
        

High-speed manipulation by using parallel wire-driven robots
Sadao Kawamura†, Hitoshi Kino†† and Choe Won†††

SUMMARY
A new type of a parallel wire-driven robot is proposed in
order to reach ultra-high speed. The driving principle of
parallel wire systems is described. Since wires can only pull
and not push on an object, at least n+1 wires are needed in
order to move the object in a n-dimensional space. In this
paper, taking account of the effect of such redundancy on
actuation, the motion stability in wire length coordinates is
analyzed by using a Lyapunov function. Using “Vector
Closure”, it is proven that the hand position and orientation
converge to the corresponding desired values and the
internal force also converges to the desired one. Moreover,
by making good use of  non-linear elasticity of parallel wire
driven robots, it is claimed that the internal force arising
from redundant actuation can effectively reduce vibration
when the high-speed robot stops at desired points.  As a
result, ultra-high speed with more than 40 g(g:gravitational
acceleration) can be attained by using relatively small
actuators.

KEYWORDS: Parallel wire-driven robot; High speed; Stability
analysis; Non-linear elasticity

1. INTRODUCTION
Since robots work in place of humans in many fields, it
might be natural to design a robot manipulator which has a
similar serial link structure to human arms. However, if we
desire to exceed human motion ability, for example, ultra-
high speed, ultra-high precision and so on, it is not
necessary to employ a human-like structure. A serial-link
structure like human arms must support the mass of the arm
itself in addition to pay load, i.e. actuator power must
support and move the robot itself. Therefore, even if large
actuators are utilized, it is very difficult to realize high speed
motions. As a result, a very large and heavy robot is
designed.1 Furthermore, as regards the position accuracy of
robots, it is well known that a serial-link structure has a
disadvantage that joint angle errors are accumulated in the
series.

To avoid such difficulties, a parallel link structure was
proposed. In a parallel link structure, all actuators are placed

on the base of the robot. Therefore, each actuator does not
need to support or drive the mass of other actuators. As a
result, relatively small robots whose actuators are also small
can generate high speed motions. Moreover, since joint
angle errors are not accumulated, high positioning is
achieved.2,3 However, the parallel-link structure still suffers
from mass problems of the links because the stiffness of
each link must be assured in order to reduce vibration.

In this paper, we propose a new type of parallel robot
using wires instead of links. The mass of moving part of the
proposed robot is extremely small because the mass of wires
can be negligible in comparison with links. Therefore,
relatively small motors are able to generate high accelera-
tion and high speed. However, wires can only pull but not
push on the object. This case is similar to the problem of
multi-fingered grasping, where the fingers can apply only
pushing forces on the object. Hence, it is necessary to
control the internal forces in the wires, as well as the forces
acting on the end effector.

Such parallel wire-driven robots have been already
proposed. Higuchi et al. investigated the mechanism of the
parallel wire-drive system and showed some experimental
results using a two-dimensional robot.4 Osumi et al.
developed a crane to move heavy objects by using the
parallel wire mechanism.5 However, the effect of the parallel
wire-drive system on high speed motion has not been made
clear. Moreover, it has not been mathematically proven that
the position and the orientation of the parallel wire-driven
robots converge to desired values.

In this paper, the driving principle of the wire-driven
robot is analyzed at first. Next, kinematics and dynamics of
the parallel wire-driven robots are described. Then we
provide a mathematical proof to guarantee a motion
convergence to a desired position and orientation. A
Lyapunov function is introduced to prove the motion
convergence. Unlike serial link robots, the convergence
proof cannot be directly derived from the previous work6

because of redundant actuation. We point out that the
convergence proof is completed by using a result which is
obtained from “Vector Closure”.7 In practice, the actuator
unit including wire has elasticity which generates vibration
in many cases. To reduce vibration, an effective method
which uses the internal force among wires is proposed based
on analysis with non-linear elasticity.  Finally, the effective-
ness of the proposed methods in this paper is demonstrated
through some experimental results in which a parallel wire-
driven robot with seven wires is used.  

