior to any possible annihilation of the two-layered vortices).
To reveal the streamwise location for the vortex annihilation, the case of Re = 200 was
simulated with a modified computational mesh that included an artificial horizontal slip
plate of zero-thickness placed only at the wake centreline and at x/D ≥ 80. The slip
boundary condition included ∂ux/∂y = 0, uy = 0 and a high-order Neumann condition
for the pressure. The slip plate did not affect the transition to the two-layered vortex
street at x/D ∼ 28.7 but eliminated potential interactions between the two parallel rows
of vortices (and thus the vortex merging process) that could have occurred at x/D ≥ 80. By
eliminating vortex merging, the modified case showed that the two-layered vortices would
be annihilated at x/D ∼ 106, as shown by an open circle in figure 9. This point was slightly
smaller than the largest x/D for the vortex merging, owing to the existence of successive
merging of three vortices (see § 3.1).

However, a similar modified case at Re = 210 showed strong interactions between the
two parallel rows of vortices prior to the slip plate at x/D ≥ 80, which was likely to
be because vortex merging occurred earlier at a larger Re (figure 9). Therefore, for the
modified case at Re = 210, a slip plate of x/D ≥ 70 was used. The extension of the x/D–Re
relationship for the vortex annihilation (the dashed curve with open circles in figure 9)
ended at Re = 210 because a similar modified case at Re = 220 showed that even when the
slip plate for x/D ≥ 70 was in use, each row of vortices could still merge and result in the
secondary vortices on its own (without vortex annihilation).

915 A127-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.195


H. Jiang

The extension of the x/D–Re relationship for the vortex annihilation suggested that this
curve had a tendency to cut the shaded area in figure 9 into two halves, with the upper
and lower halves corresponding to FM1 and FM2, respectively. This finding explains why
both formation mechanisms can exist for an individual case (e.g. at Re = 170 or 180). The
reason was that the streamwise location for the emergence of the secondary vortices moves
back and forth over time, i.e. the secondary vortices emerge over a range of x/D rather than
at a single x/D for each Re, such that when this range of x/D is cut through by the curve of
vortex annihilation shown in figure 9, two mechanisms exist for the same case. In contrast,
for some other bluff-body wakes, where the secondary vortices emerge at a fixed x/D for
each Re, FM1 and FM2 cannot co-exist in any individual case.

The present finding also explains why some previous studies identified only FM1 or
FM2.

(i) Cimbala, Nagib & Roshko (1988), Williamson & Prasad (1993) and Kumar & Mittal
(2012) attributed the emergence of the secondary vortices to FM1, which, according
to figure 9, is because these studies investigated the wake of a circular cylinder at
Re ∼ 150, where the secondary vortices emerge downstream of the annihilation of
the two-layered vortices.

(ii) Inoue & Yamazaki (1999) suggested that the existence of free-stream frequency
forcing was the reason why the formation mechanism changed from FM1 to
FM2. However, based on the vorticity fields shown by Inoue & Yamazaki (1999),
another important effect of free-stream forcing is an earlier emergence of the
secondary vortices in the wake. For example, for unforced and forced wakes of a
circular cylinder at Re = 150, the secondary vortices emerge at x/D >∼ 150 and 60,
respectively (Inoue & Yamazaki 1999). Therefore, it is believed that the significant
upstream movement of the location for the emergence of the secondary vortices,
specifically from downstream to well upstream of the location for the annihilation of
the two-layered vortices (x/D = 140 in figure 9), is the real reason for the change of
the formation mechanism from FM1 to FM2.

(iii) The present finding is also applicable to bluff bodies other than a circular cylinder.
For example, FM2 was identified in the wake of an elliptical cylinder with Re = 150
and AR = 0.25 (Thompson et al. 2014), as well as in the wake of tandem circular
cylinders with Re = 100 and a cylinder centre-to-centre distance of 8D (Wang et al.
2010). This is because, for these scenarios, the secondary vortices emerge relatively
close to the cylinder (within approximately 20D downstream of the cylinder), prior
to the possible annihilation of the two-layered vortices. However, FM1 was identified
in the wake of a rectangular cylinder with Re = 80–100 and AR = 0.2 (Mizushima
et al. 2014) because, for this scenario, the secondary vortices emerge downstream of
the annihilation of the two-layered vortices.

