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A database of transitional direct numerical simulation (DNS) realizations of a
supercritical mixing layer is analysed for understanding small-scale behaviour and
examining subgrid-scale (SGS) models duplicating that behaviour. Initially, the mixing
layer contains a single chemical species in each of the two streams, and a perturbation
promotes roll-up and a double pairing of the four spanwise vortices initially
present. The database encompasses three combinations of chemical species, several
perturbation wavelengths and amplitudes, and several initial Reynolds numbers
specifically chosen for the sole purpose of achieving transition. The DNS equations
are the Navier–Stokes, total energy and species equations coupled to a real-gas
equation of state; the fluxes of species and heat include the Soret and Dufour effects.
The large-eddy simulation (LES) equations are derived from the DNS ones through
filtering. Compared to the DNS equations, two types of additional terms are identified
in the LES equations: SGS fluxes and other terms for which either assumptions or
models are necessary. The magnitude of all terms in the LES conservation equations
is analysed on the DNS database, with special attention to terms that could possibly
be neglected. It is shown that in contrast to atmospheric-pressure gaseous flows,
there are two new terms that must be modelled: one in each of the momentum and
the energy equations. These new terms can be thought to result from the filtering
of the nonlinear equation of state, and are associated with regions of high density-
gradient magnitude both found in DNS and observed experimentally in fully turbulent
high-pressure flows. A model is derived for the momentum-equation additional term
that performs well at small filter size but deteriorates as the filter size increases,
highlighting the necessity of ensuring appropriate grid resolution in LES. Modelling
approaches for the energy-equation additional term are proposed, all of which may
be too computationally intensive in LES. Several SGS flux models are tested on an
a priori basis. The Smagorinsky (SM) model has a poor correlation with the data,
while the gradient (GR) and scale-similarity (SS) models have high correlations.
Calibrated model coefficients for the GR and SS models yield good agreement with
the SGS fluxes, although statistically, the coefficients are not valid over all realizations.
The GR model is also tested for the variances entering the calculation of the new terms
in the momentum and energy equations; high correlations are obtained, although the
calibrated coefficients are not statistically significant over the entire database at fixed
filter size. As a manifestation of the small-scale supercritical mixing peculiarities,
both scalar-dissipation visualizations and the scalar-dissipation probability density
functions (PDF) are examined. The PDF is shown to exhibit minor peaks, with
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particular significance for those at larger scalar dissipation values than the mean,
thus significantly departing from the Gaussian behaviour.

1. Introduction
Supercritical fluids are of great interest in extraction processes as well as in

propulsion devices such as advanced gas-turbine and diesel engines, and liquid rockets.
The performance of these devices depends on the efficiency of fluid disintegration and
turbulent mixing. As discussed in detail by Harstad & Bellan (2001), consistency with
single-species thermodynamics requires that a fluid be defined to be in a supercritical
state when it is at a thermodynamic pressure, p, or temperature, T , exceeding its
critical (subscript c) value pc or Tc (Prausnitz, Lichtenhaler & de Azevedo 1986);
therefore, in the supercritical regime there is no longer the possibility of a two-phase
(i.e. gas/liquid) region (Hirshfelder, Curtis & Bird 1964). For mixtures, both pc and Tc

depend on the composition. The present interest is in fluid mixtures at high pressures
that are supercritical for the pure species. Past the critical point of the fluid (where
material surfaces no longer exist), the disintegration of fluid jets displays an aspect that
Chehroudi, Talley & Coy (1999) call ‘fingers’ or ‘comb-like structures’ at transcritical
conditions, which have an increasingly gaseous appearance with increasing p. Similar
experimental evidence was produced by Mayer et al. (1996) and Mayer et al. (1998)
for O2 disintegration. For supercritical free N2 jets, the experiments of Oschwald &
Schik (1999) also highlighted sharp density profiles, indicating the occurrence of high
density gradients.

Results from direct numerical simulations (DNS) of temporal mixing layers under
supercritical conditions showed that regions of high density-gradient magnitude
(HDGM), akin to those in the experiments, exist in both pre-transitional (Miller,
Harstad & Bellan 2001) and transitional (Okong’o & Bellan 2002a; Okong’o,
Harstad & Bellan 2002) temporal mixing layers, arising both from the initial density
stratification and from mixing (Okong’o & Bellan 2004a). These DNS were conducted
using a real-gas equation of state for non-ideal mixtures in conjunction with realistic
transport properties and thermal diffusion (Soret and Dufour) effects. For modelling
fully turbulent supercritical flows at high pressures, large-eddy simulation (LES),
wherein only the large scales are simulated and the subgrid scales (SGS) are modelled,
at present seems more computationally achievable for practical systems than DNS,
which requires all turbulence scales to be resolved. The LES equations are derived
by applying a spatial filter to the DNS equations, leading to various unclosed terms,
including the SGS fluxes, which arise from filtering the convective terms. Given
the distinctive supercritical flow characteristics, it is of interest to inquire whether
LES models developed for compressible perfect-gas and incompressible flows can be
extended to real-gas non-ideal mixtures.

So far, LES of supercritical flows have been conducted with equations similar to
those for atmospheric-pressure gaseous flows; mathematically, these are the DNS
equations with the addition of SGS fluxes (Oefelein & Yang 1998; Zong et al.
2004; Oefelein 2005), for which primarily a Smagorinsky type of SGS flux model
(Smagorinksy 1993) was used. The strategy of the present study is to analyse, on an
a priori basis, DNS databases for transitional supercritical temporal mixing layers
(including those in Okong’o & Bellan 2002a; Okong’o et al. 2002) to inquire whether
the atmospheric-pressure equations previously used are still correct in the realm
of thermodynamically supercritical flows. We show here that under supercritical
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conditions requiring the utilization of a real-gas equation of state (EOS) (Harstad &
Bellan 2000; Okong’o & Bellan 2002a), the strictly low-pressure LES equations are
no longer valid as new significant terms arise from the filtering of the conservation
equations; these terms are directly associated with the HDGM regions observed
both in simulations and experimentally, meaning that the validity of the novel
terms extends to higher Reynolds number values than those in the transitional
databases. Noteworthy, because real-gas EOS are nonlinear, even small departures
from perfect-gas or ideal mixture (i.e. slight real-gas or non-ideal mixture) behaviour,
imparts departures from the atmospheric-pressure LES equations; this is the nature
of nonlinearity. We also show that, similar to atmospheric gaseous flow (Okong’o
& Bellan 2004b), the Smagorinsky model is a poor approximation of the SGS
fluxes, for which other models are found to be more successful. In § 2, the LES
governing equations are presented, and the unclosed terms that must be modelled are
identified. The databases are summarized in § 3, followed by the a priori analysis of
the database in § 4. The analysis includes assessment of the simplifying assumptions
for the unclosed terms that are not SGS fluxes and explicit modelling of the SGS
fluxes. The scalar dissipation, originating from small-scale mixing and contributing
overwhelmingly to the total dissipation (Okong’o & Bellan 2002a), is analysed as an
example of phenomena that must be captured in LES by the SGS models, further
justifying our proposed modelling approach. Finally, § 5 contains the conclusions and
areas of future endeavour.

2. Governing equations for large-eddy simulations
The LES equations are derived from the DNS set by spatial filtering. The filtering

operation is defined as

ψ(x) =

∫
V

ψ( y)G(x − y) d y (2.1)

where G is the filter function and V is the filtering volume; G has the property that
for a spatially invariant function, the filtered function is identical to the unfiltered
one. For compressible flows, Favre filtering is used, defined as ψ̃ = ρψ/ρ̄ where ρ is
the density. The variance of two quantities ϕ and θ is defined as ϑ(ϕ, θ) = ϕθ − ϕθ or

ϑ(ϕ̃, θ̃ ) = ϕ̃θ − ϕ̃θ̃ , depending on the filtering. The governing equations are written for
the conservative variables φ = {ρ, ρui, ρet , ρYα} rather than the primitive variables
ψ(φ) = {ui, p, Xα, T } or ψ ′(φ) = {ui, v, Xα, T }, where ui is the velocity component in
the xi-direction, et is the total energy, v is the molar volume, and Yα and Xα are the
mass fraction and mole fraction of species α.

2.1. DNS equations

The conservation equations for a mixture of N species are

∂ρ

∂t
+

∂ρuj

∂xj

= 0, (2.2)

∂(ρui)

∂t
+

∂(ρuiuj )

∂xj

= − ∂p

∂xi

+
∂σij

∂xj

, (2.3)

∂(ρet )

∂t
+

∂(ρetuj )

∂xj

= −∂(puj )

∂xj

− ∂qIKj

∂xj

+
∂(σijui)

∂xj

, (2.4)
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∂(ρYα)

∂t
+

∂(ρYαuj )

∂xj

= −∂jαj

∂xj

, (2.5)

where t is the time, σ is the viscous stress tensor, qIK is the Irwing–Kirkwood
(subscript IK) heat flux, e = et − eK is the internal energy, eK = uiui/2 is the kinetic
energy, and jα is the species-mass flux of species α. Also,

N∑
α=1

Yα = 1,

N∑
α=1

jαj = 0. (2.6)

Here, the Einstein summation is used for roman indices (i, j, k), but not for Greek
indices (α, β). The thermodynamic variables are functions of the flow field φ:

e = e(φ), p = p(φ), T = T (φ), h = h(φ), (2.7)

where p, T and the enthalpy h = e + p/ρ are computed from the EOS; likewise, the
fluxes are functions of φ:

σij = σij (φ), jαj = jαj (φ), qIKj = qIKj (φ) . (2.8)

For a Newtonian fluid,

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, Sij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.9)

where µ is the viscosity and Sij is the rate-of-strain tensor.
The species-mass and heat fluxes originate in the fluctuation-dissipation theory (see

Keizer 1987) which is consistent with non-equilibrium thermodynamics, converges
to kinetic theory in the low-pressure limit and relates fluxes and forces from first
principles. For a binary-species system (light species 1, heavy species 2), the species-
mass and heat fluxes, including Soret and Dufour effects (Harstad & Bellan 2000),
are

j 2(ψ) = BY (ψ) ∇Y2 + BT (ψ)∇T + BP (ψ) ∇p, (2.10)

qIK (ψ) = CY (ψ) ∇Y2 + CT (ψ) ∇T + CP (ψ)∇p, (2.11)

where

BY ≡ −ρDαD, CY ≡ −ρDαDαIKRuT
m

m1m2

, (2.12)

BT ≡ −αBKY1Y2

ρD

T
, CT ≡ −λ − ρDαIKαBKRu

m

m1m2

Y1Y2, (2.13)

BP ≡ −ρD
Y1Y2

RuT

m2m1

m
Λ, CP ≡ −ρDαIKΛY1Y2. (2.14)

with

αBK = αIK − αh, αh =
1

RuT

m2m1

m
Θ, (2.15)

Λ ≡
(

1

m2

∂v

∂X2

− 1

m1

∂v

∂X1

)
, Θ ≡

(
1

m2

∂(mh)

∂X2

− 1

m1

∂(mh)

∂X1

)
, (2.16)

αD ≡ 1 + Xα

∂ ln γα

∂Xα

, α = 1 or 2, (2.17)
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where λ is the thermal conductivity with limp→0 λ = λKT as discussed in Harstad &
Bellan (2000) where the subscript KT denotes the kinetic theory, Ru is the universal
gas constant, m is the mixture molar mass, and v = m/ρ. For species α, mα is the
species-α molar mass, Xα = mYα/mα , and γα is the fugacity. Furthermore, αIK is the
IK form of the thermal diffusion factor, αBK is the Bearman–Kirkwood (BK) form of
the thermal diffusion factor, D is the binary diffusion coefficient and αD is the mass
diffusion factor.

