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Abstract

Low-carbon process planning is the basis for the implementation of low-carbon manufactur-
ing technology. And it is of profound significance to improve process executability, reduce
environmental pollution, decrease manufacturing cost, and improve product quality. In this
paper, based on the perceptual data of parts machining process, considering the diversity
of process planning schemes and factors affecting the green manufacturing, a multi-level
evaluation criteria system is established from the aspects of processing time, manufacturing
cost and processing quality, resource utilization, and environmental protection. An integrated
evaluation method of low-carbon process planning schemes based on digital twins is con-
structed. Each index value is normalized by the polarized data processing method, its mem-
bership is determined by the fuzzy statistical method, and the combination weight of each
index is determined by the hierarchical entropy weight method to realize the organic combi-
nation of theoretical analysis, practical experience, evaluation index, and process factors. The
comprehensive evaluation of multi-process planning schemes is realized according to the
improved fuzzy operation rules, and the best process planning solution is finally determined.
Finally, taking the low-carbon process planning of an automobile part as an example, the fea-
sibility and effectiveness of this method are verified by the evaluation of three alternative pro-
cess planning schemes. The results show that the method adopted in this paper is more in line
with the actual production and can provide enterprises with the optimal processing scheme
with economic and environmental benefits, which may be helpful for more data-driven man-
ufacturing process optimization in the future.

Introduction

With the rapid development of a new generation of information technology, communication
technology, and Internet of Things technology, the manufacturing industry is leaping into the
direction of digitalization, networking, and intelligence. The traditional large-scale manufac-
turing mode has been gradually eliminated, the new products are updated more and more fre-
quently, the original market demand faces severe tests of diversification, personalization, small
batch, multi-species, short-cycle, quick response, etc. (Research, 2018; Zheng et al., 2018). In
the whole lifecycle of products, process planning severs as the transition from the design stage
to manufacture stage, realizes the conversion of product design information to manufacture
information, and is the bridge connecting product design and manufacturing. The quality
of the process planning scheme directly affects the allocation and optimization of manufactur-
ing resources, production organizational efficiency, product quality, production cycle, environ-
mental benefits, etc. (Shin et al., 2017; Zoran and Milica, 2017). Therefore, how to realize the
rapid evaluation and selection of multiple feasible alternatives is part of the technical difficul-
ties faced by process planning.

Traditional process planning evaluation mainly focuses on production cost, product qual-
ity, and processing efficiency (Jin et al., 2017). However, consideration of resource consump-
tion and environmental impact in the manufacturing process is relatively less, resulting in the
manufacturing situation of high energy consumption, heavy pollution, and low efficiency.
With the increasing global greenhouse effect and the implementation of the carbon tax policy,
the manufacturing industry faces dual pressure of environment and cost. The low-carbon
manufacturing mode characterized by minimal pollution, low emission, and low energy con-
sumption has become an inevitable trend for the sustainable development of manufacturing
industry, and various manufacturing enterprises pay more and more attention to the environ-
mental impact issues such as carbon emissions during processing. The comprehensive evalu-
ation of the process planning scheme considering the carbon emissions, production cost, and
efficiency of the manufacturing process is an urgent basic scientific problem in the context of
low-carbon manufacturing.
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Process planning is not just restricted by the selection of
machining equipment, tool, and fixture, but also influenced by
the process design principle and the process concentration or dis-
persion (Liu et al., 2014; Li et al., 2015). In actual production,
multiple feasible process planning schemes may exist simultane-
ously for machining the same part. Therefore, this is a multi-
constraint, nonlinear, and multi-objective combinatorial optimi-
zation decision-making problem (Zheng and Wang, 2012). In
the past, the evaluation of process planning was mainly per-
formed by process planners relying on their own professional
knowledge and experience, leading to subjectivity and applicabil-
ity limitations of evaluation results, as well as the following
defects: (1) insufficient universality of process planning; (2) insuf-
ficient flexibility and adaptability of process planning scheme; (3)
low intelligence of process planning; and (4) insufficient informa-
tion sharing in process planning. To reduce the dependence of
process planning evaluation on process planner’s ability, various
comprehensive evaluation methods have been proposed, such as
multivariate regression analysis (MRA), artificial neural network
(ANN), grey clustering analysis, genetic algorithm, ant colony
algorithm, decision tree, and analytic hierarchy process (AHP)
(Rafiei et al., 2011; Pakkar, 2016, 2017). Usually, these methods
are used alone to evaluate process planning schemes and have
achieved good results. However, with the increasingly complex
structure of mechanical products, diverse production modes,
numerous influencing factors of evaluation indexes, and many
evaluation indexes with empirical, fuzzy, and uncertainty, result-
ing in the above methods have their own limitations in practical
application. For example, MRA cannot solve the highly nonlinear
intricate relationship among influential factors (Das, 2020). It is
difficult to determine the initial threshold of ANN, and the sam-
ple size to be trained is large and it is easy to fall into the local
optimal solution in the fitting process, resulting in insufficient
generalization ability of the model (Saravanan et al., 2020).
Grey clustering method has low resolution, which is often incon-
sistent with the actual situation (Mv et al., 2019). The decision
tree model will become complex as the increase in planning
cases, leading to inefficient decision-making (Sungsu et al.,
2017). When there are too many indicators in AHP, the data sta-
tistics are large and the weights are difficult to ascertain, while
experts give different index score causing multiple evaluation
results, which even increases the difficulty of actual decision-
making (Vidal et al., 2011).