2. DRIVING PRINCIPLE

2.1. Vector Closure
In this paper, we consider parallel wire-driven robots as
shown in Figure 1 (FALCON-7). An object or end-effector
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is suspended by wires (tendons). However, since wires can
generate only tension, redundant actuation is necessary.
This feature is similar to that of multi-finger robots. In fact,
the concept “Vector Closure” which was mentioned in the
research of multi-finger robots plays a very important role in
the research of parallel wire-driven robots.7 In general,
Vector Closure is expressed in the following way:

Vector Closure. In an n-dimensional space, a set of vector
V is a Vector Closure if and only if V has at least n+1
vectors (v1 v2 . . . vn+1) satisfying the following two condi-
tions.

(1) Each set of n vectors in n+1 vectors is linearly
independent.

(2) A vector b=(b1b2 . . . bn+1)
T exists, which satisfies

Vb=On+1

i=1

vibi =0 (1)

where each element of the vector b has the same sign
(positive or negative), i.e.

bi >0 (for any i) or bi <0 (for any i).

Here, let us define wire vectors wi in order to make clear the
relation between Vector Closure and parallel wire driven
robots. As shown in Figure 2, the wire vector wi is given by

wi =F pi

ri 3pi
G, (2)

where a vector pi denotes a directional vector, ri means a
vector between the center of gravity on the object and the
connected point of the wire. The mark 3 represents a vector
product. When the wire tension vector and the resultant force
acting on the object are set at t=(t1t2 . . . tm)T and
f=( f1 f2 . . . fn)

T, respectively, the force relation is expressed by

f=Wt, (3)

where the matrix W denotes a wire matrix which is defined by

W=[w1w2 . . . wm]. (4)

If we regard the vector wi and the ti as the vector vi and bi, the
Vector Closure conditions mean that each wire tension remains
positive and any resultant force vector can be generated. In
other words, the conditions to make a resultant force vector
with an arbitrary amplitude and direction are given by those of
the Vector Closure. From this result, it is easy to understand
that at least n+1 wires are necessary to realize the motion with
n degrees of freedom.  

2.2. Driving force and internal force
As seen in the previous section, the relation between
resultant force f on the object and the wire tension t is
represented by Equation (3). Since the wire number must be
larger than that of degrees of freedom, the wire matrix is not
square. Therefore, a pseudo-inverse matrix is used to obtain
the inverse relation instead of using the usual inverse matrix.
The inverse relation to calculate the wire tension from the
resultant force is given by

t=W + f+(I2W+ W)ke (5)

where the matrix W + is a pseudo-inverse matrix of the
matrix W. The second term of the right hand side in
Equation (5) denotes an internal force among the wires. The
internal force does not produce the driving force for the
object, but produces tension among the wires. It can be set
arbitrary values as the vector ke is changed.

In previous work with parallel wire-driven robots, the
internal force was not utilized effectively. Therefore, it has
been considered that the redundancy is a disadvantage of
this system. In this paper, however, we will propose a useful
method to reduce vibration of the object using such
redundant actuation. Since the internal force will play an
important role in the proposed method, the calculation of
the internal force is explained here. In general, we may
determine a vector ke which makes the second term of the
right hand side in Equation (5) positive, because large

Fig. 1. Structure of a Parallel Wire-Driven Robot (FALCON-7). Fig. 2. Definition of Coordinate Systems.
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positive values of the second term give positive values in the
wire tension t even though the first term is negative. From
a theoretical point of view, extremely large values can be set
as elements of the vector ke. In practice, however, the values
of the vector ke are bounded due to saturation of the actuator
power. Therefore, we must determine the internal force
vector taking account of such actuator saturation. In the case
that the wire number is n+1 to realize motion with n
degrees of freedom, a convenient way to determine the
internal force vector (I2W + W)k e is introduced by the
Vector Closure. Equation (1) of the Vector Closure condi-
tion gives

Wt=On+1

i=1

witi =0. (6)

Then, we obtain

[t1t2 . . . tn]
T =2N21wn+1tn+1, (7)

where the matrix N denotes [w1w2 . . . wn]. If the motion area
satisfied the conditions of the Vector Closure, each wi vector
is linearly independent. Therefore, non-singularity of the
matrix N is guaranteed. Then, we may denote the internal
force vector, as follows:

t =F2N21wn+1

1 Gtn+1. (8)

If we set tn+1 a positive value, all other elements become
positive, because the Vector Closure condition is satisfied.