2.2. LES equations

After filtering, and assuming that filtering and differentiation commute (the top-hat
filter is used here for which the operations commute except near boundaries), the
governing equations become

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj

= 0, (2.18)

∂ρ̄ũi

∂t
+

∂ρuiuj

∂xj

= − ∂p̄

∂xi

+
∂σ̄ij

∂xj

, (2.19)

∂ρ̄ẽt

∂t
+

∂ρetuj

∂xj

= −∂puj

∂xj

− ∂q̄IKj

∂xj

+
∂σijui

∂xj

, (2.20)

∂ρ̄Ỹ α

∂t
+

∂ρYαuj

∂xj

= −
∂jαj

∂xj

, (2.21)

ẽt = ẽ + ũiui/2,

N∑
α=1

Ỹ αj = 1,

N∑
α=1

jαj = 0. (2.22)

With φ denoting the DNS flow field, the filtered flow field is now denoted as φ, and
one can define functions of φ:

e(φ), p(φ), T (φ), h(φ), σij (φ), jαj (φ), qIKj (φ), (2.23)

which have the same functional form as in the DNS and that in general differ from
their filtered counterparts

ẽ = ρe(φ)/ρ̄, p̄ = p(φ), T̄ = T (φ), T̃ = ρT (φ)/ρ̄, h̃ = ρh(φ)/ρ̄, (2.24)

σ̄ij = σij (φ), jαj = jαj (φ), q̄IKj = qIKj (φ). (2.25)

Defining the SGS fluxes,

τij = ϑ(ũi , ũj ), ζj = ϑ(h̃, ũj ), ηαj = ϑ(Ỹα, ũj ) with

N∑
α=1

ηαj = 0 (2.26)

the filtered governing equations are

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj

= 0, (2.27)

∂ρ̄ũi

∂t
+

∂ρ̄ũi ũj

∂xj

= −∂p(φ)

∂xi

+
∂σij (φ)

∂xj

− ∂

∂xj

(ρ̄τij )

− ∂

∂xi

[
p̄ − p(φ)

]
+

∂

∂xj

[σ̄ij − σij (φ)], (2.28)
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Species m (g/mol) Tc (K) pc (MPa)

H2 2.016 33.0 1.284
He 4.003 5.19 0.227
N2 28.013 126.3 3.399
O2 31.999 154.6 5.043
C7H16 100.205 540.2 2.74

Table 1. Pure species properties.

∂ρ̄ẽt

∂t
+

∂ρ̃ẽt ũj

∂xj

= −∂p(φ)ũj

∂xj

− ∂qIKj (φ)

∂xj

+
∂σij (φ)ũi

∂xj

− ∂

∂xj

(ρ̄ζj ) − ∂

∂xj

(ρ̄κj )

− ∂

∂xj

{[p̄ − p(φ)]ũj } − ∂

∂xj

[q̄IKj − qIKj (φ)] +
∂

∂xj

[σijui − σij (φ)ũi], (2.29)

∂ρ̄Ỹ α

∂t
+

∂ρ̄Ỹ αũj

∂xj

= −∂jαj (φ)

∂xj

− ∂

∂xj

(ρ̄ηαj ) − ∂

∂xj

[jαj − jαj (φ)], (2.30)

where κj = ϑ(ẽK, ũj ). These equations contain several unclosed terms that cannot
be directly computed from the filtered flow field. To compute these terms, two
closure approaches are pursued: explicit models for the SGS fluxes, and simplifying
assumptions for the remaining terms. In particular, it is noted that even if, for example,
p̄ � p(φ), this may not mean that the corresponding term in equation (2.28) is small
because that term is ∇[p̄ − p(φ)] which may vary differently from [p̄ − p(φ)]. The
assumptions and models are assessed in § 4 on a DNS database, described below, of
a binary non-reacting temporal mixing layer.

3. Description of DNS database
The database consists of supercritical temporal mixing layer simulations of

binary (N = 2) mixtures, namely, heptane/nitrogen (HN), oxygen/hydrogen (OH)
and oxygen/helium (OHe). The pure species properties are listed in table 1. For each
layer, species 1 and 2 initially reside in the upper and lower stream, respectively.

A detailed description of the DNS methodology has been given by Miller et al.
(2001) and Okong’o & Bellan (2002a) for HN layers and by Okong’o, Harstad &
Bellan (2002) and Okong’o & Bellan (2003) for the OH layers. The conservation
equations were numerically solved using a fourth-order explicit Runge–Kutta time
integration and a sixth-order compact scheme with eighth-order filter for spatial
derivatives (Kennedy & Carpenter 1994); the filtering (applied at interior points
only) is required to maintain numerical stability for long-time integrations but
since it acts only on the shortest waves that can be resolved on the grid, it
does not act as a turbulence model allowing under-resolved computations. The
computations were parallelized using three-dimensional domain decomposition and
message passing, and an efficient parallel tridiagonal solver (Muller & Scheerer 1991).
The configuration, initial and boundary conditions, EOS, and transport property
relations are summarized below.

3.1. Configuration, initial and boundary conditions

The temporally developing mixing layer configuration is depicted in figure 1 for HN,
as an example, showing the definition of the streamwise (x1), cross-stream (x2) and
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⎯ x1

x
3

→

←

x2⎯
⎯

→

δω,0

↓

↑

U1

U2

Heptane

ρ2, T2, Y2

Nitrogen

ρ1, T1, Y1

Figure 1. C7H16/N2 mixing-layer configuration.

spanwise (x3) coordinates. The layer is not symmetric in extent in the x2-direction,
to accommodate the larger layer growth on the lighter fluid side. The free-stream
density (ρ1 or ρ2) is calculated for each pure species at its free-stream temperature (T1

or T2) and at the initial uniform pressure (p0). The vorticity thickness is defined as
δω(t) = �U0/(∂〈u1〉/∂x2)max where 〈u1〉 is the (x1, x3) planar average of the streamwise
velocity, and �U0 = U1 −U2 is the velocity difference across the layer. U1 and U2 were
chosen with the intent of keeping the ultimate vortex stationary in the computational
domain (Miller et al. 2001; Papamoschou & Roshko 1988); the specification of the
convective Mach number, Mc,0, determines �U0. Given the initial streamwise velocity
profile u1 based on U1 and U2, (∂〈u1〉/∂x2)max and hence δω,0 ≡ δω (0) are calculated.
The initial momentum ratio |ρ2U2|/ |ρ1U1| ∼ 5 for all HN and OH simulations
and ∼3.5 for the OHe simulation for which the choice of initial conditions that
matched in temperature those of an OH simulation prevented reaching the same
value of |ρ2U2|/|ρ1U1|. The specified value of the initial flow Reynolds number,
Re0 = (1/2)(ρ1 + ρ2)�U0δω,0/µR , chosen so as to enable the resolution of all relevant
length scales, is then used to calculate µR, which scales µ. The grid spacing is an
approximately linear function of Re0.

The simulations are started with error-function profiles for the mean streamwise
velocity, mass fraction and temperature, upon which are imposed spanwise and
streamwise vorticity perturbations (Moser & Rogers 1991, 1993) of strengths F2D and
F3D respectively, whose streamwise (λ1) and spanwise (λ3) wavelengths are λ1 = Cδω,0

and λ3 = 0.6λ1, where C = 7.29 is the most unstable wavelength for incompressible
flow. For the simulations reported here, listed in table 2, other values of C obtained
from stability analyses (Okong’o & Bellan 2003) were also used: C = 4.57 for the
shortest (estimated) unstable wavelength for the HN layer, or C corresponding to the
most unstable wavelength for O2 layers. The grid is chosen for all simulations so as
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Run HN400 HN500 HN600 HN800 OH750 OH550 OH500 OHe600

Species 2 C7H16 C7H16 C7H16 C7H16 O2 O2 O2 O2

Species 1 N2 N2 N2 N2 H2 H2 H2 He
T2; T1 (K) 600;1000 600;1000 600;1000 600;1000 400;600 400;600 235;287 235;287
ρ2/ρ1 12.88 12.88 12.88 12.88 24.40 24.40 24.51 12.17
p0 (atm) 60 60 60 60 100 100 100 100
Re0 400 500 600 800 750 550 500 600
λ1/δω,0 7.29 7.29 7.29 4.57 7.29 10.35 10.61 9.31
L1 (m) 0.200 0.200 0.200 0.125 0.200 0.284 0.284 0.255
L2 (m) 0.232 0.232 0.232 0.148 0.200 0.284 0.284 0.255
L3 (m) 0.120 0.120 0.120 0.075 0.120 0.170 0.170 0.153
�x (10−4m) 10.71 8.36 6.97 5.23 5.77 8.19 8.39 7.36
F2D; F3D 0.1;0.05 0.1;0.05 0.1;0.05 0.1;0.05 0.1;0.05 0.1;0.025 0.1;0.025 0.05;0.0125
t∗
tr 150 155 135 100 150 270 290 220
Rem,tr 972 1250 1452 1258 1507 1907 1772 2004

Table 2. Simulation parameters for supercritical temporal mixing layer database. λ1

is the streamwise perturbation wavelength and F2D and F3D are the streamwise and
spanwise perturbation amplitudes. All simulations have Mc.0 = 0.4, L1 = 4λ1 and L3 = 0.6L1.
�x = max(�x1,�x2,�x3).

to accommodate four wavelengths in the streamwise and spanwise directions, and the
evolution of the layer is meant to encompass roll-up and two pairings of the four
initial spanwise vortices into an ultimate vortex.

The boundary conditions are periodic in the streamwise and spanwise directions,
and of outflow type for real gas in the cross-stream direction, as derived by Okong’o
& Bellan (2002b). The outflow type conditions are essential to maintain numerical
stability since the initial perturbation causes large pressure waves that must be allowed
out of the domain with minimal reflection.