In order to adapt to the diverse evaluation index factors and
dynamic change of data in the evaluation process, it is necessary
to enhance the sharing and integration between process design
information and manufacturing resource information. As a new
path to promote the interactive integration of the physical
world and information world in manufacturing, digital twin can
help process planners to rapidly evaluate and optimize process
planning schemes through interactive virtual-real feedback, data
fusion analysis, and iterative optimization for decision-making
(Zhang et al., 2017; Pei and Ming, 2021).

Based on the above motivation, a comprehensive evaluation
method of low-carbon process planning for digital twin is pro-
posed in this paper. Firstly, a multi-level evaluation index system
for low-carbon process planning is constructed. Then, a compre-
hensive evaluation method is presented to carry out low-carbon
evaluation and prediction of process planning scheme based on
the digital twin data formed by production real-time data and
process planning data, so as to realize multi-resource and multi-
dimensional dynamic evaluation and decision-making. Finally,

an alternative process planning scheme of an automobile part is
implemented to verify this method.

The rest of this paper is organized as follows. Section
“Literature review” briefly reviews related work of low-carbon
manufacturing and process planning. Section “Diversity analysis
of process planning schemes” analyses the main factors affecting
process planning diversity. Section “Multi-level evaluation index
system” introduces a multi-level evaluation index system of pro-
cess planning based on digital twin. Section “Comprehensive
evaluation method” illustrates in detail the comprehensive evalu-
ation method and solution process of planning scheme based on
digital twin. Section “Case study and discussion” offers a case
study and discusses the experimental results. Finally, section
“Conclusions” draws the conclusion and future work.

Literature review

Low-carbon manufacturing

With the global shortage of resources and energy, as well as the
increasing greenhouse effect, the traditional manufacturing indus-
try is gradually transforming to low-carbon manufacturing.
Low-carbon manufacturing refers to reduce resource consump-
tion and CO2 emissions by saving resources and improving pro-
duction efficiency during the whole lifecycle of product design,
production, operation, and scrap, which have obvious economic,
social, and ecological benefits (Zheng et al., 2021). As a new sus-
tainable development model, low-carbon manufacturing has been
greatly valued and widely studied at home and abroad.

Regarding the carbon emissions measurement of the product’s
entire lifecycle, Mayyas et al. (2012) adopted a lifecycle assess-
ment method to make a detailed study of carbon emissions gen-
erated in the stages of vehicle production, using and maintenance.
Scipioni et al. (2012) proposed a useful lifecycle approach of car-
bon dioxide identification to manage carbon emissions during the
manufacturing process. Zhang et al. (2012) used the recursive
method to reduce carbon emissions of component connection
unit based on the analysis of product lifecycle carbon emissions.
Narita et al. (2006) used a lifecycle assessment method to predict
the environmental impact of the machining process, and analyze
the carbon emissions in cutting process by calculating the electri-
cal energy consumed by each component of the machine tool dur-
ing the machining process. Due to the complexity of the
manufacturing process and the different specific research objects,
the lifecycle method is not universal enough to calculate carbon
emissions in the manufacturing process, and the calculated results
deviate greatly from the experimental data.

In terms of quantitative calculation of carbon emissions in the
manufacturing process, Sun and Zhang (2011) used a hierarchical
stepwise control method to estimate carbon emissions to improve
resources utilization and reduce carbon emissions. Li et al. (2013)
proposed the five major parts of carbon emissions in the machin-
ing process, and each part is calculated. This method has certain
adaptability in machining. Meier and Shi (2011) proposed a new
method for calculating carbon emissions from manufacturing
stages based on hybrid analysis to help enterprises determine
the potential for reducing carbon emissions.

In terms of energy conversion in the low-carbon manufactur-
ing process, Ball et al. (2009) proposed the possibility of realizing
zero carbon manufacturing by analyzing the interaction among
energy flow, material flow, and waste flow in the integrated man-
ufacturing process. Gutowski (2007) analyzed the manufacturing
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process from the perspective of thermodynamics, the calculation
method of specific energy consumption is proposed, and the strat-
egies of reducing carbon emissions is given. Munoz and Sheng
(1995) quantified the environmental impact of the manufacturing
process through energy utilization rate, raw material flow of work-
piece and secondary material flow, and provided decision support
for low-carbon manufacturing, including part process planning,
process parameters selection, etc.