3. KINEMATICS AND DYNAMICS

3.1. Kinematics and inverse kinematics
In this section, kinematics and inverse kinematics are
explained. Since each wire length is controlled, we consider
the coordinates transformation between wire length coor-
dinates and task-oriented coordinates, such as Cartesian
coordinates. Let us consider the coordinates transformation
by an example of FALCON-7, as shown in Figure 1. In
Figure 1, qi is the i-th wire length. The ends of three wires
are attached to one end of a rod and the ends of the
remaining four wires are fixed to the other end of the rod
where the robot hand is located; the other end of each wire
is connected to the guiding pulley of an actuator unit.

Kinematic calculation is easily obtained in the following
manner: At first, we set the points P, Q and R, as seen in
Figure 1, and calculate the position of the point R from the
following equation:

qi = i R2Ai i (i=1, 2, 3) (9)

where point Ai denotes a starting point of wire in an actuator
unit and “ i i ” means Euclidean norm. Next, the points P
and Q are determined by

d2 = i R2P i , (10)

qi = i P2Ai i (i=4, 5), (11)

d3 = i R2Q i , (12)

qi = i Q2Ai | (i=6, 7). (13)

Finally, since the positions of the three points P, Q and R
are obtained, the position and orientation of the end-effector
or hand are calculated. The kinematics from wire length
coordinates to the task oriented coordinates has been
achieved.

Inverse kinematics is much easier than kinematics. Thus,
from the position and the orientation of the end-effector, we
obtain the positions of points R, P and Q. By just
substituting these values into Equations (9), (11) and (13),
the wire lengths are obtained. Generally speaking, kine-
matics is very difficult in parallel mechanism. However, in
a parallel wire mechanism, kinematics is easy because some
wires start from the same point.

3.2. Dynamics
We assume that the mass of wire and resistance by the air
can be ignored, because they are very much smaller than
those of other mechanical parts. Moreover, we suppose that
this system satisfies the conditions of a Vector Closure at
any time. Under such assumptions, the actuators dynamics
is represented by

Aq̈+Bq̇+t=u (14)

where,
q=(q1, q2, . . . , q7)

T: wire-length vector,
q̇: velocity of vector q,
q̈: acceleration of vector q,
A=diag.(a1, a2, . . . , a7): actuator inertia matrix (737),
B=diag.(b1, b2, . . . , b7): actuator viscous friction coeffi-
cient matrix(737),
t=(t1, t2, . . . , t7)

T: wire tension vector,
u=(u1, u2, . . . , u7)

T: motor torque vector.

The matrices A and B include the inertia and the viscosity of
gears. On the other hand, the rod dynamics is expressed by

Mf̈+h+d=f (15)

where

M=FmE3 0
0 IG,

m: rod mass,
E3: unit matrix (333),
I: inertia tensor in a base coordinates S0 (333),
h=(0T,(v3 (Iv))T )T: (631)
v: angular velocity vector (331),
ḟ=(ṙT,vT )T: (631),
r=(x,y,z)T: position of the center of gravity (331),
d=(0,0, mg, 0,0,0) T: (631),
g: acceleration of gravity (631),
f: force and torque vector (631).
As seen in Figure 2, the wire tension t produces the motion
of the rod or the robot hand. Hence, the force and torque
vector f is given by

f=Wt (16)
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where W=[w1, w2, . . . , w7] denotes a wire matrix. In Figure
2, the other coordinates S1 are set at the center of gravity.
Therefore, we consider that the position of the center of
gravity and the orientation of the coordinates S1 are
controlled.  