5. The Re-dependence of the emergence of the secondary vortices

As shown earlier in figure 9, the manifestation of either FM1 or FM2 is governed by
the x/D–Re relationship for the annihilation of the two-layered vortices and the x/D–Re
relationship for the emergence of the secondary vortices. The latter relationship indicates
that with increasing Re, the secondary vortices emerge at decreasing x/D and over a
decreasing range of x/D. The Re-dependence of the emergence of the secondary vortices
was investigated further in this section by exploring the fundamental cause for the
emergence of the secondary vortices.
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5.1. Characteristics of the shear layers in the intermediate wake
Kumar & Mittal (2012) investigated the intermediate and far wake of Re = 150 and
characterised the hydrodynamic instability in FM1 as a convective instability. This study
will show that convective instability is responsible for the emergence of the secondary
vortices for all Re values, regardless of its manifestation through FM1 or FM2.

It is well known that the rearrangement of the vortices from the primary vortex
street to the two-layered vortex street would divert the flow away from the wake
centreline and result in a ‘calm region’ near the wake centreline (in between the two
layers of vortices) where the streamwise velocity is relatively small (Durgin & Karlsson
1971). The present results showed that the transition to the two-layered vortex street
occurred at around x/D = 26–29 (corresponding to local maxima of uy) for Re = 140–200,
and correspondingly, the ux value sampled along the wake centreline decreased over
x/D ∼ 20–40 (figure 10a). Figure 10(a) also shows that with increasing Re, the velocity
deficit at the wake centreline increased. Figure 10(b) illustrates the ux profiles sampled
at x/D = 40, which showed that with increasing Re, the velocity deficit increased while
the wake width decreased, and both contributed to an increase in the shear rate of the
two shear layers. Figure 10(c) quantifies the maximum shear rate (∂ux/∂y)max of the ux
profiles sampled at various x/D locations for various Re values. With the increase in Re,
the maximum shear rate gradually increased, which suggested that the shear layers became
increasingly convectively unstable to allow for an earlier (in terms of the streamwise
location) emergence of the secondary vortices. The convective instability of the shear flow
for the present case was similar to the well-known Kelvin–Helmholtz instability for the
plane mixing layer (e.g. Drazin 1970; Brown & Roshko 1974; Rogers & Moser 1992) and
the separating shear layer of a cylinder (e.g. Prasad & Williamson 1997).

5.2. Transient growth analysis of the intermediate wake
To investigate the Re-dependence of the shear-layer characteristics in the intermediate
wake (which is responsible for the Re-dependence of the emergence of the secondary
vortices) more quantitatively, transient growth analysis was adopted in this section to
quantify the maximum growth of the perturbation energy in the time-averaged wake. The
transient growth analysis was performed for Re = 100–200, which enabled an examination
of the Re-dependence of the maximum growth. In addition, the range of Re = 100–200
incorporates both FM1 and FM2, and this range will be examined if convective instability
is shown to be the universal underlying mechanism.

Figure 11 summarises the optimal energy growths G(τ ) calculated under various
combinations of τ and Re. As shown in figure 11, the transient energy growths for different
Re values shared similar qualitative trends, which suggested that there was no fundamental
difference among the different Re values. Therefore, the massive amplification of the
perturbation energy was a prerequisite for the emergence of the secondary vortices for
all Re values, regardless of their manifestation through FM1 or FM2.