Low-carbon-oriented process planning evaluation

Process planning directly affects the quality and performance of
the parts after machining, and it has a significant effect on the
carbon emissions of the manufacturing process. Selecting a rea-
sonable process planning scheme is helpful to increase productiv-
ity, reduce resource consumption, and product cost. Generally, the
evaluation methods for process planning are classified into three
categories: model-based approach, knowledge-based approach,
and data-based approach (Gao et al., 2016; Zhu and Li, 2018;
Kumar, 2019; Schnoes and Zaeh, 2019). The traditional process
planning evaluation is mainly built on existing process regulations
and experience, which cannot adapt to the variable evaluation
indexes and data dynamic changes during the manufacturing
process.

To meet the new demands of process planning evaluation
under the background of low-carbon manufacturing, various
comprehensive evaluation methods for low-carbon manufactur-
ing have emerged. Based on topologic theory and entropy weight
method, Yan et al. (2014) introduced a set of sustainable evalu-
ation methods that meet environmental, economic, and social cri-
teria. Considering the carbon emissions, benefits, and completion
time of the manufacturing process, Cheng et al. (2013) proposed a
comprehensive evaluation method based on carbon benefits,
which facilitates manufacturing enterprises to determine the
best process planning according to production demand. Yi et al.
(2015) established an optimization model with carbon emissions
and maximum completion time, by optimizing parameters to
reduce carbon emissions and improve system efficiency. Lian
et al. (2012) classified process planning problems with production
cost as the optimization objective and proposed flexible optimiza-
tion measures. Yazdani et al. (2020) established an ecological
impact analysis model for machining process, and quantitatively
evaluated the environment impact of energy consumption, mate-
rial flow consumption and resources consumption in process
solutions. Yin et al. (2014) evaluated and optimized process plan-
ning with the goals of minimum carbon emissions and energy
consumption.

Although these methods above have achieved good results in
many evaluation, the static evaluation without interactive feed-
back between the physical space and information space of the pro-
duction process cannot achieve the expected results due to the
dynamic changes of actual machining process, and the distur-
bance in machining process will affect the implementation of

process planning. Since the concept of digital twin is proposed,
it paves the way for the interaction of information and physical
space, providing a new way for process planning evaluation.

Digital twin and its application in manufacturing

The concept of digital twin can be traced back to the “mirror
space model” that was proposed by Professor Michael Grieves
in the product lifecycle management course in 2003, which was
equivalent to the virtual digital representation of physical pro-
ducts (Grieves, 2005), including physical space, virtual space,
and information connection between the two, shown in
Figure 1. In 2011, it was officially named Digital Twin by
Grieves and Vickers in “Almost Perfect: Driving Innovation and
Lean Products through PLM” (Grieves, 2011). In the early days,
digital twin was mainly used to solve the maintenance problem
of fighter airframes. Subsequently, in addition to the aerospace
field (Kholopov et al., 2019), digital twin gradually expanded to
various fields such as smart city, railway transportation, health
care, environmental protection, and engineering construction,
but the hottest research is in the field of smart manufacturing,
which has now grown up become an important technical tool
for smart manufacturing. The key technologies for the rapid
development and wide application of digital twin mainly include
modeling and simulation technology, data acquisition, transmis-
sion and processing technology, virtual-real interaction technol-
ogy and data security technology, etc. In the process of digital
twin data interactive feedback, the communication protocol
based on industrial PLC is used to facilitate the access and man-
agement of various third-party industrial devices, and the user
datagram protocol (UDP) is used to sense the data collected by
various sensors, embedded systems, and data acquisition cards
in real time. These dada are transmitted through fieldbus/5G/
WiFi/Ethernet/RS-485/M-BUS/RF network to realize bidi-
rectional flow and real-time interaction in real-virtual space.

Fig. 1. Conceptual ideal model for digital twin.

Fig. 2. Network structure of process planning schemes.
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To facilitate the mapping between process data and collected
multi-source heterogeneous data, the eXtensible mark-up lan-
guage (XML) is used for organization and management.

As an enabling technology to practice advanced concepts such
as intelligent manufacturing, Industry 4.0 and industrial Internet,
digital twin has been widely explored and practiced in several
stages of the manufacturing field. In the product development
and design stage, digital twin is introduced into the product
R&D process to establish a digital twin model of the product,
so the product design knowledge database can be obtained
through real-time interaction between the virtual model and
physical model of the product to provide assistance for product
design (Wagner et al., 2019). Meanwhile, the complex physical
model can be resolved by analyzing the digital twin data, so as
to reduce the design difficulty. By comparing the differences
between virtual model and physical model, the design defect
can be detected and corrected in time to rapidly verify the product
prototype design (Pai and Kendrik, 2020). Thus, it can quickly
meet the customization needs of diverse customers, and manage
the product whole lifecycle to bring it to market with less cost
and shorter time. In the manufacturing stage, digital twin can
be used to simulate the production equipment, manufacturing
technology, and machining process, so as to improve process
flow, increase production efficiency, and provide support for
product-oriented whole-lifecycle management. Digital twin-
driven process planning makes product resource and full-factor
process interactive feedback to form a symbiotic iterative collabo-
rative optimization, predicts the form of processed products and
product performance assessment in real-time, and proposes mod-
ification and improvement measures based on actual production

