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Abstract. Numerical calculations are performed based on a set of equations that
describe the non-steady, nonlinear interactions between a moving body in space and
plasma. The results show that density cavitons and potential solitons are formed
owing to modulational instability if the envelope of the high-frequency modula-
tional field is sufficiently intense.

1. Introduction
When a conducting body moves through the ionosphere at mesothermal speeds,
complicated interactions occur between the moving body and the plasma around
it. Since many artificial vehicles have entered outer space, great interest has arisen
in the study of the effects of the interactions. Many experimental investigations
(Cairns and Gurnett 1991; Enloe et al. 1997; Keller et al. 1997) and theoreti-
cal studies (Liu 1969; Gurevich et al. 1969; Al’pert 1983; Li 1989; Biasca and
Wang 1995; Hastings 1995; Dobrowolny 1998) have been devoted to the effects
in the vicinity of a body moving through the ionosphere. In early theoretical stud-
ies, non-steady-state interaction was not considered for the purpose of simplic-
ity. This is a serious shortcoming. In the last 10 years or so, some works, includ-
ing several observations from space shuttle missions (Cairns and Gurnett 1991;
Biasca and Wang 1995; Enloe et al. 1997; Dobrowolny 1998) have concerned the
problems of current–voltage characteristics of a charged probe and density dis-
tribution in the plasma wake. Through an analysis of the momentum equation
of the plasma electrons, Dobrowolny (1998) derived a result that appears to be
consistent with recently acquired data on the current–voltage characteristics from
missions with tethered satellite systems when parameters were properly chosen.
In low Earth orbit, Enloe et al. (1997) obtained the current collection behavior
from flight experiments on charging hazards and wake studies using a highly nega-
tively biased probe that was placed in a plasma wake. Using a particle-in-cell (PIC)
code, Biasca et al. (1995) also investigated current collection of a highly negatively
biased probe in the wake region. However, they put emphasis on the influence of
the current–voltage characteristics for different axial probe positions and probe
potentials.
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To study the problems arising from the interactions between a moving body
and a plasma, investigators usually use the steady and linear method to treat
the interactions. Few of them introduce non-steady-state and nonlinear problems
into their studies. However, it is well known that a conducting body moving in
the ionosphere can excite plasma waves and plasma instabilities. In fact, a large-
amplitude solitary wave has been observed (Bakai et al. 1977). Since plasma waves
and plasma instabilities are typically non-steady-state and nonlinear problems,
it is important to consider non-steady-state and nonlinear effects in their study.
On the other hand, many vehicles have a ‘stealth’ characteristic that prevents
them from being detected by radar. However the density cavitons generated by
the interactions of plasma with vehicles cannot be concealed. ‘Stealth’ vehicles
can be traced by detecting the motion of the density cavitons if one knows the
characteristic of the density cavitons.

Since the characteristic dimension of a body moving in the ionosphere, which
is usually the order of one or a few meters, is much smaller than the mean free
path L(L > 102 m) of the particles, kinetic theory can be used to describe the pro-
cesses in the vicinity of a moving body. If the velocity of body V0 is mesothermal
which means that VTi � V0 � VTe (where VTi and VTe are the thermal velocities
of electrons and ions respectively), the equilibrium of electrons is very weakly dis-
turbed by the body, i.e. kinetic effects for electrons can be neglected. Hence, we
can use the hydrodynamical equations for electron description, and the ion distri-
bution function fi should obey the Vlasov equation. In addition, the quasineutral
approximation is valid because the directed kinetic energy is much larger than the
electrostatic potential energy due to the electric field effect, and in many of iono-
spheric dynamic problems of interest, the geomagnetic field effect is negligible (Liu
1969).

The interactions between a moving body in space and its highly rarefied plasma
environment are one of the basic problems in space plasma physics. A set of non-
steady, nonlinear equations that describe the interactions for the far wake in a self-
consistent manner was obtained by Li (1989). In this work, due to the complexity
of the equations, the effect of the ponderomotive force and the linear modulational
instability of a finite envelope have been discussed, although the effect of interac-
tion between a moving body and plasma also appears in the equations. Now, in
this paper, the coupling equations are solved numerically in the derivation of the
nonlinear evolution of modulational instability. At the same time, the pattern of
density cavitons is obtained.