4. CONTROL

4.1. Control in wire length coordinates
Here, we employ a PD feedback control law in the wire
length coordinates. Like in parallel link mechanism, inverse
kinematics of parallel wire mechanism is easily  calculated.
As the result, a desired wire length vector qd, which
corresponds to a desired position and an orientation fd of
the task oriented coordinates S0 are obtained. By using the
desired vector qd, the input u is given by

u=Kp(qd 2q)2Kvq̇+p+pg (17)

where Kp(737) and Kv(737) denote feedback gain matri-
ces. The term p(731) denotes an internal force vector
which satisfies

Wp=0. (18)

Here, it is important to note that the vector p does not move
the rod but causes internal forces. The final term pg(731) is
added in order to compensate for the gravitational force.
The vector pg must satisfy 

Wpg =d. (19)

In the following sections, we investigate whether or not the
wire length vector q converges to the desired one qd.

4.2. Property on wire length in Vector Closure space
As regards the stability analysis of the control scheme in
wire length coordinates, it cannot be proved that the wire
length converges to the desired one by only using the
previous Lyapunov method.6 Therefore, other ideas are
needed. Here we will show the important properties of wire
lengths in Vector Closure as regards the stability analysis.
It assumes that n+1 wires are utilized for n D.O.F.(n≤6),
and the system always satisfies  the condition of Vector
Closure.

It is obvious that the second condition in Vector Closure
can be rewritten into

2W1
21w1 =

h1

h2

A
hn

(20)

hi >0 for any i (1≤i≤n)

where the matrix W1 =[w2w3 . . . wn+1] (n3n).8 From the first
condition in Vector Closure, the matrix W1 is nonsingular.
Here, it is important to note that the element h i (1≤i≤n) is
uniquely determined by the wire vectors wi. Therefore, an
arbitrary vector x in null space of the matrix W which
satisfies Wx=0 leads to the following relation:

2W21
1 w1 =[h 1h 2 . . . hn]

T

=Fx 2

x 1

x 3

x 1

. . .
x n+1

x1
GT

(21)

where x=[x1 x2 . . . x n+1]
T, if x1 ±0. The case of x1 =0 is

included in the trivial solution x=0 because of the first
condition in Vector Closure. This means that each element
of an arbitrary vector x has the same sign. Hence, we obtain
the following result:

RESULT 1
If n+1 vectors wi(1≤ i≤ n+1) in a n-dimensional
space are Vector Closure, vectors x=[x1 x2 . . . xn+1]

T

which belong to the null space of the matrix W=[w1w2

. . . wn+1] are given by

CASE(1) x i =0 for any i,
or 
CASE(2) x i >0 for any i,
or 
CASE(3) x i <0 for any i.

On the other hand, from the Principle of Virtual Work, we
obtain

dq=W T df (22)

where dq and df denote minute changes of the wire length
coordinates and task-oriented coordinates.

The vector b which is given by the Vector Closure
condition yields  

bT dq=bT W T df=0 (23)

because Wb=0. By integrating Equation (23), we have 

On+1

i=0
Eqie

qis

bi (q)dqi =0 (24)

where qis and qie denote start position and end position of
each element respectively. Here, it is important to note that
each element of the vector b changes depending on q but
keeps the same sign (positive or negative) as long as it
satisfies the Vector Closure conditions. Hence, it is con-
cluded that the vector qe 2qs (qe =(q1e . . . qn+1e)

T, qs =(q1s . . .
qn+1s)

T ) must contain both positive elements and negative
elements in order to satisfy Equation (24). In other words,
we obtain the following result.

RESULT 2
If two vectors qe and qs are in a Vector Closure space,
the difference vector qe 2qs must contain both positive
and negative elements.