Figure 12 illustrates further the results of Re = 180 as an example, where the curve
G(τ ) − τ is reproduced from figure 11. Also shown in figure 12 are the linear energy
growths E(t*)/E(0) evolved from the optimal initial perturbations for various τ values.
Based on an additional case with τ = 60 and a reduced domain size up to x/D = 300,
it was confirmed that the time evolution of the linear energy growth was unaffected by
the location of the outlet boundary (until the perturbation was washed out of the domain).
Naturally, each energy growth curve shown in figure 12 osculated the optimal growth curve
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Figure 10. Characteristics of the ux profiles for various Re values: (a) the ux profiles sampled along the wake
centreline, (b) the ux profiles sampled at x/D = 40 and (c) the maximum shear rate of the ux profiles sampled at
various x/D locations.

G(τ ) − τ at t* = τ , i.e. the optimal growth curve was the envelope of the energy growth
curves for various τ (Blackburn, Barkley & Sherwin 2008). In addition, the energy growth
curves for relatively large τ values (e.g. τ = 100 and 200) corresponded approximately
quantitatively to the envelope. Therefore, the energy growth for the case τ = 100 or 200
may serve as an approximation of the optimal energy growth in a time evolution manner.

The energy growth for the case τ = 100 is further shown in figure 13 by the time
evolution of the linear perturbation vorticity field. The case τ = 100 was chosen because
it produced the optimal energy growth G(τ ) at t* = τ = 100 and corresponded to
x/D ∼ 80–120 (figure 13b), which was close to the range of x/D for the emergence of
the secondary vortices (x/D ∼ 90–140 in figure 9). To show clearly the initial evolution of
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Figure 11. Optimal energy growth G(τ ) as a function of the time interval τ for various Re values.
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Figure 12. Optimal energy growth curve log10G(τ ) − τ for Re = 180, together with the linear energy growths
E(t*)/E(0) evolved from the optimal initial perturbations for various τ values.

the perturbation, the vorticity fields in figure 13(a) were plotted with a vorticity range 100
times smaller than that used in figure 13(b). The time evolution of the linear perturbation
vorticity field shown in figure 13 was consistent with the energy growth trend of τ = 100
shown in figure 12, where a massive energy amplification was observed for t* up to
approximately 300, followed by a gradual energy decay afterwards. This observation
confirmed that the flow was globally stable but locally convectively unstable.

It is interesting to note that the optimal initial perturbation shown in figure 13(a) (at
t* = 0) shared close similarity to the two-dimensional optimal initial perturbations for
plane Poiseuille, Couette and backward-facing step flows, where a series of highly strained
counter-rotating rollers are observed and their inclination is opposite to the direction of the
mean shear (Farrell 1988; Butler & Farrell 1992; Blackburn, Barkley & Sherwin 2008).
The mean shear for the channel flows, such as the plane Poiseuille and backward-facing
step flows, was in an opposite direction to that of the present wake flow, and, therefore,
so was the inclination of the perturbation rollers. The fundamental similarity of the initial
perturbation structures for all of these flows confirmed that the transient energy growth of
the present wake flow also arose from the mean shear, as discussed earlier in § 5.1.
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Figure 13. Time evolution of the linear perturbation vorticity field developed from the optimal initial
perturbation for Re = 180 and τ = 100. The linear perturbation vorticity fields are symmetric about the wake
centreline. Positive and negative vorticity values are in red and blue, respectively. The range of vorticity in panel
(a) for t* = 0–50 is 100 times smaller than the range in panel (b) for t* = 50–400. In panel (a), the vertical line
at x/D = 10 represents the left end of the domain.

It was also seen in figure 13(a) that, with the evolution in time, the upper and lower rows
of the counter-rotating rollers quickly interacted and formed an integrated pattern, which
suggested interactions of the two shear layers. The integrated pattern stabilised at t∗ >∼ 20
and then appeared similar to that shown by Kumar & Mittal (2012).

5.3. Effect of the Reynolds number
The Re-dependence of the optimal energy growth is quantified in figure 11, where G(τ )
increased noticeably with the increase in Re. For example, an increase in Re by 20 resulted
in an increase in G(150) of approximately one order of magnitude. The dependence of
G(τ ) on Re suggested that the wake was increasingly convectively unstable at increasing
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Figure 14. Linear energy growth E(t*)/E(0) evolved from the optimal initial perturbation for τ = 200.