This paper is organized as follow: In Sec. 2, based on the fluid equations for
electrons and the Boltzmann equation for ions, we obtain the non-steady-state,
nonlinear coupling equations that describe the interaction between a body in space
and the plasma in its wake. In Sec. 3 the non-steady-state and nonlinear coupling
equations are solved numerically in two dimensions with three field components.
Finally, Sec. 4 presents a discussion and conclusions.

2. Non-steady-state and nonlinear coupling equations
First, we write the essential steps in the derivation of the non-steady, nonlinear
coupling equations between the envelope of a high-frequency field and density dis-
turbance, which were obtained by Li (1989). The fluid equations for electrons and
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the Maxwell equations can be written as follows:

∂ne
∂t

+∇ · (neVe) = 0, (1)

∂Ve
∂t

+ (Ve ·∇)Ve =
e

me

(
E +

1
c

Ve × B
)
− γeTe
mene

∇ne, (2)

∇× E = −1
c

∂B
∂t
, (3)

∇× B = −1
c

∂E
∂t

+
4πe
c

+ (neVe − niVi), (4)

∇ · B = 0, (5)

where n and V are the density and velocity respectively, subscripts i and e represent
ions and electrons respectively, γe is the specific-heat ratio for electrons, and Te is
the temperature of electrons in energy units. The other symbols have their usual
meanings.

On the basis of the two-time-scale approximations (Li 1985), all field quantities
can be separated into fast-time-scale and slow-time-scale components, and in a
natural way we can assume that the average value of the fast time scale over the slow
time scale vanishes. In the far-wake region and on a slow time scale, electrons can
easily follow ions wherever ions go due to their small mass; so the quasineutrality
condition nes = nis = ns is valid. Finally, we have the amplitude transport equation
of the fast-varying field and the low-frequency disturbance equation for the electron
density from the above equations as follows (Li 1989):

2iωpe
∂

∂t
E + c2∇×∇× E +

δn

n0
ω2
peE− γeV 2

Te∇(∇ · E) = 0, (6)

(
∂2

∂t2
− γeV 2

Te∇2
)
δn

n0
=

e

me
∇2ϕ +

1
me
∇2
( |E|2

16πn0

)
, (7)

where ϕ is the low frequency electric potential. In order to obtain (6) and (7), we
have introduced a high-frequency modulational field as follows:

Ef = 1
2 [E(r, t)eiωt + c.c.], (8)

where the envelope E(r, t) is a slowly varying function over time. For transverse
plasmons, we have the dispersion relation ω2 = ω2

pe + k2c2, ωpe � kc. The group
velocity of transverse plasmons is much smaller than the light velocity. This con-
dition is used in (6) and (7). In addition, we have also used the following condition.

W =
|Ef |2

4πn0Te
6 1. (9)

For the low-frequency disturbance, we have

VTi�
Ω0

k
, Ω0 = Ω + k · V0 ≈ k · V0, (10)

where Ω is the frequency of the ion disturbance. Considering the above equation,
for the subsonic case, the first term on the left-hand side of (7) is much smaller
than the second term. So we can neglect it under the condition of a static limit.
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Equation (7) becomes
δn

n0
= −Ueff + eϕ

γeTe
, (11)

where

Ueff =
1

16πn0
|E|2 (12)

is the potential resulting from the high-frequency field. Equation (11) shows the
Boltzmann distribution of the electrons in the field, which is composed of the pon-
deromotive force and the electrostatic force. We should note that for the supersonic
case, (11) is not valid and we have to use (7) as a main equation.

On the other hand, in order to close (6) and (11), we have to study the influence of
the slowly varying field ϕ on the ion flow. Since the body’s velocity is greater than
the thermal velocity of the ions, a disturbance of the ions occurs basically because
of the interactions between the body and ions. In a coordinate system moving with
the body, the collisionless Boltzmann equation for the ion distribution is of the form

∂fi
∂t

+ V
∂fi
∂r
− ei ∂ϕ

∂r
∂fi
∂p

= Ai(r,V, t)δ(F ), (13)

where p is the momentum of ions, Ai is the interaction function between the body
and ions, the surface of the body is determined by the equation F (rs) = 0, and rs
is the radius of the body. Using the condition of a low-frequency disturbance (10),
the combination of (11) and (13) yields (Li 1989)

δn

n0
= − Ueff

γeTe + Ti
+

Ti
γeTe + Ti

Q, (14)

Q =
V 2

0 πR
2
0

V 2
T i2πz

2
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(
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2V 2
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x2 + y2

z2

)
, (15)

where the condition x� 0 and y� 0 have been used (Al’pert et al. 1965). Through
the substitutions

r̂ =
2
3
ωpe
cs
µr, τ =

2
3
µωpet, Ê =

√
3E

8
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me
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,
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3
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, α =

c2

3V 2
Te

, c2
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Te
mi

.