3.2. Equation of state

The pressure is calculated from the well-known Peng–Robinson (PR) EOS, given T

and the PR molar volume (vPR), as

p =
RuT

(vPR − bm)
− am(

v2
PR + 2bmvPR − b2

m

) , (3.1)

where am and bm are functions of T and Xα whose mathematical form is
given in detail in Miller et al. (2001) and Okong’o et al. (2002). At high
pressures, vPR may differ significantly from the actual molar volume v (Prausnitz
et al. 1986). Both vPR and the volume shift (vS = v−vPR) can be calculated from the PR
EOS given p, T and Xα (Harstad, Miller & Bellan 1997), although for the HN system
vS is negligible. All thermodynamic quantities, including αD , h, Cp = (∂h/∂T )p,X and
the speed of sound (as), are calculated from the EOS using standard thermodynamic
relations (Miller et al. 2001; Okong’o & Bellan 2002a; Okong’o et al. 2002). By
definition, Z = p/(ρT Ru/m) is the compression factor indicating departures from
perfect-gas (Z = 1) behaviour. The implementation of the EOS to calculate p and T

from ρ, e and Yα uses an iterative scheme (Okong’o et al. 2002) for OH and OHe,
and an energy fit (Okong’o & Bellan 2002a) for HN. Since for a binary mixture the
real-gas EOS is four-dimensional, as the variables are (p, T , v, X2), a plot of the EOS
is not feasible; at fixed v, an example of a three-dimensional plot is shown in Prausnitz
et al. (1986) (figure 10-6).
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System C7H16/N2 O2/H2 O2/He

µ= µR (T/TR)n n = 0.7 n = 0.75 n = 0.59

Sc ≡ µ/ (ραDD) 1.5 − Y2

[(
1.334 − 0.668Y2 − 0.186Y 2

2 − 0.268Y 6
2

)
×
[
1 + (88.6/T )1.5

] ]
Eq. (A 2)

Pr ≡ µCp/ (mλ) 0.5Sc/ exp (−1.5Y2) 1.335/T 0.1 Eq. (A 1)
αIK or αBK αIK = 0.1 αBK = 0.2 αBK = 0.25
T Range 500–1100 K 200–800 K 100–900 K
p Range 40–80 atm ∼100 atm ∼100 atm

Table 3. Transport properties for binary mixtures. TR = (T1 + T2)/2, T in Kelvin. αIK from
Harstad & Bellan (2000), and αBK from Harstad & Bellan (1998, 2001).

3.3. Transport coefficients

The viscosity, the Schmidt number (Sc =µ/(ραDD)) and the Prandtl number (Pr =
µCp/(mλ)) were calculated from high-pressure single-species transport properties
using mixing rules, as in Harstad & Bellan (1998). The calculated values were
correlated, as summarized in table 3 (see also Appendix A for O2/He), and these
correlations are then used to compute the transport properties µ, D and λ. The
relationship between αBK and αIK stated in equation (2.15) means that either one can
be specified, and the other then calculated.

3.4. Relevance of the database to turbulent flow modelling

The database used for the a priori analysis is summarized in table 2, including
the transitional time t∗

tr = ttr�U0/δω,0 and the value of the momentum-thickness-
based Reynolds number, Rem = Re0δm/δω,0 at transition. Both ttr and δm are defined
in Okong’o & Bellan (2002a); ttr is the time at which the one-dimensional velocity-
fluctuation-based energy spectra become smooth, except for the forcing frequency, and
δm is the momentum thickness. The grid spacing is uniform with �x1 � �x2 � �x3,
with the notation �x = max {�xi}. The differing thermodynamics of the various
species systems preclude matching of the initial density stratification (ρ2/ρ1) or of the
transitional momentum thickness (Okong’o et al. 2002; Okong’o & Bellan 2003) within
the regimes of practical interest, since there is not a simple relationship between the
initial conditions and the transitional state. As a result, the O2 layers exhibited higher
Rem values at the transitional state, Rem,tr , with the OHe layer having the highest
value of 2004. Results from the database can be compared either for same species but
at different Rem,tr (HN layers), or same species and same Rem,tr (HN500, HN800), or
different species and same Rem,tr ((HN600, OH750) and (OH550, OHe600)).

The most prominent feature of the transitional states are HDGM regions that
populate the entire mixing layer. Animations of the layers’ evolution from the
initial state to transition showed that the HDGM regions were formed as a
combination of the species mixing and of the distortion of the initial density gradient
boundary. While the HN layers had lower initial ρ2/ρ1, they had higher density-
gradient magnitude |∇ρ|δω,0/(ρ2 − ρ1) at the transitional state, due to their higher
mixture non-ideality (Okong’o & Bellan 2004a) which impeded molecular mixing.
Experimental evidence exists indicating that the HDGM regions are not a peculiar
aspect of the transitional state, but persist with similar or even larger gradient
magnitudes at fully turbulent conditions. Supporting this argument, temporally
accurate measurements of the density gradients are shown in figure 2 which displays
results originated from planar laser-induced fluorescence found from injection of liquid
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Figure 2. Density gradient (colour bar shows ∇ρ × 10−6 kgm−4) from the experiments of
Polikhov & Segal (2007) where a fluoreketone (Tc = 441K, pc = 1.87 MPa) jet of 0.84 × 10−3 m
diameter is injected into a coaxial flow of N2. (a) pch = 2.08 MPa, Tch = 394 K, Tjet = 291K
and Rejet = 29 200. (b) pch = 3.14 MPa, Tch = 509 K, Tjet =305 K and Rejet = 58 600. (c)
pch =3.97 MPa, Tch = 422 K, Tjet = 488 K and Rejet = 57 500. Subscripts ch and jet denote
the chamber and the jet. Information and plots courtesy of C. Segal (2006, personal
communication).

dodecafluoro-2-methylpentan-3-pentanone in a chamber filled with N2. In these
experiments, the chamber has a square cross-section of 0.025 m side and 0.19 m
length, and can be pressurized up to 7 MPa and heated to more than 500 K. Optical
access is available for an axial distance larger than 0.1 m through windows flush with
the chamber walls. The chamber walls and a constant axial flow of N2 are heated
until the experimental temperature and the pressure are reached. The liquid is then
injected through an electric heater into the chamber through a 0.84 × 10−3 m diameter
orifice. The goal was to inject into a uniform flow of N2, although this goal was not
always achieved as evident in figure 2(b) and to a smaller extent in figure 2(c). A
thinner than 0.3 × 10−3 m laser sheet at 355 × 10−9 m is sent through the jet and the
induced fluorescence at 420 ± 10 × 10−9 m is collected on a CCD camera.

While the data are very rich and discussed in detail in Polikhov & Segal (2007),
the interest here is only in whether large density gradients are observed under
supercritical conditions at higher Re values than those generated in DNS. Three
experimental conditions are shown in figure 2, where in all experiments Re = O(104)
at the injection location and the pressure was supercritical with respect to the injected
liquid (see figure 2 caption). The reduced thermodynamic conditions (pr = p/pc,

Tr = T/Tc) of figure 2(c) for the liquid (pr = 2.12, Tr = 1.11) are similar to those for
heptane (pr = 2.19, Tr =1.11) in HN simulations. The maximum density gradient
value, O(106) kg m−4, exceeds by an order of magnitude that found in the DNS for
the conditions listed in table 2.

Even larger Re values at the injection location, Re = O(105), are used in
experiments performed with a N2 free jet either without coaxial hydrogen injection
(Oschwald & Schik 1999) or with hydrogen injection (Oschwald et al. 1999); the
experimental conditions are listed in table 4. Illustrated in figure 3 is the radial density
gradient experimentally obtained in these fully turbulent jets at fixed axial positions.
In the measurements, Raman signals were recorded during 1 s and therefore the
data are temporally averaged, meaning that gradients are smoothed due to turbulent
fluctuations; the gradient values shown thus represent a lower bound of instantaneous
density gradients such as computed from DNS. The prominent experimental density-
gradient peaks are O(105) kgm−4 and minor peaks with O(104) kg m−4 populate
the entire extent of the flow. These experimental density gradients have the same
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Figure pch Tch Tinj,N2
Tinj,H2

ρjet,N2
/ρch ρjet,N2

/ρjet,H2
ReN2

ReH2
xmeas

3(a) 4 298 140 – 3.34 – 1.15 × 105 – 2
3(b) 4 298 118 – 12.50 – 1.26 × 105 – 16
3(c) 4 288 140 270 – 43.06 3.14 × 104 1.01 × 104 10
3(d) 4 288 118 270 – 166.68 1.22 × 105 2.02 × 104 40

Table 4. Experimental conditions corresponding to Oschwald & Schik (1999) and Oschwald
et al. (1999). The pressure is in MPa, all temperatures are in K and distances in 10−3m. x is the
axial distance from the injection location. Subscripts ch and jet denote the chamber and jet
conditions, respectively; inj labels the injection location; and meas denotes the measurement
location.
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Figure 3. Radial density gradient from the nitrogen injection experiments of Oschwald &
Schik (1999) (a, b), and the nitrogen/coaxial-hydrogen injection experiments of Oschwald et al.
(1999) (c, d). (a) and (b) correspond to figures 5 and 6 of Oschwald & Schik (1999), respectively.
(c) and (d) correspond to figures 9 and 10 of Oschwald et al. (1999), respectively. Information
on detailed experimental conditions is in table 4. Data and details not available in the
experimental papers were obtained courtesy of M. Oschwald (2006, personal communication).

magnitude as those from the DNS database (e.g. Okong’o & Bellan 2002a),
O(104) − O(105) kg m−4. Thus, the experimental observations show that under
supercritical conditions, turbulence (Re = O(104) − O(105)) does not smear the
HDGM regions which remain a standing, specific character of the flow. The role
of these HDGM regions was discussed by Miller et al. (2001) and Bellan (2006),
particularly the redistribution of turbulent energy from the normal direction to the
HDGM (at each point) to the tangential direction (at the same point) found in
the experiments of Hannoun, Fernando & List (1988) at sharp density boundaries.
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Unless one can capture this local aspect of the flow, it is very unlikely that mixing
and combustion could be faithfully simulated in gas-turbine, diesel or liquid rocket
engines. Because the HDGM regions are thinner for the HN layers, and since the
appropriate LES resolution (�xLES ) depends on the gradients of the filtered flow field,
which in turn depends on the filter width �̄, the implication is that HN LES may
require higher resolution relative to DNS (i.e. less grid coarsening, smaller �̄/�xDNS

and �xLES /�xDNS ) than LES for the other species systems considered.
Further supporting the relevance to LES of the database transitional states is the

significant portion of the domain turbulent kinetic energy (TKE) that resides in the
subgrid scales. At �̄/�x =4, and for fluctuations based on the filtered velocity, up to
9.03 % of the TKE resides in the small scales; the equivalent value for fluctuations
based on the Favre-averaged velocity is 10.63 %. When the filter size increases by a
factor of 2 to �̄/�x = 8, the corresponding fraction of the TKE in the small scales
increases by more than a factor of 2.5 and at given �̄, the TKE portion residing in
the subgrid scales is smaller with increasing Re0.

4. Results
A cubic top-hat filter is used for the flow field, for which the filtered value is

simply the volume average. The filter width used is �̄, with �̄/�x =4 or 8. Further
filtering is performed at the test-filter width �̂, with �̂/�̄ = 1 or 2. All calculations
are performed on the DNS grid. The analysis is carried out at the transitional states
listed in table 2.