results and assembly effects for adaptive or self-organized
dynamic response (Debroy et al., 2016). Therefore, it can realize
predictable process planning oriented to the production site and
the process knowledge modeling optimization based on big data
analysis. In the product assembly stage, digital twin is combined
with assembly process, and the digital twin assembly model is
constructed by means of “virtual-real fusion, virtual control of
reality” (Kholopov et al., 2019). Through the intelligent software
service platform and tools, the precise control and unified man-
agement of the components assembly process can be achieved.

Diversity analysis of process planning schemes

A machined part usually has several machining features, and dif-
ferent divisions of machining feature will correspondingly result
in separate processing methods, and each processing method
may have various machining devices and fixtures. At the same
time, the processing sequence of different machining equipment
is also constrained by product type and scale, process standards
and technician’s experience, thus forming a complex mapping
relationship. The network structure of process planning schemes
is shown in Figure 2.

Diversity of machining features and complexity of process
design principles

The machining features of parts include the shape features, such
as plane, cylindrical surface, conical surface, spherical surface,
hole, groove, spline, and screw; include material features, such
as material type, material hardness, and material heat processing
requirements; also include precision features, such as shape and

Fig. 3. Evaluation system of machining process planning scheme.

Table 1. The valve of RI

N 1,2 3 4 5 6 7 8 9 10

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

4 Zhaoming Chen et al.

https://doi.org/10.1017/S0890060422000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060422000105


position accuracy, surface quality; and process features, such as
part clamping and positioning, cutting amount. The process
design principle mainly includes from coarse to precise, from
plane to hole, from primary to secondary, design basis first, pro-
cess concentration or decentralization, etc. Different part types
and product quality requirements have great difference in the
division of machining features and the selection of procedures.

Diversity of processing methods and dynamics of machining
devices

The processing methods of parts usually include turning, milling,
drilling, grinding, laser processing, forging, welding, riveting, etc.
The same processing feature may correspond to various process-
ing methods, for instance plane processing, according to the pro-
duction scale, material properties and surface quality
requirements of parts, can be processed by planning, milling,
broaching, grinding, etc. Different processing methods corre-
spond to different processing equipment and productivity.

Processing equipment mainly includes numerous machine
tools and auxiliary tools such as cutting tools, fixtures. Its
dynamic performance is that the machine tool needs to be
equipped with different types of tools and fixtures during the
machining process; moreover, the processing sequence of
machine tool and its operating state change with the dynamic var-
iations of process route or production resources. The selection of
different processing methods and equipment directly affects the
production efficiency, machining quality, and carbon emissions
of parts.

Multi-level evaluation index system

Due to the diversity of process planning schemes, in the actual
production process, the energy consumption, carbon emissions,
production cost and benefit generated by using different process
planning solutions for the same parts vary greatly. Therefore,
resource consumption and environmental impact should be con-
sidered in the low-carbon decision-making analysis of process
planning, so as to quickly and effectively select the economical
and reasonable process scheme. In this paper,
“classifying-simplifying-synthesis” strategy combined with digital
twin technology is adopted to establish a set of feasible compre-
hensive evaluation index system, as shown in Figure 3.

The system mainly includes five evaluation criteria: processing
time, processing quality, production cost, resource utilization, and
environmental impact. Processing time includes production time,
tool change time, auxiliary time, and rest time; processing quality
includes surface roughness, dimensional tolerance, shape toler-
ance, and position tolerance; production cost contains machine
tool loss cost, tool fixture wear cost, staff wages, and other
expenses; resource utilization includes information resources,
energy resources, human resources, material and equipment
resources; environmental impact contains noise pollution, electro-
magnetic radiation pollution, and solid–liquid–gas waste pollu-
tion. The formula can be expressed as follows:

F = f (u1, u2, u3, u4, u5), u1 = f (g1, g2, g3, g4), u2
= f (g5, g6, g7, g8), u3 = f (g9, g10, g11, g12), u4
= f (g13, g14, g15, g16), u5 = f (g17, g18, g19).