Equations (6) and (14) can be written as (Li 1989)

i
∂

∂t
Ê + α∇×∇× Ê−∇(∇ · Ê) + nÊ = 0, (16)

n = −|Ê|2 − 3
4µ

Te
γeTe + Ti

|V̂0|2 πR̂
2
0

2πẑ2 exp
(
− Te

2Ti
|V̂0|2x

2 + y2

z2

)
. (17)

Equations (16) and (17) describe the nonlinear coupling of interest to us between
the high-frequency field and density disturbance. Equations (16) and (17) are only
valid in the far-wake region under the condition of interaction W < 1. In (17),
the last term on the right-hand side is the effect of low-frequency potential, which
comes from the interaction between the moving body and ions. When a body with
velocity V0 that is much larger than the thermal velocity of ions moves, there is
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a change in the ion distribution behind the body. This change produces a low-
frequency electric potential. The influence of the electric potential is reflected in
this non-standard term.

3. Numerical results
The coupling equations (16) and (17) can be solved numerically in two dimensions
with three field components under the condition of a finite-amplitude transverse
wave. The purpose of the choice enables us to calculate all the field quantities with
the numerical simulation method. We use two dimensional FTCS (time forward-
difference and space central-difference method) as the numerical method. Mean-
while, the natural boundary conditions in the r direction, i.e. the field quantities
are zero when r̂ → ∞, are used in the numerical simulations. In the z direction
in the calculation, a periodic boundary condition has been used. In a cylindrical
coordinate system, the initial condition is chosen as

Ê(r̂, τ = 0) = −E0
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ẑ0
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(
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)
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)
exp

(
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ẑ0

)
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+
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[
2π
r̂0
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(

2πr̂
r̂0

)
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(
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)
+

1
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(
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r̂0

)
sech2
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exp

(
i
2πẑ
ẑ0

)
ez, (18)

Equation (18) represents a very slowly varying vector field (Zakharov 1984), and
has the form of traveling transverse wavepacket. The amplitude of the high-
frequency electric field radiated by an antenna has the form of a wavepacket.
Although (18) is not the same as the real electric field, it enables us to get more
realistic results because it has a similar form to the real electric field. In addition,
the choice of an initial wave field (18) can shorten the time of field collapse. On the
other hand, because the field has the property of axisymmetry, the initial condition
should be axisymmetric. Here, the case r = 0 should be excluded. In fact, (15) is
obtained under the condition r� 0, i.e. x� 0 and y� 0 in Cartesian coordinates
(Al’pert et al. 1965; Li 1989). The choice of the initial condition (18) is based on
the consideration of these facts. In (18), ẑ0 = 50 and r̂0 = 25 are the widths of the
wavepacket of the electric field. The initial condition satisfies the condition for a
transverse wave,∇ · Ê(r̂, τ = 0) = 0, and has |Ê|2max(τ = 0) = 2.99. The spatial range
of the numerical simulation is chosen as ∆ẑ = 50 and ∆r̂ = 25. Their dimensional
values are ∆z ≈ 40 m and ∆r ≈ 20 m. The dimensionless distance between the back
surface of the moving body and the simulation space is L̂0 = 15, which corresponds
to a dimensional value of about L0 = 12 m. The parameters of the moving body
and the ionosphere are chosen as V0 = 106 cm s−1, R0 = 100 cm, ne = 105 cm−3,
and Te = 3000 K (Al’pert et al. 1965). From the electron temperature, it is easy to
obtain the parameter α = 6.6 × 105 in (16). The evolution of the solution of (16)
and (17) with the initial condition (18) is shown in Fig. 1. In Fig. 1, we have used
the expressions τ = τn with δτ , step δτ = 0.000005 and the dimensionless quantity
W = |Ef |2/4πn0Te defined in (9), with n = δn/n0.
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Figure 1. For caption see facing page.