4.1. LES assumptions

4.1.1. Evaluation of the LES assumptions

Following a protocol previously used for an atmospheric two-phase mixing layer
(Okong’o & Bellan 2004b), the following LES assumptions are evaluated, in the spirit
of simplifying equations (2.28)–(2.30):

ẽ = e(φ), T = T (φ), T̃ = T (φ), p̄ = p(φ), h̃ = h(φ), (4.1)

σ ij = σij (φ), jαj = jαj (φ), q̄IKj = qIKj (φ), uiσij = ũiσij (φ), (4.2)

ρ̄κj = 1
2
(ρuiuiuj − ρuiuiũj ) = ρ̄τij ũi . (4.3)

Also, consider the quantities

∂

∂xi

[p̄ − p(φ)],
∂

∂xj

[σ̄ij − σij (φ)], (4.4)

∂

∂xj

{[p̄ − p(φ)]ũj }, ∂

∂xj

[q̄IKj − qIKj (φ)],
∂

∂xj

[σijui − σij (φ)ũi],

∂

∂xj

[jαj − jαj (φ)],

⎫⎪⎬⎪⎭ (4.5)

for (i, j ) ∈ [1, 3]; if these quantities are much smaller, according to a selected norm,
than the leading terms in equations (2.28)–(2.30), then they may be neglected. Vreman,
Guerts & Kuerten (1995) utilized the L2 norm to perform such a comparison. The
selected norm is here the domain r.m.s. (square root of the L2 norm) because it
quantifies each term’s activity.

The LES assumptions equations (4.1)–(4.3) were computed both in terms of
correlations and slopes from a least-squares fit of the model (right-hand side) to the
terms (left-hand side) at two filter sizes, �̄/�x = 4 and 8. Correlations between the
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�̄ = 4�x �̄ = 8�x

x1-momentum HN600 OH750 OHe600 HN600 OH750 OHe600

∂

∂xj

(ρ̄ũ1ũj ) 24.5 28.7 41.5 19.9 27.0 35.0

∂

∂x1

[p(φ̄)] 12.1 18.5 16.3 13.4 18.3 14.6

∂

∂xj

[σ1j (φ̄)] 1.17 3.18 2.25 0.752 2.69 1.55

∂

∂xj

(ρ̄τ1j ) 1.49 0.890 1.82 2.48 2.11 3.29

∂

∂x1

[�(p̄)] 6.87 0.308 2.09 10.5 0.640 3.16

∂

∂xj

[�(σ̄1j )] 0.312 0.789 0.503 0.328 1.37 0.604

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 5. Magnitude (r.m.s.) of terms in the LES equations at t∗
tr . Units are 106 N m−3.

models and terms (not shown) were excellent (typically above 98 %), being somewhat
lower for the larger filter width. Correspondingly, compared to the values at the smaller
�̄/�x, the slopes (not shown) also exhibit greater deviation from the ideal value of
unity at the larger filter width. The thermodynamic assumptions (equation (4.1)) have
less than 1 % error on all the flow fields. The assumptions for the viscous, heat and
species-mass fluxes are almost as accurate, with errors of about 4 %. The model for
the triple correlation (equation (4.3)) appears to be the least accurate assumption,
with errors of up to 10 %. Therefore, it would appear that the filtered thermodynamic
quantities (internal energy, temperature, pressure and enthalpy, but not necessarily
their gradients) and the filtered viscous, heat and species-mass fluxes (but not necessar-
ily their gradients) can be adequately modelled from the filtered flow field. The same
results regarding the filtered quantities were previously obtained in an atmospheric-
pressure perfect-gas gaseous mixing layer (Okong’o & Bellan 2004b), although here
the species-mass and heat fluxes have a much more complicated functional form
(equations (2.10) and (2.11)), including Soret and Dufour (thermal diffusion) effects.

To test whether the quantities listed in (4.4)–(4.5) are much smaller than the leading
terms in equations (2.28)–(2.30), the domain r.m.s. of terms in the conservation
equations were computed and examples are shown in tables 5–9. All calculations
were performed on the DNS grid. Although the flow evolution will be different in
LES and DNS, it seems reasonable to assume that larger-magnitude unclosed terms
in the filtered DNS equations would require a more accurate model in LES. The
examples chosen in tables 5–9 are typical of HN and OH simulations, and also
allow comparison of HN and OH simulations with similar Rem,tr ; finally the OHe
simulation has the largest Rem,tr . Also, the HN flows exhibit strong departures from
perfect gas and mixture ideality (Okong’o & Bellan 2002a); the OHe flow is close to
an ideal mixture but displays moderate departures from perfect gas (not shown), and
the OH flows are nearly perfect gases and ideal mixtures for the conditions of these
simulations (Okong’o et al. 2002).

Considering the momentum equation (tables 5–7), similar to atmospheric-pressure
gaseous-flow findings (Okong’o & Bellan 2004b), the convective and resolved pressure
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�̄ = 4�x �̄ = 8�x

x2-momentum HN600 OH750 OHe600 HN600 OH750 OHe600

∂

∂xj

(ρ̄ũ2ũj ) 17.4 21.2 31.6 13.9 19.8 26.7

∂

∂x2

[p(φ̄)] 15.6 13.8 18.8 19.0 13.3 16.5

∂

∂xj

[σ2j (φ̄)] 0.865 1.74 1.70 0.558 1.41 1.17

∂

∂xj

(ρ̄τ2j ) 1.38 0.744 1.85 2.52 1.81 3.58

∂

∂x2

[�(p̄)] 10.6 0.640 2.97 16.7 1.31 4.79

∂

∂xj

[�(σ̄2j )] 0.185 0.300 0.331 0.176 0.497 0.335

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 6. Magnitude (r.m.s.) of terms in the LES equations at t∗
tr . Units are 106 N m−3.

�̄ = 4�x �̄ = 8�x

x3-momentum HN600 OH750 OHe600 HN600 OH750 OHe600

∂

∂xj

(ρ̄ũ3ũj ) 16.0 9.00 31.7 12.2 7.44 26.4

∂

∂x3

[p(φ̄)] 14.5 6.08 19.7 16.3 5.00 17.2

∂

∂xj

[σ3j (φ̄)] 0.730 0.739 1.83 0.464 0.584 1.27

∂

∂xj

(ρ̄τ3j ) 1.23 0.367 1.90 2.16 0.851 3.88

∂

∂x3

[�(p̄)] 10.4 0.839 2.97 14.4 1.75 4.74

∂

∂xj

[�(σ̄3j )] 0.124 0.106 0.301 0.118 0.171 0.315

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 7. Magnitude (r.m.s.) of terms in the LES equations at t∗
tr . Units are 106 N m−3.

terms are of leading order and the resolved stresses and subgrid flux term are
approximately one order of magnitude smaller; unlike the atmospheric-pressure
findings, ∇[p̄−p(φ)] is of same order as ∇(p(φ)) for flows exhibiting strong departures
from perfect-gas and mixture-ideality conditions (i.e. HN cases; Okong’o & Bellan
2004b), whereas for near-perfect gas and ideal-mixture flows (i.e. OH cases; Okong’o
et al. 2002; Okong’o & Bellan 2003) the term is again one order of magnitude smaller
than the leading terms, with the OHe case being intermediary between the HN and
OH ones. Of note, is that for each simulation, both ∂(p(φ))/∂xj and ∂[p̄ − p(φ)]/∂xj

have similar values for all three components of the momentum equation, meaning that
the flow is strongly three-dimensional, thus casting serious doubts on two-dimensional
LES of supercritical flows (e.g. Zong et al. 2004; Oefelein 2005).
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�̄ = 4�x �̄ = 8�x

Energy HN600 OH750 OHe600 HN600 OH750 OHe600

∂

∂xj

(ρ̄ẽt ũj ) 219 48.1 20.5 178 47.5 18.6

∂

∂xj

[p(φ̄)ũj ] 4.08 19.8 8.77 4.21 19.7 8.71

∂

∂xj

[qIKj (φ̄)] 4.06 59.4 13.7 3.45 46.8 8.38

∂

∂xj

[σij (φ̄)ũi] 0.164 1.51 0.579 0.109 1.40 0.425

∂

∂xj

(ρ̄ζj ) 2.35 13.2 9.06 2.99 30.9 14.6

∂

∂xj

(ρτij ũi) 0.158 0.303 0.357 0.253 0.682 0.666

∂

∂xj

(ρκj − ρτij ũi) 0.0257 0.0170 0.0474 0.0659 0.0938 0.155

∂

∂xj

{�(p̄)ũj } 0.469 0.0717 0.215 0.826 0.155 0.378

∂

∂xj

[�(q̄IKj )] 1.82 11.3 3.56 2.45 19.8 3.35

∂

∂xj

[�(σijui)] 0.0601 0.494 0.179 0.0639 0.865 0.228

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 8. Magnitude (r.m.s.) of terms in the LES equations at t∗
tr . Units are 109 Jm−3 s−1.

�̄ = 4�x �̄ = 8�x

Species HN600 OH750 OHe600 HN600 OH750 OHe600

∂

∂xj

(ρ̄Ỹ 2ũj ) 28.9 13.0 27.7 23.4 11.9 23.7

∂

∂xj

[j2j (φ̄)] 1.17 0.706 0.985 0.808 0.556 0.600

∂

∂xj

(ρ̄η2j ) 0.755 0.157 0.647 1.20 0.365 1.05

∂

∂xj

[�(j2j )] 0.469 0.129 0.237 0.515 0.227 0.222

�(f̄ ) ≡ f (φ) − f (φ̄)

Table 9. Magnitude (r.m.s.) of terms in the LES equations at t∗
tr . Units are 104 kg m−3 s−1.

For the energy equation (table 8), in HN simulations, the convective term leads
by about 2 orders of magnitude the pressure work, heat flux, subgrid enthalpy and
∂[q̄IKj −qIKj (φ)]/∂xj ; a third category of even smaller terms is that of the stress work,

the triple correlation, ∂{[p̄ − p(φ)]ũj }/∂xj and ∂[σijui − σij (φ)ũi]/∂xj ; the smallest
term is that of the LES assumption on the triple correlation. This ordering of terms is
unlike that for atmospheric-pressure gaseous flows (Okong’o & Bellan 2004b) or that
for the OH cases where the convective, pressure work, resolved heat flux and subgrid
heat flux are leading terms, with the additional contribution of ∂[q̄IKj − qIKj (φ)]/∂xj
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compared to atmospheric gaseous flows; the stress work is one order of magnitude
smaller than the leading terms, followed by the triple correlation, ∂{[p̄ −p(φ)]ũj }/∂xj

and the assumption of the triple correlation ∂(ρκj −ρτij ũi)/∂xj . As for the OHe case,
of leading order are the convective, heat-flux, subgrid-heat-flux and pressure-work
terms, with all other terms being one to three orders of magnitude smaller than the
leading-order terms.

For the species equations, for all species pairs, the convective term dominates all
other terms by at least one order of magnitude. Comparing the results at �̄/�x = 4
and 8, the relative magnitude of the terms’ activity in the LES equations is filter-size
independent.

