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We investigate the statistical properties of Lagrangian tracers transported by a
time-correlated compressible renewing flow. We show that the preferential sampling
of the phase space performed by tracers yields significant differences between
the Lagrangian statistics and its Eulerian counterpart. In particular, the effective
compressibility experienced by tracers has a non-trivial dependence on the time
correlation of the flow. We examine the consequence of this phenomenon on the
clustering of tracers, focusing on the transition from the weak- to the strong-clustering
regime. We find that the critical compressibility at which the transition occurs is
minimum when the time correlation of the flow is of the order of the typical
eddy turnover time. Further, we demonstrate that the clustering properties in
time-correlated compressible flows are non-universal and are strongly influenced
by the spatio-temporal structure of the velocity field.
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1. Introduction
The dynamics of tracers in turbulent flows has important applications in a variety of

physical phenomena, ranging from the dispersion of atmospheric pollutants (Csanady
1973) to the transport of plankton in the oceans (Abraham 1998). Moreover, the
motion of tracers is intimately related to the mixing properties of turbulent flows,
and therefore determines the statistics of passive fields such as temperature in a
weakly heated fluid or the concentration of a dye in a liquid (Falkovich, Gawȩdzki &
Vergassola 2001). The last fifteen years have seen a renewed interest in the Lagrangian
study of turbulence thanks to the development of new experimental and numerical
particle-tracking techniques (Pandit, Perlekar & Ray 2009; Toschi & Bodenschatz
2009).

Several of the qualitative properties of tracer dynamics in turbulent flows have
been understood by means of the Kraichnan (1968) model, in which the velocity is a
homogeneous and isotropic Gaussian field with zero correlation time and power-law
spatial correlations. Under these assumptions, the separations between tracers form a
multi-dimensional diffusion process with space-dependent diffusivity, the properties
of which have been studied analytically (Falkovich et al. 2001; Cardy, Falkovich
& Gawȩdzki 2008). In particular, in the smooth and incompressible regime of the
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Kraichnan model, tracers behave chaotically and spread out evenly in the fluid. If the
velocity field is weakly compressible, the Lagrangian dynamics remains chaotic, but
tracers cluster over a fractal set with Lyapunov dimension 1<DL < d, where d is the
spatial dimension of the fluid (Le Jan 1984, 1985; Chertkov, Kolokolov & Vergassola
1998). The Lyapunov dimension decreases as the degree of compressibility increases;
furthermore, the density of tracers exhibits a multifractal behaviour in space, which
indicates the presence of strong fluctuations in the distribution of tracers within the
fluid (Bec, Gawȩdzki & Horvai 2004). Finally, if the degree of compressibility of the
Kraichnan model exceeds a critical value, all the Lyapunov exponents of the flow
become negative and tracers collapse onto a point-like fractal with DL= 0. This latter
regime only exists if d 6 4 (Chertkov et al. 1998) and is known as the regime of
strong compressibility.

In nature, compressible flows are not only found for large values of the Mach
number. An example of a low-Mach-number compressible flow is given by the
velocity field on the free surface of a three-dimensional incompressible flow
(Sommerer & Ott 1993; Cressman et al. 2004). Furthermore, at small Stokes
numbers, the dynamics of inertial particles in an incompressible flow can be
assimilated to that of tracers in an effective compressible velocity field (Maxey
1987; Boffetta et al. 2007). Compressible flows like those mentioned above have
a non-zero correlation time. In this respect, the Kraichnan model is not realistic,
and quantitative discrepancies may be expected between the theoretical predictions
and the experimental and numerical observations. In a numerical simulation of a
turbulent surface flow, Boffetta et al. (2004) have found that DL does decrease as a
function of the degree of compressibility, in accordance with the prediction of the
Kraichnan model. However, the transition from the weak- to the strong-clustering
regime occurs at a larger degree of compressibility compared to the Kraichnan
model. This phenomenon is counter-intuitive, because the level of clustering would
be expected to increase when the correlation of the flow is non-zero. Thus, the study
by Boffetta et al. (2004) raises the questions of the interplay between compressibility
and temporal correlation in turbulent flows and of the degree of universality of
the weak–strong clustering transition – for further studies on clustering in turbulent
surface flows, see Schumacher & Eckhardt (2002), Boffetta, Davoudi & De Lillo
(2006), Vucelja, Falkovich & Fouxon (2007), Ducasse & Pumir (2008), Larkin
& Goldburg (2010), Larkin, Goldburg & Bandi (2010), Lovecchio, Marchioli &
Soldati (2013) and Perez-Munuzuri (2014). The investigation of the universality
of this phenomenon is particularly interesting in the light of previous findings of
non-universal transport properties in random compressible flows for passive scalar
fields (Elperin et al. 2000).