Re values. Consequently, with the increase in Re, the secondary vortices emerged at
decreasing x/D values (figure 9).

The effect of G(τ ) on the x/D for the emergence of the secondary vortices was further
analysed as follows. To facilitate analysis of the time evolution of the perturbation,
the optimal energy growth curve G(τ ) − τ for each Re, as shown in figure 11, was
approximated by the linear energy growth curve [E(t*)/E(0)] − t* evolved from the optimal
initial perturbation for τ = 200 (figure 14), because the two curves are quantitatively
similar (e.g. figure 12). To generate a link between the energy growth over t* and that
over x/D, the streamwise advection of the perturbation for τ = 200 was quantified by
the movement of the centroidal location of the perturbation energy (xc/D) over time
(figure 15a), where xc is calculated as

xc =

∫
Ω

1
2 (u′2

x + u′2
y )x dΩ

∫
Ω

1
2 (u′2

x + u′2
y ) dΩ

. (5.1)

In addition, figure 15(b) shows that the advection velocity of xc/D was not a constant.
As illustrated by an example at Re = 150, the variation of the advection velocity with
distance downstream qualitatively followed the trend of the time-averaged streamwise
velocity profile sampled along the wake centreline (while the quantitative difference in
the velocity was because the velocity deficit at the wake centreline was the largest).

Based on the relationship between xc/D and t* shown in figure 15(a), the linear
energy growth curve [E(t*)/E(0)] − t* shown in figure 14 was transformed into
[E(t*)/E(0)] − (xc/D) in figure 16. Figure 16 also highlights (in the thick segment of the
curve) the range of x/D for the emergence of the secondary vortices (previously shown
in figure 9). The secondary vortices generally emerged at energy amplification levels of
105–107. This observation suggested that, with the increase in Re, the increasing gradient
in the energy amplification was responsible for the emergence of the secondary vortices at
decreasing x/D and for a decreasing range of x/D, both of which were shown originally in
figure 9.
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Figure 15. Movement of the centroidal location of the perturbation energy over time for τ = 200 and various
Re: (a) the relationship between xc/D and t* and (b) the advection velocity of xc/D as a function of xc/D.
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Figure 16. Linear energy growth E(t*)/E(0) evolved from the optimal initial perturbation for τ = 200, with
the horizontal axis being transformed from t* to xc/D.
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Case

Re for the
transient growth

analysis Re for the base flow G(τ ) (×104)

1 150 150 1.1
2 180 180 23.2
3 150 180 15.8
4 180 150 1.5

Table 3. Optimal energy growths computed with different base flows.

In addition, table 3 lists the transient growth analyses performed with different base
flows. Cases 1 and 2 were computed conventionally, where the base flow and the transient
growth analysis were computed with the same Re value. In contrast, the transient growth
analyses of cases 3 and 4 were computed with a base flow obtained from a different Re.
The purpose of cases 3 and 4 was to show that the G(τ ) value was, to a great extent,
dictated by the base flow, i.e. the shear-layer characteristics investigated in § 5.1.

5.4. Effect of the interaction of the two shear layers
Interactions of the two shear layers were observed both in the relatively far wake (where
the secondary vortices emerge) and in the intermediate wake (where the transient growth
develops). The flow visualisation in § 3 suggested that the formation of the secondary
vortices (through either FM1 or FM2) was a result of the interaction/flapping of the
two parallel shear layers at similar streamwise locations, where positive and negative
secondary vortices emerged simultaneously (see e.g. figures 4, 6b and 8a). In addition,
the modified case of Re = 200 investigated in § 4 (with an artificial horizontal slip
plate of zero-thickness placed at the wake centreline and x/D ≥ 80) showed that by
eliminating the interaction between the two shear layers at x/D ≥ 80, the secondary
vortices were suppressed over the entire wake for x/D up to 400. Furthermore, the linear
perturbation vorticity fields shown in figure 13 displayed interactions of the upper and
lower rows of the rollers as early as t* = 5. Kumar & Mittal (2012) also showed that by
altering the perturbation modes through placing a slip plate at the wake centreline over
x/D = 27.5–62.5, the oscillations in the far wake became significantly weaker.