4.3. Stability proof
Now, we are in a position to prove the stability of parallel
wire-drive robots. Consider a Lyapunov function, which is
similar to Arimoto's Lyapunov function6 as follows:
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V=
1
2
q̇TAq̇+

1
2
ḟTMḟ

+
1
2

(qd 2q)TKp(qd 2q). (25)

The time derivation of the Lyapunov function V is given by

V̇= q̇TAq̈+ ḟTMf̈

+
1
2

ḟTṀḟ2 q̇TKp(qd 2q). (26)

By substituting Equations (14) and (15), we obtain 

V̇= q̇T(2Bq̇2t+u)+ ḟT(2h2d+f )

+
1
2
ḟTṀḟ2 q̇TKp(qd 2q).

Moreover, from Equations (16) and (17) the above equation
can be rewritten into

V̇= q̇T(2Bq̇2t+Kp(qd 2q)2Kvq̇+p+pg )

+ ḟT(2h2d+Wt) (27)

+
1
2
ḟTṀḟ2 q̇TKp(qd 2q).

Here we utilize the relation between q̇ and ḟ, and non-linear
characteristic as follows: 

q̇=W Tḟ, (28)

ḟT(
1
2
Ṁḟ2h)=0. (29)

From Equations (18), (19), (28) and (29), we obtain 

V̇=2 q̇T(B+Kv)q̇≤0. (30)

Finally, we know that the motion converges to a maximum
invariant set which satisfies V̇=0. In this case, since V̇=0
means q̇=0, from Equation (28) we have ḟ=0. Therefore,
from Equations (14)~(19), the maximum invariant set
denotes

WKp(qd 2q)=0. (31)

In general, the vector Kp(qd 2q) can have both a trivial
solution (Kp(qd 2q)=0) and a non-trivial solution
(Kp(qd 2q)±0), because of the non-square matrix W. In the
case of a non-trivial solution, the motion stops at some point
q0 which is not equal to the desired point qd. However, from
Result 1 and Result 2 we easily understand that the non-
trivial solution cannot exist. Hence, we conclude

q=qd (32)

as time t tends to infinity as long as the motion is within the
Vector Closure space. Moreover, from Equation (17) we
know

u=p+pg, (33)

as time tends to infinity.

4.4. Constant gravitational compensation
In the proposed control law, it may be too difficult to
calculate the gravitational compensation pg in real-time.
Instead of a real-time calculation for gravitational com-
pensation, a constant value which balances at the desired
point is useful. In this case, the input vector is given by

u=Kp(qd 2q)2Kvq̇+p+pgd, (34)

where the vector pgd(731) is constant gravitational com-
pensation which balances at the desired point. we obtain the
pgd as

pgd =
­f

­q * qd

T

d (35)

Considering another scalar function V*.

V*=
1
2

q̇TAq̇+
1
2
ḟTMḟ+

1
2

(qd 2q)TKp(qd 2q)+Q (36)

where 

Q=U(q)2U(qd)2pT
gd(q2qd), (37)

U(q) denotes the potential energy with the wire length
vector q. Moreover, note that Taylor's expansion of U(q) can
be expressed as

U(q)=U(qd)+
­U
­q * qd

(q2qd)+T, (38)

where the third term T of the right hand is assumed to be the
term greater than a square term. Now, we pay attention to be
the following relation: 

­U
­q * qd

T

=(
­U
­f

­f

­q * qd

)T =
­f

­q * qd

T

d=pgd. (39)

At last, from Equations (38) and (39) we know that Q=T.
Therefore, if eigenvalues of Kp are sufficiently large, V* can
become a part of a Lyapunov function. The time derivation
of V* is obtained in the exactly same manner in Equation
(30). Then motion convergence is guaranteed by the same
treatment from Equation (31) and Equation (32).