In this evaluation system, Solidworks, Mworks.Sysplorer and
other software are used to build physical models involved in pro-
cess planning, such as machine tools, fixtures, and parts. These
models are then imported into plant simulation software to
form a digital twin planning model. Also, the process constraints,
technical requirements, material properties of the parts, etc., are
used to construct the corresponding digital twin constraint
model and rule models. Various sensing devices are used to col-
lect process data, machining data, and historical data of the parts.
These data are sent to the digital twin model through data trans-
mission network such as fieldbus, industrial Ethernet, WIFI, and
5G network to realize timely update and virtual-real mapping of
the digital twin model. After data fusion and data cleaning opera-
tions, the digital twin data are combined with the process charac-
teristics of the parts to form various process schemes, and then
integrated analysis and simulation verification are carried out in
the scheme evaluation link. Through this link, the feasibility of
different process planning schemes can be evaluated, the potential
problems in the production process can be predicted and the cor-
responding improvement measures can be given. Finally, the pro-
cess flow and process documents that comply with the low-carbon
manufacturing requirements can be obtained. These information
can be feedback to the production site to dynamically display the
whole process of parts manufacturing, which is convenient for
offline operation training and online production guidance.

Comprehensive evaluation method

Firstly, the evaluation index set U and evaluation level V of the
process planning scheme is established, and the fuzzy relationship
matrix between the evaluation index and the evaluation level is
built by using the reduced half trapezoidal distribution function.
Then, digital twin data of each evaluation index value is normal-
ized by the polarization method to eliminate the influence of
dimension. The combined weight coefficients of each evaluation
index value are determined by the hierarchical entropy weight
method, and the improved fuzzy operation rules are used to com-
prehensively evaluate the low-carbon process planning schemes,

Fig. 4. Flowchart of the comprehensive evaluation process.
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and the pros and cons of each scheme are obtained, which pro-
vides guidance for the production decision-making.

Construction of the fuzzy relationship matrix

Firstly, according to the five evaluation criteria given in the evalu-
ation system described above, the evaluation index set is established:
U = {u1, u2, u3, u4, u5}; and the feasibility of the process planning
scheme is divided into five levels: {excellent, good, general, bad,
inferior} to establish the evaluation level: V = {v1, v2, v3, v4, v5}.

Then, according to the fuzzy degree of each evaluation index
belonging to different evaluation levels, the fuzzy relationship
matrix R = {rij}n×m is established. For qualitative indexes, expert

consulting method is adopted to determine its membership func-
tion, namely:

rij =
∑n

i=1 hi · ki∑n
i=1 ki

, (1)

where n is the evaluation indexes number, m is the evaluation
objects number, hi is the value given by expert i, and ki is the
weight of expert i. In order to eliminate the influence of different
dimensions among index values on the calculation results, the
polarization processing method of formula (2) is adopted to nor-
malize the collected digital twin data, and convert each data to the
interval [0,1]. For quantitative indicators, the benefit-type index

Fig. 5. Schematic diagram of the adapter part.

Table 2. Process planning schemes

Cases Machining methods and contents Machine type

Scheme 1 Turning end surface of Φ40 and inner grooves of Φ25 and Φ26→ turning end surface of Φ30,
drilling holes of Φ9 and Φ3.5→ grinding dual-end-face→ remove the burrs→ high pressure
washing, rust proof→ comprehensive detection and stock

Turning center, biface grinding
machine, burr masher

Scheme 2 Grinding end surface of Φ40→ grinding end surface of Φ30→ expanding grooves Φ25, Φ26, and
hole Φ40→ drilling holes of Φ9 and Φ3.5→ remove the burrs→washing→ inspection and stock

Grinder, lathe, driller, burr masher

Scheme 3 Turning end surface of Φ30 and inner grooves of Φ25 and Φ26→ turning end surface of Φ40→
drilling holes of Φ9 and Φ3.5→ grinding dual-end-face→ remove the burrs→washing→
detection and stock

Lathe, drilling centre, biface grinding
machine, burr masher
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that refer to the larger the index value, the better result, using for-
mula (3) to determine its membership function:

xij =
x jmax − xij

x jmax − x jmin
, (2)

rij =
xij∑n
i=1 xij

. (3)

And, for the cost-type index that refer to the smaller the index
value, the better result, using formula (4) to determine its mem-
bership function:

rij = 1

xij ·
∑n

i=1 x
−1
ij

( ) , (4)

where xjmax = max
i

xij, xjmin = min
i

xij, xij is the measured value
of index i from the jth scheme; rij is the membership of index i
from the jth scheme. And the fuzzy relationship matrix can be
built by the calculated membership values above.

Determine the combined weight A = {a1, a2, … , an}

Firstly, the judgment matrix Y = {yij}m×n is constructed by AHP,
and the relative importance of indexes is determined by the nine-
level scale method. After that, the maximum eigenvalue of matrix
Y and its corresponding eigenvector are calculated, the weight vec-
tor P = {p1, p2, ⋅ ⋅ ⋅ , pn} is obtained by normalizing the

eigenvector; and the formula (5) as follows is used to test the con-
sistency of judgment matrix Y:

CR = CI
RI

and CI = (lmax − n)
(n− 1)

, (5)

where RI is the average random consistency ratio of judgment
matrix Y, its assignment is shown in Table 1.

If CR < 0.10, the consistency of the judgment matrix Y is good;
otherwise, the element values of matrix Y need to be adjusted to
meet the consistency requirement.