To quantify the effect of the interaction of the two shear layers, additional transient
growth analysis was conducted by using only the lower half of the computational domain
(where the top boundary for the perturbation adopted the slip condition). The base flow
for the half domain was mapped from, and thus identical to, the lower half of the
time-averaged base flow for the full domain. Because the base flow for the full domain
was symmetric about the wake centreline, the transient energy growth predicted based on
the lower half of the domain was the same as that predicted based on a full domain but with
a slip plate placed at the wake centreline. In this case, all possible interactions between the
two shear layers were eliminated, while the characteristics of the individual shear layer
remained strictly unchanged.

Figure 17 shows the optimal energy growths G(τ ) for Re = 200 predicted based on
the full domain and half domain. The G(τ ) values predicted by the full domain were
significantly larger than the half-domain counterparts, which suggested that the interaction
of the two shear layers significantly promoted the transient energy growth (hence, played
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Figure 17. Optimal energy growths G(τ ) for Re = 200 predicted based on the full domain and half domain.

an important role in the formation of the secondary vortices). The G(τ ) values predicted by
the half domain were well below the threshold of ∼ 105 for the emergence of the secondary
vortices.

6. Conclusions

This study examines the formation mechanisms of the secondary vortex street in the far
wake of a circular cylinder. Unlike most of the earlier studies, which have attributed
the manifestation of the secondary vortices to either FM1 or FM2, the present study
demonstrates that both FM1 and FM2 are at play. For Re = 150–160, the two-layered
vortices are simply annihilated without merging, and the secondary vortices emerge
further downstream from the flapping of the bare shear layers (i.e. FM1). For Re = 200,
the secondary vortices are formed from the merging of the same-sign vortices in the
two-layered vortex street (i.e. FM2). For intermediate Re of 170 and 180, it is observed
for the first time that for an individual case, the secondary vortices can be formed from
both FM1 and FM2 in an alternate manner.

Physically, the manifestation of either FM1 or FM2 is governed by the relative
streamwise locations between the emergence of the secondary vortices and the annihilation
of the two-layered vortices. Specifically, secondary vortices that emerge after and before
the annihilation of the two-layered vortices are formed from FM1 and FM2, respectively.
The reason why both FM1 and FM2 are observed for Re = 170 and 180 is because the
streamwise location for the annihilation of the two-layered vortices lies within the range
of streamwise locations for the emergence of the secondary vortices.

With the increase in Re, the secondary vortices emerge at decreasing x/D and over
a decreasing range of x/D. This is explained by the transient growth analysis for
Re = 150–200. It is found that the x/D values for the emergence of the secondary vortices
correspond to linear energy amplification levels of approximately 105–107, while the
gradient in the energy amplification increases with increasing Re.

Fundamentally, the convective instability of the shear layers and the massive
amplification of the perturbation energy in the intermediate wake are responsible for the
flapping/waviness of the two shear layers and the emergence of the secondary vortices
for all Re values, regardless of their manifestation through FM1 or FM2. The convective
instability of the shear layers originates from an obvious increase in the shear rate of
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the shear layers as the wake gradually transitions from the primary vortex street to the
two-layered vortex street and results in a ‘calm region’ near the wake centreline. This
finding also explains why the secondary vortices emerge from the two-layered vortex street
rather than directly from the primary vortex street. The convective instability of the present
wake flow shares close similarity to that of the channel flows, such as the two-dimensional
plane Poiseuille, Couette and backward-facing step flows that have been investigated by
Farrell (1988), Butler & Farrell (1992) and Blackburn, Barkley & Sherwin (2008).
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