The mathematical rationale for justifying the existence of new LES-equations terms
with respect to atmospheric flow situations is directly related to the strongly nonlinear
aspect of the PR EOS. In fact, filtering the DNS equations includes filtering of the
EOS, which due to its nonlinear aspect yields SGS terms that must be modelled. That
is, the filtered solution does not satisfy the original EOS. Because the perfect-gas
EOS has much weaker nonlinearities, the LES equations did not include additional
terms for atmospheric-pressure gas flows (Okong’o & Bellan 2004b) for which the
perfect-gas EOS is valid. The strong nonlinearities of the PR EOS induce large
changes in p even when the changes in the other thermodynamic variables are small;
this is the essence of a strong nonlinearity. Since LES is meant to be accurate and
computationally efficient, computational efficiency dictates that because T is found
(from a fit or an iterative solution) as a function of e and ρ that is calculated from the
EOS (Miller et al. 2001; Okong’o & Bellan 2002a), it is desirable to retain the ability to
use the same PR EOS for the filtered solution rather than modelling the complicated
unknown terms in the filtered PR EOS. However, to satisfy computational efficiency
without sacrificing accuracy, one must account for the EOS-induced new terms in the
differential conservation equations.

Thus, it appears that effort must be devoted to modelling one term that has never
been included in LES momentum equations, namely ∇[p̄ − p(φ)], which is third in
magnitude for HN cases. Also, in the OH cases ∇ · [qIK − qIK (φ)] is of same order
of magnitude as the leading term in the energy equation, and thus deserves similar
attention. With these two exceptions, all other than the resolved terms and SGS fluxes
are neglected, based on their smaller magnitude compared to the leading-order terms.

Incorporating the validated LES assumptions, equations (2.27)–(2.30) become

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj

= 0, (4.6)

∂ρ̄ũi

∂t
+

∂ρ̄ũi ũj

∂xj

= −∂p(φ)

∂xi

+
∂σij (φ)

∂xj

− ∂(ρ̄τij )

∂xj

− ∂[p̄ − p(φ)]

∂xi

, (4.7)

∂ρ̄ẽt

∂t
+

∂ρ̃ẽt ũj

∂xj

= −∂p(φ)ũj

∂xj

− ∂qIKj (φ)

∂xj

+
∂σij (φ)ũi

∂xj

− ∂(ρ̄ζj )

∂xj

− ∂(ρ̄τij ũi)

∂xj

− ∂[q̄IKj − qIKj (φ)]

∂xj

, (4.8)

∂ρ̄Ỹ α

∂t
+

∂ρ̄Ỹ αũj

∂xj

= −∂jαj (φ)

∂xj

− ∂(ρ̄ηαj )

∂xj

. (4.9)

4.1.2. Modelling of ∇[p̄ − p(φ)]

The driving idea for modelling ∇[p̄ − p(φ)] is to expand the EOS equation (3.1)
in a Taylor series. However, p is available from the EOS as a function of the
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thermodynamic primitive variables in vector ψ, whereas the solution of the LES
equations is computed for the thermodynamic conservative variables in vector φ.

Choosing the reference state φ, the filtered expansion is

p(φ) = p(φ) +
∂p

∂φm

∣∣∣∣
φ=φ

(φm − φm) +
1

2

∂2p

∂φm∂φn

∣∣∣∣
φ=φ

(φm − φm)(φn − φn) + O(φ3),

(4.10)

which, under the (non-rigorous) assumptions that

p(φ) = p(φ), (4.11)

that (∂p/∂φm)φ = φ and (∂2p/(∂φm∂φn))φ =φ can be removed from the filtering operation,

and that the filter is a projection which implies that (φm − φm) = 0, leads to

p(φ) = p(φ) + δ, δ =
1

2

∂2p

∂φm∂φn

∣∣∣∣
φ=φ

(φmφn − φmφn) =
1

2

∂2p

∂φm∂φn

∣∣∣∣
φ=φ

ϑ(φm, φn), (4.12)

where m and n index the components of vectors φ and ψ, and δ is the second-
order approximation in the LES assumption for the pressure. Extensive and tedious
mathematics, the results of which appear in Appendix B, permits the computation of
(∂2p/(∂φm∂φn))φ = φ from knowledge of (∂2p/(∂ψ ′

m∂ψ ′
n))ψ ′ =ψ ′ through the PR EOS. A

one-dimensional test case for the PR EOS is presented in Appendix C, validating the
utilization of the non-rigorous assumptions.

Figure 4 shows, as an example, the approximation of p(φ) by p(φ)+δ and compares
it to that by p(φ) at two filter sizes �̄/�x =4, 8 for HN600 at t∗

tr . The qualitative
conclusion from scrutiny of the plots is that the addition of δ is an improvement
for the prediction of p(φ) only at the small LES-filter size �̄/�x = 4 (DNS to LES
computational grid volume increases by a factor of 64), since for �̄/�x =8 (DNS
to LES computational grid volume increases by a factor of 512) the term δ exceeds
its physical value and generates unphysical oscillations. This conclusion is consistent
with the one-dimensional analysis of Appendix C. To quantify the effect of the δ

correction (equation (4.12)), listed in table 10 are the domain r.m.s. of the affected
terms in the momentum and energy equations; all other terms’ r.m.s. are unaffected
by the δ model and their magnitude is listed in tables 5–8.

For the momentum equation, an example comparison is that for the x1 component
by examining results for HN600 in tables 5 and 10. The terms with correction show
that for �̄/�x = 4 when δ �= 0, ∇(p − (p(φ) + δ)) is only 36 % of ∇(p(φ) + δ) and
16 % of the leading-order term, although it is still larger than the subgrid flux which
is though expected to increase at larger Re. By contrast, in the original equation
∇(p − p(φ)) is 57 % of ∇(p(φ) and 28 % of the leading term, which means that for
�̄/�x = 4 it is considerably more legitimate to neglect ∇(p − (p(φ) + δ)) in the δ-
modelled equation than it would be to neglect ∇(p−p(φ)) in the original equation. For
�̄/�x = 8 and i =1, ∇(p − (p(φ)+ δ)) is 86 % of ∇(p(φ)+ δ) and 76 % of the leading
term compared to the respective values of 78 % and 52 % in the original equation.
Thus, at the larger filter size, the correction deteriorates the results, consistent with
the visual information from figure 4.

For the energy equation, when δ �= 0, ∇ · ((p − (p(φ) + δ))ũ) is 5.4 % and 23 %
of ∇ · ((p(φ) + δ)ũ) for �̄/�x = 4 and 8, respectively, whereas in the original LES
equation the corresponding values are 11 % and 19.6 %; however, in all cases, these
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Figure 4. Approximation of p(φ) (a, b) by p(φ) (c, d) and p(φ) + δ (e, f ) at two filter sizes:
�̄ =4�x (a, c, e) and �̄ = 8�x (b, d, f ) for the simulation HN600 at t∗

tr . Units are MPa.

terms are at least one order of magnitude smaller than the leading, convective term
(see table 8). This correction does not seem necessary in the original LES energy
equation but must be included with that of the momentum equation, for consistency.
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Table in which the
other terms in the

�̄ = 4�x �̄ = 8�x equation are given

x1-momentum
∂

∂x1

(p(φ) + δ) 10.8 17.7 table 5

x1-momentum
∂

∂x1

(p − (p(φ) + δ)) 3.92 15.3 table 5

x2-momentum
∂

∂x2

(p(φ) + δ) 12.8 23.3 table 6

x2-momentum
∂

∂x2

(p − (p(φ) + δ)) 5.55 21.0 table 6

x3-momentum
∂

∂x3

(p(φ) + δ) 11.4 19.5 table 7

x3-momentum
∂

∂x3

(p − (p(φ) + δ)) 5.20 17.8 table 7

energy
∂

∂xj

((p(φ) + δ)ũj ) 4.01 4.14 table 8

energy
∂

∂xj

[(p − (p(φ) + δ))ũj ] 0.216 0.953 table 8

Table 10. Magnitude (r.m.s.) of terms in the momentum and energy equations for HN600 with
the correction from the Taylor expansion (i.e. δ is non-null). The r.m.s. is presented for the two
LES-filter widths. See tables 5–8 for the HN600 r.m.s. of all other terms in the corresponding
equations, as they are independent of the δ model. Units are 106 Nm−3 for the momentum
equation and 109 J m−3 s−1 for the energy equation.

The conclusions are then that the energy equation is much less affected by the
correction than the momentum equation, and that at larger filters this correction is
not advisable, at least for the momentum equation.

The attractiveness of the equation (4.12) model is the availability of variances ϑ from
the SGS modelling approach (see § 4.2.1). Higher-order corrections in the Taylor ex-
pansion of equation (4.10) may also improve the approximation, but would remove the
benefit of computational efficiency because higher-order variances would be required.
Thus, the balance between computational accuracy and efficiency means that with a
small computational effort we might capture the essence of the physics; the extent to
which this physics is captured will require further a posteriori study evaluations.

Generally, when conducting LES one does not have the present guiding information
of a similar DNS, and it is thus impossible to determine prior to the computation
what filter size may be excessive in a supercritical flow calculation. Therefore, it is
foreseen that for supercritical-flow LES, grid resolution studies will be even more
crucial than at atmospheric pressure to ensure that the computation is well resolved
at the LES scale.

4.1.3. Modelling of ∇ · [qIK − qIK (φ)]

When examining the heat flux term in equations (2.11)–(2.14), the difference in
complexity between modelling ∇[p̄ − p(φ)] and modelling ∇ · [qIK − qIK (φ)] becomes
quickly apparent. That is, whereas according to equation (3.1) p(ψ) is a function of the
thermodynamic primitive variables, qIK (ψ) is a function of both the thermodynamic
primitive variables and thermodynamic primitive variable gradients. Under the high-
p and moderate ρr ≡ ρ/ρc (i.e. O(10−1)) conditions of this study, the transport
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coefficients αIK or αBK appearing in equations (2.12)–(2.14) cannot generally be
expressed as accepted and/or comprehensive functions of thermodynamic variables
in ψ (e.g. Gonzales-Bagnoli, Shapiro & Stenby 2003). In the present DNS, αIK or αBK

were specified as constants and, for computational efficiency, the transport coefficients
λ and D were computed from the correlations of table 3, meaning that the complex
dependence of all transport coefficients on thermodynamic variables in ψ has been
simplified by a curve fit which makes some explicit dependences unavailable. Faced
with this modelling challenge, several approaches were assessed, as described below.