Secondly, the weight coefficient qi is calculated by the entropy
weight method (EW). The original data matrix X = {xij}m×n is
standardized according to formula (6) to obtain the judgment
matrix Y = {yij}m×n, and the entropy weight of ith evaluation

Table 3. Index measurements of each process planning scheme

Index Specific contents of indicators

Values

Scheme 1 Scheme 2 Scheme 3

Processing quality u1 Surface roughness g1 (um) 1.6 1.6 1.6

Dimensional tolerance g2 (mm) 0.016 0.02 0.018

Shape tolerance g3 (mm) 0.013 0.018 0.02

Position tolerance g4 (mm) 0.015 0.016 0.018

Production cost u2 Machine tool loss cost g5 (yuan) 10 8 9

Tool fixture wear cost g6 (yuan) 3 5 2

Other expenses g7 (yuan) 6 10 8

Staff wages g8 (yuan) 65 80 70

Processing time u3 Production time g9 (min) 15 17 16

Tool change time g10 (s) 7 10 9

Auxiliary time g11 (s) 5 8 6

Rest time g12 (min) 5 3 4

Resource utilization u4 Information resources g13 (0.5,0.3,0.5,0.5,0.3) (0.3,0.3,0.3,0.1,0.3) (0.3,0.3,0.5,0.1,0.3)

Energy resources g14 (0.9,0.7,0.5,0.5,0.7) (0.5,0.5,0.5,0.7,0.3) (0.3,0.5,0.5,0.3,0.3)

Human resources g15 (0.9,0.7,0.5,0.5,0.7) (0.3,0.5,0.3,0.7,0.3) (0.3,0.5,0.5,0.3,0.5)

Material and equipment resources g16 (0.7,0.7,0.5,0.5,0.7) (0.7,0.5,0.5,0.7,0.7) (0.7,0.5,0.7,0.7,0.5)

Environmental impact u5 Noise pollution g17 (dB) 65 73 70

Electromagnetic radiation pollution g18 (0.7,0.7,0.5,0.7,0.7) (0.7,0.5,0.5,0.5,0.5) (0.5,0.5,0.7,0.5,0.3)

Solid–liquid–gas waste pollution g19 (0.5,0.7,0.5,0.5,0.3) (0.5,0.5,0.5,0.3,0.5) (0.5,0.3,0.5,0.3,0.5)

Table 4. Index weight coefficients

Index Weight vector PII CR
Consistency
check

u1 [0.4576,0.2597,0.1789,0.1038] 0.0611 <0.1, pass

u2 [0.1397,0.2799,0.4647,0.1156] 0.0571 <0.1, pass

u3 [0.5926,0.2012,0.1199,0.0863] 0.0869 <0.1, pass

u4 [0.1394,0.2816,0.4683,0.1107] 0.0378 <0.1, pass

u5 [0.6250,0.1365,0.2385] 0.0158 <0.1, pass
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index is calculated by formula (7) and (8).

yij =
aij���������∑n
i=1 a

2
ij

√ , (6)

Hi = −
∑n

j=1 fij ln fij
ln n

and fij =
(1+ yij)∑n
j=1 (1+ yij)

, (7)

qi = (1− Hi)
(m−∑m

i=1 Hi)
. (8)

After that, the weight pi determined by AHP are fitted with those
qi obtained by EW to get the combined weight coefficients ai, namely:

ai =
�����
piqi

√
∑n

i=1
�����
piqi

√ . (9)

Improved fuzzy operations to solve the problem

The conventional fuzzy operation method is improved by combin-
ing M(∧,∨) operator and M(⋅,⊕) operator to consider the effect of
each evaluation index and effectively avoid data loss. Then, we can
get a new fuzzy operator lM(^, _ )+ (1− l)M(·, ⊕ ), and the
fuzzy calculation is performed by the combined weight set A and
the membership fuzzy relationship matrix R to obtain the compre-
hensive evaluation vector, that is:

B = A · R = [a1, a2, · · · , an] ·

r11 r12 · · · r1m
r21 r22 · · · r2m

..

. ..
. . .

. ..
.

rn1 rn2 · · · rnm

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= [b1, b2, · · · , bm], (10)

bj = a
_airij∑n
i=1 _airij

+ (1− a)

∑n
i=1 airij∑m

j=1

∑n
i=1 airij

( ) , a [ [0, 1].

(11)
In order to further utilize the information provided by vector B

so as to reflect the actual situation comprehensively and objec-
tively, formula (12) is adopted for weighted-means calculation

to obtain the final comprehensive evaluation results:

B′ =
∑m

j=1 jbsj∑m
j=1 b

s
j
, (12)

where s = 1,2.
To sum up, the comprehensive evaluation process of low-

carbon process planning based on the digital twin is shown in
Figure 4.

Case study and discussion

In this paper, the machining process optimization of adapter parts
produced by an automobile plant is taken as an example to verify
the feasibility and effectiveness of this method.