4. Discussion and conclusions
From Fig. 1(b), we can see that the collapses result in the formation of an elec-
tromagnetic soliton and the growth rate of the perturbation is proportional to the
electric field. This conclusion is qualitatively the same as the analytical prediction
of Li (1989). The distributions of the collapses of electric field and density cavitons
are shown in the figure. This distribution indicates that the growth rate of the
perturbation in the whole space of the numerical simulation is different and the
growth rates at the peaks of collapse and the density cavitons are larger.

In (17), the first term of the density disturbance on the right-hand side comes
from the ponderomotive force of the high-frequency field in the static limit. This
term indicates that the maximum disturbance of the density occurs at the location
where the intensity of the field is maximum. Meanwhile, (17) shows us that the
maximum value of the non-standard term is at the origin of the simulation region
and the values of other points that are away from this point decline rapidly. From
Fig. 1(a), we know that the effect of the non-standard term near the origin is at
first larger than the ponderomotive force term. With increasing time, the influence
of the ponderomotive force becomes more and more important. Figure 1(a) also
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Figure 1. Collapse evolution contours of density δn/n0 (a) and electric field
W = |Ef |2/4πn0Te (b).

tell us that the collapses of the field result in the formation of density cavitons
in the far-wake region. This is very useful, since the density cavitons can reveal
the trace of a ‘stealth’ vehicle. We can find the vehicle by detecting of the density
cavitons.

It can be seen from (16) that the density disturbance, the intensity of the field and
the derivative of the field can influence the collapse pattern. First, from Fig. 1(a)
we know that the most important part of the density disturbance comes from the
non-standard term. Although the value of the non-standard term is small and the
initial distribution of the electric field is determined by the initial condition, the
change in the derivative of the electric field produced by non-standard term is very
important. It can determine that the collapses are more likely start to occur near
the origin. Of course, this change contains the combined effect of the non-standard
term and the initial electric field. However, non-standard term is more important
for the formation of the collapse pattern. Figure 1(b) also proves this point.
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The numerical results show that the envelope field itself suffers collapse, leading
to localization of the field. This means that when time increases, the intensity of
field becomes stronger and stronger, and the range of the field is smaller and smaller
at the locations of collapse peaks. However, we should note that the numerical cal-
culation does not go on for ever. When the evolution time is larger than a certain
value, the field collapses rapidly. This leads to the formation of a very strong field
in which the condition W < 1 is not valid. This particular value of the evolution
time corresponds to τn = 19 in our calculation, and we stop our calculation there. In
addition, whenW > 1, stronger turbulent interactions occur between field and par-
ticles. The field energy will be transferred to the particles through the interactions.
Since the particle energy (i.e. kBTe) increases and the field energy decreases, W
will decrease until the condition W < 1 is satisfied again. The time of the stronger
turbulent interactions, compared with the weaker interaction, is very short. We do
not at present know the physical evolution process during the very short period.

Finally, we indicate that for a transverse plasma wave, because its group velo-
city is much smaller than the velocity of light, it is not easy for it to escape from
the source region. This enables the wave to collapse through interactions between
the wave and the particles. On the other hand, considering the above discussion,
the choice of initial condition (18) is not unique. The amplitude of any propaga-
ting transverse wave that is a slowly varying function of time can be chosen as
the initial condition if it satisfies the condition for a transverse wave. Different
initial conditions may lead to different locations of the collapse peaks (different
collapse patterns). The collapse velocity may be different – fast or slow. However,
the collapse tendency of the envelope field is similar. In addition, although the main
conclusions can be given in a two-dimensional subspace, the numerical simulations
that are obtained in three dimensions with three field components are more realistic
than the above results. However, it is very difficult to realize the simulation in a
three-dimensional space due to the great quantity of calculation required.

From the above studies, we arrive at the following conclusions:

(i) The motion of a body with antenna system in the ionosphere may directly ex-
cite electromagnetic solitons via modulational instability. The numerical results
agree with the observed results quoted by Bakai et al. (1977).

(ii) The density disturbance in the far wake represents also a kind of soliton of
evacuation, i.e. a density caviton, if the radiation from the antenna as a pump
wave source is sufficiently intense. From the distributions of the density caviton,
we can trace the moving body by observing the structure and intensity of the
density caviton in the far wake, although the body may be a ‘stealth’ vehicle.
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