5. STIFFNESS OF PARALLEL WIRE DRIVEN
ROBOTS

5.1. Actuator unit
In the parallel wire systems, each wire is rolled by a pulley
which is driven by a motor with gears. One example of the
actuator unit which will be used in experiments with a high-
speed robot is shown in Figure 3. The D.C. servo motor
has 60 W capacity and a rotary encoder with resolution
1000 p/rev. The pulley and the gears are made of hard
plastic because the total inertia of the system should be
small in order to realize high acceleration. The pulley
diameter is 65 mm and the gear ratio is 1:3. The guiding
pulley is set to let each wire follow the direction of the end-
effector.
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Generally speaking, wires contain some elasticity, and
mechanical parts such as pulleys and gears also have
elasticity. It is natural to consider that the elasticity will
cause vibration in the motion control of robots. To find a
solution of the problem, we investigate the detail feature of
elasticity of wire-driven systems in the following section.

5.2. Nonlinear elasticity of parallel wire-driven robot
Of course, the elasticity of the wire itself was much
investigated in the research of wires. In the parallel wire-
driven robot systems, however, total elasticity including
pulleys and gears must be measured in order to consider
the vibration problem. The experimental system shown in
Figure 4 is used in order to measure the total elasticity. In
the measurement system, the actuator unit for high speed
robots explained in the previous section is utilized, and
we set wire length at 1 m. The gear of motor side is
mechanically locked. The load  for the wire and mech-
anical parts is increased by adding the weights. The
displacement of the weights is measured by a laser sensor
with a 50 micro-m resolution . The measurement result is
shown in Figure 5. As seen in Figure 5, there is hysteresis.
If it is assumed that the parallel wire-driven robot can move
and preserve the desired internal forces, we may consider
only loading-up path of the hysteresis in Figure 5. Even
though we restrict the loading-up path, it still contains non-
linearity. To represent the non-linearity of elasticity, we
introduce the following relation between displacement x
and force (load) f:

f=k1x+k2x
3. (40)

In the above model, the parameters k1 and k2 were estimated
at k1 =3.83103 N/m and k2 =5.03106 N/m3, respectively.

5.3. Internal force stiffness
In this section, we investigate how the non-linear elasticity
influences the total system of parallel wire-driven robots. At
first, let us consider a simple example as seen in Figure 6.
There two wires with non-linear elasticity including
mechanical parts are set and both wire have same coeffi-
cients k1 and k2. Since the original wire length is l0 and the
equilibrium state causes a wire length l1, the center point is
balanced with an internal force fint given by

fint =k1(l1 2 l0)+k2(l1 2 l0)
3. (41)

Here, it is easy to calculate the stiffness on the center point
(x=0, y=0, z=0) in the following way:

Kx =
­fx

­x * x=y=z=0

=2k1 +6k2(l1 2 l0)
2, (42)

Ky =
­fy

­y * x=y=z=0

=2k1

l1 2 l0

l1

+2k2

(l1 2 l0)
3

l1

, (43)

Kz =
­fz

­z * x=y=z=0

=2k1

l1 2 l0

l1

+2k2

(l1 2 l0)
3

l1

, (44)

where fx, fy, fz are forces in x-, y-, z-directions, and Kx, Ky, Kz

are stiffness coefficients in x-, y- and z-directions.

Fig. 3. An actuator.

Fig. 4. Experimental System.

Fig. 5. Elasticity of a Wire-Driven System.

Fig. 6. 1 D.O.F. Wire-Driven System Model.
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In the above equations, it is understood that the stiffness
of the center point for all direction (x-, y- and z-directions)
increases as the internal force fint becomes large. Moreover,
it should be noted that the stiffness in the x-direction is
much larger than those of y- and z- directions because the
difference l1 2 lo is 1022 m in the case that the wire lengh l1

is about 1 m. Now, we summarize the internal force
stiffness. As seen in Equations (42), (43) and (44), the
internal force stiffness is divided into two classes as
follows:

• internal force stiffness in the direction of the wire tension
(x-direction in Figure 6).

Fig. 7. High Speed Robot FALCON-7.

Fig. 8. Translational Range of FALCON-7.