For inertial particles, the effect of the temporal correlation of the flow on the
Lagrangian dynamics has been studied analytically in the following one-dimensional
cases: for a velocity gradient described by the telegraph noise (Falkovich et al. 2007)
or by the Ornstein–Uhlenbeck process (Wilkinson 2011) and for a velocity field
given by a Gaussian potential with exponential correlations (Gustavsson & Mehlig
2013a). In the case of tracers in compressible flows, Chaves et al. (2003) have
studied two-particle dispersion in Gaussian self-similar random fields. Falkovich &
Martins Afonso (2007) have calculated the Lyapunov exponent and the statistics
of the stretching rates for a one-dimensional strain described by the telegraph
noise. Gustavsson & Mehlig (2013b) have obtained the Lyapunov exponents of a
two-dimensional random flow in the limits of short and long correlation times; the
solenoidal and potential components of the velocity were assumed to be Gaussian
random functions with exponential spatio-temporal correlations.
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In this paper, we undertake a thorough study of the effects of temporal correlations
on tracer dynamics in a compressible random flow. We consider a compressible
version of the two-dimensional renewing flow, which consists of a random sequence
of sinusoidal velocity profiles with variable origin and orientation. Each profile
remains frozen for a fixed time; by changing the duration of the frozen phase, we
can vary the correlation time of the flow and examine the effect on clustering. The
renewing flow, in its original incompressible version, has been successfully applied to
the study of the kinematic dynamo (Zel’dovich et al. 1984; Gilbert & Bayly 1992),
chaotic mixing (Pierrehumbert 1994; Antonsen et al. 1996; Young 1999; Elperin et al.
2000; Thiffeault, Doering & Gibbon 2004; Alexakis & Tzella 2011), inertial-particle
dynamics (Elperin et al. 2002; Pergolizzi 2012) and polymer stretching (Musacchio &
Vincenzi 2011). The properties of this model flow allow us to fully characterise the
Lagrangian statistics of tracers as a function of the degree of compressibility and for
a wide range of correlation times. We show that, in a time-correlated compressible
flow, even single-time Lagrangian averages can differ considerably from their Eulerian
counterparts. Furthermore, we demonstrate that the properties of clustering depend
not only on universal parameters such as the degree of compressibility and the Kubo
number, but also on the specific spatial and temporal properties of the velocity field.
In particular, we show that a crucial role is played by the spatial distribution of the
stagnation points.

The rest of the paper is organised as follows. In § 2, we introduce the compressible
renewing flow and describe its Eulerian properties. In § 3, we compare the Lagrangian
and Eulerian statistics of tracer dynamics as a function of the degree of compressibility
and of the correlation time of the flow. Section 4 describes the fractal clustering of
tracers in the weakly compressible regime and the weak–strong clustering transition.
Section 5 concludes the paper by discussing the non-universal character of the weak–
strong clustering transition.