In a first approach, the approximation

qIK (ψ) � CT (ψ)∇T (φ) + CP (ψ)∇p(φ) + CY (ψ)∇Y2(φ) (4.13)

was considered with each function CT (ψ), CP (ψ) and CY (ψ) modelled following a
Taylor series similar to equation (4.10), leading to δT , δP and δY ; for example,

δT ≡ 1

2

∂2CT

∂φm∂φn

∣∣∣∣
ψ = ψ

(φmφn − φmφn) =
1

2

∂2CT

∂φm∂φn

∣∣∣∣
ψ=ψ

ϑ(φm, φn). (4.14)

Since owing to the aforementioned lack of knowledge regarding the transport coeffi-
cients dependence on ψ, the analytical functions CT (φ), CP (φ) and CY (φ) are typically
not available, a numerical multivariate differentiation technique was used to obtain the
results. When the DNS-computed (CT (φ)−CT (φ)), (CP (φ)−CP (φ)) and (CY (φ)−CY (φ))
were compared in (x1, x2)-planes to the corresponding modelled δT , δP and δY , the
results, shown in figure 5 for OH500, were very encouraging, definitely validating
the Taylor series methodology as well as the numerical differentiation technique. The
upper free-stream discrepancy between the modelled δY and its exact value is not of
great concern since ∇Y2 is null in those regions. Unfortunately, when these results
were used in conjunction with a Taylor expansion of the entire heat flux according
to equation (4.13), the DNS-extracted difference (qIKi(φ) − qIKi(φ)) did not compare
well with δi (not shown), indicating that this approach may not be appropriate.

The second approach involved the Taylor expansion differentiation applied to the
entire heat flux, for each component, but the model again did not duplicate the
DNS-extracted result (not shown).

A third approach was based on re-thinking the entire modelling methodology
when both primitive variables and their gradients are involved. Thus, a Taylor series
approach was devised where φ and ∇φ are treated as independent variables. The
heat-flux vector can be formally written as

qIKi(φ) =
∑

q

Cq(φ)
∂Fq(φ)

∂xi

(4.15)

where q is an index and C1(φ) = CT (φ), C2(φ) = CP (φ), C3(φ) = CY (φ), F1(φ) = T (φ),
F2(φ) = p(φ) and F3(φ) = Y2. Using the notation

δFq = Fq(φ) − Fq(φ) (4.16)

the heat flux is

qIKi(φ) =
∑

q

Cq(φ)
∂Fq(φ)

∂xi

+
∑

q

Cq(φ)
∂δFq

∂xi

(4.17)

=
∑

q

Cq(φ)
∂Fq(φ)

∂xi

+
∂

∂xi

∑
q

Cq(φ)δFq −
∑

q

δFq

∂Cq(φ)

∂xi

(4.18)
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Figure 5. Taylor expansion of the heat-flux coefficients CT , CP and CY from equation (2.11)
calculated for OH500 using numerical differentiation: (a, c, e) are the DNS-extracted values
and (b, d, f ) are calculated using the model of equation (4.14) for δT and similar equations for
δP and δY .

and through filtering one obtains

qIKi(φ) =
∑

q

Cq(φ)
∂Fq(φ)

∂xi︸ ︷︷ ︸
Part 1

+
∂

∂xi

∑
q

Cq(φ)δFq︸ ︷︷ ︸
Part 2

−
∑

q

δFq

∂Cq(φ)

∂xi︸ ︷︷ ︸
Part 3

. (4.19)

Based on an a priori evaluation of the DNS-extracted values showing that for all

OH simulations the term
∑

q Cq(φ)∇Fq(φ) always contains the bulk of the heat flux,
the split of equation (4.19) for qi seemed promising because the indication is that
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Part 1 in equation (4.19) may also contain the bulk of qi . Then, Part 1 could be
modelled using the Taylor expansion of Cq(φ), which has been shown successful
(figure 5). Rigorous computation of Parts 2 and 3 of equation (4.19) through a Taylor
expansion is not possible because each Part is a sum of numerous terms, only one
of which is calculable; the other terms involve higher-order correlations of φ and
F (φ), which are unknown. One pragmatic way of modelling the heat flux would be
to include only those terms for which a closed form is available and neglect the
other terms. However, based on the present a priori analysis, given the computational
cost of the numerical differentiation (where a second-order function differentiation
involves the computation of that function at 12 locations) and the change of variables
between the thermodynamic vector ψ and the conservative vector φ, the preliminary
evaluation is that such heat flux models may be prohibitively expensive in a LES;
further a posteriori studies are needed for a more definitive answer.

Equations (4.6)–(4.9) still contain unclosed terms, namely the SGS fluxes and
variances in equations (4.6)–(4.9) and the variances needed to calculate δ in
equation (4.12), all of which will be modelled explicitly.

4.2. Subgrid flux and variance modelling

4.2.1. SGS-flux models

The three basic models for the SGS fluxes (τij , ηαj , ζj ) are (Okong’o & Bellan 2004b)
the Smagorinsky (SM) model, the Gradient (GR) model and the Scale-Similarity (SS)
model. For the a priori analysis, only constant-coefficient versions of these models
can be considered, although dynamic-coefficient versions should also be studied in
a posteriori LES (Leboissetier, Okong’o & Bellan 2005). Because dynamic models are
based on the same concept as the SS model, the a priori evaluation of that model
should provide reasonable indications of the likely performance of dynamic models.
Although here the constant coefficients are calibrated, other effects that cannot be
studied a priori, such as the interaction of the resolved flow with the SGS, may dictate
a different value in actual LES. The calibration will consider the same coefficient value
for all SGS fluxes, although practical implementation may require different values for
different fluxes, in addition to the spatial and temporal variation of coefficients that
is afforded by dynamic modelling (Leboissetier et al. 2005).

The SM model is based on the gradient-diffusion (eddy-viscosity) concept
(Smagorinksy 1993). As such, it does not lend itself to computing variances in
general. The SGS fluxes in equation (2.26) are

ϑSM (ψ̃m, ũj ) = −CSM�̄2S(φ̄)
1

2

∂ψ̃m

∂xj

, ψm �= uj , (4.20)

with τij modelled in trace-free form as

τij − 1
3
τkkδij = −CSM�̄2S(φ̄)

[
Sij (φ̄) − 1

3
Skk(φ̄)δij

]
, (4.21)

where S2(φ) = Sij (φ)Sij (φ). The Yoshizawa (1986) (YO) model for τkk is

τkk = CYO�̄2S2(φ̄). (4.22)

The GR model, derived from a Taylor series expansion, is (Clark, Ferziger &
Reynolds (1979)

ϑGR(ψ̃m, ψ̃n) = CGR�̄2 ∂ψ̃m

∂xk

∂ψ̃n

∂xk

. (4.23)

(Note: ϑ(ũ1, ũ1) = τ11, ϑ(ũ2, ũ2) = τ22, ϑ(ũ3, ũ3) = τ33.) Theoretically, CGR is pro-
portional to the moments of inertia of the filtering volume; for a cubic
top-hat filter CGR = 1/12 (Okong’o & Bellan 2004b).
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SGS quantity SM GR SS (�̂ = �̄) SS (�̂ = 2�̄)

ρ̄τ11 0.0633 0.1269 1.4741 0.5141
ρ̄τ22 0.0241 0.1241 1.5030 0.5667
ρ̄τ33 0.0160 0.1210 1.4826 0.5574
ρ̄τ12 0.0366 0.1133 1.3331 0.4572
ρ̄τ13 0.0241 0.1158 1.4547 0.5348
ρ̄τ23 0.0160 0.1143 1.5005 0.6108
ρ̄ζ1 0.1662 0.1200 1.4647 0.5132
ρ̄ζ2 0.0607 0.1143 1.4389 0.4802
ρ̄ζ3 0.0522 0.1119 1.4371 0.4812
ρ̄η1 0.1683 0.1201 1.4641 0.5132
ρ̄η2 0.0591 0.1145 1.4378 0.4805
ρ̄η3 0.0509 0.1122 1.4360 0.4810
ϑ(ũ1, ũ1) – 0.1200 1.4174 0.5088
ϑ(ũ2, ũ2) – 0.1213 1.4535 0.5516
ϑ(ũ3, ũ3) – 0.1190 1.4596 0.5602
ϑ(T̃ , T̃ ) – 0.1204 1.7133 0.7200
ϑ(Ỹ 2, Ỹ 2) – 0.1136 1.5360 0.6143
ϑ(p̄, p̄) – 0.1224 1.4021 0.5197
Average slope 0.0622 0.1180 1.4671 0.5369
Std. dev. of slopes 0.0577 0.0044 0.0230 0.0636
Average correlation 0.2313 0.9602 0.9492 0.8322

Table 11. Slopes from least-squares fit of SGS models to SGS quantities (slope= exact/model),
OHe600, �̄/�x = 8. For simplification, the vector η2 is simply denoted as η. The SM model
τij is compared to the exact (τij − τkkδij /3). For ρ̄τkk using the YO model, the slope is 0.2275
and the correlation is 0.8332.

The SS model, which postulates similarity between the SGS and the small resolved
scale, is (Bardina, Ferziger & Reynolds 1980)

ϑSS(ψ̃m, ψ̃n) = CSS( ˜̂ψmψ̃n − ̂̃ψm
̂̃ψn), (4.24)

where the hat denotes (unweighted) filtering at the test-filter level �̂. Two test-filter
widths are considered, leading to models SS1 (�̂/�̄ = 1) and SS2 (�̂/�̄= 2). While
scale-similarity would imply that CSS = 1, the actual value is filter-width dependent
(Liu, Meneveau & Katz 1994; Pruett, Sochacki & Adams 2001; Okong’o & Bellan
2004b).

Least-squares fits of the exact SGS fluxes to the SGS-flux models produced the
slope (exact/model) and correlation for each SGS quantity; the model coefficient is the
slope from the least-squares fit. For each SGS model, the calibrated SGS coefficient
for a given run and filter width is obtained by averaging the slopes obtained for each
SGS quantity. The SM coefficient is based on 12 SGS quantities (six independent τij ,
three ζj , three ηαj ), whereas the GR and SS coefficients are based on an additional
six SGS variances. Owing to the strong density variation, the actual calibration is
performed for the product of density and SGS flux, that appears in equations (4.7)–
(4.9). The slopes and the average of the correlations are listed for OHe600 (the DNS
having the largest Rem,tr ) in table 11. The correlations for the SS and GR models are
typically better than 95 % (better than 80 % for SS2), whereas the correlations for the
SM model are at best 50 % and are typically about 20 %. Whereas the GR and SS
slopes have a narrow distribution, as indicated by their small standard deviation of
the slopes, there is wide variation among SM slopes, with the standard deviation of
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Figure 6. SGS fluxes and models for OHe600 with �̄= 8�x, averages in homogeneous
planes at t∗

tr . The notation [ρ] ≡ ρ̄ is used. Units are Nm−2.

the SM slopes being comparable in magnitude to the average. These characteristics
of OHe600 are typical of all layers at both filter widths.