Table I. Rotational Range of FALCON-7

Position x-axis y-axis z-axis
(x,y,z) [deg] [deg] [deg]

(500, 500,2500) ±25 ±45 ±45
(500, 500,2700) ±19 ±33 ±45
(500, 500,2300) ±35 ±59 ±45
(500, 700,2500) +41~24 +9~245 ±35
(500, 300,2500) +4~241 +9~245 ±35
(700, 500,2500) ±15 +30~253 ±30
(300, 500,2500) ±33 +53~230 ±30

Fig. 9. Step Response (Low Internal Force).

Fig. 10. Step Response (High Internal Force).
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• internal force stiffness in the perpendicular direction of
the wire tension (y- and z-directions in Figure 6).

About the two kinds of stiffness, it is important to note the
following facts.

(i) As explained in the simple case with two wires, the
former is dominant in the parallel wire-driven systems.

(ii) If the parameter k2 is equal to zero, the former does not
occur or linear springs cannot cause internal stiffness
in the direction of the wire tension. Even though the
parameter k2 is set to zero, the later exists.9 Therefore,
the internal force stiffness increases as the internal
force becomes large in both linear and non-linear
springs.

From the above results, we understand that the internal
force stiffness in the direction of the wire tension should
be effectively utilized to design parallel wire-driven
robots.  Moreover, it is noted that even if the value from the

internal force stiffness of the perpendicular direction of the
wire tension is small, it causes an increase of the total
stiffness.

6. EXPERIMENTAL RESULTS

6.1. High speed robot FALCON-7
A high speed robot FALCON-7(Fast Load Conveyance
robot with 7 wires) is designed. The schematic configura-
tion of the FALCON-7 ultra-high speed manipulator is
shown in Figure 7. This system utilizes seven wires to
achieve motion with six degrees of freedom. The gripper is
moved by another motor via one wire which goes inside of
the rod. The dimensions of the manipulator frame are
1.45 m31.45 m31.25 m. The wires are made of steel
0.54 mm diameter. The rod is made of duralumin, and has a
length of 1 m and a mass of 150 g. Another advantage of the
proposed configuration is that a larger motion range can be
obtained using the same motor and pulley, if longer wires
are used.

A translational motion range with fixed orientations of
the rod is shown in Figure 8. Table I lists the rotational
range for specified (x, y, z) positions. If a cubic motion
range is needed, we may use four wires to move the top of
the rod.

6.2. Experimental results
At first, internal forces at a start point and a desired point are
calculated through Equation (7). Next, constant gravita-
tional compensation vectors at the start point and the desired
point are obtained by Equation (35). The desired wire length
for each wire is determined based on the inverse kinematics
given by Equations (9)~(13). We used the control input
represented by Equation (17)

Now we show some experimental results utilizing the PD
feedback control law in wire length coordinates with a
constant gravitational compensation. For a representative
case, Figure 9 shows the z-directional motion under a low
internal force. In this case, the transient response of the
system is quite oscillatory. When the internal force is
increased, Figure 10 shows that the overshoot is eliminated
completely.

As shown in Figure 11 and Figure 12, the manipulator
attains a peak speed of about 13 m/s, and a peak accelera-
tion of 43 g. In this case, the rod is moved in the z-direction
over a distance of 0.325 m in a time interval of 0.08 s.

7. CONCLUSION
In this paper, we have proposed a high speed robot by using
a parallel wire-driven mechanism. The driving principle,
kinematics and dynamics of the parallel wire-driven robot
are described. Motion convergence using PD feedback
control in wire length coordinates has been proven with a
Lyapunov function and Vector Closure. Non-linear elasticity
of the parallel wire-driven robot has been investigated and a
method to reduce vibration has been proposed. By the
experimental results, it has been shown that ultra-high speed

Fig. 11. Velocity Signal.

Fig. 12. Acceleration Signal.

Wire-driven robots20

https://doi.org/10.1017/S0263574799002477 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002477


with more than 40 g(g:gravitational acceleration) and peak
velocities of 13 m/s can be attained without vibration, even
though relatively small D.C. motors are used. 
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