2. Compressible renewing flow

We consider the following velocity field u= (ux, uy) on a periodic square box Ω =
[−L/2, L/2]2:{

ux =U
√

2(1−C) cos(ky+ φy)+U
√

2C cos(kx+ φx),

uy = 0,
2nT 6 t< (2n+ 1)T (2.1)

and{
ux = 0,
uy =U

√
2(1−C) cos(kx+ φx)+U

√
2C cos(ky+ φy),

(2n+ 1)T 6 t< 2(n+ 1)T.

(2.2)
Here n ∈ N, k = 2π/L, U =√〈u2〉 is the root-mean-square (r.m.s.) velocity and C =
〈(∇ · u)2〉/〈‖∇u‖2

F〉 is the degree of compressibility of the flow. Here, ‖ · ‖F is the
Frobenius norm and 〈·〉 denotes a spatial average over the domain Ω . Note that 0 6
C6 1; C= 0 corresponds to an incompressible flow, and C= 1 to a gradient flow. The
angles φx and φy are independent random numbers uniformly distributed over [0, 2π]
and change randomly at each time period T .

The velocity field defined in (2.1) and (2.2) is a sequence of randomly translated
sinusoidal profiles, each of which persists for a time T; the velocity is alternately
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FIGURE 1. (Colour online) Spatial distribution of tracers in the compressible renewing
flow for C= 1/4 and (a) Ku= 0.1 and (b) Ku= 10. Each plot shows the positions of 105

tracers. For Ku = 10, the distribution of tracers mirrors the structure of the flow, which
consists of periodic channels and of regions where transport is inhibited by the stagnation
lines.

oriented in the x and y directions. The renewing flow is in principle non-stationary,
because the values of the velocity at two different times are either correlated or
independent depending on whether or not the two times belong to the same frozen
phase. However, it can be regarded as stationary for times much longer than T
(Zel’dovich et al. 1984). The temporal statistics of the flow is characterised by the
correlation function:

FE (t)≡ 〈u(x, s+ t) · u(x, s)〉E
U2

=
{

1− t
T
, t 6 T,

0, t> T.
(2.3)

Here 〈·〉E denotes a space–time Eulerian average: 〈·〉E ≡ T−1L−2
∫ T

0

∫
Ω
· ds dx. The

correlation time of the flow is: TE ≡
∫ T

0 FE (t) dt = T/2. A dimensionless measure of
the correlation time is given by the Kubo number Ku ≡ TUk; Ku is proportional to
the ratio of TE and the eddy turnover time of the flow.

The position of a tracer evolves according to the following equation:

Ẋ(t)= u(X(t), t). (2.4)

Figure 1 shows the distribution of tracers in the weakly compressible regime. The
transition from the regime of weak compressibility to that of strong compressibility
occurs when the maximum Lyapunov exponent of the flow becomes negative. In this
case, the flow is no longer chaotic and tracers are attracted to a point-like set. To study
this transition, it is useful to consider the set of stagnation points of the flow, in which
u = (0, 0). Tracers indeed tend to accumulate in the neighbourhood of these points.
From (2.1) and (2.2), we deduce that the set of stagnation points of the renewing
flow consists of the two lines

y=±1
k

arccos
(√

C
1−C

cos(kx+ φx)

)
− φy

k
+ 2πm, (2.5)
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FIGURE 2. (Colour online) Velocity profile of the renewing flow for (a) C=0, (b) C=1/4
and (c) C= 1/2. The thick solid grey lines (red online) are the portions of the stagnation
lines where ∇ · u< 0.

if the velocity is given by (2.1), or

y=±1
k

arccos
(√

1−C
C

cos(kx+ φx)