Acquire relevant process information

The main view and A–A rotating section of the adapter part are
shown in Figure 5.

As can be seen from Figure 4, the machining process features of
this part mainly include cutting cylindrical surface, dual-end-face
machining, through-hole, and inner groove machining. The surface
roughness requirement of the dual-end-face is high, reaching Ra1.6,
and it has parallelism and flatness requirements of 0.02. During the
processing of through-hole and inner groove, verticality and con-
centricity requirements shall be reached to 0.02, and the dimen-
sional accuracy requirement is also high. According to the process
features and machining requirements of this part, different machin-
ing method and equipment can be utilized to achieve this. Now,
three kinds of machining process planning schemes to be evaluated
are given, as shown in Table 2.

Synthetically estimating and analysis

According to the machine tools and equipment used in processing
schemes and the consultation with processing staff, the evaluation
index values of each process planning scheme can be obtained,
wherein the quantitative indexes (processing quality, production
cost and processing time) can be obtained directly, qualitative
indexes (resource utilization and environmental impact) are graded
by five experts according to the proportional scale method (excel-
lent: 0.9, good: 0.7, general: 0.5, bad: 0.3, inferior: 0.1), and the rel-
ative weight of experts is (0.5,0.3,0.2,0.4,0.1), as shown in Table 3.

The data in Table 3 can be calculated according to formula (1)–
(4) to get the membership matrix of each type of indexes as follows:

R19×3 =
0.3333 0.3719 0.4215 0.3609 0.2975 0.3226 0.4255 0.3648 0.3546

0.3333 0.2975 0.3044 0.3383 0.3719 0.1935 0.2553 0.2964 0.3129

0.3333 0.3306 0.2740 0.3008 0.3306 0.4839 0.3191 0.3388 0.3325

⎡
⎢⎣

0.4000 0.4200 0.4255 0.4467 0.6867 0.6867 0.6200 0.3547 0.6733 0.5267

0.2667 0.3000 0.2553 0.2467 0.5400 0.4467 0.6333 0.3159 0.5667 0.4467

0.3333 0.2800 0.3191 0.2733 0.3667 0.3800 0.6467 0.3294 0.5133 0.4067

⎤
⎥⎦

T

.
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The judgment matrix of the first layer is constructed with
index U = (u1, u2, u3, u4, u5) as follows,

U =

1 2 3 3 1/2
1/2 1 3 2 2
1/3 1/3 1 1/2 1/3
1/3 1/2 2 1 1/2
2 1/2 3 2 1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦
.

The maximum eigenvalue λmax, the weight vectors of first layer
PI and CR can be obtained from the previous steps of AHP:

λmax = 5.3499, PI = 0.2825 0.2601 0.0753 0.1167 0.2654
[ ]

,
CR = 0.0781 < 0.1. It passes consistency verification.

Similarly, the judgment matrix of each index in u1 ~ u5 is
constructed to obtain the weight vector of the second layer
PII and test its consistency, and the results are shown in
Table 4.

Thus, the total weight coefficients of AHP can be obtained by
multiplying the above two weight coefficients, as follows:

P = 0.1293 0.0734 0.0505 0.0293 0.0363 0.0728 0.1209
[
× 0.0301 0.04460.0152 0.0090 0.0065 0.0163 0.0329
× 0.0547 0.0129 0.1659 0.0362 0.0633

]

The data in Table 3 are normalized according to formula (6) to
obtain the judgment matrix Y:

Fig. 6. Weight coefficient of each indicator.

Y =
0.5774 0.5112 0.4351 0.5287 0.6389 0.4867 0.4243 0.5200 0.5406

0.5774 0.6390 0.6024 0.5640 0.5111 0.8111 0.7071 0.6400 0.6126

0.5774 0.5751 0.6693 0.6345 0.5750 0.3244 0.5657 0.5600 0.5766

⎡
⎢⎣

0.4616 0.4472 0.7071 0.7268 0.7245 0.7433 0.5773 0.5407 0.6677 0.6260

0.6594 0.7155 0.4243 0.4499 0.5488 0.4730 0.5773 0.6072 0.5463 0.5759

0.5934 0.5367 0.5657 0.5191 0.4171 0.4730 0.5773 0.5822 0.5058 0.5259

⎤
⎥⎦

T

.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

https://doi.org/10.1017/S0890060422000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060422000105


According to formula (7) and (8), the entropy weight Q can be
obtained as follows:

Fig. 7. Results of different evaluation methods.

Q =
0.0401 0.0402 0.0405 0.0402 0.0402 0.0416

0.0406 0.0402 0.0401 0.1956 0.1174 0.0406 0.0405

0.0407 0.0406 0.0401 0.0402 0.0403 0.0402

⎡
⎢⎣

⎤
⎥⎦.
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The above two weight coefficients are fitted according to formula
(9) to get the combined weight coefficient A, as shown in Figure 6.