Figures 6 and 7 compare the different SGS-flux models in terms of their averages in
homogeneous (x1, x3)-planes for OHe600. The calibrated coefficient values (that is, the
average slopes) from table 11 are used for the comparison. The Smagorinsky model has
poor agreement with the exact (computed) SGS fluxes for all components, consistent
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Figure 7. SGS fluxes and models for OHe600 with �̄ = 8�x, averages in homogeneous planes
at t∗

tr . For simplification, the vector η2 is simply denoted as η and the notation [ρ] ≡ ρ̄ is used.
Units are (J m−2 s−1) for [ρ]ζ and (kg m−2 s−1) for [ρ]η.

with the low correlations; its deficiencies cannot be remedied by simply using different
coefficient values for the different types of fluxes. However, the Yoshizawa model
correlates quite well (over 80 %) with τkk , and in this case, where τkk dominates in τij ,
the combination with the Smagorinsky model yields good predictions of τ11, τ22, and
τ33. In marked contrast to the Smagorinsky model, the SS and GR models clearly
have both qualitatively and quantitatively good agreement with the exact SGS fluxes
for all components.
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Run HN400 HN500 HN600 HN800 OH750 OH550 OH500 OHe600

CYO (�̄/�x = 4) 0.2751 0.2687 0.2583 0.2612 0.2396 0.2383 0.2398 0.2477
CYO (�̄/�x = 8) 0.2751 0.2634 0.2471 0.2506 0.2144 0.2150 0.2137 0.2275
CSM (�̄/�x = 4) 0.0726 0.0735 0.0655 0.0409 0.1442 0.1315 0.1293 0.0711
CSM (�̄/�x = 8) 0.0742 0.0687 0.0579 0.0423 0.1232 0.1169 0.1138 0.0622
CGR (�̄/�x = 4) 0.1372 0.1397 0.1346 0.1344 0.1284 0.1280 0.1275 0.1328
CGR (�̄/�x = 8) 0.1254 0.1257 0.1193 0.1180 0.1115 0.1118 0.1112 0.1180

CSS (�̂/�̄ = 1, �̄/�x = 4) 1.3352 1.3293 1.2938 1.2954 1.1312 1.1048 1.0983 1.2388

CSS (�̂/�̄ = 1, �̄/�x = 8) 1.6891 1.6069 1.5399 1.5661 1.2920 1.2560 1.2448 1.4671

CSS (�̂/�̄ = 2, �̄/�x = 4) 0.4934 0.4904 0.4705 0.4676 0.3845 0.3685 0.3655 0.4426

CSS (�̂/�̄ = 2, �̄/�x = 8) 0.6998 0.6260 0.5770 0.5870 0.4469 0.4303 0.4243 0.5369

Table 12. Model cofficients calibrated from transitional states.

The calibrated coefficients for all layers (see table 2) are tabulated in table 12. The
calibrated coefficients are here compared to determine possible statistical equality of
the values (based on t-tests with 5% confidence level). The YO coefficients range
from 0.2137 to 0.2751, with the lower values for OH at the larger �̄/�x, while the HN
values show little filter-width dependence. At fixed �̄/�x, the OHe600 coefficient lies
between the HN and OH values, and is approximately equal to the average coefficient
computed over all layers; this behaviour was also observed for all the other models.
Except for the SM model, where the trend is reversed, for a given �̄/�x, the HN
values are higher than the OH values. The range of coefficient values is 0.0409–0.1442
(SM), 0.1112–0.1397 (GR), 1.0988–1.6891 (SS1) and 0.3655–0.6998 (SS2). For the SM
model, the coefficients are statistically independent of run and filter width, because
the underlying SM coefficients have a large spread of slopes (large standard deviation,
e.g. table 11 for OHe600). This result indicates that the correlation of the SM model
with the SGS fluxes is too poor for this calibration procedure to produce a meaningful
coefficient.

For the GR and SS models, the statistical equivalence of the coefficients in table 12
mirrors the closeness of numerical values, due to the small variation (small standard
deviation) in the underlying slopes. For both models, the coefficients are filter-width
dependent for each run. At either �̄/�x, the three OH coefficients are (statistically)
equal, the HN coefficients are also generally equal, and those of OHe600 are generally
equal to the closest HN value (HN600 or HN800). For the GR model, the HN400
and HN500 values at �̄/�x =8 are equal to the OH values at �̄/�x = 4. For the SS1
model, the HN values at �̄/�x = 4 are equal to the OH750 value at �̄/�x =8. For
the SS2 model, the OHe600 value at �̄/�x =4 is equal to the OH values at �̄/�x =8.
Based on the �̄/�x- and run-dependence of the GR coefficients, it is anticipated that
dynamic modelling, wherein the model coefficient is computed during LES from the
LES flow field, will be required. Because dynamic modelling is based on the SS model
with CSS = 1, the fact that the SS1 coefficient values are closer to unity than are the
SS2 values suggests that �̂ = �̄ has the greater potential for dynamic modelling. An
a posteriori study is needed to determine the sensitivity of the LES to the model
coefficients.

4.2.2. Variance modelling for δ

Variances appearing in equation (4.12) are ϑ(ρ, ρ), ϑ(ρY2, ρY2), ϑ(ρe, ρe),
ϑ(ρ, ρY2), ϑ(ρ, ρe) and ϑ(ρY2, ρe). Because the goal of LES is to minimize the
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�̄ = 4�x �̄ = 8�x

Runs HN400 HN500 HN600 HN800 HN400 HN500 HN600 HN800

mean 0.1491 0.1514 0.1493 0.1505 0.1460 0.1463 0.1444 0.1423
stand. dev. 0.0056 0.0048 0.0036 0.0059 0.0065 0.0078 0.0053 0.0104

Table 13. Means and standard deviations of slopes (exact/model) for the variances used in
the calculation of the modelled pressure gradient difference term in the momentum, equation
(4.14), utilizing the GR model, equation (4.25).

computational time, and since enthalpy-based variances are already calculated as
part of SGS-flux modelling, an assessment was made of whether e-based variances
can be replaced by h-based ones. Results obtained at two filter sizes (not shown)
reveal that the terms representing the difference between e- and h-based variances
are at least 3 orders of magnitude smaller than the variances, and thus negligible for
both filter sizes. The explanation for this good approximation lies in the fact that the
length scale of the pressure fluctuations is much larger than the LES filter, which
leads to negligible ϑ(ϕ, p) for ϕ = ρ or ρY2.

The GR model that best modelled the SGS fluxes in § 4.2.1 was used here to
assess its ability to model the variances needed to calculate δ. The entire ensemble
of variances was used, and the correlation and calibrating coefficient were calculated
through a least-square fit, the slope (exact/model) being the calibrated coefficient.
The correlations’ range is 0.983 to 0.994 for �̄/�x = 4 and 0.949 to 0.977 for
�̄/�x = 8, and is thus considered excellent. A summary of the mean and standard
deviation of the slopes is listed in table 13 for HN layers. The value of the slopes’
standard deviation being much smaller than the mean, all mean values are statistically
significant. Double-tail t-tests show that for any specific case the coefficient mean is
statistically significant across filter sizes. For a given filter size, the coefficients are not
statistically significant across the entire set of HN simulations because of the very small
standard deviation for each case, whereas they are statistically significant across OH
simulations; at similar Rem,tr (HN600 versus OH750), there is calibrating-coefficient
statistical significance. Furthermore, comparing to the SGS-flux values listed for the
GR model in table 12, the present coefficients are somewhat larger, indicating that it
is unlikely that a constant-coefficient approach for the global model will be feasible.
Moreover, the calibrated coefficients represent values found at transitional states, and
forewarning exists from a posteriori studies at atmospheric conditions (Leboissetier
et al. 2005) that model coefficients display substantial temporal variation, even for
a specific variance, over the flow development time. Nevertheless, the question of
whether dynamic SGS modelling is required should be addressed in future a posteriori
studies of supercritical mixing layers.

4.3. Scalar dissipation

Small-scale mixing, which must be reproduced in LES by the SGS models, is
directly associated with the scalar dissipation. The questions we ask are: Does the
scalar dissipation distribution in supercritical turbulent flows have the well-known
filamentary aspect of atmospheric flows (e.g. Su & Clemens 2003)? And if so, is
the scalar distribution probability density function (PDF) akin to the Gaussian that
it resembles in turbulent atmospheric-pressure flows, except for the small non-null
skewness (Warhaft 2000; Su & Clemens 2003)? Although a Gaussian is expected
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only in homogeneous isotropic flows, the nearly Gaussian form observed in non-
homogeneous turbulent atmospheric-pressure flows allowed the utilization of this
convenient mathematical form for flamelet modelling (Peters 2000), although Selle &
Bellan (2007) showed that the β-density PDF in a modified system of variables is
a much better fit for the exact atmospheric-pressure PDF for both single-phase and
two-phase flows. If the answer to both questions above is positive, then perhaps the
specific supercritical SGS modelling departure from atmospheric-pressure flows does
not have much impact on accurate small–scale mixing representation in LES. The
present DNS database is amenable to analysis for answering these questions.

The scalar dissipation is proportional to the dissipation associated with the species
fluxes and is defined as (Okong’o & Bellan 2002a)

χ ≡ 1

ρD
jαj jαj . (4.25)

Instead of the single term representing χ under atmospheric conditions, now χ is the
sum of six terms resulting from its quadratic dependence on jαj and the fact that jαj

contains three terms proportional respectively to ∇Y, ∇T and ∇p (see equation (2.10)).
Illustrated in figure 8 are contour plots of the transitional-state log10(χ) for HN600,

HN800, OH750 and OHe600; the HN800 case is added to the three simulations
examined in tables 5–9 because the magnitude of the dissipation achieved at the
HN800 transitional state matches the maximum obtained for the OH cases, namely
for OH750 (figure 8 in Okong’o & Bellan 2004a). Because either the perturbation
wavelengths were different in the simulations (see table 2) which were thus performed
in domains of different size, or because the mixing region represented a different
portion of the domain, the presented figure size is not the same for all cases because
in each case it maintains the aspect ratio of the significant portion of the flow.
In all cases, the filamentary aspect of the atmospheric-presssure scalar dissipation
is present. According to the r.m.s. of terms in the scalar dissipation analysed by
Okong’o & Bellan (2002a), the largest scalar gradient magnitude corresponds to
regions of highest (∇Y2 · ∇Y2) value, and intermediate magnitudes correspond to high
(∇Y2 · ∇T ) values, as the Fick/Soret cross-term was identified to be second in order
of magnitude in χ . Visually, the multitude of convoluted filaments for HN600 and
OHe600 contrast with the smaller number of smooth filaments for HN800 and OH750
which is conjectured to result from the larger dissipation in the latter cases that reduces
the gradient magnitude. In all cases, a thick prominent filament is observed in the
upper stream corresponding to these HDGM regions mainly created from species
mixing, and a thinner prominent filament is identifiable in the lower stream primarily
corresponding to the distortion of the original density boundary (Okong’o & Bellan
2004a). Generally, the interior of the layer contains filamentary structures of various
thicknesses intermingled with thick patches of very small χ. In fact, in the OH750
case, very small values of χ exist in the layer core, indicating minimal values of ∇Y2.

There are at least two ways for calculating the χ PDF: either by computing the
PDF over the entire domain (Su & Clemens 2003) or by computing it over thin
domain slices at fixed x2 locations. The latter computation method was adopted here
because the former was not conducive to understanding the flow features. The PDF
of the scalar dissipation, P (χ), is illustrated in figure 9 as P (log10(χ)) computed over
three-dimensional domain slices of thickness δω,0 centred at x2/δω,0 = −5, 0 and 5.