)
− φy

k
+ 2πm, (2.6)

if the velocity is given by (2.2). In (2.5) and (2.6), m∈Z is such that (x, y)∈Ω . The
stagnation lines are shown in figure 2 for some representative values of the degree
of compressibility. If C= 0, the flow consists of parallel periodic ‘channels’ of width
L/2. If 0<C< 1/2, the stagnation lines form barriers that block the motion of tracers
over a portion of the domain whose size increases as C approaches 1/2; the width
of the periodic channels shrinks accordingly. Finally, if 1/2 6 C 6 1, the stagnation
lines divide the domain into regions that are not linked by any streamline. For these
values of C, there are no periodic trajectories, and if Ku is sufficiently large, all tracers
collapse onto the stagnation lines. We conclude that the transition from the regime of
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FIGURE 3. (Colour online) (a) Ratio of the r.m.s. Lagrangian and Eulerian velocities as
a function of the Kubo number Ku and of the degree of compressibility C of the flow.
(b) Ratio of the Lagrangian and Eulerian correlation times of the velocity as a function
of C and Ku.

weak clustering to that of strong clustering must occur for C 6 1/2. However, the
critical value of the degree of compressibility depends on Ku.

3. Lagrangian versus Eulerian statistics
The properties of the flow introduced in § 2, namely the r.m.s. velocity, the degree

of compressibility and the correlation function, are of an Eulerian nature. If the flow
is compressible and has a non-zero correlation time, the Lagrangian counterparts of
the aforementioned quantities may be different. Indeed, tracers are attracted towards
the stagnation points and hence do not sample the phase space uniformly.

We define the r.m.s. Lagrangian velocity as uL ≡
√〈u2(X(s), s)〉L , where u= |u|

and 〈·〉L is a Lagrangian average over both the random trajectory X(s) and time.
Figure 3(a) compares u2

L and its Eulerian counterpart U2 for different values of Ku
and C. The plot includes 51 values of C between 0 and 1/2, and 31 values of Ku
ranging from 10−1 to 102. For each pair (Ku, C), we have computed u2

L by solving
(2.4) for 102 tracers and for an integration time t = 2× 103 T (to integrate (2.4), we
have used a fourth-order Runge–Kutta method). At C= 0, uL is the same as U for all
values of Ku, because tracers explore the phase space uniformly. Likewise, at Ku= 0
the Eulerian and the Lagrangian statistics coincide independently of the value of C.
By contrast, for C 6= 0 and Ku 6= 0, uL < U because tracers are attracted towards
the stagnation lines, where u= 0. The ability of the stagnation points to trap tracers
strengthens with increasing C and Ku; hence uL eventually approaches zero.

The Lagrangian correlation function of the velocity is defined as

FL (t)≡ 〈u(X(s+ t), s+ t) · u(X(s), s)〉L
u2

L

. (3.1)

The associated Lagrangian correlation time is TL ≡
∫ T

0 FL (t) dt. If the flow is
incompressible (C = 0) or if it is decorrelated in time (Ku = 0), then TL = TE

(figure 3b). If both C and Ku are non-zero, TL is smaller than TE , and the ratio
TL /TE decreases as Ku or C increase (figure 3b). Again, this behaviour can be
explained by considering that a tracer is attracted towards the stagnation points,
where u = 0, and hence its velocity decorrelates from the velocity it had at the
beginning of the period. As Ku and C increase, a larger fraction of tracers get
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FIGURE 4. (Colour online) (a) Ratio of the Lagrangian and Eulerian correlation times of
the velocity as a function of Ku for C= 1/4 and C= 1/2. The inset shows the Lagrangian
correlation time rescaled by (Uk)−1 as a function of Ku for C = 1/2. (b) Lagrangian
correlation function of the velocity for Ku= 0.1, C= 1/4, Ku= 10, C= 1/4 and Ku= 10,
C= 1/2.

close to the stagnation points, and therefore the decorrelation is faster. The inset of
figure 4(a) also shows that, for C close to 1/2, TL is proportional to T for small
values of Ku, whereas it saturates to a value proportional to the eddy turnover time
for large values of Ku. Indeed, after that time most of the tracers have reached a
stagnation point, and their velocities have completely decorrelated.