A= 0.0475 0.1191 0.0345 0.0819 0.0325 0.0721 0.0264
[

0.1317 0.04470.0153 0.0089 0.0066 0.0280 0.0191 0.0551

0.0117 0.1663 0.035 0.0635
]
.

According to formula (11) and (12), the final comprehensive
evaluation results are as follows: B = [ 0.3648 0.3104 0.3247 ].

In order to compare with the results of traditional evaluation
methods, the analysis results of three evaluation methods, that
is, the maximum membership principal evaluation with analytic
hierarchy process (MMPEAHP), the maximum membership
principal evaluation with entropy weight (MMPEEW), and the
improved comprehensive evaluation (ICE) proposed in this
paper, are summarized in Figure 7.

From Figure 6, among the subjective weight coefficient
obtained by AHP, the weights of g1, g6, g7, g17 are relatively
large, while the weights of g11, g12, g16 are relatively smaller
than others. Among the objective weight coefficient obtained by
EW, the weights of g10, g11 are larger than others, and the rest
tends to be consistent. This is determined by the characteristics
of the two methods themselves, which lead to the difference in
evaluation results. The combined weight coefficients obtained
by weight correction effectively improve the larger or smaller
weight coefficient calculated separately by AHP and EW method,
so that the combined weight coefficients are basically between the
weights determined by AHP and EW methods. The combined
weight calculation method fully combines the advantages of
these two methods and can avoid the result deviation caused by
insufficient or inaccurate original data.

In Figure 7, it can be seen that scheme 1 is the best among the
three methods, indicating that this scheme is feasible. The
MMPEAHP highlights the role of the maximum influential
index, and its evaluation results tend to be conservative; the
MMPEEW balances the effects of each evaluation index and
makes the evaluation results more reasonable. From the compre-
hensive evaluation results, the feasibility of scheme 3 is the sec-
ond, and that of scheme 2 is the worst. Therefore, under the
conditions of meeting the machining equipment and production
capacity, the scheme 1 should be preferred for machining this
product, which can give full play to the advantages of centralized
processing of computer numerical control equipment to ensure
machining accuracy and improve production efficiency, while sav-
ing resources consumption and reducing carbon emissions.
Thereby, it can reduce environmental pollution and promote the
development of traditional manufacturing in the green and low-
carbon direction. Through practical verification, the evaluation
method adopted in this paper is consistent with the actual produc-
tion situation and has certain application and promotion value.

At the same time, the relevant parameters of optimal solution
obtained from process planning evaluation are brought into the
plant software for simulation, which can observe the feasibility
and availability of manufacturing resources in real time, as
shown in Figure 8. This process helps planners visually under-
stand and predict manufacturing capability, production cost, pro-
cessing time, and production bottlenecks of the selected solution;
it also facilitates planners to visualize the decision-making to bet-
ter understand the optimal results and promote continuous opti-
mization of the production process.

Conclusion

The comprehensive evaluation of machining process planning is
important to reduce resource consumption, environmental

Fig. 8. Example of process planning evaluation interfaces.
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pollution in the manufacturing process, and promote low-carbon
manufacturing. When facing unpredictable disturbing events in
process planning, digital twin severs as a tool to effectively fuse
physical space and virtual space, providing a new way for the
dynamic assessment of process planning. Therefore, in this
work, we present a comprehensive evaluation method for multi-
process planning schemes oriented to digital twin technology.
The main contributions of this paper are concluded as follows.

1) Based on the diversity of process planning schemes, a multi-
level process planning evaluation system is established with
19 evaluation indicators from five aspects, and a comprehen-
sive evaluation method for low-carbon process planning
scheme oriented to digital twin is constructed.

2) After the index data are normalized by the polarized data pro-
cessing method, combination weight of each index is deter-
mined through the hierarchical entropy weight method, and
the evaluation and analysis of multi-process schemes are car-
ried out according to the improved fuzzy operation rules.

3) Three alternative process planning schemes of an automobile
part are employed as an example to verify the feasibility of
this approach. The results demonstrate that it can obtain an
optimal scheme of economical and environmental benefits,
which meets the long-term development needs of enterprises.

In future work, several following issues are worth to be further
considered to improve the practicability of this method:

1) To construct a more comprehensive digital model for dynamic
evaluation of process planning schemes. This model can con-
tinuously accumulate design and manufacturing process infor-
mation, which is easy to be improved and reused.

2) Real-time acquisition of machining status data (such as
machining parameter information, machine tool information,
and real-time data), which is the basis of dynamic evaluation
and decision-making, and is also beneficial to the virtual-real
interaction of physical data and virtual data in the production
process.

3) To optimize and improve the process parameters according to
the real-time evaluation results, which could reduce carbon
emissions in the manufacturing process. As well as to optimize
the proposed method to enhance its adaptability for delicate
parts. In addition, the proposed method could be extend to
other domains, for example, assembly process planning evalu-
ation, casting process planning evaluation, etc.
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