Information is presented for HN600 (figures 9a, 9b and 9c), OH750 (figures 9d , 9e

and 9f ) and OHe600 (figures 9g, 9h and 9i) as representative of the entire database.
At x2/δω,0 = −5 (figures 9a, 9d and 9g), all PDFs show a double peak with the peak at
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Figure 8. Scalar dissipation distribution in the (x1, x2) between-the-braid plane
(x3/L3 = 0.5) at t∗

tr . (a) HN600, (b) OH750, (c) HN800 and (d) OHe600.

the smaller log10(χ) value attenuating from HN600 to OH750 and further to OHe600;
the peak at the smaller log10(χ) value is indicative that the sampling picks up free-
stream regions of well-mixed fluid which seem to dominate for HN600 at x2/δω,0 = −5
(the peak at the smaller log10(χ) value is larger in magnitude). Unsurprisingly, the
Gaussian is not a good approximation in this region of the flow. At x2/δω,0 = 0
(figures 9b, 9e and 9h), a major peak exists, with minor local peaks past the mean
scalar dissipation value. Except for OHe600 for which no minor peaks are detected,
the Gaussian is not a reasonable approximation for the PDF; even for OHe600, the
Gaussian suffers from the well-known inability to replicate the PDF at the largest
values of log10(χ). Finally, at x2/δω,0 = 5, the situation becomes exacerbated as far
as the multitude of peaks is concerned, particularly at the largest log10(χ) values,
for which local peaks are observed in all simulations, making again the Gaussian an
inappropriate approximation. The existence of secondary peaks is entirely related to
the scalar dissipation non-uniformity across the domain over which it was computed,
particularly highlighting the HDGM regions that are the site of large gradients.
Among the three examples in figure 9, the more prominent minor peaks are for
OH750 for which the contours of the scalar dissipation displayed in figure 8 show
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Figure 9. Scalar dissipation PDF at t∗
tr for HN600 (a, b, c), OH750 (d, e, f ) and OHe600

(g, h, i) at x2/δω,0 = −5 (a, d, g), x2/δω,0 = 0 (b, e, h), x2/δω,0 = 5 (c, f, i). In each case, the
scalar dissipation PDF was calculated over one δω,0 unit centred at the specified value of
x2/δω,0. ——, DNS extracted PDF; – – –, Gaussian calculated with the mean and standard
deviation of the DNS-extracted PDF. In each figure, the same data are plotted using two
different ordinate axes. The arrows point to the ordinate axis relevant for the curve.

a central region of moderate magnitude with only two concentrated regions of large
magnitude.

The far-from-Gaussian scalar dissipation provides an additional indication that the
specific supercritical SGS models derived in § 4.1.2 and § 4.2 rather than the traditional
SGS models (e.g. no (p(φ) − p(φ)) or (qIK (φ) − qIK (φ)) models) will be necessary to
duplicate the peculiar aspects of the χ PDF for the conditions of the DNS database.
(To evaluate the validity of the Gaussian-based χ PDF flamelet models for reactive
supercritical flows, experimental data are necessary to indicate if these flows also
exhibit HDGM regions.)

5. Summary and conclusions
Large-eddy simulation (LES) models have been derived for fluids obeying a real-gas

equation of state (EOS). Derived through filtering of the direct numerical simulation
(DNS) equations, the LES equations contain unclosed terms that cannot be computed
directly from the filtered flow field. Using an existing DNS database of supercritical
binary-species temporal mixing layer simulations, explicit models for the SGS fluxes
and simplifying assumptions for the remaining unclosed terms were assessed a priori.
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The DNS database consists of transitional states of high-pressure heptane/nitrogen,
oxygen/hydrogen and oxygen/helium layers. The various assumptions were found to
be generally valid, with two major exceptions: the gradient of the difference between
the filtered pressure and the pressure computed on the filtered field was not negligible
in the momentum equation, and the gradient of the difference between the filtered heat
flux and the heat flux computed from the filtered field was a significant contribution
in the energy equation. The importance of these two terms is a major departure from
perfect-gas atmospheric gaseous flows where Okong’o & Bellan (2004b) found them
negligible. It was shown that there is a direct correspondence between these two new
important terms and the high density-gradient-magnitude (HDGM) regions found
both in DNS at transitional states and in experiments under fully turbulent conditions;
the magnitude of the experimentally observed gradients is the same or exceeds that in
DNS, showing that higher Reynolds number turbulence does not smear these gradi-
ents. Modelling was thus focused on these two novel terms as well as on the SGS fluxes.

To model the new terms, a Taylor expansion of the EOS was employed. The
pressure-term model was shown to fulfil its function at a filter size that is linearly
four times the DNS grid (the LES volume is 64 times that of the DNS); however,
when the linear filter size is doubled (the LES volume is 512 times that of the DNS),
the model is no longer acceptable, totally consistent with Taylor series principles. The
implication is that numerical resolution will play an increasing role compared to that
for atmospheric flows. Models derived for the heat flux were not entirely satisfactory
a priori, and further a posteriori studies are necessary to determine whether such an
approach is computationally efficient in a LES.

For modelling the SGS fluxes, constant-coefficient versions of Smagorinsky (SM),
Gradient (GR) and Scale-Similarity (SS) models were assessed and calibrated on the
DNS database. The SM model showed poor correlation with the exact SGS fluxes,
while the GR and SS models had high correlations. Furthermore, the calibrated
coefficients for the GR and SS models yielded good quantitative agreement with the
SGS fluxes. However, comparison among the layers in the DNS database revealed
that, statistically speaking, the calibrated coefficients were not generally valid. The
more promising GR model was tested for computing the variances arising in the
Taylor expansion of the pressure-term model, and it was found to have an excellent
correlation with their DNS form. Calibrating coefficients were computed which were
shown to be statistically significant at the two filter sizes for each simulation, but
not across the entire database for a given filter size. However, the coefficients were
statistically significant for simulations with a different set of binary species that
reached similar momentum-thickness-based Reynolds number.

As a manifestation of small-scale mixing, the scalar dissipation was examined to
investigate whether it displays departures from atmospheric-pressure flows that would
require duplication in LES through the derived supercritical SGS models. The scalar
dissipation distribution aspect was filamentary (like in atmospheric-pressure flows)
and as expected, closely associated with the HDGM regions. Because the scalar-
dissipation PDF computed in thin cross-stream layers did not generally exhibit the
well-known quasi-Gaussian behaviour of atmospheric-pressure flows, the indications
are that the specific supercritical SGS models will be essential in duplicating the
peculiarities of small-scale mixing in supercritical flows.

Future studies will focus on a posteriori assessment of the LES models to determine
their predictive ability in reproducing the temporal and spatial evolution of the filtered
flow field, with particular interest in the sensitivity of the results to the value of the
SGS-flux and SGS-variance model coefficients.
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Appendix A. Transport properties for O2/He mixtures
For O2/He mixtures, the Prandtl number is approximated as

Pr = 0.68 + 0.0283ξ − 0.5017ξ 2 − 0.5390ξ 3 + �Pr, (A 1)

where

ξ = min(0.5, Y2 − 0.81θ0.35), θ = (T − 100) /800, 0 � θ � 1 (T in Kelvin).

For 0.02 � θ � 0.368, �Pr = 2.42Y 14.6
2 max(0.0, −0.23(1 + ln θ)), otherwise �Pr = 0.

For O2/He mixtures, the Schmidt number is approximated as

Sc = Σ(Y2)[1 + (114/T )1.5]/(1 + �s), (A 2)

T < 200 K: Σ =
(
1.292 − 0.757Y2 + 0.444Y 2

2 − 0.757Y 3
2

)
,

T > 200 K: Σ =
(
1.318 − 0.772Y2 + 0.453Y 2

2 − 0.772Y 3
2

)
.

For p < 30 MPa, �s = min(0.08, 0.1264 + 0.226YR) + 0.1 exp(−2400θ4.5) where
YR = Y2 − min(1, 0.5 + 0.78θ0.6), otherwise �s = 0.

Appendix B. Derivatives of the PR EOS
The relation between first-order derivatives with respect to the thermodynamic

variables (ρ, ρY1, ρY2, ρe) and (v, X1, X2, T ) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂ρ

∣∣∣∣
ρYi ,ρe

∂

∂ (ρY1)

∣∣∣∣
ρ,ρY2,ρe

∂

∂ (ρY2)

∣∣∣∣
ρ,ρY1,ρe

∂

∂ (ρe)

∣∣∣∣
ρ,ρYi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂v

∣∣∣∣
Xi,T

∂

∂X1

∣∣∣∣
v,X2,T

∂

∂X2

∣∣∣∣
v,X1,T

∂

∂T

∣∣∣∣
v,Xi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B 1)

which is succinctly written as

∂
y
i =

4∑
k=1

Mik∂
x
k . (B 2)
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Figure 10. Plots from the one-dimensional PR EOS test. Improvement due to δ for
(a) r = 1, (b) r = 2, (c) r =3, (d) r =4. Units are MPa.

Tedious calculations using the PR EOS lead to

M = v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

− v

m1

1 − X1

m1

−X2

m1

− [∂(mh)/∂X1]κT − T αv[∂v/∂X1]

m1(mCp)κS

− v

m2

−X1

m2

1 − X2

m2

− [∂(mh)/∂X2]κT − T αv[∂v/∂X2]

m2(mCp)κS

0 0 0
κT

(mCp)κS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(B 3)

where the isothermal compressibility, κT , the expansivity, αv, and the isentropic
compressibility, κs , are

κT =
−1

v(∂p/∂v)T ,X

, αv = − (∂p/∂T )v,X

v(∂p/∂v)T ,X

, κs = κT − vT α2
v/(mCp). (B 4)

In contracted form, the calculation of the second-order derivatives can be written as

∂
y
ij =

4∑
k=1

Mik∂
x
k

[
4∑

l=1

Mjl∂
x
l

]
=

4∑
k=1

4∑
l=1

Mik{Mjl∂
x
kl + ∂x

k [Mjl]∂
x
l }, (B 5)

which uses the derivatives with respect to (v, Xk, T ) of the matrix M (term ∂x
k [Mjl]).

These derivatives have lengthy mathematical expressions which are not provided here
in the interest of brevity, but can be made available by the authors on request.
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Appendix C. One-dimensional test for the Taylor expansion of p(φ)

We investigate here in a simplified geometry whether p(φ) + δ is a better
approximation of p(φ) than p(φ). The non-dimensional parameter assessing the
δ improvement is the ratio r = �̄/�grad of the filter size to the gradient scale. The
test is performed on mathematical forms of T and X that mimic the initial condition
in DNS, being a tanh profile between two (free-stream) specified values, while p

is a constant. Comparisons between p(φ), p(φ) and p(φ) + δ for 4 values of r are
shown in figure 10. For the small values of r (figures 10a and 10b) it is clear that
p(φ)+δ is a better approximation of p(φ) than p(φ). Not only is the amplitude of the
unphysical oscillations reduced, but more importantly their mean is much closer to
zero. However, for the cases with a larger ratio r (figures 10c and 10d), the addition
of δ actually deteriorates the correlation with p(φ). These facts are consistent with
the nature of the second-order correction provided by the Taylor expansion, valid for
small variations (i.e. (φ − φ) −→ 0).
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