Figure 4(b) shows that, for small values of Ku, FL (t) is the same as FE (t)
irrespective of the value of C. However, at large Ku, not only the Lagrangian
correlation time of the velocity but also the functional form of FL (t) varies with C.

The degree of compressibility experienced by tracers also depends on Ku and C
and differs from its Eulerian value if Ku 6= 0 and C 6= 0. Let us define the Lagrangian
degree of compressibility as CL ≡ 〈(∇ · u)2〉L /〈‖∇u‖2

F〉L . Then, CL >C for all non-
zero values of Ku and C, because tracers spend more time in high-compressibility
regions. For fixed Ku, the increase in compressibility is an increasing function of C,
whereas for fixed C it is maximum when Ku is near to unity and vanishes in both
the small- and the large-Ku limits (figure 5a). The non-monotonic behaviour of the
Lagrangian compressibility as a function of Ku is due to a peculiar feature of the
model flow considered here. The stagnation lines (2.5) and (2.6) towards which the
tracers are attracted do not coincide with the regions where the local compressibility
of the flow is maximum, i.e. the lines ky + φy = mπ for 2nT 6 t < (2n + 1)T and
kx + φx = mπ for (2n + 1)T 6 t < 2(n + 1)T . Therefore, in the long-correlated limit
the preferential sampling of the regions of strong compressibility is reduced.

4. Fractal clustering
The spatial distribution of tracers within a fluid can be characterised in terms of the

Lyapunov dimension (e.g. Sommerer & Ott 1993),

DL =N +

N∑
i=1

λi

|λN+1| , (4.1)

where λ1 > λ2 > · · · > λd are the Lyapunov exponents of the flow and N is the
maximum integer such that

∑N
i=1 λi > 0 (d denotes the dimension of the flow). Three
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FIGURE 5. (Colour online) (a) Increase in compressibility multiplied by 100, (CL −C)×
100, as a function of Ku and C. (b) Maximum Lyapunov exponent of the compressible
renewing flow as a function of Ku and C.

different regimes can be identified. If the flow is incompressible (
∑d

i=1 λi= 0), tracers
spread out evenly within the fluid (DL = d). In the weakly compressible regime
(
∑d

i=1 λi< 0 and λ1> 0), tracers cluster over a fractal set (1<DL< d). In the strongly
compressible regime (

∑d
i=1 λi < 0 and λ1 < 0), tracers are attracted to a point-like set

(DL = 0). The transition from the regime of weak compressibility to that of strong
compressibility occurs when λ1 changes sign.

For the smooth d-dimensional Kraichnan (1968) flow, the Lyapunov exponents can
be calculated exactly (we remind the reader that in the Kraichnan model the velocity
field is Gaussian, delta-correlated in time, and statistically homogenous and isotropic).
The Lyapunov exponents are λi = D{d(d − 2i + 1) − 2C[d + (d − 2)i]}, where i =
1, . . . ,d, C is defined as in § 2, and D >0 determines the amplitude of the fluctuations
of the velocity gradient (Le Jan 1984, 1985). Thus, for d= 2, the Lyapunov dimension
of the smooth Kraichnan model is D0

L = 2/(1 + 2C) and the weak–strong clustering
transition occurs at C= 1/2. In time-correlated flows, the prediction of the Kraichnan
model is recovered in the small-Ku limit (Boffetta et al. 2004; Gustavsson & Mehlig
2013b).

In this section, we study how the weak–strong clustering transition depends on Ku
in the compressible renewing flow. To compute the Lyapunov exponents, we have used
the method proposed by Benettin et al. (1980). We have set the integration time to
t= 106 for all values of Ku and C in order to ensure the convergence of the stretching
rates to their asymptotic values.

The maximum Lyapunov exponent decreases with increasing C (figure 5b). Its
behaviour as a function of Ku is different in the weakly compressible and strongly
compressible regimes. For small values of C, λ1 is maximum for Ku near to unity,
which signals an increase in chaoticity when the correlation time of the flow is
comparable to the eddy turnover time. By contrast, for values of C near to 1/2, λ1 is
minimum at Ku≈ 1, in accordance with the fact that the Lagrangian compressibility
is maximum for these values of the parameters (figure 5). We also note that if Ku
is near to unity, λ1 becomes negative for C< 1/2; hence the weak–strong clustering
transition occurs at a lower degree of compressibility compared to the short-correlated
case.

Analogous conclusions can be reached by studying the behaviour of DL= 1− λ1/λ2
(figure 6). For fixed Ku, an increase in the Eulerian compressibility yields an increased
level of clustering. The behaviour as a function of Ku is not monotonic and depends
on the value of C. When Ku is near to unity, the level of clustering is minimum if C
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FIGURE 6. (Colour online) (a) Lyapunov dimension DL as a function of Ku and C. The
region in which DL = 0 is coloured in white in the plot. (b) Lyapunov dimension DL
rescaled by its value at Ku= 0, D0

L, as a function of Ku and C.

is small and is maximum if C is near to 1/2. Furthermore, DL vanishes for values
of C smaller than the critical value of the short-correlated case. The most important
deviations of DL from the Ku = 0 prediction are observed for values of Ku greater
than unity (figure 6b).

5. Conclusions
We have studied the Lagrangian dynamics of tracers in a time-correlated compressible

random flow as a function of the degree of compressibility and the Kubo number.
The use of the compressible renewing flow has allowed us to examine a wide area
of the parameter space (Ku, C). We have shown that, in compressible random flows
with non-zero correlation time, Lagrangian correlations differ significantly from their
Eulerian counterparts, because tracers are attracted towards the stagnation points and
therefore do not sample the phase space uniformly. This fact influences the spatial
distribution of tracers within the fluid. In particular, in both the small- and large-Ku
limits, the critical degree of compressibility for the weak–strong clustering transition
is the same as for a short-correlated flow. By contrast, when the correlation time of
the flow is comparable to the eddy turnover time, a smaller degree of compressibility
is required for the transition to occur. The non-monotonic behaviour of the critical
degree of compressibility is a consequence of the fact that the stagnation points do
not coincide with the points in which the compressibility is maximum. This behaviour
is very different from that observed by Gustavsson & Mehlig (2013b) in a Gaussian
velocity field with exponential spatio-temporal correlations. In that flow, the critical
degree of compressibility indeed decreases monotonically as a function of Ku and
tends to zero in the large-Ku limit, i.e. the weak–strong clustering transition is more
and more favoured as Ku increases.

The comparison of our results for intermediate values of Ku with those by Boffetta
et al. (2004) reveals yet another difference. In the compressible renewing flow, the
clustering is reduced compared to the small-Ku case if the compressibility is small,
but it is enhanced if the compressibility is large. This behaviour is the opposite of
that found in the turbulent surface flow (figure 7). Moreover, in the renewing flow,
the critical degree of compressibility is less than or equal to 1/2 for all values of Ku;
in the surface flow, it is significantly greater (figure 7). In the light of our findings,
it would be interesting to examine the distribution of the stagnation points of the
surface flow considered by Boffetta et al. (2004) and understand how it influences
the statistics of clustering.
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FIGURE 7. (Colour online) Lyapunov dimension DL as a function of C for the Kraichnan
model (solid curve; black) and for the compressible renewing flow with Ku= 0.1 (dotted
curve; red online) and Ku = 3.64 (dashed curve; blue online). The square symbols are
from the direct numerical simulation of a turbulent surface flow by Boffetta et al. (2004).

In conclusion, the differences between our findings and those obtained in
different flows demonstrate that the properties of tracer dynamics in time-correlated
compressible flows are strongly non-universal, to the extent that flows with comparable
C and Ku can have an opposite effect on clustering. In particular, the level of
clustering depends dramatically on the peculiar structures of the velocity field towards
which tracers are attracted.
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